AUTOMATIC TEST DATA SELECTION TECHNIQUES *

Loxi A. Clarke

COINS Technical Report 78-25
September 1978

Department of Computer and Information Science
University of Massachusetts, Amherst
Amherst, Massachusetts 01003

t This paper appears in the Infotech State of the Art Report on Software Testing,
Infotech International, 1979.

This work was supported by the National Science Foundation under grant
NSFMCS 77~02101 and the U.S. Air Force under grant # AFOSR 77-3287.

I. Introduction

In the last decade, there has been an increased awareness of the
need for more reliable software. This concern has come about because
of our demand for larger, more éomplex systems and because of our
growing dependeﬁce on software. This dependence may be merely a
convenience of ﬁodern socciety such as a department store billing system,
or it may be of tremendous benefit, such as a cardiac monitoring s&stem.
While errors in the former system may be annoyiﬁg, errors in the létter
system may be catastrophic. The desired level of confidence and the
amount of resources devoted to establishing that level of cbnfidence
vary from system to system and may even vary between parts of the same
system. |

Various methods of iﬁproving software reliability are being explored.
These include work going on in language design, programming methédology,
and program validation. Though there have been several proclamations
that program‘correctness is just around the corner (about a five to ten
year period), we now realize that, in general, absolute correctness is
an unattainable goal. We have made some advances in improved program
reliability and will probably continue to make progress. However, all
aspects of the software development process are prone to errors. Since
we cannbt guarantee program correctness, we must expect that some errors
will not be detected until after a svstem is released.

In this paper, we will discuss methods of program testing. Testing
is defined here to be the execution of a program in its natural environ-

ment. Testing requires the selection of data to actually exercise

the progfam. The results must then be analyzed and confirmed. If an
erroneous result is uncovered, debugging in initiated.

Programmersrhave.historically used testing to convince themselves
and others that their software works. Though gesting, like other
reliability methods, has limitations, it:has otte major advantage: it
is the only method in which the actual behavior of the software can be
observed. Thus, errors or oversights in the supporting environment,
which includes the available validation tools, tranmslators, operating
system and hardware, may be detected. Moreover, the actual performance
can be evaluated for'efficiency and usefulness.

Section II of this paper describes some of the limitations of
program testing and outlines how a combination of methodologies and
program analysis techniques may assist in the sélectibn of testAdata.
The remainder.of the paper describes ATTEST, an automatic test enhance-
ment system, that is under development. ATTEST aims to offer a more
systematic approach to testing and attempts to relieve the user of

some of the more tedious aspects of test data selection.

II. Testing Methodologies

Testing is usually given a low priority and often relegated to
the least experienced programmers. Many software errors are not found
until after the syétem ié released, thus contributing to the high cost
of maintenance. In fact, one study found that only one third of the
statements were ever executed during the testing stage [1]. We need
to replace this haphézard approach to testing with a systematic approach

so that some quality assurance can be given for a system. Moreover, we

need to employ experienced personnel famlliar with the specifications,
design, and implementation of the system. Personnel cognizant of
decisions made during the software development stages can better test
the ramifications of these decisions.

Only in some rare.aﬁd usually unirteresting cases is it possible
to eificiently enumerate and test'a program on all possible input values
for that program. Testing methodologies must therefore support techniques
for selecting a subset of the data sets from the total input domain of
a system. An inherent limitation of testing is that any subset of the
input'domain may not find ‘all the errors in a program. A testing
methodology should increase the likelihood of uncovering errors in the
software. This section considers two testing methodologies: functional
and structural. Each will be briefly described and an argument made as
to why both forms of testing must be considered. The iast part of this
section outlines the benefits of combining these methodologies with a
software testing tool.

Functional testing is sometimes referred to as black box testing or
specification testing. In functional testing, only the functions of
the software are considered and not the actual implementation. Data
sets are selected to exercise all the functions of the software. These
functions are referred to as subcases or special cases and include the
general or typical cases as well as error detection cases.

In order to do functional testing well, the tester should be very
fomiliar with the specifications. When a specification document is
available, the various special cases may be explicitly listed. Goodenough

and Gerhart [2] have shown how a decision table specification facilitates

test dafa selection. Though decision tables are not applicable to many
types of programming problems, when they are available, they are extremely
useful for data selection.

