-

A PRIMER ON
POLYNOMIAL INTERPOLATION
AND
SPLINES

Bryant W. York

COINS TECHNICAL REPORT 79-5

This research was supported by the National Science Foundation under
Grant MCS75-16098 A01. During the 1977-78 academic year the author
received support from The National Fellowship Fund, Atlanta, Georgia.
The author acknowledges the support of the Computing Center at the
University of Massachusetts.



SPLINE PRIMER

TABLE OF CONTENTS

II.

III.

Iv.

VI.

INTRODUCTION

POLYNOMIAL INTERPOLATION

A. LINEAR INTERPOLATION

B PIECEWISE LINEAR INTERPOLATION
C. ORDINARY FINITE DIFFERENCES
D

NEWTON’S FORWARD DIFFERENCE POLYNOMIAL
INTERPOLATION FORMULA

E. DIVIDED FINITE DIFFERENCES
F. NEWTON’S FORWARD DIVIDED DIFFERENCE FORMULA
6. LIMITATIONS OF POLYNOMIAL INTERPOLATION
SPLINE FUNCTION INTERPDLATfDN
A. PIECEWISE POLYNOMIAL REPRESENTATION
B. END CONDITIONS ‘
SPLINE CURVE INTERPOLATION
A. PARAMETERIZATION
1. UNIFORM
2. CUMULATIVE CHORD LENGTH
B. MULTIPLE KNOTS
B-SPLINE INTERPOLATION
A. B-SPLINE BASIS
B. A GEOMETRIC VIEW OF B-SPLINES
C. PROPERTIES OF B-SPLINES

CONCLUDING REMARKS



SPLINE PRIMER

APPENDICES
DERIVATION OF FIRST DERIVATIVES FOR CUBIC SPLINES
CUBIC SPLINE ALGORITHMS FOR UNIFORM KNOT VECTOR
CUBIC SPLINE ALGORITHMS FOR NON-UNIFORM KNOT VECTOR

A,

B.

C

D. CUBIC SPLINE EXAMPLES

E DERIVATION OF DEFINING EQUATIONS FOR CUBIC SPLINE
F

DERIVATION OF NEWTON’S FORWARD DIFFERENCE POLYNOMIAL
INTERPOLATION FORMULA

G. DEBOOR-COX RECURSIVE ALGORITHM FOR B-SPLINE
EVALUATION

H.  YAMAGUCHI B-SPLINE INVERSION ALGORITHM

REFERENCES



SPLINE PRIMER

I._ INTRODUCTIO

For many years the hulls of ships and the bodies of
avtomobiles were designed manuvally with the aid of the
“draftsman’s spline". The draftsman’s spline is a thin piece of
wood or metal which is elastically bent around supports known as
"weights" or "ducks". Supports are placed at selected locations
to obtain a smooth curve of a desired shape. The actuval shape of
the curve assumed by the physical spline is the shape which

minimizes internal strain energy.

In the mid 1940’s mathematicians [Sch463 began to develop
the mathematics to describe these curves and a mathematical
theory of splines was born. At first development proceeded
slowly until the early 1940’s when advancés in electronic
computers, graphical display hardware, and numerically controlled
machines spurred research into the practical applications of
splines to engineering and design problems. As a result splines
are becoming more widely used in systems #or computer—aided

design and numerical control.

Splines are used mainly in the areas of functional
approximation and curve fitting. Good curve fitting techniques
have many application from stock market forecasting to computer
vision. Splines have also been used to solve systems of

differential equations and certain boundary value problems. Our



SPLINE PRIMER | 2

purpose in this report is to present the reader, who may have
very little background in numerical analysis, with a brief
introduction to the basic notions of polynomial and spline
interpolation. The first four sections require only knowledge of
eleﬁentarq calculus; the fifth section makes use of-the theory

of linear spaces and basis functions.

II. POLYNOMIAL INTERPOLATION

DEFINITION: Linear interpolation is the process of

estimating values of a function between two known values.

In high schoocl, most of us were required to interpolate
values in a table (usually a table of logarithms). Génerallg we
used "linear interpolation"”. For example, given the two values

from a table of common logarithms,

X 1og10(x)
100 2.00000
101 2.00432

we might have been asked to find the value of logib(x) for
x=100.7 , an intermediate value between 100 and 101. Linear
inﬁefpolation assumes that the distances between the desired
functional value and the known functional values are proportional
to the distances between the desired argument value and the knoun

argument values. This relationship is expressed in the following



SPLINE PRIMER 3

equation, .

(100.7 - 100) _ 10g10(100.7) - 1og10(100)
(101 - 100.7) 1og10(101) - 10g10(100.7)

(11.1)

The linear interpolation assumption states that the intermediate
functional values lie on a straight line connecting the two known
functional vaiues (see figure 1). An alternétive statement o#f
the "linear interpolation assumption" is that the function
"behaves as a polynomial of degree 1" (straight line) on the
interval between the two known values of the function. A
polynomial of degree 1 is of the form:

y = f(x) = o *+ SX
and in this case we have f£(x)=1.56800 + .00432x This solution was

easily determined by first finding the slope of the line

Ay _ 2.00432 - 2.00000 = .00432
Ax 101 - 100
and then finding the y-intercept by substituting the slaope and

one of the known argument-value pairs into the equation for the

line
2.00000 = co + -00432 - 100
1.5680 = o
thus i
f(x) = 1.5680 + .00432x (11.2)

Now, we can evaluate f(x) at x = 100.7 to obtain the intermediate
value

£(100.7) = 2.003024

When we check a (5-place) table of common logarithms, we see that



—_—— llg

-
-

iol

100.7

loco

Q.00432L. o

2:00303 b

R.00000 - —
1.Se80

LINEAR INTERPOLATION

FIGURE 1

PIECEWISE LINEAR INTERPOLATION

FIGURE 2




SPLINE PRIMER 5

the tabular value is 2.00303. Thus the linear interpolation
scheme allows us to estimate an intermgdiate value of a function,
which is known at two discrete points, to a reasonably high
degree of accuracy in this case. The degree of accuracy of the
estimation depends in large part on the true nature of the
function and there are large classes of functions for which

linear interpolation is unsuitable.

PIECEWISE LINEAR INTERPOLATION

Instead of being required to find a single value of the
tabulated function, we were generally required to determine
several functional values, so we extended the notion of simple
linear interpoiation to piecewise linear interpolation. Under
the piecewise linear interpolation scheme, it is assumed that the
underlying function behaves as a stréight line on each
subinterval (between successive argument pairs), but that
successive straight line segments may differ in slope. All tbaf
is required is that they meet at the common'end points (see

figure 2).

The next step in sophistication is to assume that the
function behaves as a higher degree polynomial over the interval
in question. Before describing interpolation for polynomials of

degree greater than 1, we will examine some important properties



SPLINE PRIMER ' | ‘ 6

of polynomials and introduce the notion of finite differences.
The familiar form of a Qeneral polynomial of degree n is:

= 2 n
f(x) Cot ex +cpx” + ... 4 c X

‘Differentiation of this polynomial produces a polynomial of

degree n-1

\ - 2 n-1
f1(x) c, + 2c2x + 3c3x + ...+ onc x

If, in turn, £’(x) is differentiated a polynomial of degree n-2

is obtained, and so on until after n differentiations a
polynomial of degree zero, a constant function, is eventually

obtained.

f(n)(x) = n!cn
One more differentiation givesf(WH)(x)= 0. . Thus for any
polynomial function of degree n: |
(1) The nth derivative is a constant.
(2) The (n+1)st and succeeding derivatives are zero.
These facts will be useful during the disdussién of polgndmial

interpolation to follow.

ORDINARY FINITE DIFFERENCES

Suppose one is given a table of argument values and
corresponding function values. From this table, it is possible
to compute the "Finite Difference Table” which is the source of

coefficients in most polynomial interpolation schemés. Given n




SPLINE PRIMER 7

argument—-function valuve pairs a difference table with n-1
difference levels is obtained (see figure 3). In the particular
example shown in figure 3, the argument values are equally spaced
and the distance between successive values is 1. This is the
simplest case, often referred to as "ordinary finite
differences”. The difference table is formed by subtracting

successive values at the previous level, for example

Af(xi) = f(xi+1) - f(xi)

and for i=0,1,2,3

D2F(x) = f(x;,,) = BF(x,)

Af is read '"the first ordinary difference of f"
Azf is read ''the second ordinary difference of f"

and so on

note xi=i

NEWTON’S FORWARD DIFFERENCE POLYNOMIAL INTERPOLATION FORMULA

Given the problem of finding a‘polgnomial which agrees with
the function #(x) for the arguments shown in figure 3, how would
one make use of the difference table? First, since differences
are discrete approximations to derivatives, let the differences
in the table correspond to the derivatives of the unknown
polynomial. Since fifth and higher di##erenceé are zero, the
polynomial will be of degree 4 (fifth and higher derivatives are
zero). Thus the poignomial and its derivatives are:

p(x) =cytcx+tec x2 + ¢ x> + c,_’xl+ (11.3)

1 2 3

p(I)(x) =c, + 2c2x + 3c3x2 + hc4x3 (11.4)



2

p X) = 2c2 + 6c3x + 12c,_‘x . (11.5)
P31 (0 = 6ey + 2heyx ~ | ‘ (11.6)
) = 2he, | | (11.7)
x o f) 0 af) A0 A0 At

0 10 10 20 -70 150

1 20 30 -50 80

2 5Q -20 30

3 30 .10

ki ho ' |

FIGURE 3 * ORDINARY FINITE DIFFERENCE TABLE



--=INE PRIMER ‘ 9

f(x) at x=0 ye get the following

S - Eﬁﬁligl . 8% (0
R Ty
e5 - 2%00) _ a3¢(0)
I ST
¢, - 22 (0) _ a2¢(0)
71

2=—-—-—~._=—___
:

¢, - . AF(0

11 1!

