Program Testing by Demonstrai.ng

Consistency with Specifications
D. J. Richardson

COINS Technical Report 79-02
February 28, 1979

Department of Computer and Information Science
University of Massachusetts, Amherst
Amherst:, Massachusetts 01003

This work was supported by the National Science Foundation under grant
NSFMCS 77-02101 and the U.S. Air Force under grant # AFOSR 77-3287.

g

Abstract

An approach to program testing by demonstrating the consistency
between procedures and specifications is described. Operational
specifications, which describe the output of a function by
transformations on the input values, are considered as test oracles.
Three properties of consistency between a procedure and an operational
specification - compatibility, isomorphism, and equivaience - are
proposed. General approaches to demonstrate each of the three
consistency properties are outlined, and the proposed method is
illustrated with a decision table specification. A test data
selection strategy based on both the procedure and the specification
is presented by which consistency can be reassured through actual
execution on the test set chosen. By demonstrating the consistency
between a procedure and a specification, and ascertaining the
consistency through actual execution, the reliability of the procedure

is established.

I. Introduction

In testing a program, the ultimate goal is establishing the
correctness of the program. The usual testing process entails the
execution of the program on a set of test data that is considered
representative of the program’s input domain. 1t is well-known,
however, that testing is capable of detecting errors in a program, but
not in general of establishing their absence (exhaustive testing is an
exception to this disclaimer). Various alternative strategies for
attempting to demonstrate program correctness have been proposed.

The program verification approach [141 of proving the correctness
of a program is one such alternative. In general, this approach
employs appropriate axioms and rules of inference to develop a
rigorous mathematical proof stating that the program correctly
transforms input values described by initial assertions into output
values described by final assertions. Provided the assertions
preciselg characterize the intended purpose of the program, a complete
correct proof (including proof of termination) verifies the
correctness of the program. At the current time, however. program
verification is extremely complex and expensive. In addition: proofs
of correctness are limited to conclusions about prbgram'behavior in a
postulated environment, whereas program testing has thé advantage of
obtaining well-founded information about a program in its natural
environment. |

With this is mind, several attempts have been made to aid in the
selection of test data sets [2,3,9,11,21]1 that increase assurance in
the program’s reliability as a result of correct test runs. In the
absence of the expedient ability to verify the cnrrartness of a

program, attesting to the reliability of the program is a practical

goal for program testing.
In order for testing to be effective in demonstrating the
reliability of a program, there must be some mechanism, or test

ovacle, by which the correct processing of test data can be

recognized. There are many and various guises of test oracles,
ranging from input-output pairs residing in the hcad of the programmer
to a correct program that computes the intended function. A
spécification that formally describes the task that the program is
supposed to perform, can also serve as the necessary test oracle.

When a specification providing a program‘s intended output is
available, the testing process may be done by comparing the program’s
computations with those of the specification. In this paper, program
testing is considered as a process that attempts to demonstrate the
consistency between a program and an associated specification. Three
consistency properties are proposed — compatibility, isomorphism, and
equivalence. By demonstrating the consistency, or lack thereo#f,
betwe;n the procedures and their specifications, the reliability of a
program is exhibited. As a practical application, the use of decision
tables as an approach to program specification is eﬁphasized. To
illustrate the testing method proposed, the consistency between a
procedure and a decision table is partially demonstrated. 1In
addition, a test data selection strategy is proposed by which
consistency can be reassured through the actual execution of the
program on the test data set chosen. Demonstrating the consistency of
a program with its specification, and insuring the run-time

consistency, establishes the reliability of the program.

II. Functional Specifications and Decision Tables

Throughout the design of a program, the specification becomes a
more elaborate and refined description of the proposed program. The
program specification usually follows a progression from a
requirements specification, an informal descriptian‘of the desired
program behavior, to a group of procedure specifications, an
identification of the program modules and a formal description of
their intended behavior. A procedure specification usually dictates
performance constraints that’must be realized by an implementation of
the procedure as well as a description of the task that the procedure
is ﬁo~perform.

This description of the intended task of a procedure is the
functional specification. To enable meaningful analysis, the function
of the proposed program must be described in a formal specification
language, one Qhose syntax and semantics are preciselg defined. There
are basicallg two techniques for formal functional specification -
input—output specification and gperational specification [131. By
either technique, the specification must be complete and unambiguous
(one and only one output value is specified for each input value) in
order to correctly describe the intended function as a mapping from
the inputs to the outputs. In addition to the intended input-output
relationships, an operational specification provides more extensive
properties of the function with which the procedure may be compared.

By the‘technique of input-output specification, the relationships
between the input values and the output values are described by pairs
of assertions. Whenever the input values satisfy an initial
assertion, a correct‘implementation of the p~ccedurm will compute

output values satisfying the corresponding final assertion. The

technique of input—output specification has been used extensively in
the inductive assertion method of program verification [8].

An operational specification differs from input-output
specification in that transformations on the input values are
described explicitly by indicating zc*ions that serve to provide the
desired output valves. Dperatioﬁal specifications may take on several
forms - input domains with corresponding output computations, decision
tables:, program design, and correct procedures,; to name only a few.

In the approach to program testing presented here, the operational
type of specification is considered because it provides a more
informed test orvacle. Many of the ideas, however, are applicable to
input—-output specifications as well. Furthermorae, the applicability
of decision tables is examined in more depth since they are better
defined and more restrictive than the general operational
speci#icétion.

Decision tables provide a practical method for specifying an
extensive, though restricted, claﬁs of functions and procedures. The
American National Standards Institute defines a decision table as "a
table of all contingencies that are to be considered in the
description of a problem, together with the actions to be taken" [151].
Hence, és'an operational specification for a procedure, a decision
table provides the intended input—output relationships by displaying
precisely all conditions that must be satisfied before the indicated
actions are to be performed.

The basic structure of a decision table f12,15.171 is illustrated
in figure 1. The table header identifies the decision table with a
name, and may identify the inputs and outputs, as well. The remainder

of the table is divided into four quadrants. 1.2 rundition stuh in

the upper left quadrant contains all conditions that have bearing on

the decisions in the function being specified. The lower left
quadrant is the action stub, which prescribes explicitly thp aétions
that may be applied in obtaining the ovtput specified for the
procedure. The condition entries in the upper‘right specify fhe
relevant outcomes of the combination of coﬁditions{ while the action

entries in the lower right dictate_thggq&t‘gpg to be applied under

each specified combination.