Functional testing has several limiftaticns. The main drawback is
an inability to determine if the test =2t is complete. Just as we can
not be sure a Specifieation is complete, we can not be sure a functional
test set exercises all the subcases. Another problem is that thevnumber
of test cases for functional testing may exceed the resources for testing.
The example in [2] demonstrates that even a simple program may have an
excessive number of test cases.

Structural testiﬁg requires analyzing the program's data represeﬁ—
tations and control paths. A proéram,can be represented as a directed
graph in which the nodes represent the.stafements and edges represent
the possible control trensfers. During sﬁructural testing, data'sets
are selected to give good coverage of the program graph. For'example;
the coverage criterion may be the execution of all statements. While
- this coverage criterion has many drawbacks, it surpasses the program
coverage that is typically achieved and increases the.probability that
many blatant errors will be caught before the program is released. Other
structural testing criteria are discussed in Section VI.

Structural testing should also include testing special construets
. in ﬁhe code such as the boundary conditions of the internal data
representations and of loops. For data representations, this involves
at least testing for underflow and overflow. For loops, this generally

involves exercising a loop the minimum and maximum number of times.

,.Even_though'structural téqting guarantees some kind of minimal
coverage of the program, it does not guarangee correctness of the tested
components. A statement may be tested and scill be in error. In
addition, structural testing may not uncrver a missing subcase. Finally,
strucﬁural-festing may also resﬁlt in an excessive number of data sets.
bepen@ing on.the application and resources, testing may have to be
restricted to éritical areas of the code.

The appendix contains a program that looks up an inventory number
in a merchandise table. Functional testing would require data sets
where inventory number is present in the table, is not present in the'
table, and is illegal. Structural testing would also detect theée
cases, and in additi;n, require testing the table representation. In
the example, a'lineaf search algorithm is used. Two additional tgst
cases are needed with the inventory number set to the first element in
the table and to the last element in the table. Another search algorithm
would probably require different data sets.

Functional testing has the advantége of testing special cases that
may have been overlooked or incorrectly implemented. Structural testing
has the advantage of uncovering special cases.that were included in the
code but not in the specificatiomns. It also has the advantage of
concentrating on impiementation problem areas. For best results in
detecting errors, both methods should be combined.

Top down, bottom up, and unit testing are testing methodologies that
are often proposed. The choice between these methods is often determined
by the software development method that is imposed. Functional and

structural testing can easily be used in conjunction with all three.

Functional testing can be facilitated by the use of formal specifi-
cations [3]. Structural testing can be assisted by a system that analyzes
the program structures, monitors the testvruns, and then aids in the
selection of test data to execute the unexercised sections of the program.
This can be particuiarly useful in large systems containing many special
cases to handle erroneous data or erroneous computations. The actual
program paths to these sections of code may be éhort but it still may
be tedious to manually analyze each one. A more efficient method is to
allow the human tester to concentrate on the critical areas of the code
and use an automated teéting tool to assist in data selection for the
more mundane portions of the code. The following sections describe an
automatic test selection system that attempts to generate data for .
unexercised sections of the code as well as data to exercise some of the
implgmentation dependent special cases such as array indices out of

bounds and division by zero errors.

III. ATTEST

ATTEST, an automatic test enhancemént system, can either augment
previously selected data sets or select all the test data for a program.
Ideally, a testing grouﬁ would firstidevelop a set of test data using
both the functional-and structural methods. Thus, test cases based on
the specifications and implementation would first'be attempted. ATTEST
would then determine the poorly tested areas of the program, if any,

and generate data to exercise these areas.

In a large'system, there are usuaily numerous checks for inconsis-
tent data or results. Manually developing fest cases for all these
situations can be extrémely tedious. However, not testing these
situations can be costly since untested code frequently results in
errors being discovered once a system is delivered. The compromise
situation of combining manual and automatic test selection techniques
is perhaps the best. The testing group can use their expertise to
exercise the program and then a system like ATTEST can be used to
guarantee a minimal level of coverage in the code and specificationms.

ATTEST is composed of three major components: path selection,
symﬁolic execution, an& test data generation. The path selection
component 1s concerned with selecting program paths that satisfy a
testing criterion. Usually this involves choosing paths that coﬁtain
segments of code in need of further testing. The symbolic execution
component analyzes each chosen path. During symbolic execution, a‘
path's computations are represented,'the range of possible input va;ues
is constrained, and some error analysis is done. The test data generation
component checks the input value constraints for consistency and, if
they are consistent, generates test data that would drive execution down
~the selected path. It is then necessary to test the program with the
génerated test data to confirm the results. Figure 1 shows the inter-
relationships between the ATTEST components.

