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I. Introduction

Symbolic evaluation is a data flow analysis method that analyzes program
behavior by monitoring the manipulations on the input data. Symbolic evalua-
tion methods represent computations as algebraic expressions over the input
data and thus maintain the relationship between the input data and the result-
ing values. Normal execution computes numerical values but often loses infor-
mation about the way in which the numerical values were derived. An incorrect
numerical result usually does not uniquely determine the location of a mis-
calculation. ”A'large part of the debugging process is concerned with isolating
an erroneous célculation that resulted in a wrong numerical value. Symbolic
evaluation methods can be used to aid in debugging as well as in several other
types of program analysis.

There are three basic methods of symbolic evaluation: symbolic execution,
global symbolic evaluation, and dynamic symbolic evaluation. Symbolic execu-
tion is a path oriented evaluation method that analyzes input data dependencies
for a path. Global symbolic evaluation represents all possible data dependen-
cies at any point in a program. Dynamic symbolic evaluation produces a trace
of the data dependencies for particular input data.

In this péper we first introduce a formal notation to concisely represent
eaéh of the th;ee methods of symbolic evaluation. Each method is then e#plained
and examples of the three methods are given to demonstrate their corresponding
strengths and weaknesses. Also, several applications of each method are dis-
cussed. Symbolic execution is the best known of the three techniqués so it is
described first and in more detail than the other two methods. Several differ-
ent implementation techniques of symbolic execution systems are compared. The
other symbolic evaluation methods are then described and compared to symbolic

execution.



2. Functional Notation
In this section we introduce some basic notation that will be used in
formalizing the results of each of the three methods of symbolic evaluation.

A program P accepts input values (xl,x .,xM) and computes output values

g2t

(zl,zz,...,zN). The domain X of the program P is a cross product, X = Xl X

X, X...X% XM’ where each X_ is the domain for input value X An element of X

2 I

is a vector x with specific input values, x = (xl’XZ"'°’xM)’ and corresponds
to a single point in the M-dimensional input space X. Likewise, the codomain

Z of a program 1s a cross product, Z = Zl x 22 XoooX ZN’ where each ZJ is the

codomain for output value z An element of Z is a vector 3 with specific out-

3
put values, 2 = (zl’ZZ’°'°’ZN)’ and corresponds to a single point in the N-di-
mensional output space Z. We will also reference a vector y = (yl,yz,...,yw)

of program variables, which store the values (both intermediate and output)
computed by the program, as well as the input values, (xl,xz,...;xM). For the
purposes of this paper, we will assume that the program variables, yl,yz,...,yN,
N < W, store the output values, (21’22""’ZN)'

The program P computes some function F, which has the same domain and
codomain as does P; hence, F is a mapping from X ﬁo Z, F : X+ Z. 1In general,
F is composed of a set of partial functions, which are defined over disjoint
subsets of the domain X. Subpose F={ Fl’FZ""’FQ}’ 1 <Q é ®, where each
FG is a partial function defined over Dg and undefined elsewhere in X. This
subdomain Dg is called the domain of definition of F.. Each of the partial
functions FG produces an N-tuple in the codomain Z; FG may thus be represented

as a vector of N component functions, F .,fGN), where the Jth

¢ = Herrfeeo--

: F
component produces the Jth output value, z Hence, for any x € DG , F(x) =

I°
€§x) = (fGl(x), sz(x),..., fGN(x)) € 7 and fGJ(x) € ZJ.

The program P that computes the function F has a construct similar to the



partial functions of F. Rather than performing the same computation on all
elements of the input space, P may compute different functions along different
program paths, which are executed for disjoint subsets of the domain X. A
simplifying assumption that each path has M input values and N output values
can be made without loss of generality; any program that does not satisfy this
assumption can be transformed into an equivaleat program that does, using A

to represent an undefined value. Supposc P specifies a set of program paths,

{ Pl’ PZ,..., PR}, 1 £ R £ o, where each P, is executed for a subset Dg of the

H
program domain X. This subdomain Dg is called the path domain of PH. Likewise,
each path PH specifies a vector of path functions, (le, Pygs++ e pHN)’ where

Jth component computes Z g

Symbolic evaluation can be used to generate representations'for the path
domains and path functions of a program. In order to describe these represen-
tations and how each method of symbolic evaluation generates them, a few addi-
tional definitions must be presented.

Data flow analysis methods typically represent a program by a directed
graph describing the possible flow of control through the program. The nodes
in the graph, { nl, nz,..., nq}, represent statements. Each edgé is specified

by an ordered pair of nodes, (ni, n, ), that indicates that a possible transfer

]
of control exists from o, to nj. Associlated with each transfer of control

are conditions under which such a transfer occurs. The branch predicate which
governs traversal of the edge (ni, nj) is denoted by bp(ni, nj). For a binary
condition following the node n,
dicate for one edge (ni, nk) is the complement of the branch predicate for the

and preceding‘nodes nj and o, the branch pre-

other edge (nj, nk) - thus, bp(ni, nk) = ~bp(nj,nk). Conditional statements,
such as computed GO TO or CASE statements, may have more than two successor

nodes and each branch predicate must be represented appropriately. For the



4
purposes of this paper, the control flow graph of a program is a directed graph
which has a single entry point, the start node ns, and a single exit point, the
final node nf. Both the start node and the final node are null nodes added to
the graph when necessary to accomplish this single-entry, single-exit form
without loss of generality.

The procedure in figure 1 calculatcs the time and distance at which a
starship's velocity reduces to zero or its approach to dock on the star base
station. The statements in DOCKING are annotated with their associated node
numbers, and figure 2 shows the control flow graph for this procedure. This
procedure is used throughout the paper to demonstrate the three methods of
symbolic evaluation.

A path in a control flow graph is a sequence of statements, (n

10°T47° 00y )

where there exists a possible transfer of control from nij t for all

° P j4
ny 4 0 =<3 <t. Apartial progranm path T, , 18 a path which begins with the
start node - that is, Tku = (ns, nkl’ Moseses nku). Hence, for any partial
program path Tku with u 2 1, Tku = (Tku—l’ nku), where TkO =‘(ns). A program
path PH is a path which begins with the start node and ends with the final
node -~ that is PH = (nS, nHl’ nH2""’ nHv’ nf). There is no ggarantee that
a sequence of statements representing a path is executable; some paths may be
infeasible due to contradictory conditions governing the transfers of control
along the path. The control flow graph is a representation of all possible
paths throughlthe corresponding program.