IF
AND
CONDITION ~ CONDITION
STUB ENTRIES
AND
THEN
AND
' ACTION ACTION .
STUB ENTRIES
AND
AND

Figure 1. Decision TabiéfétrUCture

There are several types of decis:nn t@b}ééhin general use, but
each variation can be translated into theflimiéed-entrq form. This
form restricts condition entries to three p0331b1e responses: “Y"
indicates the condition must be true; “N" indicates the condition
must be false; "-" (dash) indicates the condition is irrelevant.
Similarly, an action entry may be one of two responses: "X" indicates
the action is to be performed; " " (blank) indicates the action is‘

not to be performed. A column in the‘condition entries portion of a

decision table corresponds to a boolean interpretation of the
conditions in the condition stub; this interpretation specifies a
particular combination of conditions. A column in the action entries
portion specifies an ordered sequence oflactions to be performed under
certain conditions; this sequence i« determined by the order in which
the actions are listed in the action stub.

The association between condition entries and action entries in a
decision table is called a rule and is represented by a column in the
table. The decision table rules are numbered for identification
purposes. A rule may be interpreted as an if—-then construct, where
the condition entries serve as the if portion and the action entries
serve as the then portion of the rule. Each such decision table rule,
therefore, describes a relationship between input values satisfying
the specified intefpretation of the conditions and output values
produced by performing the indicated éequence of actioﬁs.

Any type 6# operational specification can be thought of in terms
of rules describing the input-output relationships. An operational
specification R, therefore, can be represented by a set of rules,
{Rl.RZ.....RN: 1<NC=Y. The general form for an operational
'speciPication must allow an infinite number of rules since some
specification languages may allow a notation for indefinite iteration.
For each rule RJ, the rule domain D? is the set of input values for
which the rule is applicable and the rule computation C§ is the
transformation obtained by applying the actions indicated by the rule.

A procedure P defines a set of paths, which are similar to the
rules in an operational specification. A path through a procedure
corresponds to some possible flow of control. In general, a procedure
may define an infinite number of paths, since "'ows of contral that

differ in the number of iterations of loops are considered to be

different paths. Hence, P defines the set {Pl.Pz.....PM: 1<MC o},
Associated with each path PI is the path domain Dia which is the
subset of the input domain that causes execution of the path, and the
path gompdtatign Ci, which is the function that is computed by the
sequence of executable statements along the path.

Symbolic execution [4,5] assigns symbolic nemes to a program’s
input values and "executes" a program path. This method of evaluation
provides representations for the path domain and the path computation.
‘A similar procedure can be used to "apply” a rule to symbolic inputs,
and thus construct representations of the rule domain and the rule
computation. A path or rule domain is represented by a system of
constraints on the input values z. The conditioﬁ formed by these
constraints defines the subset of the input domain for which the path
or rule is applicable. This system of constraints can be translated
into some canonical form, such as a simplified, conjunctive normal
form. A path or rule computation is represented by a vector of
symbolic formulas for the output values 2. Each formula is a symbolic
expression in terms of the symbolic names assigned to the input values
z. These expressions may be converted to a canonical form, such as a
simplified, ordered expression [19]. The canonical forms for the
representationsvof the path and rule domains and computations
exemplifies the similarity between the input—output relationships
provided by paths and rules. Each provides a computation, which
produces output values, that is applicable for a subéet of the input
values, In the next section, the comparison of a procedure and an
operational specification by the examination of the paths and rules is

explored.

III. Consistency with 8pecifications

In comparing a program with a sbecificapion. the goal is to
determine how consistent each procedure is in relation to the
associated operational specification. Consistency should imply that
the procedure is, to some extent, reliable. With this comparison in
- mind, three consistency properties are Proposed — compatibility,
isomorphism, and equivalence ~ which differ in the manner in which the
procedure must conform to an operational specification. These
properties are defined in terms of the general operational
specitfication as presented in the previous section. An approach to
demonstrating the consistency between a procedure and an operational
specification is outlined in the next section.

The most basic form of consistency is the compatibility of a
procedure and an operational specification. Assuming that all inputs
and outputs are considered logically independent., compatibility must
hold in order for the procedure to be a correct implementation of the
specification. |

Definition: A procedure P is compatible to an operational

specification R if P and R have the same input vector x., the

same output vector 2, and the same input domain X.

Compatibility states that the procedure and the specification have the
same interface - that is, they have the same number and type of inputs
and outputs — and the inputs are restricted to values from the same
domain. The restriction on the domain must hold for the specification
to be complete since the specification must describe an output for
each input for which the procedure might be executed. In the trivial
case, this input domain is the entire set of values for the type of

the input, but some specification and programming languages allow

.assumptions to further restrict the domain of input values. The
compatibility property is a reasonable raestriction on the class of
associated procedures and operational specifications for further
consideration. The other properties of consistency are defined under
the assumption that compatibility holde.

The prevalence of compatibility does not implg-that the procedure
‘is correct. In order to realize the function described by an
operational specification, the procedure must not only accept and
produce values of the same type, it must also compute the output
values specified for each Qector in the input domain. A procedure
P ig a correct implementation of an operational specification R if for
all xeX, P(x) = R(x), where P(X) is the output vector resulting from
execution of P on %, and R(x) is the output vector specified by B for
Z, For any input vector Z€X, a particular path in the procedure, say
P+ is executed; thus xeDi. and P(x) = Ci(m). Similarly, a
particular rule in the operational specification, say Ry, is
applicable; thus xEDﬁ. and R(z) = C?(x). For this input vector, the
procedure and the specification produce the same oqtput values, P(x) =
R(x), if and only iffthe appropriate path and rule computations agree,
Ci(m) = C?(x).

During execution, a path computation is carried out over the
elements in the corresponding path damain only. Likewise, a rule
computation is applied only to those elements in the rule domain. Dvue
to this similarity, the equivalence of a path and a rule can be
considered.

- Definition: A path PI is equivalent to a rule Rj; if

P R : R P R
Dy =D and for all zeD> (=Dj), Cp(z) = Cjla).

Thus, a path and a rule are equivalent if she path‘domain and the rule

domain are equal and for each element of that domain, the path

10
computation and the rule computation produce equal output values. I¢
a one-to-one correspondince between the paths in a procedure and the
rules in an operational specification can be found based on this
path-rule equivalence, an isomorphism can be defined between the
procedure and the operational specification.

Defgnitigni A procedure P is isomorphic to «n operational
specification R if there exists a bijective mapping
I: P-DR such that if 1(P.) = R, then D; =D} and for all

P R P R
xeDK (-DK). CK(x) = CK(x).