]

€o = P(0) = f(o)

Substitution into equation (II.3) yields

Plx) = £(0) + xaf(0) + xzéif(o) + XBAif(O) + th"f(O) (11.8)

Now, we muyst force p(x) to agree with £(x) at x=1,2,3, 4. This is

accomplished by replacing xzuuth~x(x-ﬂ, x3 with x(x-1)(x-2) and xh

withx(x-”(x-2)0r3) resulting in equation (I1.9). ‘The effect

vanish; when x=1, all but the first angd second term vanish, etc.

P(x) = £(0) + xaf(0) + xé?-l) 2% (0) + x(x-;g(x-Z)ABf(O)

+ x(x=1) (x-2) (x=3) a% (o) (11.9)
o

It is clear that equations II. g and I1.9 agre not algebraicallg

equivalent; however, the intent ig not to give the reader a



SPLINE PRIMER ' ' 10

precise derivation, but to provide a feeling for what the f&rmula
represents. When £ is expanded in a'Taglor series about O, the
approximations for |

f(0), f(])(O), f(z) (0), f(3) (0), f(h) (0) " involve terms
which actually introduce the "factorial polynomials" into the
formula. Equation II. 9 is known as thé Newton Forward Difference
Interpolation formula. It is the formula for a polynomial of
degree n (where n+l1 is the number of function valbes.given) which
agrees with the function at the given points. This polynomial
may be used to interpolate values éngwhere in the interval [0, n]

The complete derivatibn vtilizing Taylor series expansion

appears in Appendix F.

The reader should note several important points:

(i) The table of argumenféfunction valqe pairs need not
begin at x=0. "The table may begin anywhere; homeyer, a simhle
transformation must be performed on the argument if the Newton
Forward Difference interpolation scheme is to be used. Consider
the example illustrated in the difference table of Figure 4. 1In
this case translation of the origin to x=100 is achieved Bg the
transformation u=x—-100. This results in a forward difference
formula as a function of u,

70u(u=-1) (u-2)
30

p(u) = 15 + 10u - ??;Su-l) +

When the interpolation formula is used for intermediate values of



SPLINE PRIMER 11

x, the x values must be converted to the corresponding u values
before substituting into the formula.

(ii) The arguments may be equally spaced at intervals
greater than 1. The Newton Formard Difference formula may still
be used by transforming the scale of x. Considgr the example
shown in Figure 5. The transfurmation is v = x/10; again the
interpolation formula may be written as a function of u.

(iii) The transformations in (i) and (ii) above may be
combined if necessary

(iv) There are many different polynomial interpolation
formulas based on different ways of looking at the ordinary
difference table. The most notable are:

a) Newton’s Backward.DiFPerence Formula

b) Stirling’s formula

c¢) Bessel’s formula
Newton’s Backward Difference formula is based upon the backward
difference table. Stirling’s and Bessel’s formulas are based
upon the central difference table. See L[FRE39] and C[HOR751 for
details. In general these interpolation schemes are applied over
an interval where the arguments are equally spaced. Often we

have the situvation in which the arguments are not equally spaced.

DIVIDED DIFFERENCES

When the argument values are not equally spaced, we may form



12

u x £ (x) Af (x) 2% (x) 3¢ (x)
0 100 15 10 -25 70
1 101 25 15 Ls
2 102 10 3Q
3 103 40
FIGURE 4 TRANSLATION OF FINITE DIFFERENCE TABLE
ARGUMENTS TO ORIGIN
u x £(x) AF (x) A2£ (x) 3¢ (x)
0 0 15 10 ;25 .70
1 10 25 -15 45
2 20 10 30
3 30 Lo
FIGURE 5 SCALING OF FINITE DIFFERENCE TABLE ARGUMENTS
TO UNIT INTERVAL
i x  f(x) DDF (x). DD2F (x) 03f(x)  potf(x)
0 0 | 36 1.1000 .3139 -.0107 ;0002
1 10 47 6.7500 -.1996 0042
2 18 101 -2.8333 .0962"
3 48 16 L.0000
57 108
FIGURE 6 DIVIDED DIFFERENCE TABLE




SPLINE PRIMER , 13

the "divided-difference table" (see figure &). Divided
differences are the ordinary differences divided by the

difference in the associated arguments. For example

(47 - 36)/10

1
—

.10

DD (x,) (f(x]) - f(xo))/(x1 = Xg)

(101 - 47)/8

DDf(xl) (f(xz) - f(x]))/(x2 - x1) 6.75

and
DDZf(xO) = (DDf(x1) - DDf(xO))/(x2 - xo) = .3139

1 andx2 are

involved in computingDbeﬁ), we assaciate the intervalxo tbxz

with DDZFO%). The reader should convince himself that the

Since Xs and X, are involved in computing DDf(xO) and x

values in the table are correct.

ﬂgWTON'g‘FORNABQ DIVIDED DIFFERENCES FORMULA

The Newton Forward Divided Difference Polgnomial
Interpolation formula can be obtained from the ordinary

difference formula by making the following substitutions:

(i) Substitute DDkf(xo) for Akf(o) k=1,2,...,n

(ii) For every factor (x-i) substitute (x-xi) i=1,2,...,n

Note that x is equivalent to (x-0).



SPLINE PRIMER | 14

We get the following formula:

p(x) = f(0) + (x - xO)DDf(xo) + (x - xo)(x - xl) DDZf(xo)
2!

+ (x - xo)(x - x1) (x - x
31!

3
2) DD f(xo)

+ (x - xo)(x - x1)(x - xz)(x - x3) Dth(xo)'
L1

The reader can see how the above formula is easily generalized to

degree n.

LIMITATIONS OF POLYNOMIAL INTERPOLATION

We will conclude this section with a few remarks about
polynomial interpolation which point up some of its weaknesses,

before proceeding to the section on splines.

The polynomial interpolation formulas shown above are

actuvally equations for gcollocation polynomials. A collocation

polynomial, p(x), is one which agrees in value with the Function
f(x) at certain points (those given in the tabie). There is a
more sophisticated type of polynomial interpolation which
produces an gsculation polynomial. An osculation polynomial,
p(x), of degree n and order k, is one which agrees in value with

f(x) as well as its first k derivatives at the given values of x:

p(x) f(x)
P(])(x) - f(1)(x)

oK) () = £ () ()



SPLINE PRIMER 15

Formulas for osculatory interpolation exist and they may be found
in most numerical analysis texts. Both collocatory and
osculatory interpolation are global interpolation schemes, since
each value in the table helps to determine at least one of the
coefficients and the resulting polynomial is defined over the
interval [xo,xn]. When n is large, interpolation between
arguments which are spaced relatively far apart may be poor due
to the "wiggly" nature of high degree polynomials. For this
reason polynomial interpolation may be unsuitable for certain

applications.

At this point the reader should have a basic understanding
of polynomial interpolation. We will build vupon this foundation
in the next few sections which deal specifically with spline

function and curve interpolation.

I11I. SPLINE FUNCTIONS

L

Spline interpolation enjoys all of the advantages of
polynomial interpolation and none of the disadvantages. Splirnes
are basically piecewise polynomial functions which meet certain
continuity criteria at the locations where the pieces are joined
together. They allow the user to approximate a table of discrete

values with several low degree polynomials instead of a single



SPLINE PRIMER 16

high degree polynomial, thus avoiding the unwanted oscillations
of the high degree polynomials. Figure 7 shows an example of a

cubic spline through a set of data values.

This section will begin with a formal definition of a spline
function, proceed to a particular representation for cubic spline

functions, and finally discuss the various end conditions which

may apply.

DEFINITION: A spline function S(x) of degree M—-1 (order M)

defined on the knot vector:
(XO’YO)’(XI’YI)"”’(xn’yn)- satisfying the constraint
X <>ﬁ < L. < X "is a piecewise function such that:

(i) S(x) is a polynomial of degree M-1

on each subinterval [xi,xi for

+1]
i=0,1,...n-1
(ii) S(x) and its first M-2 derivatives are
continuous on the interval [xgs %]
(iii) 8(x) goes through the points 9# the
knot vector — i.e. S(xi) =y, fér i=0,1,...,n. For
each of the interior knots of the knot vector, the constraints
that S(xﬁ =y, and that the'Pirst M-2 derivatives be continuous
give rise to constrgint'eguaggons which, when solved, define the
polynomial coefficients on each subinterval. Since there are n-2

equations in n unknowns, it is.necesarg to supply the (M-2)nd

derivative at the initial and terminal knots, in order to solve



17

%_
FIGURE 7 CUBIC SPLINE THROUGH 4 KNOTS
sub-interval coefficients polynomial

0 0 0 0 0,0 .02 03

[XO’XI] CO C] C, C3 Po(x)—C0+Clx+C2x +C3x

1 1 1 1 _o1 01 1.2..13

[x‘,xZ] Co o c, C3 P1(x)-C0+C1x+sz +C3x
) n-1 n-1 n-1 n-1 n-1,.n-1 n-1.2. .n-13

= +

[xn-l’xn] Co Cy C, C3 Pn_1(x) Co €y x+C, 'x C3 x

FIGURE 8 PIECEWISE POLYNOMIAL REPRESENTATION




SPLINE PRIMER . _ 18

the constraint equations. For a complete derivation of the
constraint equations and their solution see Appendix E. Notice
that the knot vector and the values of the (M-2)nd derivative at
the terminal knots cbmpletelg specify a degfee.M~1 spline fhrough
the knot vector. Different values for the (M-2)nd dérivative at

the terminal knots will produée different spline'coefficients.

