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ABSTRACT

Segmentation of Static and Dynamic Scenes
May, 1979
Jonn M. Prager
8.A., University of Cambridge
M.A., University of Cambridge
Ph.D., University of Massachusetts

Directed by: Professor Michael Arbib

One of the most important, and difficult, problems in scene analy-
sis is tc>perform a segmentation of the visual image. We are interested
in solving this problem, paying special attention to current neurophysi-
ological and psychophysical data, to gain insight from how animals and
humans perform this task. In the real world, though, there is constant
motion, both of the observer and the environment. Thus we are led to
the analysis of dynamic scenes.

In fact, we claim that segmentation of dynamic scenes is in many
ways easier than that of static scenas, since there is information about
object boundaries that results purely from the motion in the scene. We
extend the concept of optic flow to form a low-level representation of
the observed motion, and develop a program called MATCH to generate this
flow-field. We apply MATCH to a sequence of frames of real data and
show that by using predictive mechanisms we can greatly reduce the com-

outational effcrt required to analyse the third and subsequent frames.
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large, generally applicable systems, such as the VISIONS project
(Hanson and Riseman 1978a,b) which seeks to understand natural outﬁoor
scenes. All of these systems share one very importgnt subproblem,
which has not yet been satisfactorily resolved. This is the problem of
segmentation, that is, the division of the scene under consideration in=-
to its fundamental components.

Most of the work to date has been on static scene analysis, that
is, on analysing single images or views of scenes. Indeed, in Chapter 2
we present a system for the segmentation of static scenes based upon the
extraction of boundaries. The focus of this thesis, however, is on the
segmentation of moving scenes: the visual data will be in the form of a
sequence of snapshots or frames, taken with only a brief interval be-
tween cach frame, as with a regular movie camera. The data may be of
moving objects viewed by a stationary camera, a stationary environment
viewed by a moving camera, or the general case of a moving camera and
moving environment. It is felt that the system presented here is par-
ticularly well suited to the second of these conditions, which will
apply, for example, to an exploratory robot on the Lunar or Martian sur-
face.

visual scene analysis is commonly discussed in terms of low-level
and high-level analyses. A low-level analysis, which generally includes
segmenﬁation, does not usually rely on, or produce directly, any seman-—
tic knowledge about the scene in question. A high-level analysis will
invoke domain-specific knowledge in order to produce an interpretation

of the scene. These processes are usually kept separate, although the

IGS system (Tenebaum and Barrow 1976), for example, does not makeé this
distinction; in this system, semantic information is integrated into

the g tation pr: . Since only the early stages of biological

visual processing (which correspond to low-level machine vision systems)
are at all well understood, segmentation is felt to be an appropriate

subject for study in the light of both AI and BT.

1,2 Overview of the Thesis

In Chapter 1 we introduce the problem of motion analysis by machine
and refer to work already completed (or in progress) in this field, We
contrast and compare this problem with those of change~detection and
stereoscopic vision, pointing out the essential similarity of motion
analysis and stereopsis on ;nterchanging the dimensions of space and
time.

We describe the aims of the research to be the production of a
system which can segment its dynamic visual input. The analysis is en-
tirely "low-level"; no use of semantics is made and no identification
or interpretation of the input is attempted., The visual input is in
the form of frames of data as in a movie film; this data is digitized
onto a square grid, each grid position recording the intensity of the
incident light. 1In contrast to "high-level" interpretive programs, the

processing is performed in an entirely local fashion. The system will

. consist of retinotopic arrays of processors and memory cells, each pro-

cessor in an array or "layer” being identical to all others in the array,

all operating in parallel and with no executive control.



Later in this thesis we will demonstrate how dynamic scene analy-
sis may be performed at a lower cost per frame than static scene analy-
sis. Both because of the intrinsic interest in static scene analysis,
and so that the comparison with dynamic scene analysis may be made more
meaningful, Chapter II will be devoted to éhe problems of static scene
analysis. In that chapter, we will Present a system for the segmenta-
tion of static scenes using a boundary analysis approach.