All three symbolic evaluation methods use the control flow graph to
maintain a description of the program state at every point in the evaluation
of the program. The state of the program includes some description of the path

followed to reach the present point in the evaluation, as well as the values

obtained for all program variables following the evaluation of that partial



procedure DOCKING(STATION,STARSHIP,THRUST,VELOCITY,DELTAT,TIME,DISTANCE,ERROR)

starship docking calculation (approximation) determines the time and
the distance at which the starship's velocity reduces to zero on its
approach to the star base station

input variables:

station - mass of the star base <iation (kg)

starship - mass of the starship (kg)

thrust - thrust force of the starship's engine (nt)

velocity - initial velocity of the starship (m/s) ‘

deltat - change requested between iterations (a smaller value will
make the calculation more exact) (s) '

time - initial time (s) : )

distance - initial distance between the base and the starship (m)

output variables:
time - final time (s)
distance - final distance between the base and the starship (m)
error ~ nonzero if any input is invalid

intermediate variables: . '
geonst - universal gravitational conmstant (6.67E-11 nt-m2 /kg2)
gravity - gravitational force of base station (m/s2) '
constacc - constant acceleration of starship (m/s2)
currvel - current velocity of the starship (m/s)
nextvel - velocity of the starship in next time interval (m/s)

real STATION,STARSHIP

real THRUST,VELOCITY

real DELTAT,TIME,DISTANCE
real GCONST,GRAVITY,CONSTACC
real CURRVEL,NEXTVEL

integer ERROR

Figure'l
Procedure DOCKING

--'www@wwwwwwwwwwwwwwwwwwww‘-.-u.-'
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all input values must be positive

set error flag

if (STATION<0.0

if one 1s <€ 0

or STARSHIP<0.0 or

THRUST<0.0 or VELOCITY<0.0 or
DELTAT<0.0 or TIME<0.0 or DISTANCE<0.0)
then :

ERROR « 1
else

input values are valid, continue computation
initialize the universal gravitational constant

GCONST

+ 6.67 * 10%*%(-11)

compute the gravitational Zorce
first check for a zero divisor

if (DIS

TANCE**2 = 0.0)

then

else

ERROR « 1

GRAVITY <+ GCONST * STATION * STARSHIP / (DISTANCE**2)

gravity and thrust are assumed constant
throughout the computations to follow
the acceleration due to the starship's
engine is thrust / starship
(acceleration = force / mass)

compute the constant acceleration of
the starship which is the difference

of these two opposing accelerations

. CONSTACC + GRAVITY - THRUST/STARSHIP

current velocity is the initial velocity
CURRVEL <« VELOCITY - '

compute the velocity in the second time
interval (this initializes the loop)
nextvel <« vel + acceleration*deltat:
NEXTVEL < CURRVEL + CONSTACC*DELTAT

determine when the velocity reduces
to zero by iteratively computing the
next velocity as a function of the

‘current velocity, the acceleration

endi
endif
end {DOCKING}

(force/mass), and the change in time

repeat
DISTANCE < DISTANCE ~ CURRVEL*DELTAT
CURRVEL < NEXTVEL
TIME < TIME + DELTAT
NEXTVEL <« CURRVEL + CONTACC*DELTAT
until (NEXTVEL<0.0)
BRROR « 0
f

Figure 1 (cont.)
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Pigure 2

Control Flow Graph for DOCKING

~(STATIONS0.0 Vv STARSHIP<0.0 v THRUST<0.0 v
VELOCITY$0.0 v DELTATS0.0 V TIMES0.0 v DISTANCES0,0)

~ (DISTANCE*42%0,0)

~ (NEXTVEL<0.0)




program path. The data descriptions generated in symbolic evaluation are
symbolic representations of the program state. Given a partial program path,
Tku = (ns, nkl’ nk2""’ nku)’ nku 1s the present point in the evaluation.
VAL[Tku] represents the values of all program variables (yl,yz,...,yw) after

evaluation of the partial program path T VAL[Tku] is a vector containing

ku’
an element for each program variable. He:.ce, VAL[Tku] = (s(yl[Tk 1,
u
- .

s(yz[Tku]),..., S(yw[Tku]))’ where s(yL~Lku]) denotes the symbolic value of
program variable Yo after evaluating Tku’ in terms of the symbolic names re-
presenting the input values. The path condition, pc[Tku], is the conjunct of
the branch predicates evaluated along this particular partial program path.
PClT, 1 = sp(n_, o DT D A s@pn 0 )IT D Aaspln, 55 )
[Tk u-l])’ where s(bp(nk 3-1° nkj)[Tk j_l]) denotes the symbolic value of the

branch predicate when evaluated over the values of the program variables pre-

]. The

)
u

ceeding traversal of the corresponding edge-that is, over VAL[Tk j-1

path condition can be rewritten as PC[Tku] = PC[Tk u-l] A s(bp(nk a1’ n

1" 'k

‘[T 1). Finally, STATE[Tku] = (T VAL[Tku], PC[Tku]) represents the pro-

k u-1 ku’

gram state following symbolic evaluation of the partial program path T, . The

ku
partial program path will not be included in the notation when the path is
obvious from the context.

The symbolic evaluation of any element of the control flow graph - a state-
ment or a transfer of’control - changes the program state. Initially, the pro-
gram state is defined as

TkO - (ns)

VAL[TkO] = (A,...,N)

PC[TkO] = true

STATE[TkO] = (T VAL[Tko], Pc[TkO])'

k0’
All variables are initialized at the start node to the undefined value A, with

the following exceptions: variables that are initialized by DATA statements



are assigned the corresponding constant value; variables that are parameters
of the initial procedure of evaluation are assigned symbolic names. Symbolic
names are assigned to input variables whenever input occurs on the program
path. Throughout the symbolic evaluation, all symbolic representations of
variable and branch predicate values are in terms of these symbolic names that
represent the input values. This is accomplished by sﬁbstituting the current
symbolic value of a variable into an rapression wherever that variable is ref-
erenced. |

When evaluating a statement, other than an input statement, the program
state will be updated in the VAL component only. For any variable that is
assigned a new value within the statement, the corresponding component of the

VAL vector is updated. For instance, if the assignment statement Yy = Vg * Yk

occurs, then the yJ component of the VAL vector will change from its former
value s(yJ) to the value of the algebraic expression s(yI)* s(yk).

In the evaluation of a transfer of control, say edge (nkj’ n j+l)’ the
program state is updated in the PC component only. The path condition will be
augmented by the symbolic value of the branch predicate governing traversal of

: - = A . .
this edge Fhat is, PC[Tk j+l] PC[Tkj] s(bp(nkj, 0 j+1)[Tkj])

Following the evaluation of a complete program path, the symbolic repre-
sentation of the program state defines the path functions and path domains of
a program. Given a complete program path PH’ the program state after evalua-
tion of the final node may be represented as

PH - (ns’ Ba1e TH2’ e Tuy? nf)

VAL[R] = (s [By1), 8(y,[B 1), ., 8(y,[P,1))

PC[PH] = S(bp(ns, nnl)[THOJ) Avooh 8(bp(ny s nf)[THv])

SZATE[PH] = (PH, VAL[PH], PC[PH]).
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The path functions (le, Ppgsee ), which compute the output values

» Pyy

(zl, Zyseees zN), are provided by Pus = s(yJ[PH]). Since all symbolic repre-

gsentations are in terms of the symbolic input values, is a symbolic compu-

Phg

tational expression of the output value z_ in terms of the input values

J
(xl, Xyseees xM). The path condition PC[PH] provides a system of constraints

on the program's input values and defines the path domain Dz. The subset of
elements of the program domain that will cause execution of this program path

is defined by D; = { x € X such that PC[PH] is true}. These path functions

and path domains can be generated for any program path that can be symbolically
evaluated.

Each of the three methods of symbolic evaluation maintains a slightly
different representation for the program state at any point in the evaluation.
Furthermore, each method generates a slighf variation of the path domains and
path functions as final evaluation of the program.

Symbolic execution supports a program state which most resembles the
STATE vector defined above. This method generates output for each path that
is symbolicallf executed. For the most part, following symbolic execution of
a particular path, PH’ the output produced consists of three things: the
sequence of statements forming the path; a system of constraints on the program's
input variables; and a vector containing a computationallexpression for éach
output variable. The constraints are analogous to the path condition (PC[PH])
and define the path domain. The vector corresponds to the output variable
components of the symbolic value vector (VAL[PH]) given by the path functions
(le, PHZ""’_?HN) computed along this path. After symbolic execution of a

program path, therefore, output similar to that shown in Figure 3 might be

produced.
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STATEMENTS ON THIS PATH

Ogs Tgpe Bype oo v P
SYMBOLIC REPRESENTATION OF PATH CONDITION
s(bp(ns, nHl)[THO]) A S(bP(HHl, nHZ)[THl])

Ao A s(bp(nHv, n )T 1

Hv

SYMBOLIC REPRESENTATION OF OUTPUT VARIABLES

1° le S(Yl[PH])

5 = Py = s(y,[2,])

s (yy[2, 1)

Figure 3.