If the operational specification correctly describes the desired
function, isomorphism is sufficient, but not necessary, for the
procedure to be correct. In addition, isomorphism gives evidence that
the internal structure of the procedure and the specification are
similar. |

The close conformity of an isomorphism might be required when the
specification is a high-level design that is to be used as a guideline
for implementation of the procedure. On the other hand, the
requirement may be that the procedure realize the intended function
without regard to the method of implementation described by a
specification for the function. This relaxed conformity might be
desired when thé operational specification is a design written for
simplicity, but the procedure ought to be coded for efficiency.

In order for the procedure to realize the specification, the
output generated for each element of the input domain must equal that
indicated by the operational specification, although the strict
one—to—-one correspondence of an isomorphism is not necessary. A path
computation and a rule computation must produce equal output values
for any inputs to which they jointly apply, but the restriction that

the two computations be defined over the same domain may be set aside.

11

When two computations are not defined over the same domain, they may
be considered equivalent over a particular domain - namely, the joint
domain over which they are defined - if they compute equal values for
each of those elements. The intersection of a path domain and a rule
domain is the joint domain over which the corresponding path and rﬁle
computations are applicable. A path computation and a rule
computation can be considered equivalent over their Joint domain if
“they compute the same output for each element of that domain. Note
that when the path domain and the rule domain are equal, this
computation equivalence implies that the path and the rule ére

equivalent.

Definition: A path computation Ci and a rule computation

P

C§ are equivalent over their joint domain DI

nD? it for all

P R P, . _ R
x€-DIﬂDJ ' CI(x) = CJ(m).‘

This definition gives rise to a definition of the eqqivalence of a
procedure and an operational specification, which is in terms of the
equivalence of the computations over Joint domains for each path-rule
pair.
Definition: A procedure P is equivalent to an operational
specification g if for all path-rule péirs (#I'RJ)' 1<I<M

and 1<UCN, for all g ¢ DiﬂDﬁ:'Ci(x) = c§<m>.

Since both the procedure and the specification are complete, the input
domain X can be represented as the union of the intersections of all
path domains and all rule domains, X =(J tDi n D?. for 1<LI<M and
1€JEN]. Thus the prevalence of computaﬁion equivalence over the joint
domains for each path—rﬁle pair means the procedure and the
oéerational specification produce the same cuirnt fo- 2arch input in

the domain.

12

Equivalence is cerfainlq the most important of the proposed
cpnsistancg properties since under the assumptions that compatibility
holds and the specification is correct, the procedure is correct if
and only if it is equivalent to the associated operational
specification. Equivalence is applicable to all classes of related
procedures and operational specifications, whereas isomorphism holds
for a limited class. As a restricted concept of equivalence, however,
it is easier to determine whether isomorphism prevails.

These three properties of consistency allow the attachment of
differing requisites on the conformity of a procedure and an
operational specificatipn. Compatibility implies that the procedure
conforms to the specified interface, The prevalence of either
isomorphism or equivalence implies that the procedure is correct,
provided the specification precisely describes the intended function.
Moreover, isomorphism implies that the procedure realizes the-ﬁunction
in much the same manner as the operational specification describes

that function.

13

IV. Demonstration of Consistency

Demonstrating consistency between alprocedure and an associated
operational specification substantiates the reliability of the
procedure. Complete consistency — that is, isomorphism or equivalence
— implies that the procedure realizes the function described by its
specification. Even when complete consistency cannot be shown for the
entire procedure, determination of partial consistency provides some
confidence in its reliability. The more camplete the consistencg
between the procedure and its operational specification, the more
meaningful this confidence in the reliability of the procedure. A
general approach to demonstrating the consistency between a procedure
and an operational specification is outlined in this section. A more
detailed explanation of the steps involved is given in [18]. This
approach is then illustrated for a decision table specification and a
corresponding FORTRAN procedure. Though in theory the consistency
properties apply to all forms of operational specification, practical
methods for demonstrating consistency for the general form remain to
be explored more fully. |

The gompatibilitg of a procedure and an operational specification
is fairly easy to determine provided the specification and the
programming languages have constructs for declaring parameters and
variable types. By comparing such declarations, it is possible to
determine if the procedure and the operational spacification have the
same number and type of inputs and outputs. Data flow analysis
methods [16] may be required in order to determine that each parameter
has the same input/output class in the procedure as is deécribed in
the operatidﬁal specification. In addition, {“e specification and

programming languages might allow assumptions on the inputs, thus

14
constraining the values the inputs may assume. These assumptions may
also be compared in order to determine the equivalence of the domain
of input values. If the input vector and its domain and the ouvtput
vector agree, then the procedure is compatible to the operational
specification.

‘When compatibility holds, the demonstration >f additional
consistency can continue with a comparison of the path domains with
the rule domains and the path computations with the rule computations.
Without further restriction, complete consistency can only be
demonstrated when there are a finite number:of paths and rules. In
the case where finiteness is not met, partial consistency of a subset
of the paths and rules may be considered. Another approach involves
the specification of loops by recurrence relations. In the symbolic
execution of the procedure, similar recurrence relations could be
derived [1], and these relations might then be comparéd. In the
discussion that follows, though, the class of procedures and
operational specifications under consideration is limited to those
with @ finite number of paths and rules. When this restriction holds,
symbolic éxecution of all the paths in the procedure and all the rules
in the operational specification can be performed in order to generate
representations for the path and rule domains and computations. Since
both the procedure and the specification are unambiguous, the path
domains are mutually disjoint as are the rule domains. No
restriction, however, has been made on the computations; neither the
path computations nor the rule computations must be distinct. With
this in mind, the comparison of a procedure and an operational
specification should first be based on the relationships between the
path domains and the rule domains; after wh*.. the corresponding path

computation and rule computation must be compared. There are two

15

problems inherent in demonstrating either equivalence or isomorphism:
showing domain emptiness and showing computation equivalence. These
problems will be treated after the general pfocesses for demonstrating
isomorphism and equivalence are presented.

The property of isomorphism holds if there is a one—to-one
correspondence between the paths in the procedure and equivalent rules
in the operational specification. Isomorphism is not even considered

unless there are the same number of paths and rules. A correspondence

P
K

rule domain DE are equal. When the demonstration of this equality

between a path PK and a rule RK is made if the path domain D_ and the
cannot be acheived by a term-by-term comparison of the constraints in
the symbolic representations of the domains, this equality can be
demonstrated by showing that Din“DE is empty (where ~D§ is the
complement o+f Di). After determining domain equality, the equivalence
of the path computation Ci and the rule computation CE over this
domain must be determined. If a one-to-one correspondence can be
constructed in this way, then the procedure is isomorphic to the
operational specification.