The magnitude of the problems in scene analysis is evidenced by

the complexity and/or number of px needed to perform a segmenta-
tion of a static scene. In our case, there are several stages to the
segmentation process. The raw image data are firstly preprocessed to
remove certain kinds of noise; this output is then differentiated to
generate an edge-representation. These tentative edges theﬁ undergo a
relaxation process to boost or inhibit them according to context. Fi-
nally, the remaining edges are labelled as extended line—segments, some
of which may then be eliminated in a post-processing phase.

Some of the discussions in Chapter II will serve a dual (dialectic)
purpose. The same pre-processing steps as are used in the static case
may be applied to good effect to frames of motion data, prior to the
feature-extraction and matching processes. Furthermore, although the
particular iterative processes described in Chapters II and V axe quite
different, they are both examples of relaxation processes. Chapter II,
therefoFe, provides background for the processing described in Chapter V.

In Chapter III, we look at some of the data which has been disco§-

ered in physiological and psychological studies. We first examine the

anatomy and physiology of mammalian visual systems, and discuss the ex-
tent to which this study will influence our development of a machine
vision system. Two aspects of the visual system are treated in partic-
ular. The evidence for the existence of two‘parallel visual systems in
mammals is presented. The X and Y systems are described and it is shown
how they might.subserve shape and motion analysis respectively. It is
appropriate to present here also the psychological data which suggest
strongly that motion and shape perception in man are mediated by two
separate, parallel systems. The implications of this for machine vision
are discussed.

The organization of receptive fields is examined since we hope to
gain an indication of the kind of elementary features extracted by the
visual system. In particular, we investigate reasons for large recep-
tive fields, so dominant in biological ;ystems.

In Chapter IV we look at a variety of psychophysical experiments
and phenomena which relate to motion perception. We attempt to infer
something of the mechanisms involved and postulate certain basic compu-
tational functions in motion perception. We first look at Gibson's
work on Optic Flow, and see that it is a very suitable form of repre-
sentation of the movement in terms of changes between successive frames.
We examine the properties of Cptic Flow in terms of the simulated motion

of a robot through a forest. It is shown how the flow that results may

easily be resolved into translation and rotation components using en-

tirely local, parallel computations.

We next develop a feature-extraction process, which is to extract
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from the frames of motion data certain 'feature-points', j.e. the stimu-
1li to be matched. A metric or distance between different ' feature-types'
is defined; this measure determines the likelihood of matching the dif-
ferent feature-types to each other. The 'simila:itf' of feature-types
is related to the ease with which the underlying patterns of data can
transform into each other during motion.

The studies by Johansson and his colleagues on moving dots and
the use of the ‘common vector' concept are examined. Certain phenomena
such as those of induced motion and Johansson's common vector suggest
the need for an 'Attraction Function'. This is related to Burt's 'Field
Velocity'. Certain 'filling-in' properties of the human visual system
are studied in conjunction with Weisstein's phantom moving contour ex-
periments.

In Chapter V, we present a series of programs exhibiting properties
and features introduced in earlier chapters. The central component is
a program called MATCH which takes as input sets of feature-points ex-
tracted from frames of the input data and matches the points in succes-
sive frames. Experiments are performed with the program using different
receptive-field organizations and different input conditions. This is
followed by a discussion of the use of 'moving-memories' to propagate
the intermal representation of the motion from one frame to the next.
The results of applying these procassés to a sequence of frames of real
data a;e presented. The chapter ends with a discussion of occlusion,
and how the existence of boundaries may be inferred from tlie occurrence

of occlusion. The integration of outputs from separate segmentation

processes is also discussed.
In the final chapter, we review what has been achieved, and examine

where work remains to be done.
1.3 Nomenclature
1.3.1 The Data.

We describe here the terminology used for the data and data-struc-
tures employed in this work. The word 'scene’ will be used to refer to
that part of the environment which is being looked at, but not to any

one particular view. Such a view, as represented by a photograph, will

be called an ‘image'. The seq of snapshots or pictures that are
taken by a movie camera are all images, but will sometimes be called )
*frames'. The word 'frame' will generally be used when a picture is
being considered with respect to other pictures in the sequence, and
*image’ when it is considered alone.