Final Results of Symbolic Execution

Rather Lhan evaluate a program on a path-by-path basis, the method of
global symbolic evaluation maintains a representation of the program state at
a point in the evaluation as a conditional symbolic expression. This case-
like construct encompasses thé symbolic-values of all program variables re~
gardless of the partial program path followed to reach this point. The out-
put generated following global symbolic evaluation of a program reflects this

representation of the program state. Suppose the program has the paths

'{Pl, Pysenes PR}, then the final evaluation might have a form such as Figure 4.
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case

PC[Pl]: z) =Py = 8(yl[P1])

2 = Ppy = 80, B D)

z, = = s(vy[P 1)

N
n

PC[PR]: 1= Pp1 = S(YI[PR])

2, = Ppy = 8(y,[2.])

Zy = Ppy = S(yN[PR])
endcase

Figure 4.

Final Results of Global Symbolic Evaluation

On the other end of the .spectrum is the method of dynamic symbolic eval-
uation, which performs analysis on an input-by-input basis. A particular pro-
gram path is evaluated while the program is actually executed for specific

input data. Given an input vector x, a path, say P is executed. This method

"’
traces the statements that are executed. In addition to supplying the output
values that result from the execution, dynamic symbolic evaluation provides

algebraic expressions for the output values. Following dynamic symbolic eval-

uation, output similar to figure 5 might result, where a(yJ[PH]) denotes the

actual value z; computed by the execution of the program on the data vector x.
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STATEMENTS EXECUTED

ns, Dugs oo no nf

SYMBOLIC AND ACTUAL VALUES OF OUTPUT VARIABLES

Z, = Py = s(yl[PH]) = a(yllPH])
Zy = Pyp = S(YZIPH]) = a(y2[PH])
Zy = Py ° s(yN[PH]) = a(yN[PH])

Figure 5.
Final Results of Dynamic Symbolic Evaluation

These metﬁods of symbolic evaluation will be explained in more detail in

the sections which follow.
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3. Symbolic‘Execution

Symbolic execution analyzes distinct program paths. In general, symbolic
execution is attempted on only a subset of the paths in a program since a pro-
gram containing a loop may contain an effectively infinite number of paths.
Symbolic execution represents both the computétions and the conditional state-
ments on the selected path as algebraic expressions in terms of symbolic input
values. The rest of this section describes symbolic execution in more detail

as well as several implementation techniques and applications.

3.1 General Method

Symbolic execution initiates its analysis by building the control flow
graph of the program. As a path through the program is evaluated or "executed",
the statements on the path are evaluated as if they were straight-line code.
The branch predicates encountered along the path are also evaluated; the com-
bination of those predicates dictates the input values for which this path can
be executed. When an input statement is analyzed, the input values are repre-
sented by symbolic names. Throughout the aqalysis, the representations of all
program variables are maintained as algebraic expressions in terms of these
symbolic names. These algebraic expressions are formed by the evaluation of
any assignment along the path; such an assignment causes an update to the VAL
of the program state.

During symbblic execution of a path each branch predicate is evaluated
over the symbolic values of the variables at that point on the path. The
symbolic evaluation of a branch predicate results in a constrainf, aﬁ equality
or inequality condition, on the input daté. Each constraint is then conjoined
with all previously evaluated constraints for this path to forﬁ'the path con-
dition or PC. Not all paths in the program graph are executable.' The path

condition of a program path may be inconsistent, in which case no input data
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exists that could cause execution of the path. Symbolic execution systems
create the path condition and determine path condition consistency as well as

create the path function.

3.2 Implementation Methods

Several symbolic execution systems have been developed [3, 6, 13, 16, 17,
19, 20] using one of two implementation techniques, either forward expansion
or backward substitution. In addition, some of these systems try to determine
path condition consistency [3, 6, 17, 20],land agaln two different approaches
have successfully been tried. These approaches are referred to as the algebraic
and axiomatic approaches. 1In this section, both methods of symbolic execution
and path condition consistency determination will be described.

Forward expansion is the most intuitive approach to creatiﬂg the algebraic
expressions. Beginning with the start node, symbolic expressions are built as
each statement in the path is encountered. The DOCKING procedure of figure 1
has undergone symbolic execution by forward expansion of two distinct program
paths. Figure‘6 shows how the VAL and PC evolve for an executable path, while
figure 7 shows the evolution for a nonexecutable path.

Before éither symbolic execution technique is initiated, the source code
is first translated into an intermediate form of binary expressions, an opera-
tor and two operands. During forward expansion, tﬁe binary expressions in
each executed statement are then used to form an acyclic directed graph of a
program's symbolic computations. Each variable that is assigned a value
during execution of the path is actually assigned a pointer into this computa-
tional graph. The node of the graph that is pointed to by a variable can be
treated as the root of a binary expression tree for this variable. Traversing
the tree in inorder determines the symbolic expression for this variable.
Figure 8 shows how the graph evolves during symbolic execution of the program

path of the procedure DOCKING that was shown in figure 6.



statement VAL . : _ PC

ns TIME: time . true
DISTANCE: distance
ERROR: A
STATION: station
STARSHIP: starship
THRUST: thrust
VELOCITY: velocity
DELTAT: deltat

GCONST: A
GRAVITY: A
CONSTACC: A
CURRVEL: A
NEXTVEL: A
n, VAL[ng] updated by PC[ns] A
GCONST: 6.67%10%%(-11) ~(station<0.0 Vv starship<0.0 v
thrust<0.0 Vv velocity<0.0 Vv
deltat<0.0 V time<0.0 Vv distance<0.0)
n, VAL[ng,n2] updated by PClng,n2] A
GRAVITY: 6.67%10%%*(-11)*station*starship ~(distance*%2=0.0)
/distance®%2
ng VAL[ng,n2,n4] updated by PClng,n2,n4] A
CONSTACC: 6.67%10%*(-11)*station*starship true
/distance**2 - thrust/starship
ne VAL[ng,n2,n4,n5] updated by PC[ng,n2,n4,n5] A
CURRVEL: velocity ‘ .true
h7 VAL[ng,n9,n4,n5,ng] updated by- S : PC[ng,n2,n4,n5,n6] A
. NEXTVEL: velocity + (6.67*10%*(-11) true T _

‘*gtation*starship/distance®#*2 -
- thrust/starship)*deltat.