Now let us focus our discussion on gubic spline
interpolation. §8ince a cubic spline is-a cubic polynomial on
each of the subintervals of the knot vector, we need four
coefficients to describe each polynomial. Because'there are n
subintervals for the knot vector: .

(xo,yo),(*1,y1),in,(xn,yh), we need 4n cogéficients in all as
shown in Figure 8. The cubic spline function S(x) is defined to

be:

po(x) if Xg £ X £ X

| Py (x) if x, <x<x,

S(x) = ‘ (11I1.1)
pn_1(x) if X g S X

The procedure for determining the cubic spline which goes through

the given knot locations and satisfies the given end conditions



SPLINE PRIMER 19

must produce the polynomial coefficients in figure 8. In fact,
the more efficient algorithms represent the polynomial functions
po(x),p1(x),.“, pn_100 in an alternative form which is
non—redundant and lends itself to more efficient computation.

Consider Jjust one of the polynomials above

- 0 0 02 03
po(x) CO + c x + C X + c3x

defined on [x;, ;] and satisfying the constraints mﬁx0)==yo

and Pobﬁ) =Y i.e. the polynomial p,(x) goes
through the knots
(XO,YO) and (Xl,Y1) . If we define a variable

U= X=X, then there is a polynomial function in v, say

- 2 -3
g(u) = ag + aju +ayu” + a3u

which describes the same polynomial as po(x). In order to derive
g(u) from py(x), first we must force g(u) to go through
(xo.yo)- When x=x,, u=0 thus we have g(0) = a;, which implies

that aj = y,. Next we require g(u) = po(x) for Xg < X < X

- 2 3
g(u) = ay + a;u+au” + agu

_ _ _ 2 o 3
g(u) = ay + al(x xo) + az(x xo) + a3(x - xo) (111.2)

Expanding (III.2)

_ _ 2 _ 2

g(u) = ag *a;x - ax, + a,x 2a2xx0 + a,xg
+ a x> - 3a xzx + 3a xkz - a x3 (111.3)

3 3% %o T 293%%0 T ¥3%g



SPLINE PRIMER 20

and collecting terms, yields

= - 2 3
g(u) (ao a;xy + axg a3x0) +

o 2
(a, 2a,%y + 3azx)x + (III.4)
(a, - 3a3x0)x2 | +

3

X

a3

Since we require that g(u) = Hﬂx) we get thei?ollowing equations

by matching coefficients in (III.4) with the coefficients of pobd,

0 _ _ 2 3
CO = a0 a1x0 + azx0 + a3x0

0 _ _ -2
c1 = a1 2a2x0 + 3a3xQ (111.5)
dea - 3a.x.

2~ 92 7 293%,
c0 = 3

379

At this point, let us recall the relationships between a cubic

polynomial function aﬁd its derivatives.

3

X

2
p(x) Cog * Cyx t e x4 ¢

3

c, + 2c_x + 3¢ x2

o1 (%) ) , ;

p(z)(x) = 2c2 + 6c33

6c3

n

03 ()



SPLINE PRIMER 21

Therefore, we get

o _p e e 00 _

(111.6)

But, since the third derivative of 2 cubic polynomial function is
constant, it does not matter at which point we evaluate the

derivative. We can choose>% to be that point. Thus

(3)
= Py (%) _
—r— 3

Next, we must determine a,.By substitution above we get

-péz)(x) = ch + 6ch0
pé3)(X) = 6cg
Thus
Péz)(x) = 2c2 0pé”(xo)
or
(2) - (3)
ey =Po (xg) = xgpg”" () (111.7)
2
but by equation (III.S)
(3)
0 _ - - (xq)
c, = a, 3a3x0 =a, - .
thus \
(2
a, = (x,) (111.8)

21!



SPLINE PRIMER 22

By similar manipulation we get a, =p (”(x ). Thus we can write,

( 2)
Po(x) =y, + pé1)(x0)(x - x,) + 2 *o) (x - x )

(3)
* P (xg) (x - )3 (II1.9)
3!
Equation (III1.9) is the alternative representation for a
polynomial which is most often used in spline computations; it

corresponds to the Taylor series expansion about x Notice the

0
similarity to the Newton Forward Difference fnterpolation

Formulas.

The cubic spline computation procedures compute the values
of the second derivatives
(2) (2) (2) (2)
(x1)s Py (x 2) P3~ (x3),..., n-1Xp-1)

from the knot vector
(xo’ YO)! (x-" yl)"") (xn, yn)

and the constraint equations. The values of the second
derivatives p(z)(xo) and p(2)(xn), must be provided by the user in
order for the algofithm to have enough ‘constraints to solve for

the values at the interior knots. Once the values of the second

derivative have been found at the knot locationé. the values of

the first and third derzvat:ves can easxlg be obta:ned from the

following formulas.
o) = vy - vp) - (2@ (x,,1))/6  (ur.10)

P (x,) = p2 @ (.

l+1) -p

h.
i

(111.11)



SPLINE PRIMER : 23

where h; =x; ., -x. . Derivation of (III.10) appears in Appendix

A.

Thus, in some sense, the knot vector and the second
derivatives at the knot locations uniquely determine the cubic
spline through those knot locations. This idea may be ‘
generalized to splines of higher degree. For a spline of order M
(degree M?l). the values of the (M-2)nd derivative at the knot

locations are required. Algorithmslfor the computation of cubic

splines appear in Appendices B and C.

ND CONDITIONS

As noted earlier, different end conditions produce different
spline functions for the same knot vector. There are three basic

approaches to defining end conditions:

(i) Natural End Conditions

The two terminal (M-2)nd derivatives are set to zero:

(2)

Péz)(xo) =poy(x) =0

for cubic spline (M=4). This condition corresponﬁs to zero
curvature or equivalently, the slope of the spliné is constant at
the end points.

1The algorithms are reprinted with the permission of

P. Baudelaire, Xerox PARC, Palo Alto, California.



SPLINE PRIMER ' 24

(ii) Complete End Conditions

When the knot vector consists of points from some underlying
function say g(x) and the second derivatives 9(2)(x0) and
Q(Z)Og), of g exist and are known at the terminal knots ., then we

set péz) (xq) = 9(2)(x0) and pr(fz (x ) = 9(2)(xn).

(iii) Polynomial Approximation of End Conditions

The terminal second derivatives are approximafgd by finding the
cubic polynomial which collocates the first Foﬁr knots using the
Newton Forward Difference Formula. The second derivative of this
polynomial is evaluated at the initial knot. After performing
the same procedure on the last four knots, the second derivative
of that polynomial is evaluated at the terminal knot. These twq

values are used as the initial and terminal second derivatives.

There is a fourth method which is sometimes used; it is
called the "Not-a-Knot" End Condition. Under this method two
equations are added to the spline constraint equations mﬁich. in
effect, inactivate the first and last interior knots. For

details see [deB79,p. 531.

It should be noted that there is no requirement that the

same end condition method be used at each end of the interval.



SPLINE PRIMER | 25

IV.  SPLINE CURVE INTERPOLATION

In the previous section we discussed spline functions; in
this section we will discuss spline curves. For our purposes, a

curve is merely a locus of points in the X - Y plane; however, in

general there is no restriction on the number of dimensions. The

curve may be open or closed (see figure 9). Closed curves are

sometimes referred to as periodic and open curves are similarly
referred to as nonperiodic. A curve may be eipressed in analytic
form such as the circle: |

x2"'Y2= 9 or as an ordered list of coordinates (x1,y]),(x2,y2)“..
(Xn,Yn)- ‘ Suppose that we are given
selected points (the knot vector) along a curve and we are told

whether the curve is open or closed. How do we go about finding

the order M spline which interpolates the knof vector?

PARAMETERIZATION

First we must decide how to parameterize’the knot vector.
In general a curve may be specified in parametric form if there
exists an independent variable, say t, such that the lqcus of
points can be expressed as an ordered pair of functions of the
variable t, (X(t), Y(t)) and as t increases from some initial
value to some terminal value the curve is traced out by

evaluating the functions in the ordered pair (x(t), Y(t)). If such



FIGURE 9 OPEN CUBIC SPLINE CURVE CLOSED CUBIC SPLINE CURVE
‘ng
UNIFORM CHORD LENGTH

FIGURE 10 COMPARISON OF PARAMETERIZATIONS




SPLINE PRIMER 27

an independent variable t is a parameter, then it is also true
that any monotonically increasing function of t is also a

parameter.

