THE SYNTHESIS OF PROGRAMS BY ANALOGY1

Robert M5ll
Department of Computer and Information Science
University of Massachusetts
and
John Wade Ulrich
Department of Computing and Information Sciences
University of New Mexico
Albuquerque, New Mexico

COINS Technical Report 79-03

1 This work is supported by NSF Grant NSF-MCS78-23505 and NSF Grant
NSF-MCS78-04746. Some of this research was done during January, 1979

while the authors were visiting scientists at SRI International, Menlo Park,
California.

- emore

1
THE SYNTHESIS OF PROGRAMS BY ANALOGY

Robert Moll
Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts

and

John Wade Ulrich
Department of Computing ani Information Science
University of New Mexico
Albuquerque, New Mexico

- ABSTRACT

We describe a method for constructing recursive programs. .Program
specifications are expressed in a LISf—like language, augmented by the
quantifiers 'for all', 'there exists', and two other non-constructive op-
erators, 'find' and 'findlist'. Programs are created by applying a sequence
of transformations to specifications. The transformational sequence elimi-
nates the non-constructive operators and quantifiers while preserving the
meaning of the specifications. The result is a legal program in our LISP-
like base language.

A transformational sequence is called a synthesis plan. While the trans-
formations in a plan may reference expressions from the vocabulary of the
specifications, no transformation explicitly introduces knowledge which is
specific to a particular problem. In this way a single plan may be applicable
to a number of programming problems which share certain common syntactic fea-
tures. An analogical mapping between vocabularies of two problem specifications
will transform a successful synthesis plan for one problem into a successful

plan for the second problem.

1
This work is supported by National Science Foundation grants MCS78-23505 and
MCS78-04746. Some of this research was done during January, 1979, while the
authors were visiting scientists at SRI International, Menlo Park, CA.

INTRODUCTION

Automatic program synthesis is the mechanical development of programs
from non-constructive specifications. In this paper we describe a program
synthesis method that develops programs by applying a sequence of transforma-
tions to their specifications. Specifications are formulated in a LISP-like
language augmented by the quantifiers 'all', 'exists', and operators 'find',
and 'findlist'. For example, the preclcate that determines whether or not
a list contains only atoms may be specified with the expression:

islat(L) « all z (member (z,L) implies atom(z)) where islist(L).

Our synthesis technique is a quantifier elimination method-not unlike
the quantifier elimination methods of mathematical logic. 1In our framework
a quantified expression indicates a non-constructive search. In the case
of the find operator this search is mentioned explicitly:

find z (member (z,L) and atom(z)).

From this point of view, program synthesis may be regarded as the replacement
of an expression involving quantifiers and find operations with a program seg-
ment. The transformations of our system accomplish this replacement by refin-
ing the case structure of the specificaﬁions or by logically simplifying speci-
fication subexpressions. If the transformations are chosen properly and are
applied in the correct order, then all of the non-constructive expressions in
the specification will be eliminated and the result will be a legal program.

The transformations in our method are quite similar to transformations
employed in the work of Manna and Waldinger [Manna 1, Manna 2} and Darlington
and Burstall [Burstall, Darlington]. We also employ a simplifier similar in
spirit to the Boyer-Moore theorem prover [Boyer] and the Oppen—Nelson simpli-

fier ([Nelson, Oppen].

The method described in this paper has been implemented in LISP. Our
program can extract from a particular sequence of transformations a more
general object which we call a synthesis plan. With appropriate changes in
vocabulary, the program can successfully apply a given plan to a number of
other programming problems.

The paper is divided into 3 sections. 1In Section I we give an informal
treatment of two programming problems solved by our synthesis method. In
Section II we give a general discussion of our method and the transformations
it employs. 1In Section III we consider our synthesis method as a formal lan-
guage, and we discuss the role of analogical reasoning in the context of this

language.