ATTEST analyzes programs written in ANSI FORTRAN but the gemeral
methods employed are relevant to any algebraic language. In a preprocessor

stage, ATTEST translates the FORTRAN source statements into a machine

PROGRAM 4//}

SYMBOLIC
REPRESENTATIONS

~

Figure 1

PATH
SELECTION

SYMBOLIC
EXECUTION

l

TEST DATA
GENERATION

!

TEST DATA

——

~

independent assembly type language and represents the program structure
as a directed graph. The analysis is then done on this translated form
and not on the original code.

In the next three sections, each component of ATTEST will be
described. Since path selection dgpénds on the results of the other

two components, it is described iast.

IV, Symbolic Execution

Symbolic execution derives its name from the technique of repre-
senting input values By symbolic values instead of by actual numeric A
values. For example, after the statement READ A,B is symbolically
executed, A and B would have symbolic values, say il and 12, associated
with them. Any subsequent expression that references A or B would use
the corresponding symbolic representation. For example, consider the
following code segment:

READ RADIUS
, PI=3.14
TWOPI=2.*PI

=PI*RADIUS**2
CIRC=TWOPI*RADIUS

v

After symbolic exeéution of statements 1 to 5, the symbolic represen-
tations are PI=3.14, TWOPI=6.28, AREA=3.14*i1**2, and CIRC=6.28*11,
where il represents the input value for RADIUS. Note that in general,
a vafiable's symbolic representation changes whenever it is assigned

a new value on a path and at any statement, a variable's symbolic

representation depends on the path taken to arrive at that statement.

10

Symbolic execution is a powerful testing tool. After executing
a series of statements, the resulting symbolic representations can be
examined to determine the correctness of the path. W%hile normal
execution shows particular output values tha* result from particular
input data, symbolic execution represents all computations for a path
regardiess of the input data. 1In other words, the resulting computa-
tions for a potentialiy infinite aumber of test runs with different
input values may be represented by the symbolic representations for one
program path. In addition to representing output for a class of input
data, the symbolic representations are often more informative than
numberic values. To use a trivial example, assume a prograﬁ path computes
A*A instead of 2*A. If the program is tested with data that always
results in A having the value 0, then no error would be detected.
waever, if symbolic execution is used, the error is easily detected
from the symbolic representation. In an experiment conducted by Howden,
68% of the errors in a set of programs were found using symbolic
execution [4].

An unfavorable consequence of symbolic execution is that the symbolic
representations are sometimes too long and complex to be meaningful.
Even when a symbolic representation is short, the tester may not detect
an error in a representation. Consider the case where the program should
compute (A+B)/C and instead computes A+B/C. The missing parenthesis may
go unnoticed, especially if the tester is the original coder who made
the mistake. Another major drawback of symbolic exeéution is that it

must be applied to completely specified program paths including the

11

number of iterations for each loop. 1In general, a program may have .an
‘infinite number of program paths and only a subset will be chosen for
analysis. The path selection section discusses several strategies for

selecting a subset of the paths.
(o

V. Test Daca Generation

In the test data generation component of ATTEST, we are concerned
with selecting data that would cause the execution of thé selected path.
The generated data must therefore satisfy all the conditiomal branches
on the path. We use symbolic execution to represent the conditional
branches on the péth énd then, in the test data generation compomnent,
we attempt to generate a satisfactory data set. In this section, we
will first discuss the symbolic representations of the conditiona;
branches and then describe the test data generation method.

Conditional statements are represented in the program graphlby
relational and logical expressions that annotate the graph edges acdording,
to their appropriate interpretations. Two examples using a FORTRAN
logical IF and computed GO TO étatements are given in Figures 2 and 3.
In Figure 2, the nodes in the graph are numbered to easily distinguish
the two paths 5,6,7 and 5,7. The symbolic execution of the path 5,6,7
results in the predicate S(A) > S(B) while the symbolic execution of
the path 5,7 results in the predicate S(A) < S(B), where S(A) and
S(B) denote the symbolic representations of A and B after execution of
node 5 on the path. A predicate is asséciated with each conditiénal
statement in a complete program path. We denote the symbolic represen-

tation of the ith conditional statement in a path by Pi' In order to

IF(A.GT.B) X=X/2

Figure 2

12

13

sty e pnd

(K=lv'K=3)’ (K=2) (K=4)

IF(10,20,10,30),K

Figure 3

14

actually execute a path, each new predicate Pi+1 must be consistentwith
the conjunction of all predicates previously encountered on the path
(Pj’ 1<3j<1i). If the new predicate is inconsistent, the path is

infeasible or nomexecutable. The symbclic representation of a predicate

may evaluate to the value true or false, just as some variables have
constant symbolic represenmtations such as the variable TWOPI in the
previous code segment. A predicate that evaluates to the constant
true is consisténtwith.all previous predicates on the path while a
predicate that evaluates to the value false is inconsistent.