The imaging device referred to or implied during the course of this
thesis will sometimes be an eye and sometimes a camera. Since the data-
structures used here for machine vision may be likened to those used in
early biological visual processing, at least at an abstract level, com-
mon terminology may be used, so that a camera may be thought of as hav-
ing a retina, for example. Just as the (mammalian) visual system is
replete with retinotopic maps of the visual input, so our program will
use arrays of data which are also 'retinotopic'. These arrays will
sometimes be called ‘layers' to empha;ize the analogy.

The data in these arrays will be the digitized light intensity or



grgy-level recorded by a camera. The sizes of these arrays may typical-
ly be from 128 x 128 to 1024 x 1024 points or bigger. The intensity
recorded at any point or 'pixel' (picture-element) may be thought of as
representing the light impinging upon a retinal (rod or cone) receptor.
It may at times be convenient to think of a set of retinotoric arrays as
a single array with vegtor-valued pixels: thus a colour image may be a
single array with three values at each pixel, representing the blue,

gréen and red components of the incident light.

1.3.2 The Processing.

The computations in which we are interested will be performed by
arrays of 'processing elements'’ (or PE's) in register with the data ar-
rays. These PE's do not necessarily have an exact neural correlate;
indeed, the precise localization of, and distinction between data and
processing in the brain has by no means been worked out yet. It will
be sufficient for us to imagine that the computations will be carried
out by neu;on-pools arranged retinotopically, as discussed above.

In general, a given PE may receive input from many points in many
different layers; however,.cwo particular configurations will be of
great interest to us. For certain computations, such .as uniform scaling
of intensity, the input to a PE will be solely from points in direct
topological correspondence with it. This kind of computation involves
a representation of the incident light at a point and possibly some
global parameters, but does not permit interactions tetween neighbour-

ing points. The other kind of computation in which we are interested

3 _8 _3 A _» _3 —p I _3

concerns precisely this interaction. 1In this situation a PE will re-
ceive input from a small region of points, in one or more layers, cen-
tering around the topological map of the PE in those layers. This kind
of connectivity pattern is necessary when the computation must proceed
until the data is in a locally consistent state, which is usually the
goal of a relaxation process (see Section 2.4).

Throughout the thesis, the set of points which act as input to a
PE will be known as its 'receptive field'. The set of points to which
the output of the PE is sent will be known as its 'projective field'.
In the case of relaxation, when the computation proceeds until certain
conditions are met, the output from one iteration of the process will
act as input for the next, so the projective a;d receptive fields will
lie in the same layer(s}.

Although neighbouring PE's may share data through overlapping re-
ceptive fields, the actual computations occur independen;ly of each
other and will be thought of as being carried out in parallel over the
whole layer. 1In the results reported here of running programs on the
computer this parallelism is of course simulated, although it is anti-
cipated that an array processor will eventually be used for image analy-

sis of this kind.

1.4 Motion Analysis and -he Stimulus-Matching Problem

It was mentioned earlier ‘in this chapter that one of the major
goals in scene analysis is segmentation, and that the objective of this

work is to study the segmentation of dynamic scenes. It might seem
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that the easiest and most appropriate solution to the moving-scene case
is to segment completely each frame of the data, to identify the com-
ponents and to match them up from one frame to the next. Now, while the
last of these stages would presumably be a fairly simple matter, espe-
cially if the foregoing identification is at the object level, the seg-
mentation and identification problems are not. Segmentation and iden-
tification in static scene analysis is still a subject of intense study
as provably efficient and accurate techniques do not yet exist. Besides,

to perform a segmentation from scratch for each frame would be computa-

tionally prohibitive (at least if anything like real-time processing is

required) , and furthermore, would completely miss a very important
point: that there is segmentation information inherent in the motion
that is a property of the relationship between successive fzgmes. It
is by studying invariants and changes between frames that we will be
able to perform a segmentation both efficiently and accurately.