I. SAMPLE PROGRAMMING PROBLEMS

We illustrate our synthesis method with two examples. The first of these
is a predicate islat(L). Islat(L) is true if and only if the list L is a list
of atoms. Islat(L) is formulated in our specification language by the expres-
sion:

islat(L) <« all z [member(z,L) implies atom(z)], where islist(L).

The word 'where' is used to identify the precondition of the program.

Step 1: Case L = () [() denotes the empty list]
The body of the program specification is replaced by
if L = () then (all z [member(z,L) implies atom(z)])‘
else (all z [member (z,L) implies atom(z)]).
Explanation:
The synthesis rule 'case B' causes the replacement of an expression

A with an expression 'if B then A else A'.

Unfold member(z,L) and Simplify.

Step 2:
The body of the specification becomes:
if L = () then true else all z [member (z,L) implies atom(z))]
Explanation:
The unfolding rule replaces member(z,L) with the body of the
membership function (car (L) and cdr (L) identify the head and
tail of the list L).
if L = () then false else if car(L) = z then true
else member(z,4cdf(L)), where islist(L).
Under the case assumption L = (), member(z,L) simplifies to false.
The simplifier further simplifies all z(false implies‘;toﬁ(z)) to true.
Step 3: Case atom(car(L))
if L = () then true else
if atom(car(L)) then (ail 2 [member(z,L) implies atom(z)])
else (all z [member(é,L) implies atom(z)1).
Step 4: Unfold member(z,L) and Simplify
if L = () then true else
if atom (cér(L)) then (all z [member(z, cdr(L)) implies atom (z)])
else.....l »
Explanation:
Membership is unfolded once again, and simplificétion is performed
under the assumption atom(car(L)).
Step 5: Fold

if L = () then true else
if atom(car (L)) then islat{cdr(L)) clse

(all z [member(z,L) implies atom(L)]).

Explanation:
The expression (all z[member(z, cdr(L)) implies atom(z)]) matches
the top level specification of the program, with cdr(L) as a replace-
ment for L. We replace the quantified expression with the recursive

call islat(cdr(L)).

Step 6: Unfold member(z,L) and Simplify
if L = () then true else
if atom(car(L)) then islat(cdr(L)) else false
Explanation:
The final occurrence of the membership predicate is unfo;ded, and
the expression is simplified to false under the assumption npt(atom(car(L))).

The result is the desired program.

The second example is the synthesis of a function which has as its value
a list of even numbers. The numbers on the list are to belong to a second
list x. We have the following definition:
evenof (x) <« findlist (y) [even(y) and member(y,x)]
where listofnumbers (x)
Explanation:
The operation findlist (y) used in the above definition specifies the

list to be found. vy identifies a typical element of the list.

Step 1: case x = ()
The body of the program specification is replaced with
if x = () then findlist (y) [even(y) and member(y, ())] else
findlist (y) [even(y) and member(y,x)] where not x = ()

and listofnumbers (x)

Step 2: Unfold member(y,x) and Simplify

The body of the program specification becomes
if x =

() then () else findlist (y) {even(y) and member (y,x)]

where not x = () and listofnumbers (cdr(x))

Step 3: Test car(x)
The transformed specification becrmes
if x = () then () else
if even(car(x)) and member (car(x), x)
then cons(car(x), findlist (y) (even(y) and member(y,x)]) else
findlist (y) even(y) and member(y,x) where

not x = () and not y = car(x) and listofnumbers(cdr (x))

Explanation:

The test car(x) transformation causes the code to be inserted which
tests the car(x) and inserts it into the list if car(x) is an even number.
Step 4: Simplify
if x = () then () else
if even(car(x)) then [cons(car(x), findlist (y) even(y) and member (y,cdr(x))]
where not y = () and not y = car(x)
else findlist (y) even(y) and member (y,cdr(x))
'whefe not x = (.) and not y = car(x)

Explanation:

The simplification deleted 'member (car(x), x)' because 'member (car(x), x)'

is true, and 'true and even(car(x))' simplifies to 'even(car(x))'.