When the symbolic representation of a predicate does not evaluate
to a constant, the test data generation component attempts to determine
if the new predicate is consistent with the existing set of predicates.
Two techniques, axiomatic and algebraic, have successfully been used to
determine predicate comsistency.

The axiomatic approach uses first order predicate calculus to
determine if the most recently encountered predicate is consistent with
the conjunction of the existing set of predicates. A theorem prover
is used to determine comsistency. This method is subject to the limita-
tions of automatic theorem proving [5].

The algebraic approach represents each predicate as an equality or
inequality expression. .The set of predidates forms a set of constraints
over the input domain. If any solution exists to the set of comstraints,
then the new constraint is consistent with the existing set of constraints.
Since ATTEST is concerned with actually generating input data and not just

consistency, the algebraic approach is used. When the end of a path is

/ 15

encountered, any solution to the set of constraints is a data set that
would cause execution of the path. Figure 4 shows the graph for a
segment of a program and- Figure 5 shows the resulting constraints and
domains. from symbolically executing foﬁr paths. To simplify this
example, none of the variables in the -onditional statements have been
modified and the variables X and Y have been symbolically represented
by x and y. Note that on the path 1,2,4, either branch (4-5) or (4-6)
is consistent with the existing set of constraints while on the path °
1,2,3,4, only branch (4-6) is consistent. A conditional statement on a

path that results in more than one consistent predicate is referred to

as a decision péint.. The.path.sélgction component determines which
branch to select at decision points.

There are various algebraic methods that could be applied to the
set of constraints to determine consistency. ATTEST uses a linear
programming system that accepts both real and integer variables [6].
Both the algebraic and axiomatic approach have similar limitations and,
in general, cannot handle all possible situations. The algebraic approach
has the advantage of providing actual data values for testing. Though
ATTEST currently supplies only one data value for a path, there has
been some work done in.choosing a set qf data points to test each path

which would increase the probability of detecting errors om the path [7].

VI. Path Selection

Symbolic execution systems have historically given a low priority

to path selection [8,9,10]. The various methods of path selection that

16

Y> 0
3
Y <0
4
X+YSO/ ¥+Y>O
5 6

Figure 4

Path 1,2,4,5

Path 1,2,3,4,5
x23
y>0

Xx+ysoO

(nonexecutable)

Figure 5
Path 1,2,4,6
P1 x23
P2 ysO
P3 X+y20

Path 1,2,3,4,6
x23

y>0
x+y>0

-
-

17

18

have been tried include manual dynamic'selection, manual static
selection, automatic static selection, and automatic total selection.

'The problems with each of these methods will be explained and ATTEST's
dynamic method of selecting a subset of paths to satisfy a user-
selected testing critferion will be described.

" Manual dynamic path selection requires the user of the system to
select the nexo statement whenever a decision point is encountered. This
tecﬁnique is beneficial when symbolic execution is being used as a
debugging tool or when the user is interested in a particular path.
However, there are two drawbacks to using this technique as a general
testing strategy. First, it is very tedious and not the most efficient
use of personnel. Second, it.is surprisingly difficult to manoolly
direct the system to qntested areas of.the program. Programs tend. to
contain é considerable number of nonexecutable paths that, in our
oxperience, are deceivinglyldifficult to avoid. This is particularly
true when the user of the system did not write the program being tested.

ATTEST supports an interactive path selection capability but it is only
recommended for debugging.

Manual static path selection requires the user to oompletely
specify a program path before analysis is initiated. As mentioned in
the previous case, users tend to inadvertently select a large proportion
of nonexecutable paths.

In automatic static selection, paths are automatically selected

prior to symbolic execution. This method is usually based on the graph

19

structure of the program. However, without additional semantic information,
this has the same drawbacks as the previous two methods. There has been
some work on statical}y detecting inconsistent pairs-of predicates

[11,12] which reduces the total number of control paths that need to be
considered. However, static algorithms for selecting pathé that exclude
these incompatible predicates have been shown to be intractable [13].