Figure.6

Symbolic Execution of an Executable Path Using Forward Expansion

91
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11

12

VAL[ng,n2,n4,n5,n6,n7] updated by
DISTANCE: distance - velocity*deltat

VAL[ng,ny,n4,05,06,07,0g] updated by

~ CURRVEL: velocity + (6.67*%10%%(-11)

*station*starship/distance#®*2
- thrust/starship) * deltat

.VAL[ns,nz,n4,n5,n6,n7,n8,n9] updated by

TIME: time + deltat

VAL[ng,ny,n4,n5,0n6,07,0g,09,0 9] updated by
NEXTVEL: velocity + (6.67%10%%(-11)
*station*starship/distance#**2
- thrust/starship) * deltat
+ (6.67%10%%(~11)*station
*starship/distance*#*2
- thrust/starship) * deltat

VAL[ng,ny,n4,05,06,07,0g,0g,07 05711]
updated by
ERROR: O

PC[ns,nz,nA,ns,ns,n7] A
true

PC[ng,ng,n4,n5,ng,n7,ng] A
true ' A

PC[nS,nz,nA,ns,nG,n7,n8,n9] A
true

PC[ng,ny,n,,n5,ng,07,0g,09,070] A
true

PClng,ny,n4,n05,0¢,07,08,09,010,011] A
(velocity + (6.67%10%*(-11)*station*starship/
distance**2 - thrust/starship) * deltat

+ (6.67*%1L0%*(-11)*station*starship/
distance**2 — thrust/starship) * deltat) < 0.0

Figure 6 (cont.)
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STATEMENTS ON THIS PATH

Ng» M2, N4, D5, NG, N7, N8, N9, M1, N3], N1, Df

SYMBOLIC REPRESENTATION OF PATH CONDITION

~ (station<0.0 Vv starship<0.0 v thrust<0.0 v
velocity<0.0 v deltat<0.0 V time<0.0 v distance<0.0)

A ~ (distance*%2=0.0) A ((velocity + (6.67*10%*(-11)
*station*starship/distance**2-thrust/starship)

*deltat + (6. 67*10**(—11)*statlon*starship/dlstance**Z
—thrust/starship)*deltat) < 0.0)

SIMPLIFIED SYMBOLIC REPRESENTATION OF PATH CONDITION

station>0.0 A starship>0.0 A thrust>0.0 A

velocity>0.0 A deltat>0.0 A time>0.0 A distance>0.0

A (velocity*distance**2*starship*deltat +

13.34%10%* (~11) *station*starship**2*deltat -
2*thrust*distance**2*deltat) / distance**2*starship < 0.0

SYMBOLIC REPRESENTATION OF OUTPUT VARIABLES
TIME = time + deltat
DISTANCE = distance + velocity*deltat
ERROR = 0 '

Figure 6 (cont.)

Final Output from Symbolic Execution of an Executable Path Using Forward Expansion

8T



statement

n

<3

VAL

TIME: time
DISTANCE: distance
ERROR: A '

STATION: statdion
STARSHIP: starship

THRUST: thrust
VELOCITY: velocity
DELTAT: deltat
GCONST: A

GRAVITY: A
CONSTACC: A
CURRVEL: A
NEXTVEL: A

VAL[ng] updated by

GCONST: 6.67*10%*(~11)

VAL[ng,ny] updated by

ERROR: 1

Figure 7

PC

true

PC[ng] A

~(station<0.0 Vv starship=<0.0 v
thrust<0.0 v velocity<0.0 v
deltat=<0.0 v time<0.0 Vv distance=<0.0)

PClng,n2] A
distance*#*2=0,0

Symbolic Execution of a Nonexecutable Path Using Forward Expansion

6T



STATEMENTS ON THIS PATH

ns, nz, n3, nf

SYMBOLIC REPRESENTATiON OF PATH CONDITION
~ (station<0.0 Vv starship<0.0 Vv thrust<0.0 v
velocity=<0.0 v deltat<0.0 Vv time<0.0 Vv distances0.0)
A distance®*2=0.0

SIMPLIFIED SYMBOLIC REPRESENTATION OF PATH CONDITION
station>0.0 A starship>0.0 A thrust>0.0 A

velocity>0.0 A deltat>0.0 A time>0.0 A distance>0.0
A distance=0.0

*%% NONEXECUTABLE PATH #%%

Figure 7 (cont.)

Final Output from Symbolic Execution of a Nonexecutable Path Using Forward Expansion

0t
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Conditional statements can also be represented symbolically by an acyclic
graph using the same form of binary expressions. The false branch of the
first branch predicate is followed in the transfer from ng to n,, and
this constraint is the PC for the partial program path (ns, nz). Figure 9
shows the computational graph representation for this evaluated branch predi-
cate. |

Though the computational graph aprcars rather complicated to follow with
the eyé, it is easy to build and maintain. The graph can éasily be maintained
in a table with three fields: one for the operator and two for the operands.
The tabular répresentation of the computational graph in figure 8f is shown
in figure 10 where CGi represents a pointer to the ith entry in the tabular
computational graph.

A more detailed description of the forward expansion approach to symbolic
execution can be found in [6]. There is a close similarity between the de-
scribed forward expansion technique and the technique of common subexpressiop
elimiation used by many optimizing compilers, which is described in [9]. -

The backward substitution technique starts at the end of thé_path and
develops each variables' symbolic expression by substituting the right hand
side of an assignment statement for all occurences of the left hand.side
variable [14, 16]. The backward substitution approach was proposed for systems
‘concerned only with creating the path condition and not concérngd with the
symbolic exﬁressions for intermediate or output variables. With this restric-
tion, the backward substitution technique saves space by not maintaining
extraneous expressions for the intermediate and output variables.. An example
| of backward substitution is shown in figure 11, using the DOCKING pfocedure
of figure lrand again symbolically executing the program path of figure 6.

An implementation technique that is just the reverse of the described forward
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Tabular Representation

entry

W 0 N O U1 &~ W N

e~ e
Vs W RO

TIME : CGl3

" DISTANCE : CG12
ERROR : O
STATION : station
STARSHIP : starship
THRUST : thrust
VELOCITY : velocity

DELTAT : deltat

operator

*%

*

*

*

%%

operand 1
10
6.67
CG2
CG3
distance
CG4

thrust
CG7
CG8
velocity
velocity
distance
time
CG8
CG10

Program Variables

GCONST :

operand 2
-11
CGl

station

starship
2
CG5
starship
CG8
deltat
CG9
deltat
CGl1
deltat
deltat
CGl4

Figure 10

GRAVITY :

CONSTACC

CURRVEL :

NEXTVEL :

CG6
: CG8
CGl10

CGl5

Tabular Representation of Computational Graph of figure 8f.
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predicate e

nf true‘ ‘ A
bp (@, ;5ny,) '(NEXTVEL? < 0.0 |
n; - (CURRVEL + CONSTACC*DELTAT) < 0.0
ng (NEXTVEL + CONSTACC*DELTAT) < 0.0
n, (CURRVEL + CONSTACC*DELTAT + CONSTACC*DELTAT) < 0.0
ng ' (VELOCITY + CONSTACC*DELTAT + CONSTACC*DELTAT) < 0.0
ng (VELOCITY + (GRAVITY-THRUST/SIARSHIP)*DELTAT +
(GRAVITY-THRUST/STARSHIP) *DELTAT) < 0.0
n, (VELOCITY + ((GCONST*STATlON*STARSHIP/DISTANCE**Z) - THRUST/STARSHIP)
_ *DELTAT + ((GCONST*STATION*STARSHIP/DISTANCE#**2)
- THRUST/STARSHIP)*DELTAT) < 0.0
bp(n,,n,) ((VELOCITY + ((GCONST*STATION*STARSHIP/DISTANCE #*%2) —. THRUST/STARSHIP)
: *DELTAT + ((GCONST*STATION*STARSHIP/DISTANCE*%2)
- THRUST/STARSHIP)*DELTAT) < 0.0) A ~(DISTANCE **2 = 0.0)
n, ((VELOCITY + ((6.67%10%%(~11) *STATION*STARSHIP/DISTANCE**2)
~ THRUST/STARSHIP) *DELTAT + ((6.67*10%%*(~11)*STATION*STARSHIP
/DISTANCE#*%2) ~ THRUST/STARSHIP)* DELTAT) < 0.0) A ~(DISTANCE**2 = 0.0)
bp(n ,n2) ((VELOCITY + ((6.67%10%%(~11)*STATION*STARSHIP/DISTANCE#*2)
- THRUST/STARSHIP) *DELTAT + ((6.67%10%%*(~11) *STATION*STARSHIP
/DISTANCE**2) — THRUST/STARSHIP)*DELTAT) < 0.0) A ~(DISTANCE**2 = 0.0)
A ~(STATION < 0.0 V STARSHIP < 0.0 v THRUST < 0.0 v VELOCITY < 0.0
vV DELTAT < 0.0 vV TIME < 0.0 V DISTANCE < 0.0)
n ((veiocity'+ ((6.67*10**(-11)*station*starship/distanée‘**2)