In order to do this we must select certain attributes of the images
that we will study from frame to frame. We have argued above against
using presegmented regions, and will use instead certain features of
the images. A detailed discussion of the extraction of these features
will be p;esented later, but for the moment we will consider a feature
to be an easily detectable attribute of a small region of an image.
Our features will lie predominantly in areas of high variance, since
that i; where the visual information is concentrated, and may be typi-
fied by 'edges', 'corners' and 'blobs' (small, circular-shaped regions

of significantly different intensity from their surroundings). Points

11

in the images where features are detected are known as 'feature-points'.
Now, in order to chart the progress of these feature-points from .
one frame to the next, it is necessary to know to which feature-point
in frame N (if any) a feature-point in frame N-l1 corresponds. This
probiem lies at the heart of motion analysis, and is known both as the
Stimulus-Matching Problem (Burt 1976) and the Corresponéence Problem

{Duda and Hart 1973).

1.5 Related Fields

There are several closely related fields in which the stimulus-
matching problem is the basic problem. Because of the applicability
of solutions in any of these fields to any of the others, the relevant
work done in stereopsis (depth perception), change-detection and on the
video-telephone will be reviewed here along with the previous work in
motion analysis. After a brief discussion of these fields and the prob-
lems common to most or all of them, a survey of the more important work
done in them to date will follow.

Stercopsis, or binocular vision, computes the distance of points
in the scene from an observer, also known as ‘'depth' by analysing two
images formed simultaneously by two imaging devices, separated along a
line roughly perpendicular to their line-of-sight. The relative dis-
tance between corresponding points in the image plane is known as
*disparity', and is inversely related to depth. Many animals with two
eyes with a region of binocular overlap use this mechanism for the

measurement of dépth in that region.



12

It is interesting to note that in many respects stereopsis may be.
considered to be a special case of motion analysis. The latter in gen-
eral consists of arbitrary camera/eye movements and arbitrary motions
in the environment. If the camera/eye moves perpendicular to its line-
of-sight at such a velocity that it travels in the time between the
taking of each frame the displacement between the two camera/eyes in
the stereopsis setup, ;hen the correspondence problem for those two
frames is the same for the stereo and motion cases, as long as the en-
;ironment moves relatively slowly.

Change detection is a problem that is pertinent to aerial recon-
naissance. Given two flights over the same territory, it is often de-
sired to know what changes have taken place on land between the flights.
Since it is impossible to take pictures from exactly the same altitude
and under exactly the same lighting and camera conditions, the detection
of change must await the registration of the two images. This in turn
depends on finding corresponding (static) objects in the two images.

The detection of movement in television signals has applications
in, for example, automatic surveillance, but its most important use may
be in the videotelephone. In order to achieve efficient transmission
of large amounts of video information over low band-gidth lines, tech-
niques known as 'conditional replenishment' are being developed to
transmit only those parts of pictures which change. To Extract this in-
formation, change in position of points from frame to frame must be
computed.

In order to make the review of existing systems more meaningful,

-3 3 3 2 3 3 3 I
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we will firstly discuss in general terms the characteristics which are
to be noted in these systems, and which distinguish one system from the
next. We will also look at the possible sources of error, since some
systems make a special effort to eliminate such errors. It is hoped

that the review will benefit when approached from this perspective.

1.5.1 System Characteristics

What is moving. It was mentioned earlier that the general problem
of motion and stereopsis is of a moving camera in a moving environment.
This is a much harder problgm than if either were stationary, since al-
most every point in the scene will appear to be moving. With a station-
ary camera, any motion can be attributed to the intrinsic motion of the
object. This is the case which is usuvally studied. If the camera moves
through a stationa;y environment, (or in stereopsis), éhen most points
in the scene will appear to move, but their motion will be a function of
their depth; if the velocity of the camera is known, theﬁ the depth may
be deduced exactly. In the case of gencral motion it is impossible to
assign either depth or velocity to any point in the scene, although the
ratio depth/velocity may be found. The optics and eguations involved
in the case of a linear retina are discussed in Chapter IV.

Number of frames. In change detection and stereopsis, only two
images are usually compared, while motion will be tracked in a long
sequence of frames. Having more than two frames in sequence can be
advantageous for two reasons. Firstly, any movement detected between
frames N ané N+1 can be extrapolated unéet thé assumption of no or slow

acceleration. 1In this way, an immediate ballpark estimate is deduced
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for the locations of corresponding points in frame N+2, thus cutting
down search time. The other advantage is that any mistakes made in
initial matching between frames can be spotted by their failure to allow
consistent extrapolations over time. These mistakes cannot easily be
detected with only two frames.