'‘member (y, x)' becomes 'member(y, cdr(x))' because of the assumption

‘not y = car(x)"'.
Step 5: Fold

if x = () then () else if even(car(x)) then

cons (car (x), even(cdr(x))) else even(cdr(x))

Explanation:
The recursive calls were allowed because the preconditions of the
program werc met and the post conditions were an instance of the out-

put expression in the program specification.

PART II. THE TRANSFORMATIONAL METHOD

General Strategy

The general goal of our transformational method is quantifier elimina-
tion and the removal of finds and findlists. There are two ways that quanti-
fiers and finds are removed from the specifications. The first is by apply-
ing one of the basic trivial-quantifier rules. These rules drop quantifiers
when the quantified variable fails to occur in the expression under the quanti-
fier, or when a trivial. expression (eg., all x[x = x]) occurs. The second
way that quantifiers and finds are removed is by the introduction of calls
to subprograms. An important special case occurs when the specifications
have been reduced to an instance of the original specifications. In this
case a recursive call is used to replace the quantified expression. The
other transformations used by the system try to bring about one of these two

situations. We will now discuss each of the transformations.

Simplification

The 'simplify' transformation performs a logical simplification of the
current expression. This can be accomplished in one of two ways. The first
is the usual propositional simplification (i.e. 'A and A' may be replaced

with 'A' etc.). The second involves the distribution of quantifiers over sub-
expressions: 'all x P(x) and Q(x)' becomes 'all x P(x) and all x Q(x)'. The
rules that govern the distribution of quantifiers over subexpressions follow

closely those of standard logic.

Case Introduction

The 'case test' transformation causes a proposition 'test' to be in-
serted into the partial solution by replacing an expression exp with "if
test then exp else exp'. The two occurrences of exp are then subjected to
further simplification under the hypothesis that test is true and test is

false respectively.

Special Instances of Quantified Variables

The transformation 'test term' causes particular instances of quantified
- variables to be introduced into the partial solution. Suppose that exp has
the form 'all x P(x)'. Then test would cause exp to be replaced with 'if
P(car(y)) then for all x P(x) where not x = (car(y)) else false'. The pre-

condition 'where not x = (car(y))' serves to modify the quantifier.

Folding and Unfolding

Folding and unfolding are complimentary mechanisms. The instruction
'‘unfold' causes an application of a previously synthesized funqtion to be
replaced with the body of its program after appropriate substitutions are
made for its formal parameters. Folding supplies a procedure call to replace
a quantified expression which satisfies the post-conditions of a procedure's
definition. To see if folding is possible, the quantified expression is
matched against a program's definition. 1If, under appropriate substitutions,
the post-conditions of the expression are iﬁplied by the post-condition of
the definition and the pre-conditions of the expression imply the pre-condi-

tions of the definition, then the expression is replaced by a procedure call.

In addition to seeing that the conditions of the folded program satisfy
the folded expression, it is necessary to insure that an infinite recursion

will not be introduced by folding. This is accomplished by verifying that

the actual barameters come before the formal parameters in a standard well

founded ordering based on size of the LISP data structures.

Generalization

The word generalization usually refers to the pProcess by which a problem
becomes thought of as a particular‘instance of a more general Problem. 1In
Programming this is accomplished by introducing a new function application
into the Program. This new function _.s defined in such a way that the appli-
cation within the program is guaranteed to have the desired value. As an ex-
ample suppose that exp = 'all z (member (z, cdr(x)) implies car(x) < z)'. Then
€xXp may be replaced with 'F(caf(x), cdr(x))' where F is defined as follows:

F(yl, y2) <« all z (member (z, y2) implies yl < z).