The last alternative has the disadvantage of inundating the user with
paths. Even when an upper bound is imposed on the number of loop iterationms,
the number of paths is usually umnmanageable. Figure 6 shows a loop with
one conditional branch. With the upper bound on the number of loop
iterations set to N, the number of possible paths is:

N

S o2 =2,

j=1
Even when N is small, the number of paths explodes and usually generates
more information than the user éan examine. In addition, many of the
paths will be uninteresting, differing only in the number of loop
iterations.

ATTEST has chosen a more pragmatic approach to testing that is, by
necessity, less comprehensive than total path analysis. ATTEST's automatic
path selection component chooses a subset of a program's paths according
to several testing criteria. Each one of the testing criterion will be
discussed and the methods employed to satisfy each criterion will be

briefly explained.

21

ATTEST's testing criteria includes recognizing two types of struc-
tural subcases: loop boundary conditions and language dependent conditrions;

and three methods of path selection: statement coverage, branch coverage,
and total path coverage. |

In order to exercise loop boundarv conditions, ATTEST attempts to
create path descriptions that will execute the program's loops a minimum
and maximum number of times. The current implementation does this only
for FORTRAN DO loops. The linear programming algorithm from the test
data generation component. is used to find the minimum and maximum value
of the symbolic representation of the final loop iteration variable
subject to.the constraints imposed by the path predicates. When no upper
bound exists, a user selected default value is'used. A DO loop in
FORTRAN has a lower bound of at least ome.

The language dependent subcases that ATTEST automatically analyzes
include array index out of bounds, division by zero, computed GO TO
index out of bounds, and variable dimension out of bounds. Other sﬁbcases
such as overflow and underflow could also be included. All language
dependent subcases are handled in a similar manner. When the subcase
is encountered during symbolic execution, a predicate Pi is formed which
represents the error condition for the construct. The test data
generation component then determines the consistency of Pi with the -
existing set of predicates. If the predicate is incomsistent, no test
data exists that would cause this subcase to occur on the chosen pathr
If the predicate is consistent, then a data set is generated that would

cause the error. Since all the special cases recognized by ATTEST would

22

¢

result in a run timz errsr. a warning message .3 alsc returned to the

td

user. Ths pradica:ie : is subsequenciy remcvaed from cha sat of. path
predicares. PFigurs 7 shows the pradicates that ars creatvad for each of
the fanguage derenden% special casas recszniza2c by ATTEST. Note, most
of thz cemstructs have an unper zad lowar bcund that must be checked
separatzly,

The remaining criteria are concerned with selecting program paths.
The total path selection critarion is proviced for those applications
requiring extensive testing. A simple path enumeration method is used
but each pach description is genzrated dynamically. When an inconsistent
predicate is selected and then rejected, an alternate branch may be
chosen. Except for a few conditional constfucts in FORTRAN (computed
GOTO and assigned GCTO), at least one of the branches emanating from
a statement should result in a consistent predicate.

Statement coverage and branch coverage are the criteria for selecting
a subset of the program péths. A user can select either criterion or
combine the two., Figure 8 demonstrétes the—difference between the
three path coverage alternatives for a simple program graph.

Statement coverage and branch coverage are implemented in a
similar manner so only the former will be described here. The system
initially creates the program's transitivity matrix. The transitivity
matrix shows which statements are potentially reachable from any other
statement in the program. The matrix is formed from a purely structural
analysis cf the crogram graph and does not, take into consideration program
semantics. The sysftam also maintains a vector of all statements that have

not been exacutzd. This vector and the transitivity matrix can be

FORTRAN STATEMENT

Y/2

X =
X = A(D)
GOT0(10,20,30),1

DIMENSION A(N)

Figure 7

PREDICATE

§(Z) = 0

S(I) <1

S(I) > dimension of A

S(I) <1

S(I) > 3

S(N) <1

S(N) > maximum dimension of A.

23

all statements: 1,2,3,4,5

all edges: 1,2,3,4,5
1,3,5

all paths: 1,2,3,4,5
1,3,5
1,2,3,5
1,3,4,5

Figure 8

24

25

compared to determine the potential number of new statements th;t may
be reached from any statement in the program.