A procedure is equivalent to an operational specification if for
each path-rule pair, the path computation and the rule computation are
equivalent over the subset of the input domain formed by the
intersection of the path domain and the rule domain. For each
path-rule pair (PI:RJ), tﬁe Joint domain DinD? over which this
path-rule pair applies can be constructed by conjoining the
representations of the path domain and rule dbmain. I# the joint
domain is empty, then the path-rule pair need not be considered
further, since they are not both mututally satisfiable — no data
element exists that causes execution of the p=.% arnd for which the

rule is applicable. The computations are trivially equivalent in this

LTI

16
case. For a non-empty intersection, the corresponding path and rule
computation must be compared for equivalence , Ciw C?. over this joint
domain. If the computations are equivalent over the joint domains for
each path-rule pair, then the procedure is equivalent to the
operational specification.

One of the problems that must be approached in demonstrating
evivalence or isomorphism between a'procedure and an operational
specification is the determinatioﬁ of domain emptiness. This involves
demonstrating the satisfiability or unsatisfiability of the condition
defining that domain. One approach to this problem is the axiomatic
approach, which uses first order predicate calculus to prove whether
or not the conjunction defining the domain is satisfiable. This
method is subject to the limitations of avtomatic theorem proving [7].
Another approach is the algebraic approach, which attempts to find a
solution to the constraints defining the domain. If the set of
constraints is unsatisfiable, the domain is empty. Several algebraic
techniques, such as linear programming or a gradient hill climbing
algorithm, can be used to solve the system of constraints. No method,
however: can solve any arbitrérg system of constraints £61, and
determining the emptiness of a domain is undecidable.

Another problem that must be addressed is the determination of
computation equivalence over a particular domain. In some cases, this
decision is trivial, but in general, the equivalence of computations
is undecidable. The first approximation to determining whether a path
computation Ci and a rule computation C? are equivalent is also done
by comparing their canonical representations. When a term-by—-term
comparison of the symbolic representations reveals that the twa
computations are symbolically identical, they a.~ =quivalesnt over any

domain. Otherwise, the two compuations are equivalent over the domain

17
in question if the symbolic difference between their canonical
representations, C CJ. is zero for all elements of that domain since
this implies that the two computations are equal for all elements of
that domain. The most straight-forward method for determlnxng whether
this holds is by finding the solutisr- of the equation C -C = 0 using
a mathematical package for finding the zeroes of a function. If the
condition defining the domain restricts the inputs to values in this
solution set, then the symbolic difference is zero over the domain.
Several other approaches to deciding on computation equivalence are
proposed in [18].

These processes for demonstrating consistencg by comparing a
procedure to the associated operational specification can be readily
applied to decision tables, A simple example of a function‘that is
amenable to operational specification by a decision table is the
calculation of Capital Gains and Losses for 1978. This is done by
filing Schedule D of the Federal Income Tax Form 1040. Part III of
that form, which ig the only portion under considerafibn here, is
shown in figure 2. By reading this part of the form, one can see that
there are four entries, which are calculated in earlier parts of this
form - namely lines 3 and 5 from part I and lines 11 and 13 from part
II - that constitute the input to pért III. The interrelationships
between these inputs is logically compléx enough to make this an
interesting example for specification by a decision table. The
decision table CGLDT, shown in figure 3, is an operational
specification for the calculation performed in part III of schedule D.
A FORTRAN function CGL that attempts to calculate Capital Gains or
Losses appears in figure 4; the procedure is annotated with statement
numbers that will be used later in describing tue _atns. This FORTRAN

function and the decision table corresponding to it will be used as an

example of demonstrating consistencgbbetween a procedure and an

operational specification.

 Computation of Capital Gain Deduction
(Complete this part only if line 14 shows a gain)

18

14 Combine lines 5 and 13, column (f), and enter here. If result is zero or a loss, do not complete the rest
of this part. Instead skip to Part IV, line 24 on page 2

15 Enter line 13, column (f) or line 14, whichever is smaller. If zero or a I1u3s, enter zero and skup to line 23

16 If line 11, column (g) is a gain, combine lines 3 and 11, column (g), and entar hzre. If this line or
line 11, column (g) shows a loss or zero, enter a zero and skip to line 20 .

17 Enter line 11, column (g) or line 16, whichever is smaller .

18 Enter line 15 or line 17, whichever is smaller .

19 Enter 60% of amount on line 18 .

20 Subtract line 18 from line 15 .

21 Enter 50% of amount on line 20 .

22 Add line 19 and line 21. This is your capital gain deductnon .
23 Subtract line 22 from line 14. Enter this amount on Form 1040, line 14

14

15

16

17

18

19

20

21

22

23

Figure 2. Capital Gains and Losses Form, Part III

keLpT INPUT: REAL L3, LS, Li1, L13
DUTPUT REAL ch

Ci: LS+L13>0.0 N Y Y Y Y Y Y Y Y Y Y
C2: Li13<LS5+L13 - N N N NNVY NVY VY Y
€C3: L13<€0.0 - = = = = =« = = N N N
C4: LS5S+L13<£0.0 - N NN NNNY - - -
€S: L11>0.0 - N Y Y Y Y Y - N VY Y
Cé6: L3+L11<0.0 - = N NNNY - - N N
C7: L11<L3+L11 - = N NY Y - - = N N
C8: Li13<L11 T T
C®: L13<L3+L11 tn- - - -=--=- = = NY
C10: LS+L13<L11 - - = = Y - = = = =
Cli: LOS+L13<L3+L11 - = N VY = = = = = = =
: Li4=L5+L13 X X X X X X X X X X X
A2: L15=L13 X X X
‘A3: L15=L5+L13 X X X X X X X
A4: L15=0.0 X
AS5: L16=L3+L11 X X X X X X X
Ab: L16=0.0 X X X
A7: L17=L11 X X
A8: Li7=L1é6 X X X X
A9: L18=L15 X X X
A10: L18=L17 X X X
All: L19=, 6#L18 X X X X X X
Al2: L20=L15-L18 X X X X X X X X X
Al13: L21=, 5#L20 X X X X X X X X X
Alg: L22=L19+L21 X X X X X X X X X
AlS5: CGL=L14-L22 X X X X X X X v X x X

X X X X X X

1<<z<|z<<’

>

X X X X X

X X X X

Figure 3. Decision Table CGLDT

OO0 00000

a0

OO0O0O0

OO0

OOO0O0

FUNCTION COL(L3,LS,L11,L13)

COL returns the Capital Gain or Loss
by completing Part III of Form 1040, Schedule D
(Capital Gains and Losses)

Input Va
L

L

L

L

Output V

riables:

3 - Sched D, Part I, Line 3
Short-term Gain or Loss for 1978
9 - Sched D, Part I, Line S
Met Short—term Gain or Loss
including carryover (years atter 1948)
11 - Sched D, Part II, Line 11
Long-term Gain or Loss for 1978
13 - Sched D Part II, Line 13
Net Long—term Gain or Loss
including carryover (years after 1968)

ariables:

CeL —~ Capital Gain or Loss

REAL L3,

Enter this amount on Form 1040.4Line i4

LS, L11,

Li3

REAL L14, L15, Li1é6, L17, L18, L19, L20, L21, L22

Initialize all local variables to zero

14 = 0.0

LiS = 0.0

Li6é = 0.0

Li7 = 0.0

Lig = 0.0

L1929 = 0.0

L20 = 0.0

L21 = 0.0

L22 = 0.0

C6L = 0.0

Line 14: Combine lines S and 13 and enter here.
I# result is zero or a loss,
do not complete the rest of this form.
Instead, skip to Part IV, Line 24.