Conjunctive Goals

A synthesis can become blocked when the expression to be transformed has
the form 'find z P(z, x) and Q(z, x)', and the conditions P(z, x) and Q(z, x)
fail to match any of the definitions of Previously synthesized Programs. As
a last resort we attempt to define a pair of new functions which will solve
the 'find z P(z, x) and Q(z, x)' pfoblem. Let usrcall these two functions
Fl and F2. The definitions of these two functions are based on Djikstra's
technique for solving conjunctive goals. The idea is basically this: if you
want to satisfy two conditions P and Q simultaneously, first satisfy P. Then
keep P invariant and try to establish Q. The technique, which is basically
an iterative one, may be adapted as follows: first define the program Fl so
that its output satisfies Q(z, x). Then pass the output from Fl to a second
program F2 which tries to establish both P(z, x) and Q(z, x). It may seem
that no progress has been made because the second program must still find a

value which satisfies P(z, x) and Q(z, X). The advantage is that the pre-

10

conditions of F2 are stronger than those of the original problem in that a

particular value is known which satisfies Q.

We define Fl1 and F2 as follows:
Fl(x) + find z Q(z, x)
F2(x, y) <« if P(y, x) then y else
(find z P(z, x) and Q(z, x) whare Q(y, x) and not P(y, x)).
Our test 'if P(y, x)' in F2 comes from “he common sense rule that says that

if y satisfies Q, and Q and P must both be true, then first find out if y

also satisfies P.

ITI., ANALOGICAL REASONING AND SYNTHESIS PLANS

In our exposition of the synthesis of islat(L) and evenof (L), we showed
how the application of a small set of transformations to program specifica-
tions can accomplish program synthesis. We now consider how such a sequence
of transformations might be modified to apply to a second programming problem.
Certain transformations, such as case introduction, refer to expressions in
the specification vdcabulary of the oriéinal problem. These expressions must
be replaced with analogous expressions in the vocabulary of the second problem.
We establish this correspondence on the basis of a syntactic comparison between
the specifications of the two problems. From this point of view, the synthesis
sequence of the original problem may be thought of as a plan for the synthesis
of the second problem, as well as for other problems whose specificdtions are
syntactically similar tp the original specification.

Suppose we considér the transformational sequence that derived the islat
program. Recall that islat has the specification

islat(L) <« all z [member(x, L) implies atom(x)] where islist(L))

We can summarize the transformational sequence that derived the islat

program using the following notation, which imposes a program-like character

11

on our transformation languages.
case L = ()
true: <unfold member(z, L), simplify>
false: <unfold member(z, L);
case atom(car (L))
true: <simplify, fold>

false: <simplify>>

Now suppose we consider a problem which is quite similar to the islat
synthesis problem: the synthesis from specifications of the predicate
issubset(Ll, L2). Issubset(Ll, L2) has the specification

issubset (L1, L2) <« (all z (member(z, Ll) implies member(z, L2))
where islist(Ll) and islist(L2).
This specification is syntactically analogous to the islat specification, and
we can indicate the relevant analogical corxrespondences as follows:
L : L1
member (z, L) : member(z, L1)
atom(z) : memﬁer(z, L2)
Our next task is to attempt the synthesis of issubset using the islat synthesis
plan and the analogical correspondences mentioned above. If we systematically
replace the islat expressions with the corrésponding issubset expressions we
are left with the following plan for issubset:
case L1 = ()
true: <unfold member(z, L1l), simplify>
false: <unfold member(z, L1);
case member (car(Ll), L2)
true: <simplify, fold>

false: <simplify>>

12
When this plan is applied to the issubset specifications, the. following

program is produced:
issubset(Ll, L2):
if L1 = () then true else

if member(car(Ll),Lz) then issubset(cdr(Ll), L2) else

false.