Numeric vs. Symbolic. The data produced by commonly used digitiza-

tion techniques is in the form of arrays of numeric values coding the
light intensity projected to the ‘retina'’. The data may undergo trans-
formations, but as long as the topological structure is preserved, the
format remains the.same, and is known variously as ‘numeric', ‘iconic’,
and 'retinotopic'. These terms all imply chat‘the location in space or
on the retina of a point resulting in a data value is encoded implicitly
by the data item's position in the array. On the other hand, the data
may be represented by a graph- or list-structure; this is known as a
symbolic representation, where coordinates are given explicitly. The
matter of when (if at all) data may pass from a numeric to a symbolic
representation is a subject of on-going debate in the scene-analysis
community.

Parallel vs. Serial. Related intimately to the mode of represen-

tation is the question of whether the computations may be carried out
in parallel over the image. In retinotopic representations, it is evi-
dently possible, and algorithms for parallel computation tend to be
elegant and simple, since there is no.pzoblem of "what do I do next?".
Graphical and other symbolic representations do not lend themselves so

naturally to parallel operations.
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This distinction is also related to the location of control of the
processing. In the retinotopic, parallel case, the control is distribu-
ted, or even non-existent. Symbolic processing, on the other hand, is
usually performed under central executive control. Indeed one of the
cha%a;terisclcs of symbolic processing is the need for back-tracking:
such a concept rarely applies to parallel processing.

Levels of correspondénce. Cne of the basic problems that must be

faced in motion analysis is the extraction of suitable features to
match between frames. There is a range of coﬁplexity of these features.
This range may be characterized by small windows of inte.usity values at

one end, through features such as ‘edges' and ‘blobs’ to regions repre-

‘senting entire objects or large parts of them, at the other. The so-

phistication of the motion analysis required depends upon what kinds of
features are to be matched.

Authenticity of data. Allied to the problem of level of represen-

tation is that of the 'authenticity' of the data. Those systems which
only use simulated data will generally fail to address the problems
(listed below) encountered by those systens working on real data. Use
of simulated data is potentially misleading, sin;e programs which re-
quire points to be present in exactly the same form in all frames (in
which they are visible) may fail miserably when run on real data.

Use of neichbourhood to cuide search. Unless the scene consists

almost entirely of long thin objects - guite a pathological case - it
will generally be true that the majority of the neighbours of any point
in an image beloné to the same object as does the point. Under the

assumption of rigid motion, or even slow deformation, most points in
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the image will move with a vector velocity very s;milar to that of their
neighbours. This is a potential means of greatly reducing the search
effort for matches for these points; this observation is used to vary-
ing degrees by the systems described below.

Qcclusion. If each peoint in one frame was guaranteed to appear in
the next frame, with no extraneous points, then the stimulus-matching
problem would be much less difficult - it would essentially be reduced
to a problem of optimization subject to constraints. Indeed, Ullman
(1978) models the general problem exactly this way. However, with oc-
clusion, the problem is much more complex. Some of the systems we will
meet cannot deal with occlusion in any way. The sophistication of a

system can often be judged by how it handles this important problem.

1.5.2 Sources of Error

There are many sources of error and inaccuracy when dealing with
real data. The more important ones are listed below.

Registration error. This error occurs when the two frames being

conipared are not centered around exactly the same point, with their axes
aligned. This is the predominant problem in change detection, and oc-
curs in motion analysis when the camera jogs, and in stereopsis if the
cameras are not aligned properly.

Perspective distortion. In a perspective projection, points in

space are projected onto the retina through the centre of the lens of
the imaging device. 1In parallel or orthograrhic projection, the lines

of projection are perpendicular to tihe retina. The projections are
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somewhat different, especially at the ceriphery, but these errors are
usually ignored. It should be notec, though, that parallel projection

to parallel retinas is not useful for stereopsis.

Changes in illumination. This problem is of much greater imgor-
tance in change detection, where the chotogragzhs may be taken montas
apart, than in-stereopsis or motion analysis, where they are taken si-
multaneously or within a fraction o a second. The changes can gener-
ally be corrected through density and contrast normalization techniques.