The spline interpolation formulas shown in Section III made
use of the constraint X <>H< ree <X on the knot vector.
It insures that division by zero does not occur in the
computation of the divided differences which approximate the
spline derivatives. Parameterization allows us to treat the «x
coordinates of the curve as a function of strictly increasing ¢
and the y-coordinates of the curve as another function 6F
strictly increasing t. In this way we can apply spline function
interpolation to the two functions X(t) and Y(t) separately and

together these two spline functions are a spline interpolation

(Sx(t),SY(t)) to the curve (X(t), Y(t)).

Now let us turn to a procedure for computing the cubic

spline curve interpolation to a set of X-Y data values.

Procedure for Natural Cubic Spline Curve Interpolation

Given the knot vector (XO,YO),(X1,Y1),-.u (xn,Yh)
1) form the two knot vectors

(0, xg), (1, x,) 5000, (n, x)

(0, yq), (1, Y)seeos(n, Y,)



SPLINE PRIMER ‘ 28

In this case the parameter t takes on the integer values

0:1,...n. This is called the uniform parameterization because
the t’s are integers, and equidistant with a common interval of
unity.

2) Use the spline function interpolation algorithms in
Appendix B depending on whether the curve is open or closed to
produce the spline second derivatives, S§2) and 552) of X(t) and
Y(t) at the internal knot locations., given natural end

conditions S§2)(O) = séz)(o) =0 S§2)(n) = Séz)(n) =0

S§2)(0), S§2)(1),...,s§2)(n)

and

552)(0), 552)(1),...,552)(n)

3) Use the second derivatives to compute first and third

derivatives (see algorithms in Appendices B and C). Now evaluate

the spline curve (Sx(t),SY(t)) by evaluating the spline functions
SX(t)and SY(t) as t ranges over [0,n]. Recall that
Sx(t)is evaluated according to the following formula:

2
Sx(t) = x; + (g - ti)sﬁl)(ti) + (¢ ;'ti) S§2)(ti)

+ (t-t)3 _(3)
: 3!-1 SX (ti)

for t, S t<t,



SPLINE PRIMER 29

This procedure was used to generate the examples which appear in
Appendix D. Two important topics which must be discussed are
alternative parameterizations and multiple knots. They are

presented in the following sections.

CUMULATIVE CHORD LENGTH PARAMETERIZATION

An often used alternative to the uniform parameterization is
parameterization by chord length, the discrete analogue of
parameterization by arc length. In this case the values of t
which correspond to the knots are computed as the cumulative

chord length along the knot vector. Thus

t, =20

)2

-t
]

=V "o)2 *lyp =y,

) ANV T NEY.
t, =t + /(x2 x1) + (y2 y])

i-1

and in general t. =2 K.,
9 =1 J

where Kﬁ%+1 denotes the Euclidean distance from the jth knot

to the (j+1)st knot.



SPLINE PRIMER 30

The uniform parameterization may be computed more quickly
but it tends to produce curves which are somewhat “flattened".
See figure 10. When the distance between successive argument
values is larger than unity, the first divided difference is
correspondingly smaller and the second divided difference is
larger. The second difference is a discrete approximation to
curvature and the larger the curvatu+e. the less flattened the

curve appears.

MULTIPLE KNOTS

Parameterization of the knot vector allows the same pair of
(x,y) coordinates to appear next to each other in the knot
vector. This situation is referred to as the "multible knot"
situation. For example the knot vector

(1,6), (2,7), (3,1), (3,1), (3,1), (4,9), (5,11)
may still be interpol=ted under a uniform parameterization.

Under the uniform parameterization we get the two knot vectors

(ti’xi) i=0,...,6

(0,1), (1,2), (2,3), (3,3), (4,3), (5,4), (6,5)

(ti’yi) i=0,...,6
(0,6), (1,7), (2.1, (3,1), (4,1), (5,9), (6,11)



SPLINE PRIMER 31

Spline functions may be interpolated to these knot vectors using

the algorithm in Appendix B, since parameter t is strictly

increasing.

Under the cumulative chord length parameterization we get

the two knot vectors

(ti’xi) i=0,...,6

(0,1), (1.414,2), (7.497,3), (7.497,3), (7.497,3), (15.559,4), (17.795,5)

(ti’yi) i=0,...,6

(0,6), (1.m14,7), (7.497,1), (7.497,1), (7.497,1), (15.559,9), (17.795,11)

where 1.414 = V2
7.497 = VZ + V37
15.559 = V2 + /37 + /&%
17.795 = VZ + V37 + /&5 + /§

Theti are not strictly increasing. Hence, if we try to.applg the
spline algorithm for non-uniform knot vectors; the algorithm will
fail when it attempts to compute the necessary divided
differences. Since t, = tj for some i # jin the knét vector, the

algorithm must attempt to divide by zero at some point.

The effect of a multiple knot on the resulting spline is to

reduce the degree of continuous differentiability of the spline



SPLINE PRIMER -32

function at the knot location. From the definition at the
beginning of section III, we recall that, for a spline of order
M, the spline and its first M-2 derivatives are continuous over
the whole interval. When we introduce a knot of multiplicity 2,
the spline and its first M-1 derivatives are continuous
everywhere in the interval; however, the M-2nd derivative is
discontinuous at the location of the multiple knot. In a sense,
we no longer have avspline under the strict definition. E;ch-
increase in the multiplicity of the knot causes a carresponding
decreasé in the continuous differentiability of the spline. See
the examples in Appendix D. Splines with multiple knots are
sometimes referred to as "deficient splines" CdeB?é] because-oF

their lack of continuous differentiability.

To understand why multiple knots reduce the continuous
differentiability of the spline, we must look carefully at the
constraint equations. Only an intuitive explanation will be

'provided here.

When a knot of multiplicity 2 is introduced, it forces the
first difference at the knot location to zero. When the |
multiplicity is iscreased by 1, the second difference is forced
to zero, and so on (see figure 11). Each successive difference
being forced to zero, in effect, disconnects the constraint
equations which join the polynomials on the intervals adjacént to

the multiple knot. Disconnecting the constraint equations forces




FIGURE 11(a)
ti yI A A2 A3 AL'
1 1 L -4 7 -5
2 5 0 3 2
3 5 3 5
L 8 8
5 16

FIGURE 11(b)
t, Y, A A2 a3 A"
1 1 b -4 4 7
2 5 0 0 11
3 5 0 11
4 5. 11
5 16

FIGURE 11(c)
t. Y, A a2 A3 A"
1 1 I -4 -4 -4
2 5 0 0 0
3 5 0 0
4 5 1)
5 5

-

FIGURE 11 SUCCESSIVE ZERO DIFFERENCES RESULTING FROM
MULTIPLE KNOTS



SPLINE PRIMER 34

the value of the left limit of the proper derivative to differ
from the value of the right limit of the proper derivative. A
discontinuity occurs when the left limit of a function at a given

point differs from the right limit at the same point.

In the last two sections we have limited our diseussion to
to piecewise polynomial (PP) representations of splines. There
are at least four different PP-representations [deB&81,
possessing varying degrees oﬁ'fedundancg. The PP schemé which

represented a cubic sbline with 4 coefficients c on

0* S92 S35 3
each of n subintervals is redundant in the sense that only n
coefficients and the rules for iﬁtegrating and differentiating
polynomials are required to completely specify the spline. The
particualr scheme employed in this section is the on1g 
non-redundant PP-representation; however, there is an

-alternative representation which is not a PP-representation. 1t
is known as "B4sp1ine representation"” and it is the subject q?
the next section. Some additional mathematical concepts are
necessary for a complete understanding of B—splines.: The nutions‘

of linear space, linear combination, and basis function are

required.



SPLINE PRIMER 35
V. B=SPLINE INTERPOLATION
B-splines are merely an alternative form in which to
represent the splines presented earlier in this paper. QGiven a

specific knot vector:

{(XO,Y6)9 (X1 ,Yl),...,(xn,yn)} such that x, < x, < ree < Xn

0 1
we will denote by X the vector of x-values

X=={x0,x1,.“,xn} and we will call X the mesh. It has been
shown that the set of all spline functions of order M defined
over a mesh X forms a linear space of functions which we will
denote by S(M,X). This space has dimension n (the number of
intervals in the mesh) and thus there are n basis functions of
degree M-1 for this space. These n basis functions are referred
to as the "B-spline basis" for S(M, X) and every spline function
in S(M, X) may be written as a linear combination of these basis
functions. Thus if S(x) belongs to S(M,X) then 8(x) may be -

written

where each gjis a B-spline basis function and each éjis a real
number. Before proceeding to B-spline interpolation, let’s take

@ look at the B-spline basis functions in more detail.



SPLINE PRIMER 36

B-SPLINE BASIS

First, two simple definitions are required:

DEFINITION 1: The restriction of the spline function S(x) to the

subinterval (xi,xi ) is called the ith sgan of S.

+1

DEFINITION 2: The gggggzi of a function is the interval over

which the function has pon—zero values.

Every B-spline basis function, ?3' for the space S(M, X) is
associated with some mesh valuexi and a finite support of M

spans —— namely the interval (*i’xiﬂﬂmodrﬂ . B-spline basis

functions may be defined in various ways; however, only two
methods will be presented here. First we define the even order

(M even) B-spline on the uniform mesh covering the interval

[-M/2, M/2] as the function

1 - k j+k(.2k) .A r .
By-y (x) =71 T (=1)7TNHF (Gx) (v.1)
j==k
where
M= 2k
r = 2k=~1

r

where (J'XXF is the truncated power function.