An estimated desirability value is computed for every feasible
branch at a decision point. A feasible branch is consistent with the
existing set of path predicates and emanates from the current statement
on the path. If the testing criteria includes executing all statéments,
then the potential number of new statements would affect the estimated
desirability value. At each decisio;_;oint, the path selection coﬁponent
selects the feasible branch with the maximum desirability value. Using
Figure 5, assume statements 1, 2, and-3 have been symbolically executed
and both branches (3,4)'and‘(3,5) are consistent with the one existing
predicate. Branch (3,4) would be chosen next since it has the potential
of reaching one new statement (5).

The desirability wvalue depends on thé sélected testing criteria
and on information that has accumulated from previous path seléction
attempts. For example, the number of times a branch has already'been
selected on previous‘paths is taken into account in order to increase
the variety of subpaths within a set of path descriptions. A complete

description of the path selection component is in [14].

VII. Conclusion

There are currently few systems to aid in the selection of test
data though testing is known to be a labor intensive and tedious task.
The ATTEST system attempts to generate data sets to assist in strqc;ural
program testing. The current status of ATTEST and some of the areas in

need of further investigation are mentioned below.

26

The symbolic execution component handles most FORTRAN constructs
though there are difficulties with arrayé and file manipulations. A
‘method of including I/O specifications is described in [15] and is
partially igplemented. The test data generation component is restricted
to systems of linear predicates but our experimental results show that
most predicates can be simplified or transformed to linear expressions.
Some of these transformations are already implemented in ATTEST. Other
- methods of solving systems of inequalities are also being examined.

The path selection'component has just recently been implemented. For
all test programs attempted to date, at least eighty percent of the
requestad path coverage was achieved in a reasonable number of attempts.
Since path selection is striving for the best gain and not one par;icular
path, it is usually efficient. However, the method does deteriofate
when only a smaLl number of untested statements remain. Other testing
criteria are being explored as well as methods for designating critical
areas of the code that should receive additional consideration. Methods
of incorporating the work on incompatible predicates are also being

investigated.

Appendix

A sample run using ATTEST is shown below. The testing criteria
used for this run included loop boundary conditions, language dependent
conditions, statement coverage, and braach coverage.v The predicates
generated for the paths are all fairiy simple and do not demonstrate the

full capabilities of the test data generation component. However, the

capabilities of the path selection compoment are demonstrated.

Block Source

.

INTEGER MRCETB(5,2),TBSIZ,DEPT,INVNUM,MIN,MAX
DATA TBSIZ/5/

INVENTORY NUMBERS

anan

DATA MRCHTB(1,1)/56965/,MRCHTB(2,1)/31415/,MRCHTB(3,1)/14736/,
c MRCHTB(4,1)/12345/,MRCHTB(5,1) /91789/

C MIN AND MAX INVENTORY NUMBERS
DATA MIN/11111/,MAX/99999/

DEPARTMENTS HANDLING INVENTORY
DATA MRCHTB(1,2)/3/,MRCHTB(2,2)/1/,MRCHTB(3,2)/3/,
C MRCHTB (4,2)/2/,MRCHTB(5,2)/1/

READ(5,100) INVNUM

CALL LINSCH(INVNUM,MRCHTB,TBSIZ,MIN,MAX,DEPT)
WRITE(6,100) INVNUM,DEPT

STOP

100 FORMAT (I5)
END

HOOUFAPWMNOOHFOOOMHOOOKHEFHOOC KK
(@]

28

Block Source

SUBROUTINE LINSCH (INVNUM,MRCHTB,TBSIZ ,MIN,MAX,DEPT)
INTEGER INVNUM,TBSIZ,MRCHTB(TBSIZ,2),MIN,MAX,DEPT

c
C .
IF (INUNUM. LT.MIN) l
$GOTO 900
IF(INVNUM.GT.MAX)
$GOTO 900

DO 10 INDEX=1,TBSIZ
IF(MRCHTB(INDEX,1) .EQ. INVNUM)

M
OCHOWVWONTAOULLAWNOO R K
o

$GOTO 20
10 CONTINUE
DEPT=0
RETURN
o
12 20 DEPT=MRCHTB (INDEX, 2)
13 " RETURN
0 C
0 C ERROR RETURN
0 ¢
14 900 DEPT=~1
15 RETURN
1 END

Path 1:

Main Procedure: 1,2,3, Procedure LINSCH: 1,2,4,6,7,9,7,9,7,9,7,9,
7.9,10,11,Main Procedure: 4,5,