Topological changes. The shape of an object's projection changes

due either to the object's movement, especially rotation, or the cam-
era's movement. These changes are typically kept to a minimum by using
high sampling rates.

Digitization errors. These are generally of two kinds. The first

is due to the quantization of the images, both spatially into rectangu-
lar grids of, say, 256 X 256 pixels, and in intensity, into, say, 64
grey levels. (The frame sampling rate is a temporal guantization.)
The finer the resolution one achieves, the better the performance one
expects to get, but at the cost of greatly increased execution time.
The second kind of error is simply noise, due to random electrical
events, residual images in the camera, and from other sources. Some

techniques exist to reduce these errors. Two particular algorithms are

presented in Chagter II.

e
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1.6 Literature Review

1.6.1 Motion Analysis

One of the earliest instances of motion analysis was in the track-
ing of clouds in satellite photography. The first two papers we will
discuss are concerned with the tracking of clouds under conditions of\
occlusion. Both use idealized models of the clouds. Aggarwal and Duda
(1975) use artificially generated polygons, whose vertices are perturbed
randomly to add some verisimilitude to the problem. Chow and Aggarwal
(1977) digitize scenes of models of clouds and aeroplanes painted in
white on a black background; random digitization errors are introduced
naturally by this method, but the contrast of the figures is such that
there is no problem in finding the boundaries. Both systems therefore
use the same kind of input, so may readily be compared.

Aggarwal and Duda assume that their polygonal objects are rigid
but are otherwise arbitrary. The features they use on tracking these
polygons are vertices; they distinguish two kinds, namely, ‘true' and
1false’ vertices. True vertices are the corners of the original poly-
gons, while falge vertices occur where the polygons intersect. The
angles of true vertices never change between frames (except maybe for
minor perturbations) while false vertices often do. If the length of
an edge segment changes by more than some threshold value, then at
least one of its vertices is false. If the angular velocity of two
gdges incident at a vertex are not comparable, then the vertex must be

false. These observations form the basis of their algorithm, which is
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now briefly described.

An attempt is made to match polygons between frames on the basis
of their real vertices, and the similarity of the shape of the celvgen.
This is not always possible, due to the occurence of false vertices.
Uﬁder the further assumption that at most one topological change occsurs
between frames, vertices can be classified accurately, and polygons
matched. This assumption is not foolprooZ, but is increasingly realis-
tic with increasingly smaller time-intervals between frames. A mocdel is
maintained of the ongoing motion; at each stage the updated model is a
funcéion of the previous frame, the current frame and the current model.
The model allows the tracking of the polygons, and, in fact, permits the
generation of a complete description of a polygon, even if only several
partial views of it were available. The model is used in a predictive
mode to find the match for vertices; two 'consistency conditions' must
be obeyed. (1) Knowing the current estimate of the velocity of a ver-
tex, the location of its match must be within a 'radius of uncertainty’
of its predicted position in the next frame. (2) The angles of a vertex
and its match must be approximately the same.

The primary goal of Chow and Aggarwal (1977) is to rerove the re-
quirements of a) polygonality and b) at most one topological change be-
tween frames. However, to do this, they assume that there is no occlu-
sion for the first frames, so that the program can cenerate for itself
a complete description of the objects. The objects are described in
terms of position, area and principal axes. These are simple, global

features, and are not sufficient for correcting mis-matches, as will be
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seen below. The assumption of no occlusion for the first two frames
guarantees a match between objects, so that their velocity can be ésti-
mated and used in further matching, via a predictive model. This latter
process is rather simplistic. While occlusion takes place, the objects
are assumed to have constant velocity; their positions are predicted,
and as long as the predicted scene matches the actual scene, the program
is happy; when a mis-match occurs, it halts. It has no way of making
corrections to its model under these conditions.

Both of these systems work well under the assumptions listed, in-
cluding the implici; one that the objects can be easily segmented prior
to analysis. It is by no means clear, however, that these assumptions
are realistic. Objects may change topologically, perhaps to the extent
of having holes open up in their interior - clouds in particular may do
this. There is no guarantee of constant velocity, nor on precise limits
on the rate of topological change of images. In the general case, ob-
jects may rotate out of the plane; it is not apparent that systems like
these can be extended to cover general motion.