Li4 = LS + L13 .

IF (L14.€6T.0.0) THEN

Line

15: Enter line 13 or line 14,
whichever is smaller.
If result is zero or a lass,
enter zero and skip to line 23.
IF (L13.LT.L14) THEN

L15 = L13
ELSE
L1S = Li4
ENDIF
IF (L15.LE. 0.0) THEN
L15 = 0.0
ELSE
Line 16:

If line 11 is a gaim,

combine lines 3 and 11 and enter here.
I+ this line or line 11 shows a loss or zero,
enter a zero and skip to line 20.

20
IF (L11.6T.0.0) THEN

S Lié = L3 + L11
IF (L16.LE.O0.0) THEN
) LiS = 0.0
ELSE
c .
C Line 17: Enter line 11 or line 16,
C whichever is smaller.
IF (L11.LE.Lt%t) THEN
7 Li7 = L11
ELSE
a8 L17 = Lis
ENDIF
C
C Line 18: Enter line 15 or line 17,
C whichever is smaller.
IF (L15.LE.L17) THEN
e : L18 = L15
ELSE
10 _ Lig = Li7
ENDIF
c
Cc Line 19: Enter 60% of line 18.
i1 L19 = . 6 # L18
ENDIF
ENDIF
C
c Line 20: Subtract line 18 from line i5.
i2 L20 = L15 - Li8
c
C Line 21: Enter 50% of line 20.
i3 L21 = .5 # L20
C
C Line 22: Add line 19 and line 21.
c This is your Capital Gain Deduction.
14 L22 = L19 + L21
ENDIF
C .
Cc Line 23: Subtract line 21 from line 14.
Cc Enter this amount of Form 1040, Line 14.
15 CeL = L14 - L22 '
ENDIF
RETURN
END

Figure 4. FORTRAN Function CGL

In order to determine the compatibility of the procedure CGL with
the decision table CGLDT, the function header and the declarations of
the procedure must be compared with the decision table‘header. The
function header does not indicate precisely waic'. ;[ccamete~s are input

and which are output, but the use of data flow analysis would

21
determine that the procedure CGL has four inputs -~ L3, LS5, L11, and
L13 - and one output - CGL. The table header for COGLDT describes the
same inputs and outputs. These variables are declared real, and
neither the procedure nor the decision table have any assumptions on
the input values, which would further restrict the input'domain. The
implicit assumption, then, for both CGL and CGLDT. is that each input
may be assigned values from the entire real domain. There are no
inconsistencies between the input vector, the output vector, or the
input domain, so the procedure CGL is compatible to the decision table
CGLDT.

Once compatibility has been demonstrated, concentration on
additional consistency - that is, the demonstration of isomorphism or
equivalence - can begin by examination of the paths of the procedure
and the fules of the decision table. Symbolic e#ecution of the
procedure provides the representations of the path domains and
computations (and numbering of the paths) of COGL. Representations for
the rules of COGLDT (already numbered) may be obtained by a similar
method. These representations are given in the appendix. The two
processes outlined previously for deciding .whether isomorphism or
equivalepce hold for a general operational specification are combined
into one process here (this combination could be QOne for the general
operational specification, as well). This is more efficient, because
once a path-rule pair has been.determined to be equivalent, neither
the path nor the rule need be considered further.

The process of demonstrating consistency between the paths in the
procedure CGL and the rules in the decision taple CGLDT begins by
searching for equivalent path-rule pairs, and discarding those paths
and rules from further consideration. Then four *bhe rmaining paths

and rules, computation equivalence over the joint domain of each

22
Compatible inputs and outputs:

Inputs:
(L3, L3), (LS,L5), (L11,L11), (L13,L13)
Outputs:
(CGL, CGL.)
Incompatible inputs and outputs:
none
Equivalent path-vrule paivrs:

Path-rule pairs with equivalent computations:
Those over empty joint domains:

(P3,R7) (P3.Ryg)s (P3sRyp)s (P3uRyp)s (P3iRpgds (P3.Ryg)s
(P45R7)l (94'R10)' (P4:R11): (P45R12): (P41R13)o (P4JR14)!
‘P50R7)I (P50R10): (P5,R11), (P5,R12), (P50R13)1 (P5,R14),
(P60R7): (PG'RIO)' (P6'Rll)' (P61R12?0 (P6'R13)' (P6IR14)0
(P7:R3)s (P7Ry), (P2 RsYy (P7uRg), (P7.Ryg)s
(P7'Rll)' (P7JR12): (P70Rl3): (P7:R14)0
(P100R3)0 (PlO'Ré)' (PlooRs)J (P10:R6)l (P100R7): (P105R14)I
(P111R3)n (Pll'RQ)' (PllJRS)I (Pll'R6)' (P115R7): (P11:R14)1
(P130R3)l'(P13:R4)0 (P135R5): (P13IR6)I (P13:R7)0 (P13DR14)I
(P14+R3)s (P14/R4)s (P144R5), (P14:Rg)» (P14, R7),
(P14:R10), (P14:,R11)» (P14,R12), (P14:R13)

Those over non—empty joint domains:
(P3:R3)J (P31R4)t (P31R5): (P3JR6):
(P40R3)l (P41R4)l (P[,J RS)I (Pl}: R6)v
(P5.R3), (P5,R4), (P5.Rs5), (Ps5,Rg),
(P6IR3)I (P6:R4)l (P61R5): (P65R6)u

(P10:R10):
(PlZ:RlO):
(P13:R710)

(P19.R11)»
(P11,R11),
(P12,R11),
(P13:R11),

(PlO'Rlz)'

(P11:R12)r

(PlZIRlZ)I
(P13.,R12),

(P10:R13),
(P11:R13),
(P12:R13),

(P13:R13)

Inconsistent path-rule pairs:
(P7:R7): (P14:Ryy)

Figure 5. Results from Consistency Demonstration
Betuween the Procedure CGL and the Decision Table CGLDT

path-rule pair must be checked.