The truncated power function is defined to be

‘ - (j-x)r ifj>x
(J=x), = .
0 otherwise



SPLINE PRIMER 37

The function BM_](X) has the following properties: It is
symmetric about R=0, bell-shaped, and has support [-M/2, M/2].

)

The derivatives B&h(X) for p=1,2,...,M~1 are given by the

following formula:

(P) oy _ 1 K jrp [ 2K e
Byoy (0 =y 2 (0T *P(j+k)(J—x>§P (v.2)

A graph of B3hﬂ appears in Figure 12. Because of the redundant
calculations and the loss of arithmetic precision involved in the
computation of the B-spliné definition in equation (V.-1), an
alternative definition is often used which avoids these pitfalls.
This alternative definition is recursive and uses the convention

0/0=0. Throughout the remainder of this paper the notation

BEJ“X) will be used instead of Bwq(x)‘ BhM(x)denotes therrder M
B-spline basis function associated with the mesh point~xi. For
example,BoJJx) denotes the cubic (M=4) B-spline basis function

whose support consists of the interval[xo,xh]. The interval

[xo,xh] is the union of the 4 spans [xo,xll,[xI,xz],[xz,x3],[x3,x4].

RECURSIVE DEFINITION OF B-SPLINE

1 if x, <x <x
B. 1(x) = i i+1
I 0 otherwise
X - X, : X -
i+M \
B, y(x) = ————ou B, ___(x) + — B, _q (x) ‘
i,M XiaM=1 ~X;  P.M-1 (M~ Xijeq TH1LMA ;

for M>1



P3

FIGURE 12  UNIFORM CUBIC B-SPLINE BASIS FUNCTION

38



SPLINE PRIMER ' A 39

S8ample B-spline basis functions are shouwn in‘Pigure 15. The
reader should note that for the periodic case, the B-spline basis
functions on a uniform mesh are merely cyclic translates of a
single canonical B-spline basis function. 'For example each basis
function in figure 13(a) is a cyclic translate of BO’Zand each
basis function in figure 13(b) is a cgclic translate °F.BO,3'
This situation does ngi occur in the non—-periodic case. The end.
conditions cause the basis functions at the ends of the interval
to differ from the interior basis functions. The end conditions
manifest themselves as multiple knots or multiple mesh valueé at
the ends of the interval. Figure 13(c) is an example of
non—periodic cubic B—spline basis functions on the mesh

X = 40,0,0,1,2, 3,4,5, 6,6, 6).

Cox and deBoor have developed an algorithm for evaluation of
arbitrary B-splines and their derivatives, which.overcomes the
inherent numerical instabilities of previous algorithms. The
algorithm is recursive and it is based on the recursive
definition for B-spline basis functions. The interested reader
will find the algorithm described in Appendix 6 as well as

several of the references [deB72, GOR74, deB79)].

Throughout the remainder of the paper we will focus our
attention on cubic B-splines. The reader should note an
interesting fact which we will utilize in the following section.

The cubic B-spline canonical basis function Bol’mag be
’



° | 2 3 Y s 6

(a) PERIODIC LINEAR

P —

4
Ya

o ) a 4 5 6
(b) PERIODIC QUADRATIC

o ' Q 3 % 5 [

(c) NON-PERIODIC CUBIC

FIGURE 13 B-SPLINE BASIS FUNCTIONS

,ho_

e i e e,

o e g —

e ———



SPLINE PRIMER k1

represented as a weighted sum of four polynomial functions

Eo(t) = “17663 + 172t% - 1/2¢ + 1/6

E (1) = 1/2¢% - ¢% + 2/3 (v.3)
Ez(t) = —1/2t3 + 1/2t2 + 1/2t + 1/6

E,(t) = 1/6t3

3

The weights are the coordinate values at the vertices of the
"defining polygon" for the cubic B-spline. Thus the value of an

arbitrary B-spline function S(t) for some parametric value

Of_ti] is

S(t) = Eo(t:)vi + E](t)V + Ez(t)V

i+1 i+2

+ E3(t)vi+3 (v.h)

where Vi’vi+1’vi+2’vi+3 represent four consecutive vertices of
the defining polygon for the B-spline S(t). We must now define
precisely the idea of a defining polygon, explain how it is

obtained, and describe its computational use.

Given a knot vector(xo,yo),(XI,Y1),-H,(Xn:Yn) for a
i ]
cubic spline S(x), there exists a set of points (xd’yd)’
] ] ] ]
(x]’yl)’”"(xk’yk) related to the knots such that each
/

point on the curve S(x) may be represented as a convex

combination of 4 consecutive points from



SPLINE PRIMER 42

(x'i,y'i), (X;...];Y.i+1)""’(x'i+3’y‘i+3)' This ordered list of
points is called the "defining polygon" and each point is a
vertex of the defining polygon. Notice tha#lthe list of points
may define either an open or a closed polygon and thaf the spline
curve does not go through the points of the defining .polygon.

The defining polygon is obtained from the knot vector by a
procedure called "inversion" and in general there are more points
in the defining polygon than there are in the knot vector. An
efficient inversion procedure due to Yamaguchi EYAM78] appéars in
Appendix H. Exampleg of cubic B-splines and their defining
polygons appear in figure 14. Note also figure 15 which contains
the four polynomials of the canonical cubic B-spline basis
function. The inversion o? the knot Qector creates the stﬁline'
representation from the PP-representation and allows us tovmore
compactly represent the spline S(x). It should be obvious to the
reader that we may parameterize the defining pblggon by the same
methods used for the knot vector. Thus B-spline curves may be
interpolated as egsiig as B*sbline functions. What remains to be
shown is a method of evaluating a B-~spline curve given its

defining polygon. The formula is as follows

p(x) = [s3 s2 s 11 1/6 -1 3 -3 1—. FVi 1
3 6 3 o0 Vi
3 0 3 o Yius (v.5)
1 L 1 0 \/H_3
L. I R

where i = integer part of n . x
s = fractional part of n . x
n = number of vertices - 3



43

FIGURE 14 CUBIC B-SPLINES AND VERTEX POLYGONS

FIGURE 15" CUBIC POLYNOMIALS WHICH
COMPRISE UNIFORM CUBIC

B-SPLINE BASIS FUNCTION




SPLINE PRIMER Ly

The formula (V.2) may be generalized to any number of dimensions.

For example, in three dimensions each vertexVi has three
coordinates OQ, Yi,zi) and P(x) is a point vector in 3—spacef
Instead of x we use the parameter t and let t range over the
interval [0, kl. .- We evaluate P(t) for the x-coordinates of the
successive vertices Vi’vi+1’vi+2’vi+3’ then for the
y—coordinates, and finally for the z-coordinates. Notice that
each of the column vectors in the matrix of formula (V.5) when
multiplied by the row vector[sz's2 s 1]11/6 produce the four
polynomials in (V.3) which make up the canonical uniFérm cubic
B-spline basis function. Before concluding this report, we will

briefly mention some of the useful properties of B-splines.

PROPERTIES OF B-SPLINES

B-splines exhibit certain nice properties which we will

summarize briefly:

1) Local approximation
Because of the local support of B-spline basis functions,

B-spline approximation is a local approximation.

2) Variation diminishing
The approximation is always smoother than the underlying
primitive function. Thus B-splines approximate straight lines

exactly.




SPLINE PRIMER ‘ 45

3) Convex hull
For a B-spline curve of degree M-1, any given point lies within
the convex hull of the neighboring M vertices. (see Figure 16)

These properties are clearly illustrated in [GOR741.
CONCLUDING REMARKS

This report has taken the reader from simple linear
interpolation to B-spline representation and approximation of
curves without imposing severe mathematical demands. The reader,
who feels he has a possible application for splines, should
carefully read the references, particularly [AHL&7, deB79] to gain
a more complete understanding before determining the suitability
of splines to his particular problem. For the reader with a
knowledge of the FORTRAN programming language and access to a
computer system, a collection of spline programs may be obtained
(on magnetic tape) from

IMSL

Sixth Floor

GNB Building

7500 Bellair Blvd.

Houston, Texas 77036
These programs were written by Carl deBoor and they are bresented
in his book, "A Practical Guide to Splines" [deB791. Appendix D
contains certain examples of spline curves which were generated

vsing the algorithms in Appendices B and C coded in the APL

programming language and plotted on a Tektronix 4013 display.



L6

FIGURE 16(a)  GLOBAL CONVEX HULL FIGURE 16(b)  LOCAL CONVEX HULL
OF B-SPLINE

FIGURE 16  STRONG CONVEX HULL PROPERTY OF B-SPLINES

ILLUSTRATED IN (b) AS COMPARED TO USUAL
CONVEX HULL IN (a)




SPLINE PRIMER 47

BEFERNCES

1. J. H Ahlberg, E. N. Nilson, J. L. Walsh, The
Theory of Splines and their Applications,
Academic Press, New York, 19467
2. P. Baudelaire, R. M. Flegal, R. F. Sproull, "Spline
Curve Techniques”, Xerox PARC TR, Palo Alto, CA May 1977
3. C. deBoor, A Practical Guide to Splines,
Springer—Verlag, New York, 1979
4. C. deBoor and J. R. Rice, "Least Squares Cubic
Spline Approximation I - Fixed Knots", CSD TR 20 Purdue
University, Lafayette, Indiana, April 1968
9. Freeman, Harry, uéthematicg for Actuarial Students Caﬁﬁridge
University Press, Cambridge, England 1939
6. W. Gordon, R. Riesenfeld, "B-Splipe Curves
and Surfaces", in Computer Aided Geometric Design
eds. Barnhill and Riesenfeld, Academic Press, New York, 1974
7. R. Hornbeck, Numerjical Methods,
Quantum Publishers, inc. New York, 1975
9. F. Yaméguchi: "A New Curve Fitting Method Using a CRT
Computer Display"”, Computer Graphics and Image Processing

7, 425~437. (1978)



SPLINE PRIMEh

ADDITIONAL REFERENCES

1. Bezier, P. Numerical Cog;rol~Mathggétig§ and
Applications. (translated by A. R. Forrest).
London: .John Wiley and Sons (1972).