* The two systems just described require a segmentation of the scene
prior to analysis. We are more interested in systems which use motion
to aid segmentation, which is what Potter (1977) claims to do. For the
first frame he selects for future match one point in ten along both X-
and Y-directions. For each of these points he scans to the left, to
the rignt, up and down until he finds a discontinuity in intensity. The
lengths of the arms of the 'cross-template' so-formed become the de-

scriptor of the point, and these, aleng with the intensity of the cen-
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tre-point of the cross, are the features used in the match. The match-
Process is simply a search for a matching template in the next frame.
Points are grouped on the basis of similarity of velocity.

In the case of finding no match for his templates, Potter allows
his templates to expand and shrink, within certain limits, so that his
system can detect motion in the Z-direction. However, his system can-
not handle rotations, nor is there any capability for dealing with oc-
clusion. 1In looking for the end-points of the arms of his templates in
his software-generated images, he is looking for discontinuities in in-
tensity, which he interprets as indications of parts of the boundaries
of the objects. For his artificial data, it would make more sense to
form complete boundaries by thresgolding the discontinuities in inten-
sity, and dispense with the templates altogether. On the other hand, it
is unclear whether with real data he would consistently find the bound-
aries of an object in the same position relative to its centre, if he
could find them at all.

Some interesting work has been done by Nagel's group in Germany on
analysing motion in real images taken of traffic scenes. They use a
stationary camera, and analyse scenes with 'sparse’ movement. Their
work concentrates on separating the objects from the background. They

make no mention of the occlusion of one moving object by another, and it

is in general unclear how their systems would handle moving objects just

passing close by each other.
Jain et al. (1977) define a 'geopixel®' as a 6 x 4 window on the

image and compute for each geopixel the mean and mean-sguare grey-level.
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They use the maximum-likelihood ratio test between frames to test for
identity of geopixels. If there is no match, they look at the next
frame. If there is still no success, they signal a mis-match. This
process is jterated for N frames. Mis-matched points are clustered, an
enclosing rectangle is é:awn. and the whole procedure is repeated for
the next N frames. Tﬂg rate of expansion of this rectangle gives an
estimate of the velocity of the motion. This is a fairly simple tech-
nique, but seems to be réasonably effective, as far as it goes.
preschler and Nagel (1978) is represented as an advance over Nagel
(1976) in that certain restrictions on the movement are relaxed. They
require that images of a givén moving object ﬁe more similar to each
other than to other moving objects, that images of moving objects exceed
a certain (minimal) size and that there exists a reference frame in
which the image of a moving object does not overlap the image in the
current frame. BY differencing the current and reference frame, two
areas of large grey-value difference are found. The average contrast
of each boundary is found in the intensity image. The larger-valued is
taken to represent the poundary of the object in thevcurrent frame.
(The other is the boundary of its ‘motion-shadow', i.e. where it was in
the reference frame.) Features such as area, perimeter, mean and vari-
ance of intensity, eccentricity and fractional £il} of minimal bounding
rectangle are evaluated for all these 'object—candidaces'. A minimal-
spanning-tree clustering algorithm is used to group the object-candi-
dates; the image of a moving object will agpear as an elongated cluster,

due to slight changes in features from frame to erame. As well as fail-
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ing to deal with‘occlusion, this system suffers on occasion from camera
jitter, which causes prominent edges to arpear in the difference image.
These may be removable by the clustering algorithm, but it seems unlike-
1y that the system could be used directly with a moving camera, since
registration of frames is an implicit assumption in their algorithm.

The main trouble with their algorithm, though, is the reference frame.
Its specification is done manually at the moment. To do it automatical-
1y would require a prior solution to the motion analysis problem!

A rather novel feature is used by Radig.(1978). As well as the
intensity he uses the slope of small windows on the intemsity profile
of the image. He transforms an image into a graph in which the nodes
contain information about the position, intensity and slope of small
windows (equivalent to a 3{D gradient), and in which the arcs connect’.
spatially adjacent neighbours. He filters first by restricting the
ranges of these components, then on the basis of arc-consistency. He
ends up with regions of isolated sub-graphs with internal local consis-
tency, and evaluates features for each region. He next filters by his-
togramming and marking as disallowed values below a threshold. Arcs
cannpt exist between allowed and disallowed nodes, so he then splits the
graphs into sub-graphs and iterates the process.