- thrust/starship)*deltat + ((6.67*%10%*(~-11)*station*starship
/distance**2) - thrust/starship)*deltat) < 0.0) A ~(distance **%2 =
A ~(station < 0.0 V starshlp 0.0 v thrust £ 0.0 Vv veloc1ty 0.0
v deltat £ 0.0 vV time £ 0.0 V distance < 0.0)

0.0)

NOTE: The final simplified PC would be the same as the final simplified PC
shown in figure 6.

Figure 11l .
"Symbolic Execution Using Backwards Substitution

iy
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expansion technique can be used to create the symbolic expressions for back;
ward substitution. Note that many of the statements, specifically those that
do not modify variables for which values are input, can be ignored using back-
ward substitution when only the path condition is desired. In the example of
figure 11, statements 8, 10 and 12 are ignored. In a more general symbolic
execution system where both the path condition and symbolic values are desired,
the two approaches examine each statemen* and produce equivalent expressions
for the PC and VAL. In systems which support early detectionﬁof nonexecutable
paths, however, the forward expansion approach is more efficient. fhe rest of
this section first describes several techniques for determiﬁing path condition
consistency and then returhs to the comparison between forward éxpaﬁéion and
backward substitutioq.

In most cases, only a subset of the paths in a program are executable and,
therefore, it is desirable to determine path condition consistency. Dufing
symbolic execﬁ;ion it is desirable not only to recognize nonexecutable paths
but to recognize the inconsistency as soon as possible. Early detection of a
nonexecutable path prevents worthless, yet costly, symbolic exgcution of a
nonexecutable path. Moreover, it allows an alternative edge to be selected on
a partial path whenever an inconsistent branch predicate is initially encountered.
Thus, the partial path that has already been symbolically executed can usually
be salvaged.

Using the notation introduced in section 1, whenever a partialvpath Tku
is augménted with a new node o’ the branch predicate s(bp(nku,nk u+l)[Tku])
is first simplified and then may be examined for consistency with the existing
path condition PC[Tku]. One of several algebraic manipulation systéms [2, 4,.22]
can be used to simplify the PC to a canonical form, so this aspect of the

implementation will not be described further.
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The branch bredicate s(bp(nku,nku+1)[Tku]) may either evaluate to‘a boolean
constant (where the null branch predicate is considered to be the constant
true), or it may be a symbolic expression in terms of the input variables. If
the branch predicate is constant, consistency determination is immediate:

PC A true = PC and PC A false = false. When the branch predicate is a symbolic
expression over the input values (and thz PC is not the constant true), it is
necessary to use a more sophisticated technique for determining bath condition
consistency. One approach to this problem is to use standard theorem proving
techniques. We refer to this as the axiomatic approach since it is based upon
the axioms of predicate calculus. Another approach is to treat each conjunct
in' the PC as a constraint and to use one of several algebraic methods - such

as a gradient hill climbing algorithm [11], linear progfamming [18] or a more
brute force approach [20] - to solve the system of constraints. Both the
axiomatic and algebraic approaches work well on the simple constraints that are.
generally created during symbolic execution [7]. No method, however, can solve
all arbitrary systems of constraints [10]. In some instances, path consistency
can not be determined. The symbolic execution of such a path can continue, but
whether or not the path can be executed is suspect.

Whenever the last node L in the partial path Tku has only one successor
node, the branch predicate is null and is represented by the constant true,
which is always consistent with the existing PC. When there is more than one
successor node, each successor node and its respective branch predicate are
considered as alternatives to the current path. There are three cases to
be considered: 1) none of the alternative branch predicates are consistent
with the PC; 2) only one of the alternative branch predicates is consistent
with the PC; and 3) more than one of the alternatives are consistent with

the PC. The path shown in figure 12 demonstrates all three cases,



case 3 -~ (ws<0 ~(w<0)

]

case 2 (u*w>0)

case 1

Figure 12

Path Demonstrating the 3 Cases
for Branch Predicates
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The first case only occurs when evaluating multi~-conditional predicates
like those that occur for computed GO TO statements or CASE statements without
an otherwise clause. This case implies a program error.

The alternative branch predicates for a set of successor nodes either all
evaluate to constant boolean values, or all evaluate to symbolic expressions
involving the input variables. Cases 1 and 2 can occ;r in either of these
situations. When all of the branch predicates evaluate to boolean constants,
at most one of-the laternatives can evaluate to true. Hence, case 3 can occur
only when the branch predicates are symbolic expressionms. Some.symbolic execu-
tion systems will select the successor node in the first two céses and will
give the user an option in selecting the path when the third‘caée occurs.

Now to refurn to the comparison between forwérd expansion and backward
substitution. Forward expansion is a more efficien; technique of symbolic
execution than backward substitution when PC consistency is determined at each
branch point.' Using forward expansion, the branch predicates maintain their
original form once they are created and conjoined to the PC. The PC is, there-
fore, only modified by the conjunction of a new, simplified conétraint. In
ba;kward»substitution the PC is likewise modified by a new, simplified con-
straint but, in addition, the PC may be modified by any assignmeﬁt statement
on the path that changes the value of any variable feferenced in the PC. 1In
other words, thé PC that is created using forward expansion only cqﬁtains
expreésions in terms of the input variableswhile the PC that is created using
backward subséitution may reference intermediate variables thaﬁ are later
modified. The additional PC modification during backward substitutién is
costly since it also requires resimplification of the modified constraints

and consistency must be checked after each simplification.
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3.3 Applications

Symbolic execution systems have several interesting applications. This
section will consider three applications: validation and documentation, error
detection, and test data generation.

The symbolic expressions that are generated for a program path can quite
naturally be uéed for validation aﬁd docurentation. The expressions often
provide a concise representation of the output produced along avéath. These
expressions can be used to document the program or can be examihed for errors.

The 'symbolic expressions describe the path functions (le,pHZ,Q. ) for the

**Pyy
entire path domain D;. Normal execution, on the othefhand, only provides par-
ticular output values (zl,...,zN) for par;icular input values (x ,...,xM).
It is possible for the output data to be correct while the path functions are
incorrect. To use a trivial example, assume the intended function of a program
path with one input value and one. output value is FG(V) = 2%y+3 but the com~
puted functiop of the path is PG(V) = 3*%y+3., If the program path is executed
with v = 0; then the actual resulting value and intended value agrée. Examina-
tion of the path function would quickly uncover the error. While not all errors
would be this glaring or all symbolic expressions this short, examining the
symbolic path functions is often useful in uncovering prograﬁ errors [15]. This
is a particularly beneficial feature for examining programs for scieﬁtific(
-applications, where it i1s often extremely difficult to manually compute tﬁe
intended result accurately due to the complexity of the computations and domain
of the input data.