As a second example of this princinle consider the problem of deter-
mining if every member of a list Ll is less than some member of a second
list L2. This problem can be specified as follows:

maxlists(Ll, L2) + all z[member(z, Ll) implies
| exists w [member (w, Lé) and z<w)ll},
where islist(Ll) and islist(L2).
Once again we indicate a family of analogical correspondences between the

target specification and the islat specification:

L : Ll
member (z, L)' : member (z, L1)
- atom(z) : exists w (member(w, L2) and z<w)
We may introduce the abstraction:
bounded(w, L2) <« exist w (member(x, L2)) and z<w where islist (L2)).
If we systematically substitute the maklists expressions for the corresponding
islat expressions in the islat synthesis plan we arrive at a successful plan
for the synthesis of maxlists:
case L = ()
true: <unfold membef(z, L1l); simplify>
false: <unfold member(z, L});
case bounded(car(Llf, L2)
true: <simpiify, fola>

false: <simplify>>

13

The code that is generated is:
maxlists(Ll, L2);
if L1 = () then false else
if bounded(car(Ll), L2) then maxlists(cdr(Ll), L2)
else false.

In this case synthesis is only partiélly complete. A subproblem, the syn-
thesis of bounded(z, L1l), must be solved in order to complete the synthesis.
We point out that the program synthesized is not the most efficient
algorithm for computing maxlists. A more efficient algorithm would compute

the max of L1 first, and then check to see if some element of L2 exceeded

this number.

CONCLUSIONS

We have formulated a framework for studying analogical reasoning as a
tool for automatic program synthesis. Fox this purpose we have developed
an abstract representation of synthesis plans. When a plan is applied to
an appropriate program specification, é program is produced which meets
those specifications. A single plan is applicable to a variety of program-
ming problems whose specification ﬁave common syntactic features.

It might be expected that analogical mappings based on syntactic com-
parisons would not be particularly useful for the synthesis of programs,
since the semantics of syntactically similar specifications may be quite
different. This has not turned out not to be the case. The transformations
described in this paper have been implemented and have worked successfully
on a set of example problems, including the ones used as illustrations in
this paper.

The ability to acquire knowledge from examples has obvious advantages

14

over other methods of knowledge acquisition. Our future work will involve
the construction of a data base of plans and associated specifications. The
system will be trained on a set of example programs, after which it will be

expected to solve new problems based on plans derived from the training set.

15
BIBLIOGRAPHY

{Dershowitz] Dershowitz, N., and Manna, 2., The Evolution of Programs: A
System for Automatic Program Modification, IEEE Transactions on Software
Engineering, Vol. SE-3, No.4, 1977.

[Manna 1] Manna, z., and Waldinger, R.J., "Knowledge and Reasoning in
Program Synthesis', Artificial Intelligence, Vol. 6, No. 2, 1975, pp. 175-208.

[Manna 2] Manna, 2., and Waldinger, R.J., "Synthesis: Dreams 't Programs
Technical Note 156, SRI International, Menlo Park, California, 1977.

[Nelson] Nelson, G., and Oppen, D. "Siwplification by Cooperating Decision
Procedures", Fifth ACM Symposium on Principles of Programming Languages, 1978.

[Boyer] Boyer, R.S., and Moore, J.S., "A Lemma Driven Automatic Theorem
Prover for Recursive Function Theory", Proceedings of the Fifth IJCAI,
Cambridge, Massachusetts, 1977, pp. 511-519.

[Burstall] Burstall, R.M., and Darlington, J., "A Transformation System for
Developing Recursive Porgrams", JACM, Vol. 24, No.l, 1977, pp 46-67.

[Darlington] Darlington, J., "A Synthesis of Several Sorting Algorithms",
Research Report 23, Department of Artificial Intelligence, University of
Edinburgh, Scotland, July, 1976.

[Ulrich] Ulrich, J.W., and Moll, R., "Program Synthesis by Analogy", Proceed-
ings of the Symposium on Artificial Intelligence and Programming Languages,
Rochester, New York, 1977, pp 22-28.

{Oppen] Oppen, D., "Reasoning about Recursively Defined Data Structures",
Stanford Artificial Intelligence Laboratory, Memo AIM-314, July, 1978.