2. deBoor, C. "On Calculating with B-splines".
J. Approx. Theoru, Vol. & (1972), pp. 50-42.

3. Cox:» M. 6. "The Numerical Evaluation of
B-Splines”. National Physical Laboratory
(Teddington, England), DNAC 4 (August 1971).

4. Forrest, A. R. "Interactive,Interpolationa and
Approximation by Bezier Polgnomials".
Cﬁmpgggr . Vol. 15 (1972) pp.71-79.

"9. 6Greville, T.N.E. "Introduction to Spline
Functions". in Theovu and Applications of
Spline Functions. (Greville, ed.), Academic
Press 1969.

6. Riesenfeld, R.F. “Applicétions of B-spline
Approximation to‘Geometric Problems of
Computer Aided Design". Ph.D. Thesis, Syracuse

U. (1973). Available at U. of Utah, UTEC-CSc-
73-126.

7. Schoenberg, I. J. "On Spline Functions". with

Supplement by T.N.E. Greville, Inequalities
(0. Shisha, editor), Academic press (1947)

L8




SPLINE PRIMER ' b9

pp. 255-291.

8. Schoenberg, I. J. "On Variation Diminishing
Approximation Methods". 0On Numerical Approximatign.
(R. E. Langer, Ed.) University of Wisconsin.
Press (1959), pp. 249-274.

9. Schoenberg, I. J. "Contributions to the Problem
of Approximation of Equidistant Data by |

Analytic Functions". Quart. Appl. Math, Vol
4 (1944), pp. 45-99.



APPENDIX A



A.1

DERIVATION OF FIRST DERIVATIVES FOR CUBIC SPLINES

In this appendix we will show that S'(x) can be represented in terms
of the knot values (xo,yo), (xl,yi),...,(xn,yn) and the second
derivatives of the interpolated spline function, namely S'"(x), by

a series of algebraic manipulations. The purpose of this demonstration
is to show that the knot vector and the cubic spline function second
derivatives at the knots completely specify the spline functién,

since the first and third derivatives may easily be computed from

the second derivatives.

Let's restate the basic relationships between a cubic polynomial

and its derivatives:

= 2 3
P(x) = Co + C1x + sz + C3x
P'(x) = C1 + 2C,x + 3C3x2
P (x) = 2C2 + 6C3X
P! (x) = 6C3

Now it must be shown that S'(x) can be derived from the knot vector
(xo,yo), (xl,yl),...,(xn,yn) and the S$'"(x) values at the knots - -
namely S”(xo), S“(xl),...,S“(xh). Consider the simple case where

the X, are uniformly spaced, «x,

i+1 = X; * 1 . Since the spline

S(x) must go through the knots, we have:



S{xq) = v,
S{x;) = v,
s(x ) = Y,

Let P(x) be the polynomial which represents S(x) on the interval’

[xi,xi+]] -i.e. S(x) restricted to [xi,xi+1]

Let Ay =Yy ~ Y

But i Y = Plxgyy) - Plxp)

2 3
a1 T CXGer + CaXiyy)

n

(c0 +C

2 3
(c0 + Cox; + Cox + C3xi)

but since Xigg = %; + 1 and x%+l = x? + 2xi + 1 and
x?+1 =Vx? + 3x? + 3xi + 1 and
Xjag =% =1
we get

Ay, =y -y, =C,(x -x,) +C xg -C x? +

0 i+1 i 171+ i 271+ 274

Cyxiag ~ €53
By; = €y + 20,x, + €, + 3c3xf +30x; + C,

rearrange terms

By, = €, + 2C)x; + 3c3xf +Cy + 3%, + €

A.2




A.3

The first three terms of Ayi are the formula for P'(xi) and we
have only manipulated expressions for values of the knot vector so
far. We must find an expression in terms of P”(xi) and P”(xi+1)

for the last three terms qf the equation for Ayi . Conslider

ZP“(xi) + P”(xi+]) = z(zc2 + 6C3xi) + (2c2 + 6c3xi+1)
= 6C2 + 12C3xi + 6(:3xi_,_1 |
but Xigg = X + 1
2P (x,) + P“(xi+1) = 6C, + 12C,x; + 6c3xi +6c3
| = 6c2 + 18c3xi + 603
Now
(2P'"(x,) + P"(x,,{))/6 = C, + 3Cy%; + €y

Notice that the right hand side of this equation is precisely the
portion we wish to remove from the equation for Ayt . Theréfore,
by substitution we get
= p! ] 1"
by, = P (xi) + (2p (xi) + P (xi+1))/6
and

PU(x,) = By, = (2P"(x.) + P"(x. .))/6

Thus it is clear that the first derivatives at the knots can be

expressed in terms of the knots and the second derivatives at the

knots. The above derivation can be generalized to the case where



the knots are not uniformly spaced,

X1 ~ % = hy

The resulting equation is:

P’(xi)-

By; = hy(2P(x,) + PU(x,,.))/6

or

P'(xi) i

(Plx;) = P(x)) = by (2P10x)) + Pi(x, 1)) /6

AL



APPENDIX B



B.1

Cubic spline on unit mesh -- Algorithmic summary

natural end conditions periodicity (implies Yy = yN)

Glven N values Yi» yz.---,YN

1) for 1 = 1 to N-2, compute

2
Yy = Vi T 2ty

1b) also compute

80 = Yy = 2y * vy

2) for I = 1 to N-3, compute 2a) for 1 = 2 to N-2, compute
a; = k- /a4 a; =k - a; 4
2 - o A2 o
By = 814 = byog/e by = 8%y ~ by /ey

- o A2 ¢, = =c. ./a,_
with ag 4 and bo A Y i i-1"%1-1

2
with 2 = 4, bl a A Yo and ¢ = 1

2b) for 1 = N-2 to 1, compute
rp = (P + ) /3

s;p = (6b; - 5;,)a;

with ry-1 = 1 and SN-1 = 0
3) for 1 = N-1 to 2, compute 3) for i = 1 to N-2, compute
Yi = (8bp - Vi) /ay, Ve Y s,
2
with YU = v = 0 with Yi_ = 64 V-2 © Sy T Sn-2
fp ¥ Tyg * 0
"o oyn
and YN Yl.

b) for I = 1 to N~1, compute

Yi = Yin

' Y?I o Y?+1 - Y?

Ty - (2Yp e+ vy /6




APPENDIX C




C.1

Cublc spline -- Algorithmic summary

natural end conditions perlodicity (Implies v = yN)

Glven N knots (y], ul), (YZ' "2)""’(YN’ UN)'

1) for i = 1 to N-1, compute

" e e ayp sy - Yi)/h,

2) for 1 = 1 ¢o N-2, compute

4 = By pT by,

2b) also compute

hg =-by_q = u, - Un-1
Mo = My = by = vy Mk

do = Ay' - Ayo

3) for i =1 to N-3, compute 3a) for i = 2 to N-2, compute
12 = ) _ 2
3 = 2hy g L,) his1/a1- 2 = 2(h;_; + b)) hi1724
by =dpyy - Prerbiog/e; by =d, - hiibiai/e;
with a; = Z(h] +h,) ¢, = -hi~lclf1/ai-1
and b0 n d1 with a; = 2(ho + h]), b] = do, ¢, = ho

3b) for i = N-2 to 1, compute
Fpeolhyr,, + i)/a,

Sj = (6b; ~ h, 34172,

with "N-1 = 1 and SNep =0
4) for | o M-1 to 2, compute b)) for i = to N-2, compute
y'! = - " [ - " ' .
{ (6bi_2 htYi+l)/aI-2 Yi rYN_1 + s, with
with Yo' = yit a g Vit s 6dN_2-hosl-hN_zsN_2
ho'1+hn-z'u-z+2(hu-2*ho)
and Y&' = Y;'

5) for i = 1 to N-1, compute
Y = by, - h,(zv;' + Y176
Vit e 0y v,




APPENDIX D

'EXAMPLES OF CUBIC SPLINES




—2D _CUBIC SPITHES.