There may, in fact, be inconsistent

path-rule pairs — that is, pairs for which the intersection between
the path and rule domains is not empty and the path and rule
computations are not equivalent over this domain. When this occurs
there is an error in the procedure. The overall results of the
examination of the procedure CGL and the decision table COLDT are
shown in figure 5. As an illustration of lhe comparison which takes

place in determining the consistency, or the lack of it, three

23
particular path-rule Pairs are considered below.

In comparing the path P9 (1,2,12,13, 14, 15) .with the rule
R9 (1,2,12,13, 14, 15) it is found that theg are equivalent. The path
domain D9 and the rule domain Dg are represented by the condition
(L5+L18>0.O)A(O.O<L5)A~(L13go.O)AN(L11>O.O). while the path
computation Cg and the rule computation Cg are Tepresented by the
formula CGL = LS+, S5#L13. Term-by-term comparisons of both the
computat10ns and the domains reveal that they are symbolically
identical. The path-rule pair (P9,R9) is, therefore, equivalent.

The procedure CGL is not isomo%phic to the decision table CeLDT,
since there are paths and rules remaining for comparison after those
which belong to equivalent path-rule Pairs are eliminated. All
remaining paths and rules must be pair-wise considered; one such pair
is the.path P5 (1.3.5:7.10,11.12.13;14'155”and the rule
R6 (1,3.5.7,9.11,12.13.14,15). The joint domain for which both Ps and
R6 apply is (in simplified form) Dgan = (L5+L13>0. 0) A~(0. 0<LS)
(Lll)O.O)A~(L3+L11£O.O)A(O.OgLS)A(L5+L13=L11). The symbolic
difference between the path computation and the rule computation is
(also in simplified form) cg—cg = ;1¥L5+.1*L13—.1*L11. Since the
Joint domain over which the two coﬁputations will be pér#ormed
restricts the input values to those for which L5+L134L11. it is
obvious that this symbolic difference has zero value over the joint
domain. Thus, Cg = 06 over 05006, and the path-rule pair (PS'R6)
satisfies computation equivalence over the joint domain.

Another pair to be-considefed is the path
P; (1,3,5,6,12,13,14,15) and the rule R, (1,3,5,6,12,13,14,15). 1n
this case, the Joint domain over which the path and fule computation
will be carried out is DPnD§ = (LS+L13>0. 0)A~ | O<LS AILI1>0. 0)A

7
(L3+L11<0.0). The symbolic difference between the two computations is

24

C?—C? = . 3#LO+. 5#L13. The only way in which this difference has zero
value is when L5+L13=0.0, but this violates one of the constraints
defining the joint domain, namely, (L5+L13>0.0). The two computations
are, therefore, not equivalent over the Joint domain dver which they
apply, and the path-rule pair (P7,R/) is inconsistent. There is an
error, therefore, in the procedure CGL, which is .mmediately obvious
when the path P7 is compared in full to the rule R7 (statement 6
should be L16 = 0.0). The discovery of an inconsistency such as this
would direct the examination of the path in order to help correct the
procedure.

The procedure CGL is compatible, but not equivalent (nor
isomorphic), to the operational specification of the intended task,
lwhich is provided by the decision table CGLDT. After the correction
mentioned is made, the procedure CGL is equivalent (and partially
isomorphic) to the decision table CGLDT and may be considered reliable

in calculating Capital Gains and Losses for 1978.

25
V. A Test Data Selection Strategy

Démonstrating consistency between a procedure and the associated
operational specification provides confidence that the procedure
performs the intended task. This moethod of attesting to program
reliability, however, divorces itself from the run-time surroundings
by showing consistencq in a postulated environment, Just as proving
the correctness of a program is done in an artificial environment. To
remedy this, the demonstration of consistency must be compleméhted by
the actual execution of the procedure. The method of testing a
procedure.that has already been presented can be extehded to include a
test data selection strategy..

In demonstrating equivalence. the input domain is partitioned
into subsets of input values that are treated the same by the
procedure as well as by the operational specification. Each subset
contains inputs that cause execution of a particular path, say PI' and
for which a particular rule, say R;, is applicable. This subset is
the intersection of the path domain and the rule domain, Diﬂpﬁ.‘ A
test data set can then be constructed by selecting one or more input
values from each.sdch subset of the input doméin. The appropriate
selection of input values from each subset can increase the
probability of defecting errors and in some cases even verify the
correctness of the path domain [213. The procedbre can then be
executed on this test data set, while the operational specification
provides the test_oracle. This approach makes it possible to check
the run-time consistency of each path—rule.pair.

This test data selection stratégg is similar to that used in path
analysis approaches [2,3,10,211, in which a te.* =eot ig constructed by

choosing elements from each path domain. Path analysis testing

26
strategies, however, are based solely on the structure of the

Procedure. The test data selection approach presented here is based
on both the procedure and the specification, and thué takes into
consideration what the pProcedure is supposed to do in addition to what
is actually does. 4 testing methodology integrating information from
the procedure and the specification should be a more effective

strategy than one based on a single source of information.

27

VI. Conclusion

The use of specifications in the program testiﬁg process can
greatly enhance the reliability of software. When an operational
specification is available, a program can be tested bg'demonstrating
its consistency with the specification. By examining both the
specification and the program, a more comprehensive set of test data
can be generated than those obtained by analyzing either the program
or the specification alone. Program testing is an expensive and
laborious process that is usvally left incomplete, thus the
development o#tan effective means of assistaqce in these processes
could dramatically reduce the cost of testing and increase assurance
in the program.

If program specifications are to contribute ePFectivelg to the
analysis of programs, more extensive formal specification languages
must be developed. Formal techniques for specifying the intended
function of a program can provide a concise and well-understood
desc;iptioni which should reduce the difficulty of comparing the
specification and the implementation of a4 program. Decision tables
‘are a widely—-accepted technique for specifying the function of a
program; and the proposed methods have been shown to be applicable for
this type of operational specification. As progress in the
development of formal specification languages is made., the practically
of a mechanical means of using new types of specifications in program
testing must also be evaluated.

The demonstration of consistency between a procedure and a
functional specification increases the assurance in the procedure’s
reliability. This approach, which is a type ¢ mit ke-ting, relies

on the independence of the procedures in a program. Multi-module

28

programs have not yet been examined, and the difficulty of checking
31? the interactions among numerous procedures in a single program is
formidable. - To the extent that a program can be considered the sum of
its procedures, the proposed method is useful for testing a
multi-module program.