Predicates:

I(INVNUM < 11111)
(INVNUM > 99999)

(56965 = INVNUM)

T1(31415 = INVNUM)

(14736 = INVNUM)

“1(12345 = INVNUM)

(91789 = INVNUM)
Test Data:

INVNUM = 11111

Path Output:

DEPT = 0

‘Path 2:
Main Procedure: 1,2,3, Procedure LINSCH: 1,2,3,14,15, Main Procedure:
3,5 '
Predicates:
INVNUM < 11111
Test Data:

INVNUM = 0
Path OQutput:

DEPT = 0

30

Path 3:

Main Procedure: 1,2,3, Procedure LINSCH: 1,2,4,5,14,15, Main
Procedure: 3,5

Predicates:

Y (INVNUM < 11111)
(INVNUM > 99999) .

Test Data:
INVNUM = 100000
Path Output:

DEPT = -1

Path 4:

Main Procedure: 1,2,3, Procedure LINSCH: 1,2,4,6,7,8,12,13, Main
Procedure: 4,5

Predicates:

<) (INVNUM < 11111)
7 (INVNUM > 99999)
(56965 = INVNUM)

Test Data:
INVNUM = 56965
Path Output:

DEPT = 3

Path 5:

Main Procedure: 1,2,3, Procedure LINS
7,8,12,13, Main Procedure: 4,5

Predicates:

Y(INVNUM < 11111)
(INVNUM > 99999)

V(56965 = INVNUM)
(31415 = INVNUM)
V(14736 = INVNUM)
(12345 = INVNUM)
(91789 = INVNUM)

Test Data:

INVNUM = 91789"
Path Output:

DEPT = 1

31

CH: 1,2,4,6,7,9,7,9,7,9,7,9,

(1]
(2]

(3]

(4]

(5]

(6

(7]

(8]

[9]

[10]

[11]
[12]

[13]

References

L.G. Stucki, "Automatic Generation of Self-Metric Software," Rec.
1973 IEEE Symposium Computer Software Reliability.

J.B. Goodenough and S.L. Gerhart, "Tcward a Theory of Test Data
Selection," IEEE Trans. Software Engineering, June 1975.

B.H. Liskov and V. Berzins, "An Appraisal of Program Specificatioms,"”
Proceedings of the Conf. on Research Directions in Software
Technology, October 1977.

W.E. Howden, "Symbolic Testing and the DISSECT Symbolic Evaluation
System," IEEE Trans. Software Engineering, July 1977.

B. Elspas, K.N. Levitt, R.J. Waldinger, and A. Waksman, "An
Assessment of Techniques for Proving Program Correctness,"
Computing Surveys, Vol. 4, No. 2, June 1972.

A.H. Land and S. Powell, FORTRAN Codes for Mathematical Programming,
John Wiley & Soms, 1973. ’

E.I. Cohen and L.J. White, "A Finite Demain-Testing Strategy for
Computer Program Testing," Ohio State University Technical Report
0SU-CISRC-TR-77-13, August 1977.

L.A. Clarke, "A System to Generate Test Data and Symbolically
Execute Programs,”" IEEE Trans. Software Engineering, September 1976.

R.S. Boyer, B. Elspas, and K.N. Levitt, "Select - A Formal System
for Testing and Debugging Programs by Symbolic Execution,"
Proceedings 1975 Int. Conf. Reliable Software, IEEE Computer Society.

J.C. King, "Symbolic Execution and Program Testing," CACM, Vol. 19,
No. 7, July 1976. :

K.W. Krause, R.W. Smith and M.A. Goodwin, "Optimal Software Test
Planning Through Automated Network Analysis," Rec. 1973 IEEE
Symposium Computer Software Reliability.

L.J. Osterweil, "The Detection of Unexecutable Program Paths Through
Static Data Flow Analysis," University of Colorado Technical Report
CU-CS~110-77, May 1977.

H.N. Gabow, S.N. Maheshwari and L.J. Osterweil, "On Two Problems in
the Generation of Program Test Paths," IEEE Trans. Software
Engineering, September 1976.

33

(14] J.L. Woods, "Path Selection for Symbolic Execution Systems," Ph.D.

{15]

Thesis, -University of Massachusetts, 1978.

P. Abrahams and L.A. Clarke, "Compile-Time Analysis of Data List-
Format List Correspondences,"” Universi:ty of Massachusetts Technical
Report #78-11, Computer and Information Science Department.