D.1

WHARD COPY O
CLEAR (W
ExIT O

NON ~UHIFORIM
{INIFORHM
NONPERIODIC

| 2 I

PERIOCDIC

CUBIC 2D SPLINES

LENTER KNOTS &
INVERT G
MOUE KNOTS -

CUBIC 2D BSPLINES
iENTER VERTICEs [
DISPLAY POLYGON [

MOVE VERTICES [

FIGURE D.1

OPEN (NON-PERIODIC) CUBIC SPLINE THROUGH FOUR KNOTS -
CHORD LENGTH PARAMETERIZATION



D.2

W Y

FIGURE D.2

IENTER KNOTS

{IOM - I FORHM
UNIFORH
NONPERIODIC

08680

PERICDLC
CUBLIC 2D SPLINES

i
INVERT O
MOVE KNOTS (o
lcuarc 2D BSPLINES
[ENTER VERTICES [J

t:rsm.nr PoLYGoN [

OVE VERTICES U

HARD COPY Ul
CLEAR 0
ExzT U

OPEN CUBIC SPLINE THROUGH SAME FOUR KNOTS AS

FIGURE D.1 - UNIFORM PARAMETERIZATION




DQ3

2R CUBRIC SPI (NES

HICN-UHIFOPIH
NI FORM
WoreERIODIC
PERIODIC

CUBIC 2D SPLINES
LENTER KNOTS
INVERT

ooR . 1aognoal

MOUE KNOTS

CUBIC 2D BSPLINES
ENTER VERTICES [
ISPLAY POLYGON [
OVE UVERTICES [

HARD COPY il
CLEAR

EXxIT

gl

e

=R S —— — e manl I e e - —

FIGURE D.3 CLOSED (PERIODIC) CUBIC SPLINE THROUGH FOUR KNOTS -
CHORD LENGTH PARAMETERIZATION



2R CUBIC SELINES

D.4

NOM -UNIFORI
UNIFORM
NONPERIODIC
PERIODIC

CUBIC 20 SPLINES
ENTER KNOTS
INVERT

MOVE KNOTS

CUBIC 2D BSPLINES |
[ENTER VERTICES [
IDISPLAY POLYGON [
MOVE VERTICES [

ARD COPY
CLEAR

onoe 1006810

IE.‘(I T

LU OO

FIGURE D.4

CLOSED CUBIC SPLINE THROUGH SAME FOUR KNOTS AS
FIGURE D.3 - UNIFORM PARAMETERIZATION




2D CUBIC SPLIMES

D.5

. [FONPERIODIC

INOH -UNIFORHN

UNIEFORM

PERIODIC
CUBIC 2D SPLINES

ENTER KNOTS
INVERT
MOVE KNOTS

BN R O

CUBIC 2D BSPLINES |
NTER VERTICES

B

DEFINING POLYGON

-+ ISPLAY POLYGON [}
+ OUE VERTICES |
ARD COPY (W
LEAR -
XIT O
- FIGURE D.5 OPEN CUBIC B~SPLINE AND VERTICES OF ITS



2R CURIC SPLIIES

D.6

101 -UPI T FIORN
NI FORM
NONFERIODIC
PERIODIC -

CUBIC 2D SPLINES
IENTER KNOTS
INVERT

non loeno

MOVE KNOTS
CUBIC 2D BSPLINES

IENTER VERTICES
PISPLAY. POLYGON

MOUE UERTICES |

"ARD COPY
CLEAR

il

0

FIGURE D.6

SAME OPEN CUBIC B-SPLINE AS IN FIGURE D.5
WITH VERTICES OF DEFINING POLYGON CONNECTED




D.7

2l CLURIC SPLTHES

IENTER KNOTS

it 1~ U I ORI
NIFORM
NONPERIODIC
lPerRIODLIC

CUBIC 2D SPLINES

INVERT
MOUE KNOTS

nog. 10000

(UBIC 2D BSPLINES |
ENTER VERTICES U[J
brsPLAY PoLYGON O
MOVE VERTICES [

HARD COPY

U
CLEAR L
el 4

" FIGURE D.7

OPEN CUBIC SPLINE THROUGH FIVE KNOTS OF
MULTIPLICITY 1



20 LUBIG SBLINES.

D.8

FIGURE D.8

OPEN CUBIC SPLINE THROUGH SAME FIVE KNOTS AS.
FIGURE D.7. CIRCLED KNOT HAS MULTIPLICITY 2.
OTHER KNOTS ARE MULTIPLICITY 1. SPLINE HAS A
CURVATURE DISCONTINUITY AT KNOT 3 (CIRCLED).

10N ~UNIF ORI
(INIFORI
NOMPERIODIC
PERIODIC
CUBIC 2D SPLINE.

J

nop |looo.ol

NTER KNOTS
INVERT
MOVE KNOTS

CUBIC 2D BSPLINES
ENTER VERTICES d
IDISPLAY POLYGON [
MOVE VERTICES [

e vl

BARD COPY
LEAR
XIT

. '
< —————— e+ g e = -




2R CUBIC Sl THES,

D.9

11O Ut LF ORI
UNIFORM
NONPERIODIC
CPERIODIC

3

opog 10000

CUBLC 2D SPLINE.
ENTER KNOTS
INVERT

MOUE KNOTS o

S

CUBIC 2D BSPLINES
ENTER VERTICES O
DISPLAY POLYGON
MOUE VERTICES

HARD COPY

FIGURE D.9

OPEN CUBIC SPLINE THROUGH SAME FIVE KNOTS AS
FIGURES D.7 AND D.8. KNOT 3 (CIRCLED) HAS
MULTIPLICITY 3. OTHER KNOTS HAVE MULTIPLICITY
1. SPLINE ACTUALLY HAS A SLOPE DISCONTINUITY
AT KNOT 3 (CIRCLED), EVEN THOUGH IT 1S NOT
APPARENT FROM PICTURE.

=
CLEAR
F‘xr T



—.2D CUBIC. SPLINES

D.10

WaRD coPy

NON -UNZIFORIT
(INIEORIM
NONPERIODIC
Fuﬁércultc

CUBIC 2D SPL INES
ENTER KNOTS
INVERT

noaga ..

MOVE KNOTS

- o

CUBIC 2D BSPLINES -

o

ENTER VERTICES
| ' o
DISPLAY POLYGON [

: ’ 3
MOVE VERTICES L1

- KLEAR

F?ﬂIT

IGURE D.10

OPEN CUBIC SPLINE THROUGH SAME FIVE KNOT
LOCATIONS AS FIGURES D.7, D.8, D.9. KNOTS.

2, 3, 4 (CIRCLED) HAVE MULTIPLICITY 3. OTHER
KNOTS HAVE MULTIPLICITY 1. SLOPE DISCONTINUITIES
APPEAR AT KNOTS 2, 3, 4 (CIRCLED).

o.0.0al




Y

o

APPENDIX E




E.1

DERIVATION OF THE DEFINING EQUATIONS FOR CUBIC SPLINES

The following derivation proceeds along the lines of the derivation in
Chapter 2 of [AHL67] with only slight notational changes to remain

consistent with the text of this report.

First, let's consider the case of the non-periodic or open spline

defined on the closed interval fa,b]. Given a knot vector
(xo,yo), (XI’YI)""’(XN’YN) such that a = Xg < X4< Xp<e..< xy=b,
we seek to define a cubic spline function S(x) on the knot vector -
i.e. S(x) must satisfy the following conditions:
(i) S(x) and its first two derivatives are continuous
on [a,b]
(ii) s(x) is a cubic polynomial on each subinterval
[xi, xi+1] of the knot vector

(iii) S(xi) = Y; for i = 0,1,...,N

Let MJ denote the second derivative of the spline functlon at the location
xj - S“(xj). Because the second derivative of a cubic polynomial
is a linear function, we derive the general second derivative equation

(restricted to the interval [xj-l’xj]) by linear interpolation between

Mj-1 and Mj' Thus, we have
" - X, =X X=X, _ ‘
S (X) Mj_.l ";'\. + Mj - B 1 (E.l)
J J
where h, = x, - x



If we integrate (E.1) and evaluate the constant of integration we get

the equation of S'(x) restricted to [xj-l’xj]

‘ 2 2
. - M, (x = x. )" sy ry, M, - M,
$'(x) = =M. _ (x; = x)" j -1+ -t - 7 i1
] ’"'%F}" 2, R g h)

The equation for $'(x) restricted to [xj, xj+1] is
$'(x) = -Mj(xi+1'x) . Mj+1(x ) LA T 2 M I
2 J+1 2hj+1 hj+l - 6 J

From (E.2.1) and (E.2.2) we obtain the following expressions for
the one-sided limits of the derivatives by substituting x = xj into

equations (E.2.1) and (E.2.2) respectively:

- = he h, Y. = Y._
5'(xJ) B'LMJ-1+§J'MJ+ ihj j-1

S'(x.+) = D, - hi+1 M. . + Y;+1,' Yi
J -%—- I % J+ v

The continuity of S'{x) yields the condition S'(xj-) = S'(xJ.+) or

h, h, Y. - Y _‘ - -h _h Yeiqg = Y
3LM_j--l + ?J-MJ +._JT1'—J_1 __3-"” Mj 6j+1 M_i-r-1 + _%'.__..L
J +1

E.2

(E.2.1)

(E.2.2)

(E.3.1)

- (E.3.2)

(E;h)



Eo3

Equation (E.4) may be rewritten as follows:

MM T R e P e Y T Y - Y T Y (E.5)
3 Pjat hj

Notice that y[+1 i y[ is actually the first divided difference,
J+1

DDyj, and y] -jyl-l is the first divided difference, DDY}—I’
Thus the right hand side of equation (E.5) is actually a multiple

of the second divided difference, DDzyj_I, since

2 DDy. - DDy, DDy, - DDy,
DDy, . = ] Yi-1 =Yy -1

j=1
hj+1 + hj X541

- xj_]