The path functions created during symbolic exécution could be eyaluated
for particularbdata values. >The result would be the same as if the path had
begn executed. (In cases.wheré round off errors; overflow, or uﬁderflow,could.

occur, there may be discrepencies. We do not address these types of problems
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here.) The benefit of evaluation at this point is‘that the symbolic expres-
slons for the path functions (pﬂlprZ""’pHN) andvpath domain D; can be used
to guide in the selection of input values. For example, boundary points of
the path domain may be selected to check the correctness of the branch
predicates [25]. Also, if a path function is a polynomial, examination of
its degree can be used in selecting the number of test data points negded

to determine the correctness of this function.

As work in the area of program specification advances, it may also be
possible to compare the intended program function F with the program P
using symbolic execution. Work on this approach to program testing is
currently in progress [21].

_Symbolic execution can also be actively applied to the detection of
program errors. At appropriate points in the program, boolean c&nditions
can be generated for certain predefined error conditions. These conditions
can be evaluated and checked for consistency with the PC just as branch
predicates are evaluated. Consistency implies the existence of input data
in the path domain D; that would cause the described error. Inconsiétency
implies that the error condition could not occur for any element in the
input domain. This demonstrates another advantage -of symbolic execution over
normal program execution. Normal execution of a path may not undovgr a
run time error while symbolic execution of a path can detect thg'presence
or guarantee the absence of some errors.

The ATTEST system [8] automatically generates ‘constraints for certain
error conditions whenever it encounters certain program constructs. For
example, whenever a nonconstant divisor is encountered, a constraint is
created comparing the symbolic value of the divisor to zero. This constraint

is then temporarily conjoined to the PC. If the augmented PC is consistent,
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then input Qata‘exists that would cause a division by zero error; an error
report 18 issued. If the augmented FC is inconsistent, then this run time
error could not occur for this division on this path. The di&ision constraint
1s removed before symbolic execution continues.

Path verification of program assertions is another method of errorv
detection. Instead of predefining the error condition, user created asser-
tions define the error conditions. 1In general, the user asserts. that a
boolean predicate is true at a particular point in the progr;m. An error
exists if the predicate is not true. When the assertion is encbuntered
during symbolic execution, the complement of the boolean predicate is
evaluated and conjoined to the PC. The rest of the analysis is”then iden-
tical to the implicit error detection described above.

Test dataiéeneration is another natural application of symbolic execution..
The path condifion is examined to determine a solution — that is, test
data fo exécute the program path. Symbolic execution, like other ﬁethods of
program validation, does not test the program in its natural environment.
Evaluation of the path functions for particular input values retﬁrn numeric
results but beqause the environment has been changed, these results may not
always agree with those from normal execution. Errors in the hardware,
operating system, compiler, or symbolic execution éystem may cause an.
erroneous reéﬁlt. In addition, testing a program demonstrates its actual
performance characteristics. Select [3] and ATTEST [8] are two $Ymbolic
execution systems that attempt to generate test data. Since an actual
solution to thé PC is desired and not just PC consistency, an algebraic
lmethod is used to solve the system of constraints in the PC. Additional
work [25] is being done to further refine methods of selecting data within

a path domain to increase the probability of detecting errors.
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4. Global Symbolic Execution -

i

The goal of global symbolic evaluation [5] is the derivation of a
global representation of the program- a representation of all program
variables, for all the paths rather than along a specific path through the
program. In other words, global symbolic evaluation results in a closed
form representation of an entire program, independent of any.particular path
execufion. In this section, we will describe the general method of global

symbolic evaluation and explain in some detail the technique used in evaluating

loops within a program.

4.1 General Method

Global symbolic evaluation, like symbolic execution, analyzes.the
control flow graph of the program. The nodes in the graph are numbered
such that if node n, is a predecessor of node nj, then 1 < j; To maintain
this node ordering and since loops are handled separately by loop analysis,
all backward branches are disregarded. The control flow graph in'figure 2
h#s the appropriate node numbering for global symbolic evaluation of the
procedure DCCKING. The numbering of the nodes in the control flow.graph
provides the order in which the statements will be symbolically evaluated.

As in symbolic execution, the input values are represented by symbolic
names, and all program variables are represented as expresSions in terms of
those symbolic names throughout the analysis. The actual evaluation of
a statement 1s performed by the same technique as that used in symbolic
execution. Furthermore, the computations themselves are maintained in a
form analogous to the computational graph created in symbolic execution.

The two methods differ in the way in which conditional branching is analyzed.
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In evaluating a particular node, symbolic execution only considers the program
state of the one partial program path preceding the current node, whereas
global symbolic evaluation considers the program state of all immediate
predecessor nodes in the control flow graph. At any node in the graph,
global symbolic evaluation maintains a representation of the state that
describes the conditions and computations of all partial progrem paths
reaching that node. This results in a conditional representation, or CASE
statement, where each component of the CASE statement represents such a path.
Furthermore, e partial program path may represent a class of paths which
differ by the number of iterations of any loop on the path. Loop analysis
develops these classes and will be explained in the next section. We will

therefore refer to the program state of node n, as STATE[ni], where the state

i
may have several PCs associated with it and each PC has a corresponding VAL.
The representation of the program state for global symbolic evaluation is

" shown in figure 4.

To see how a node is evaluated, consider a particular node nk, with
predecessor nodes ni and nj (which have been previously evaluated). Control
may reach n yia either of the edges (ni,nk) or (nj,nk), and the transfer
from either predecessor node occurs under the conditions of the corresponding
branch predica;e bp(ni,nk) or bp(nj,nk). Thus, when o is evaluated, there are
two possible symbolic STATEs'that are effective. The Program state at
node n is then a conditional symbolic expression provided by updating the
STATE in the centext of either possible transfer to the node. In the
context of the transfer from predecessor node n, to o STATE[nk] is obtained

by updating the STATE of node n, in much the same way as the update is per-

i
formed in symbolic execution. The branch predicate bp(ni,nk) is conjoined
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to all the PCs associated with n, and the conjunctions are checked for
consistency. If any of the augmented PCs are inconsistent, the case is
discarded from the updated STATE. Each remaining PC's VAL is updated

in all components whoée variables are modified by node n . The same
procedure is foilowed for the transfer from n, to n and these two STATE

3

vectors form the conditional representation of the program state at node o .

4.2 Loop Analysis

The described representation of the state of a node in terms of all
partial program paths into the node is only possible because of the form in
which global s?mbolic evaluation represents ioops. Loop analysis attempts
to represent a program loop with a closed form expression describing the.
effects of that loop. By doing this, paths which differ only by the number
of iterations of a loop are represented by one path. |

Given a loop, global symbolic evaluation develops expreséions for the
values of‘all.variables modified wi;hin the body of the loop in terms of the
symbolic input.values and a symbolic iteration count for the loop. In
addition, a conditional expression is obtained representing the actual number
of iterations of the loop that will be performed for any arbitrary execution
of the program, for any arbitrarf assignment to the input §alues;

Loop analysis begins by associating with the loop an iteraﬁion counter k.,
For each variable v whose value may change within the loop, a special symbolic
value vy is used to represent the valué of the variable v at the beginnihg
of the kth iteration of the loop. Symbolic evaluation of the loop body is
then performed in much the same manner as the forward expansion technique
of symbolic execution; This "execution" provides the symbolic value of the

variable v ét the end of the kth iteration, under the assumption of another
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iteration of the loop. This symbolic value is, alternatively, the
variable's value at the beginning of the k+lst iteration of the loop,
Vk+i' The global symbolic evaluation outside the loop determines the
initial value, Vl’ of the variable just prior to the first iteration of
the loop. The symbolic expressions Vi and vk+l provide a recurrence

relation with the boundary value vi. The solution to the recurrence
relation, which will be represented by v(k), is the value of the variable
v upon exit from the kth iteration of the loop.