The approach presented in this paper is concerned with the
analysis of a program in relation to a specification for the intended
function. The specifications considered are high-level and might
correspond to a program description developed late in the design of a
program. If analysis is not performed throughout the development
procesé. there is no assurance that the specification indeed captures
the desired behavior of the function. This problem is addressed by
current work [20] in the development of tools that support the design
énd analysis of program descriptions during the earlier stages of
development. In order to acheive the goal of producing more reliable
software, a complimentary set of software tools for program
specification, program design, program vgrification, and program

testing must be integrated.

29

References

1. T. E. Cheatham and D. A. Washington: “Program Loop Analysis by
Solving First Order Recurrence Relations, " Center for Research in
Computing Technology Technical Report #13-78, Aiken Computation
Laporatory, Harvard University, 1974,

2. L. A Clarke, "A System to Generate Test Data and Symbolically

Execute Programs," IEEE Transactions on Software Enqineering, v. 2,
n. 3, pp. 215-222, September 1976.

3. L,fA. Clarke, "Automatic Test Data Selection Techniques, " Infotech
Staﬁg of the Art Report on Software Testing, September 1978.

4. L. A Clarke and D. J. Richardson, “Symbolic Evaluation Methods
for Program Analysis, " Department of Computer and Information Science
Technical Report #79-01, University of Massachusetts, February 1979.

5. J. A. Darringer and J. C. King: "Applications of Symbolic
Execution to Program Testing, " mputer, v. 11, n. 4, pp. 51-68, April
1978.

6. M. Davis, "Hilbert’s Tenth Problem is Unsolvable, " American
Mathematical Monthly, v. 80, pp. 233-269, March 1973.

7. B. Elspas, K. N. Levitt, R. J. Waldinger, and A. Waksman., "An
Assesment of Techniques for Proving Program Correctness, " ACM
Compyting Surveys, v. 4, n. 2, pp. 97-146, June 1972.

8. R. W Floyd, "Assigning Meaning to Programs, " Proceedings af the
Amerjcan Mathematical Society Sumposium on Applied Mathematics, v. 19,
pp. 19-32, 1967. '

?. J. B. Goodenough and S. L. Gerhart, "Toward a Theory of Test Data

Selection.," IEEE Transactions on Software Engineering, v. 21, n. 2,
pp. 156~173, September 1976.

10. W. E. Howden, "Reliability of the Path Analysis Testing

Strategy, " IEEE Transactions on Software Engineering, v. 2, n. 3,
pp. 208-215, September 1976.

11. W. E. Howden., "Symbolic Testing and the DISSECT Symbolic

Evaluvation System." IEEE Transactions on Software Engineering, v. 3,
n. 4 pp. 266278, July 1977.

12. P. J. H. King, "Decision Tables," The Computer Journal, v. 10,
n. 2 pp. 135-142, August 1967.

13. B. H. Liskov and V. Berzins, "An Appraisal of Program
Specifications, " Computation Structures Group Memo 141-1, Laboratory
for Computer Science, Massachusetts Institute of Technology, 1974,

14. R. L. London, "A View of Program Verificiv.-~n." Proccadings of

the International Conference on Reliable Software, pp. 534-545, April
197S.

15. H. McDanial, An Introduction to Decision Logic Tables., A

30

Petrocelli Book: New York., 1978,

16, L. J. Osterweil and L. D. Fosdick, "DAVE - a Validation Error
Detection and Documentation System for FORTRAN Programs, " Software -

Bractice and Experience, v. &, pp. 473-486, 1976.

17. U. W. Pooch, "Translation of Decision Talbes, " ACM Computing
Surveys, v. & n. 2, pp. 125-151, June 1974.

18. D. J. Richardson, “"Theoretical Considerations in Testing Programs
by Demonstrating Consistency with Specifications, " Digest for the

Workshop on Software Yesting and Test Documentation. pp. 19-56,
December 1978.

19. D. J. Richardson, L. A. Clarke and D. L. Bennett, “SYMPLR,
SYmbolic Multivariate Polynomial Linearization and Reduction, *

Department of Computer and Information Science Technical Report
#78-16, University of Massachusetts, July 1978.

20. W. E. Riddle, J. H. Sayler, A. R. Segal, A. M. Stavely and
J. C. Wileden, "DREAM - A Software Design Aid System," Pr

Broceedings of
the Third Jerusalem Conference on Information Technology, August 1978.

21. L. J. White and E. I. Cahen, "A Domain Strategy for Computer
Program Testing.," Digest for the Workshop on Software Testing and Test
Documentation, pp. 335-354, December 1978.

Al
Appendix

Baths in the procedure COL:
(statements executed on each path,
along with the representations of
path domains and path camputations)

Pi: p(1)
Di: “~(LS+L130.0)
c{: coL = 0.0
PZZ P‘ll 30 12: 130 14, 15)
| Dy (LS+L1330. 0)A™(L13CLE+L13) A~(L5+L13<0. 0) (L1150, 0)
Cz: COL = .5#LS + .S#L13
P3: P‘loao 5:9: 10: 110 12: 131 14: 15)
Dyt (LS+L13>0. 0)A™(L13CLS+L13) AV(LS+L13)<0. 0)ACL110. 0)A
P IL3+L11<0. 0)A~(L11CLI+L11IAY(LE+L13CL3+L11)
cy: CoL = .5%LS + . 5#L13 - . 1eL3 - . 1aL11
Pyt 5(1.3,98,9 11,12, 13,14, 15) |
D,: (L5+L13>0. 0)A™(L13CLE+L13) A™(LS+L13<0. 0) AML11>0. 0)A
5 (L3110, O)A~(L11$L3+L11)A(L5+L13$L3+L11)
04: COL = .4%L5 + . 4#L13
955 P<1.3.5.7.10.11.12.13,14.15)
Do: (LS+L1350. 0)A™(L13CL5+L13) A% (LS+L130. 0) AL1150. 0)A
2 ¢ “(LI+L11<0. 0)A (L11€H3+L11) A(LS+L13CL11)
05:- COL = .58L5 + .S# 13 ~ . 1sL11
P6Z P(l: 3: 51 71 90 110 12, 13, 143 15)
Dg: (LS+L1330. 0) A*(L13CLE+L13) A¥(LS+L13<0. 0) A(L1130. 0)A
p ~UL3+L11€0. 0 AM(L11<La+L11) KLB+L13CI 11)
Cei COL = .4%LS + . 4813 T
P72 (1,3, 516: 120 13, 14, 15)
pE: (L5+L13>0. 0)A~<L13<L5+L13)A~<L5+L13$p 0) ACL11>0. 0)A
7 (L3+L11<0. 0)
05: CoL = L5 + Li13
Pg: (1,3, 4, 195) (infeasible path)
Dg: (LS+L13>0. 0)A%(LICLE+L13) ALI+L13<0. 0)
c;: CoL = LS + L13 ' |
P.: (1,2,12, 13, 14, 15)
9 Dgz (LS+L13>0. 0)A (L13CLI+L13) A (L130. 0)A ~(L11>0. 0)
ce: COL = L5 + .5#L13 |
P 0: (11 2{51 8,10, 11, 121 130 141 13)
107 pP . (LS+L1330. 0) A(L13<LE+L13) Av(L13CC. YA L1150, 0)A
10 ~(L3+L11€0. 0IAM(L11SL B+L11)AN{L13<L 3+ 11)
cioz COL = .1%L3 + . 1#L11 + .5#L13
P..: (1,2,5:8,9 11,12, 13, 14, 19)