Thus the right hand side of (E.5) is

Doy, - DDy, _, = (h

2
j-1 + hj)DD ¥i-1

J+

Now, if we multiply equation (E.5) by 6 and divide by (hj+1 + hj)

we get the alternative form:

h, h, _ ennZe
| MJ._1 + 2Mj + j+1 MJ.+1 6DD Y1 (E.6)
hJ._._1 + hj hj+1 + hj

Now (E.6) for j=1,...,N-1 are the defining equations for the values



E.b

Ml""’MN-I' Note that we cannot solve for Mo and MN because DDzyo
and DDzyN are not defined - i.e. we would require values for the

. : 2 2,
points (x_l,y_1) and (xN+1,yN+1) in order to define DD“y, and DD Yy
These are called the ''end conditions'' and their values are supplied

by the user. In the section III the most commonly used techniques

for defining end conditions are described.
Let's define A, = j+1 and My = 1- Aj (j=1,...,N=1)

and let dj = 6DDzyj, then the system of defining equation for the

cubic spline may be written in matrix form as follows:

= - - ] . —Tl
2 AO‘ 0 oo 0 0 0 Mo d0
M 2 A1 cen 0 0 0 M1 d1
0 Uy 2 cen 0 0 0 * * :
. . [ : = : ) (E‘7)
. L] L] e e 0 2 AN-Z 0
0 0 0 oo MN-1 2 lN-l MN_1 dN-l
0 0 0 .e. 0 2 M, d

where the user prespecifies the end conditions by giving values for
AO’ do, AN, dN . In the case of "natural end condlitions', it is
only necessary to specify Mo = MN =0, This has the effedt of removing

two equations from the system and allows one to solve the system of



E.5

N-1 equations for Ml’ MZ""’MN-I' The commonly used ''end conditions'

are defined in section III of this report.

The actual form of the cubic spline function for the given knot
vector and second derivatives Mo, Ml""’MN may be obtained by Integrétion
of equation (E.2.1) and by evaluating the constant of integration.

- - 3 - - '
S(X) = Mj..“ (xj X) + Mj (X x,.L-l) + (\/j_1 Mj-.'ii XJ X (E.8)
oh, oh, '

6 h

Jj J J
+ (yj - M hg) X = X4
“i‘J‘Tj‘J“

restricted to the interval [xj_1,xj]

With extensive algebraic manipulation, it can be shown that equation
(E.8) is equivalent to the alternative spline form used throughout
this report - namely,

S(x) = Yij-q1 ¥ mj_l(x - xj_1) + M

2 - 3
j_1(x - xj-l) + Mj-l(x 'xj)

where mi_y = the first derivative at Xy

=
[}

. the second derivative at x
Jj-1 J-1

1 = the third derivative at X

o -
3
[«
=
!

il



The reader should take note of the following results:
(1) For the case of the perlodic cubic spline where
Xq = Xy and Yo = Yy Ve have MO = MN and
By = 1 - XN . Ve obtain the
following system of defining equstions

AN = h1/(hN + h1),

2 A 0. 0 ... 00 My d
M, 2 A, 0 .... O M, d,
0 Mg 2 A3 ? : 0 ] :
0 veeeeeee 02 A0 - .
0 wevevenn 0 w2 A My-1 -1
0 eeee 00y, 2 My dy

| I

(2) systems (E.7) and (E.9) may be reformulated In terms

of slopes at the knots. See [AHL67, p.13] for details.

(3) The defining equations for spline functions of any
order may be obtained in the manner shown above. If
the spline function is or order M (i.e. degree M-1),
one merely uses the fact that the (M-2)nd derivative
is linear to construct the analog of equation (E.1).

Then successive integrations and evaluations of the



—

constants of integrations are performed to arrive at
a spline function equation in terms of the (M-2)nd
derivatives and the knot vectors. In particular the

system of defining equations for parabolic splines is

PRN— -r D e 3
AO 1 0. . 0 My bo
0 A 1 0 . . . o0 m, b,
0 0 A 1 0. .0 : _
o o o . . 1 0 ) :
. -1 -1 Py-1
0 o . .. . . 0 'AN My bN
PR—§ e ek

h,
where Aj = h! : and bj = (3yj + 3yj-l)/hj-1 + (3yj + yj-l)/hj
j-

for j=1,...,N=1 |
Again we supply the end conditions AO’ bo, AN’ bN and solve

the system for the s lopes My Myseeesmy

(4) When there is uniform spacing of the xj i.e.

hj = X, for all j then the system

jer T Xy =

of defining equations becomes

E.7

(E.10)



- E.8

2
Yy 1 0 o 0 o0 My 6a%y,
1 4 1 o . 0o 0 M, 6A2y1
o 1 4 1 ) . .
L o o . = . (E.11)
0 ) o 4 1 0 .
L 14 M 642
[ ] L] N—1 YN“1
2
0 .0 0 1 & My 6a%y,

There are stable methods for solution of these systems '

of equations - see references [AHL67, BAU77, deB79].



APPENDIX F




DERIVATION OF NEWTON'S FORWARD DIFFERENCE

POLYNOMIAL INTERPOLATION FORMULA

Given a table of argument - function value pairs, we wish
to derive the Newtion Forward Difference Polynomial Interpolation
formula which may be used to interpolate values in the table.
Assume that the arguments begin with a value of x=0 and they
are equally spaced at an interval of h. Thus we have a table

of the form:

argument (x) functional value (f(x))
0 f(0)
h f(h)
2h f(2h)
nh f (nh)

In order to use the Newton interpolation formula, we must make

the assumption that the underlying function is analytic - i.e.

it may be expanded in a Taylor series about any point. We will
use the Taylor series expansion to obtain formulas for the

derivative of a function in terms of discrete differences.

Let f(x) be an analytic function. We may find f(x+h) by
expanding f(x) in a Taylor series about the point x:
2 3

h™ f'(x) + h
21 3T

f(x+h) = f(x) + hf'(x) + frr(x) + ... (F.1)

F.1



F‘Z

Solving equation (F.1) for f!'(x) yields

f1(x) = f(x+h) - £(x) - hf'(x) - h2F10 (x) +... (F.2)

21 3

Using the order notation, we write

f'(x) = f(x+h) - f(x) + 0o(h). (F.3)
h

Note that the first term on the right hand side of equation ‘
(F.3) is the first ordinary difference divided by h (or altematively
the first divided difference ). Thus equation (F.3) may be

rewritten
fr(x) = Af(x) + 0(h) (F.b)
h . .
Now, by a similar expansion about x, we may find f(x+2h) as

f (x+2h)

"

f(x) + 2hf' (x) + (20)2F"(x) + (2h)3F00 (x) + ... (F.5)
21 31

Multiplying equation (F.1) by 2 and subtracting the result from
equation (F.5) causes the f'(x) term to drop out. We may solve

for f''(x) and get

£1(x) = F(x+2h) - 2f(x+h) + £(x) - hf"'(x) + ... (F.6)
2
h?,

Notice that the first term on the right hand side of equation

(F.6) is the formula for the second ordinary difference of f (x)



F.3

divided by hZ, Thus equation (F.6) may be rewritten

f1(x) = a%f(x) + 0(h). (F.7)
h2
In this manner, we can obtain approximations to the derivatives
of f(x) in terms of the corresponding finite differences and
error terms. Now the derivation of Newton's forward difference

formula follows in a straightforward manner.

Consider the Taylor series expansion of the function f(x)

about the point x=0:

f(x) = £(0) + xf'(0) + x2F'(0) + x> (0) + ... (F.8)
2! 3!

None of the values of the derivatives are known; however, expressions
for the derivatives may be obtained as in equations (F.4) and
(F.7). Evaluate the expressions for the derivatives at x=0 and
substitute the finite difference expressions into equation (F.8).
Keep careful account of all the error terms and the following
equation is obtained:

f(x) = £(0) + x AF(0) + x(x-h) A%F(0) +

h 21h?

x(x=h) (x-2h) A3F(0) + ... (F.9)
31h3




F.4

Equation (F.9) is Newton's Forward Difference Polynomial Interpolation
formula. It is clearly equivalent to equation (II.9) in the text

when h=1,




APPENDIX G




deBoor - Cox Recursive Algorithm

To evaluate the B-spline function:

f(s) = ? aIBl,M(S)

STEP 1: Find i such that Xp 28 2 X4

STEP 2: f(s) = agM-l] (s)

STEP 3: Set j = { and k = M-1

-aj for k=0
s =4
] A£¥-I] + (1 - A)a[k_1] for k > 0
J j-1
and A= °°7 % (j is the same as above)
ikt 7

deBoor also gives the following formula for the jth derivative

of f:

0 = e ) e le L 6s)
1

where

ai for k=0
bikl =
[k=11_ , k-1

o b; 4
XieM-k ~ *§

otherwise

G.1



APPENDIX H’




Yamaguchi Inversion Algorithm

Let Ki be the knots of a cubic interpolating spline.

Vi are the corresponding vertices of the vertex polygon.

STEP 1: Initialization:

For i = 1,2,...,n

K. + V.
i i
then'v1 + VO’ Vn > Vn+1 (alternatively v, > Vn+1, Vn > VO)'
STEP 2: Computation:
For i = 1,2,...,n
L T A T AU Y ) N L AT
then vV, > Vos v, > Vo1 (alternatively v, > Vn+1, v, > VO)'

STEP 3: Halting Criterion:
If max {6i} 5_65, then halt
else go to STEP 2;
where 65 {s a predetermined tolerance value:and the parentheses

pertain to the closed case alternative.

H.

1