In addition to determining this representation for the variables
modified within the loop, the closed form representation of a loop must
contain a conditional expression for the number of times the loop is
performed. Each condition under which the loop will be exited is singled
out; these are the branch predicates that control any transfer to a point
outside of thelloop body. Each condition is, in general, some constraint
on variables modified within the loop (otherwise it would not control
exit from the loop). Thesg branch predicates can, therefore, be evaluated
over the valueé of the modified variablés at the beginning of the kth
iteration-that‘is, err the solutions to the recurrence relations, v(k).
This produces #'symbolic representation for each exit condition as a
function of the-general iteration number, k. The number of the iteration
before which exit occurs, call it kL, is the minim;m k, k 2 0, such that
one of the exit conditions is true. |

The loop may then be represented in its closed form by: kL’ the
conditional expression for the number of times the loop will bg executed;
and v(kL), the symbolic value of variable v‘after kL iterations of the
loop, for each variable v which is modified within the loop. Figure 13
shows the analysis performed for the loop in the procedure DOCKING of

figure 1.



Variables modified within the loop

DISTANCEk+l = DISTANCEk - CURRVELk * deltat
CURRVELk+1 = NEXTVELk

TIME k+1 TIMEk + deltat

NEX?L’VELk+l CURRVELk+l + (6.67*%10%* (- ll)*station*starship/dlstance**Z
- thrust/starship) * deltat

41

Initial values
DISTANCE1 = distance
CURRVEL., = velocity

1

TIMEl = time

NEXTVELl = velocity + (6.67*10**(—]1)*station*starship/distance**2
- thrust/starship) * deltat
Solutions to fecurrence relations
TIME(k) = time + Zi =2 deltat
NEXTVEL(k) = velocity + Z:=l[(6.67*10**(-11)*station*starship/distaﬁte**Z
- thrust/starship) ‘* deltat]
CURRVEL(k) = velocity + Ei 2[(6 67*10%*(-11) *station*starship/distance**2
- thrust/starship) * deltat]
DISTANCE(k) = distance - Zj [(velocity + Zj [(6 67*10%*(~11) *station*starship
/distance**2 - thrust/starship) * deltat]) = deltat]
Simplified solutions
TIME(k) = time + (k-1) * deltat
NEXTVEL(k) = velocity + (k) * (6.67*10**(—11)*station*starship**Z*deltat
: - thrust*distance**2*deltat) / distance**2*starship
CURRVEL(k) = velocity + (k-1) % (6.67*10**(—11)*station*starhip**Z*deltat
- thrust*distance**Z*deltat) / distance**2*starship
DISTANCE(k) = distance + Z [velocity * deltat + (j-1) * (6, 67%10%*(-11) *
' station*starship**2*de1tat**2 - thrust*distance**2*deltat**2)
/ distance**Z*starship]'
Exit condition
NEXTVEL(k) < 0.0
Evaluated exit condition
(velocity + (k) * (6.67*10**(-11)*station*starship**Z*deltat
~ thrust*distance**2*deltat) / distance**2*starship) < 0.0
Number of iterations of loop, kL _
kL = minimum k, such that k20 and (velocity + (k) * (6. 67%10%*(-11)
*station*starship**2*deltat - thrust*distance**Z*deltat) / distance*#*2
*starship) < 0.0

Figure 13

Loop analysis of DOCKING
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Obtaining the recurrence relation v(k) 1is not always straightforward.
Complications arise in several situations. When there are simultaneous
recurrence relations, several variables, which may be dependent, are
modified within the loop. 1In particular, the dependence may be cyclic;

v may depend on w, which depends on v. Problems are also caused.when the
recurrence relations are conditional, in which case the closed form solutién
becomes quite complicated, provided it can be solved at all.

When a closed form representation of a loop can be found by this
analysis technique, it provides a more general évaluation of a loop than
the technique employed by symbolic execution systems-—evaluating,tﬁe loop
for a specific number of iterations. There is no reason, however, that
this loop analysis technqiue could not also be incorporated into symbolic
execution.

Aftef the -loop has been analyzed, the closed form representation
becomes part of the program state at the point where the loop is exited,
and evaluation continues. Figuré 14 shows the program state following
global symbolic evaluation of the procedure DOCKING, where the conditions

and functions have been simplified.

4.3 Applications

Global symbolic evaluation has several possible applications, many
of which are similar to those of symbolic execution. Test data generation
could conceivably be performed by solving for thé PCs in the CASE statement.
New methods for solving a PC must be explored since the PC may contain
recurrence relations as well as constraints. The closed form representation
of a program could be compared witﬁ some types of program specifications

to determine consistency. User-provided assertions can be checked for
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case
station < 0.0 Vv starship < 0.0 v thrust < 0.0 v
velocity < 0.0 V deltat < 0.0 V time <€ 0.0 V
distance =< 0.0 :
TIME = time
DISTANCE = distance
ERROR =
STATION = station
STARSHIP = starship
THRUST = thrust
VELOCITY = velocity
DELTAT = deltat
GCONST = A
GRAVITY = A
CONSTACC =
CURRVEL =
NEXTVEL =
station > 0.0 A starship > 0.0 A thrust > 0.0 A
velocity > 0.0 A deltat > 0.0 A time > O. 0 A
distance > 0.0 :
TIME = time + (k -1)*deltat
DISTANCE = distance - ZkL [(velocity*deltat + (§-1) * (6 67*10**( 11)
' *station*starship**Z*deltat**z—thrust*distance**Z*deltat**Z)
/ distance**2*starship]
ERROR = 0
STATION = station
STARSHIP = starship
"THRUST = thrust
VELOCITY = velocity
DELTAT = deltat
GCONST = 6.67*%10%%(-11)
GRAVITY'= 6.67%10%*(~11)*station*starship/distance**2
CONSTACC = (6.67*%10%*(-11)*station*starship**2 - thrust*distance**2)/
distance**2*starship )
CURRVEL = velocit& + (kL—l)*(G.67*10**(—11)*station*starship**Z*deltat
- thrust*distance*#*2*deltat) / distance**2%starship
NEXTVEL = velocity + (kL) * (6.67*%10%*%(-11)*station*starship*#*2*deltat
- thrust*distance**2*deltat) / distance**2*starship
endcase

' Figure 14
Program State Following Global Symbolic Evaluation of DOCKING
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validity; with global symbolic evaluation, the truth of these assertions
can be checked for all paths rather than a specific path. 1In addition,
since the program state is maintained at all points in the program, asser-
tions could be provided by the user after completion of global symbolic
evaluation without requiring reevaluation of the program. Similarly,
global symbolic evaluation can be used to automatically generate and check
error conditions as it analyzes a program, |

Global symbolic evaluation also has applications in program optimi-
zation [24]. As in optimizing compilers, the existence of the computational
graph [9] makes common subexpression elimination and constant folding
relatively stréightforward. In addition, several types of loop opéimizations
‘may often be performed when the closed form representations of loops are
obtainable. Loop-invariant computations may be easily detected since they
are independent of the iteration count of the loop; theée may thus be
moved outside of the loop. Loop fusion can sometimes be performed when
the number of iterations performed by two loops can be determined~tp be
the same, and variables manipulated in the second loop are not computed
in a later iteration of the first loop. When variables modified within
the loop have values that'form arithmetic progressions-that is, they are
incremented by the same amount each time through the loop - these computations
can sometimes be moved out of the loop and replaced by expressions in terms
of the iteration count. Optimizations that perform in—line subs;itution
of a‘procedu;e may also be benefited by global symbolic evaluation, since
the closed form representation of the procedure may enable better determina-

tion of when such substitution is useful.
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5. Dynamic Symbolic Execution

Dynamic symbolic evaluation is just one_of the features provided in
dynamic testing systems (1,12]. Using test data to determine.the path,
dynamic symbolic evaluation systems provide symbolic representations of
the executed path's computations. This section gives a brief overview
of dynamic‘testing Systems and then d:zscribes dynamic symbolic‘evaluation,

its implementation techniques and its applications.