11

A2

P
11° (L5+L13>O.0)A(L13<LS+L13M"'(L13$_O.0)"(L11>0.0)A

“(L3+L11$D.O)AN(L11$L3+L11)A(L13$L3+L11)
CeL = LS + 4#L13

D
ck .
11

P(1.2.5,7o10;11412:13:14.15)
DlZ: (L5+L13>0.O)A(L13<L5+L13)A~(L13$O.O)A(L11>O.OM
”(L3+L11$O.O)A(L11$L3+L11)A~(L13$L3+L11)

12°

Cizz COL = L5 - . 1#L11 + . 5#L13
P13t p(1:2:5,7,9 11, 12, 13, 14, 15) ‘ '
D 4t (LS+L1330. 0)A(L13KLS+L13)A~(L13<0. 03 A(L1130. 0) A
5> ™(L3+L11<0. 0)ACL11€L 3+L11) ACLI3CL11)
Tt COL = L5 + .4%13

P]_l;' P(i: 2,4,95,12,13, 14,1%5)
014: (L5+L13}0.0)A(L13<L5+L13)A”(L5+L13$Q.O)A(L11>O.O)A
p (L3+L11£0.0)
014: CeL = LS + L13

p(1,2: 4, 15)

15 015: (LS+L13>0. 0) A(L13<LS+L13)A(L13<0. 0)
P
ClS‘ CGL = LS + L13

Rules in the decision table CGLDT:
(actions indicated for each rule,
along with the representations of
rule domains and rule computations)

Ryt (1)
Dy: ~(L5+L130.0)
Ci: CGL = 0.0
RZ: R(I.S. 12,13, 14, 15)
Dy: (L5+L1330. 0)A™(L13<LE+L13) A™(LE+L13<0. 0)A~(L1130. 0)
02: COL = .5#L5 + .5%L13
R.: R(I.S. 5,8,10,11,12, 13, 14, 15))
3 Dyi (L5+L13>0. 0)A™~(L13LLE+L13)A™(LE+L13)<0. 0)A(L1130. 0)A
S V(L3HL11€0. 0)AN(LI1<KLI+L11) AN (LS+L13<L3+L11)
;i COL = .5#L5 + .5#L13 - . 1#L3 - . 1%L11
R,: .R<1.3.5.e.9.11.1a,13.14.155 '
D,: (L5+L13>0.0)A%(L13CLE+L13) A~(L5+L130. 0)A(L1130. 0)A
p “(L3+L11€0. 0)AM(LI1<LI+L11) ACL5+L13KL3+L11)
C,: COL = .4%L5 + .4#L13
R : (1,3,5,7,10, 11,12, 13, 14, 15)
> pR: (LS+L1330. 0) A~(L13<L5+L13) AV(L5+L13<0. 0) A(L1130. 0)A
5 ~(L3+L11<0. 0)ACL11<L3+L11) AM(LS+L13<L11)
c§: COL = .5#L5 + .5#L13 — . 1#L11
Ré: (1,3,5,7,9,11, 12,13, 14, 15)

DR: (LS+L1330. 0)A~(L13CL5+L13) A~ (L5+L13<0. 0)A(L11>0. 0)A
6 A (L3+L11<0. 0)ACL11<L3+L11)ACLS+L13<L11)
02: COL = .4%L5 + .4#L13

R, :

R
10

R
11

12°

13°

14°

15°

A3

R 1 13,5, 6,12, 13, 14, 15)
DJ: (LS+L1330.0) A™(L13<LE+L13) A~ (LS+L13L0. 0)A(L1130. 0) A
L (L3+L11£0.0)
Co: COL = .5#L5 + .5%L13
(1.3, 4,15) (infeasible rule) ‘
Dgz (L5+L13>0. 0) AV(L3CL5+L13) A(L5+L130. 0)

ng COoL = LS + L13

(1, 2,12, 13, 14, 15)
Dg: (L3+L13>0. 0) A(L13<L5+L13) Av(L13<0. 0) AV(L1130. 0)

ng CGL = L5 + .5#L13
(1,2,5,8,10, 11, 12, 13, 14, 15)
DR : (L5+L13>0. 0) A (L13<L5+L13)A%(L13<0. 0)A(L1130. 0)A
~M(LI+L11<0. 0)ANM(L11<L3+L 11) AM(L13<CL3+L11)
CEO: COL = . 1#L3 + . 1#L11 + . 5#L13

(1,2,5,8,9 11, 12, 13, 14, 15)
DR : (LS+L1330. 0) A(L13<LES+L13) A% (L13<0. 0) A(L1130. O)A
11 ~(L3+L11<0. O)AM(L11<L3+L11)ACL13<L3+L11)
c?lz COL = L5 + .4#L13

- €1,2,5,7,10, 11,12, 13, 14, 15)

DR (LS5+L13>0. O)ACLI3<KLES+L13) AV(L13<0. 0)A(L1120.0)4A

_ M(L3+L11<0. 0) ACL11<L3+L11) AM(L13<L3+L11)

Ciz: CeL = LS - . 1#L11 + . 5%L13
(1,2,5,7,9 11, 12, 13, 14, 15)

DR @ (L5+L13>0. 0) ACL13<CLES+L13) AV(L13<0. 0)A(L1130. 0)A
13 ~(L3+L11<0. 0)ACLL11<L3+L11)ACL13<L11)

c§3: COL = L5 + .4%L13

(1,2,4,5,12, 13, 14, 15)
DR ;' (L5+L13>0. 0) ACL13<L5+L13) A~(LS+L13<0. 0)A(L1130. 0) A
14 (L3+L11<0. O)
c?a: CeL = LS + .5#L13

(1,2,4,18)
D?S: (LS5+L13>0. 0) ACL13<L5+L13)A(L13£0. 0)

cis- C6L = L5 + L13