5.1 General Method

Dynamic testing systems monitor program behavior during execution.
This is implemented by instrumenting the program - that is, by inserting
calls to analysis procedures in appropriate places in the code. This
is generall& done by a preprocessor and may double the number of state-
ments in the source program. The user then supplies input data to
execute the instrumented program.

Dynamic testing systems may providela profile of each execution run
as well as an accumulated profile of all executioﬁ runs. Some of the
types of information in a profile include the number of times each
statement was executed, the minimum and maximum number of.timesbeach
1o§p was traversed, the minimum and maximum values assigned to variables,
. and the paths that were executed. In addition, the system may éheck
the validity of user assertions at rﬁn time [12,23]. Unlike the assertion
checking done by symbolic execution systems, dynamic assertioﬁ.ghecking
is done just for the supplied input data and not for the whole path.
Either the assertion is true and thus valid for the input data, or the

assertion is false, and thus invalid for the program.
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The dynamic symbolic evaluation component of dynamic testing provides
a symbolic representation of the computations of each executed path.
For input data that executes path PH’ VAL[PH] is provided. VAL[PH] can
be represented internally as a computational graph. This computational
graph would be similar to the computational graph for symbolic execution
But it would be augmented to include ihe value produced at each node.
The computational graph can be created using the forward expansion method
described in section 3.2.

At the end of the path, the expression for each output variable is
"shown. Generally, dynamic evaluation systems display the expreséions
as trees instead of mathematical expressions, though both or either form
could be displayed. Using the DOCKING procedure and the same path as
‘that in figure 6, the computational trees are shown in figure 15, while
figure 16 shows the output that might be produced by dynamic s&mbolic
evaluation using the format of figure 5.

Existing dynamic symbolic evaluation systems are only concerned
.with the VAL component of the program state. Since the input values are
known, each branch predicate evaluates to the constant value true (or
a run time error is encountered). The PC is, therefofe, equal to true.
It would be easy to extend dynamic symbolic evaluation to include symbolic
representations of the PC. Note, the path functions are repreéénted
symbolically though all computations evaluate to a numeric vaiue. The
PC provides valuable information by defiﬁing the path domain efen though
it is not necessary to.check for path consistency. Examinatién of the
PC, like examination of the VAL, may uncover program errors. 'Aniérroneous
BC would imply an erroneous branch predicate or erroneoﬁs calculation

affecting the branch predicate.
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Input Values

STATION = 4.0%101%  DELTAT = 10.0

STARSHIP = 100.0  TIME = 120530.0

THRUST = 4500.0 DISTANCE = 2000.0
. VELOCITY = 75.0

Output Variables Computational Trees
TIME
DISTANCE . (1250.0)

(750.0)

(2000.0)

distance

(10.0)

velocity . deltat

ERROR : O (0)

Figure 15

Computational Trees for
Dynamic Symbolic Evaluation
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' STATEMENTS EXECUTED

O M A S T R T T PR PP
SYMBOLIC AND ACTUAL VALUES OF OUTPUT VARIABLES
TIME = time + deltat = 120540.
DISTANCE = distance - velocity * deltat = 1250.

ERROR = 0.

Figure 16

Final Output Produced for Dynamic Symbolic Evaluation
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5.2 Applications

The primary application of dynamic symbolic evaluation is program
debugging. When an error is uncovered in a program, dynamic symbolic
evaluation prdvides a picture of the resulting computations. Examination
of symbolic representations of the path functions and path condition
often helﬁs to isolate the cause of an error. To assist in debugging,
these systems provide a capability for examining the computational.graph
while it is being constructed. Program execution can be followed state-
ment by statement. These systems also allow the user to back up execution.
In other words, the user can direct the system to execute the éath back-
wards and thus undo the computational graph to help the user isolate
the error. Experiments with ISMS have shown that both forward and
backward execution are beneficial for debugging [12]. Note that backward
execution is not the same as the backward substitution technique
described in section 3.2. In backward execution at least part of-the
path has already been executed and the corresponding part of the comﬁuta-
tional graph has been built. Dynamic symbolic evaluation requires an
implemanfation method somewhat similar to forward expansion since'input
data is used to determine the path, thus implying a forward analysis

approach.
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6. Conclusion

In this paper, three methods of symbolic program analysis have

been described. All three methods represent a program's computations
and input domains by symbolic expressions in terms of the input values,
though the methods differ in their scope of representation.

Dynamic éymbqlic evaluation is thz most restrictive method of the
three. Using input data to determine a path, dynamic symbolic evaluation
represents the path functions. Since input data is used to select the
path, the path condition evaluates to true. Though the path condition
can be described symbolically, there is no need to test for path
consistency. With no simplification of the path conditions nor path
consistency determination necessary, the implementation of dynamic
symbolic evaluation is straightforward. The major application of this
method is program debugging.

Symbolic execution systems are not dependent on input dafa'to
determine the path as dynamic symbolic evaluation is, but rather can
analyze any sﬁecified program path. Symbolic execution systems reéresent
the path functions and path condition. Since many program paths are nét
executable; symbolic execution t;ies té determine path condition
consistency. The most efficient symbolic execution systems use a forward
expansion technique of implementation and determine path condition
consistency whenever a new branch predicate is conjoined to the ekisting
path conditién. In general; path condition consistency can not always
be defermined. In practice, consistency can often be determined using
one of several existing techniques. 1In addition, there is work currently

being done on improving methods of solving arbitrary systems of constraints.



There are several interesting applications of symbolic execution in the
area of program validation including automatic error detection, test
data generation, and determination of'consistency with program
specifications.

Global symbolic evaluation has the widest scope of analysis; it
attempts to represent the total program function by a symbolic expression.
Since there may be an effectively infinite number of paths in a ﬁrogram,
this method requires more sophisticatgd analysis than the mere conjunction
of the symbolic expressions for each path. Instead a technique of loop
analysis is used that attempts to represent each program loop in a
closed form dependent on an arbitrary loop iteration count. ﬁhile this
approach can successfully analyze several types of loops, additional work
is needed in this afea. By using a closed form representation for each
loop, the computations for a set of paths and their respective domains
can be represented. Each such representation is one case in the
conditiénal program representation provided by global symbolic evaluation.
Path condition consistency still must be determined for each caée in
this conditional representation, but now this process is even further
complicated by the presence of reéurrence relationships describingveach
loop. This is another area in need éf‘further resedrch. |

Dynamic symbolic evaluation is a.weli understood process that has
been implemented in two dynamic testing systems. Symbolic execution has
also been successfully implemented though there are still severél
implementation problems to’be exaﬁined as well as several areas of
research to be explored. Global symbolic evaluation is a relatively

new method with prospective applications in the areas of program validation
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and program optimization. Its applicability in the future will most

likely depend on its success in loop analysis and consistency determination.
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