When the system converges, the sub-graphs remaining represent re-
gions which are to be matched over frame-sequences by similarity of ex-
tracted features. In this way he can track the path of individual re-
tions over time. He attempts a treatment of occlusion, using incomplete

region-sequences not overlapping in time as candidates. He computes the



)

24

similarity of the regions at the tail of the earlier sequence and head
of the later sequence. If they are comparable, occlusion is inferred to
have taken place. This technique only works strictly after the fact,
however. He has no method of tracing what happens during the actual oc-
clusion process - he has no model of occlusion - nor of even knowing for
sure that occlusion is taking place.

Radig's system is computationally very expensive, taking two hours
of computer time for 66 frames covering a time-period of 2 - 3 seconds.
The system of Jain et al. is slightly faster, taking 25 - 30 seconds per
frame, but neither’system can reasonbaly be used in real-time motion

analysis unless tremendous reductions of data and speed-ups of computa-

tion are effected.

1.6.2 Stereopsis

Space exploration, in particular the Mars program, has given rise
to much work in computer depth perception and comparison of pictures.
Some of that work is reviewed here.

Prior to the Viking missions, Levine et al. (1973) did some ex-
periments in depth perception using desert scenes to simulate the Mar-
tian environment. Their goal is to solve the correspondence problem
between points in a stereo pair of images, using one as a reference.

The points which tﬁey choose as reference for the purpose of correlation
are selected on the basis of high cexéure, since there is little poten-
tial information available in regions of uniform texture.

They use an

adaptive correlation window and some heuristic strategies to get effi-
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ciency and accuracy. They let the significant dimension of the window
depend upon the variance at the centre-point, and perform a coarse
search followed by a fine search. The retinal disparity found between
corresponding points gives the depth.

Levine et al. use two significant assumptions to reduce the search
for corresponding points: (1) a "Proximity Assumption” that neighbouring
points in one image will be neighbours in the other, if they belong to
the same object, and (2) an "Ordering Assumption” that points in any row
in one image are in the same order in the corresponding row of the other
image. These are related to the "Continuity Assumption” of Thompson
(1975) : that the (vector) disparity of neighbouring points will be sim-
ilar. Thompson uses this assumption to find the approximate locations
of matches. He also uses correlation and hill-climbing to find the op-
timal match. His program is an extension of Hannah (1974) to which he
has added a scaling technique to correct for perspective distortion.

The system described by Gennery (1977) and Moravec (1977) for ob-
stacle avoidance by robot vehicles is somewhat similar to that of
Thompson's. Moravec describes an interesting technique to reduce the
search for matching points. The algorithm starts with a reduced (aver-
aged) version of the image and the maximum correlation value is found
for all NxN windows in the shrunken image. This procedure is iterated
with images reduced one step (a factor of 2 in each dimension) less each
‘time. The maximally correlating NxN window is expanded to 2Nx2H and
this area is now searched. This préceduxe is very similar in principle

to that of the "top-down" line-finder of Hanson and Riseman (1974). The

3 I3 _h 3 oy 8o

|3



26°

advantage of this technique is that the number of correlations needed

in a typical problem are drastically reduced over any brute-force tech-
nique. It is not clear, though, whsther it is any better than any other
directed searches.

Nevatia's (1976) depth analysis program is unusual in that he uses
a sequence of images. .Just as motion analysis can draw upon the slow
rate of change apparent between frames closely spaced in time, so he
uses a sequence of views taken at intermediate angles. He can track the
path of regions begween consecutive pairs of these images, so the cor-
respondence between regions in the widely spaced initial and final im—
ages are more easily found. Rather than using cross-correlation between
regions, he uses mean-square difference (for purposes of efficiency) and
a2 hill-climbing technique.

A study by Ganapathy (1975) is also concernéd with wide-angle ste-
reo views. His objects, however, are artificially generated polyhedra,
and his match-candidates are vertices. In the light of the general
shape of real-world objects, especially naturally-occuring objects such
as rocks and trees, it is unlikely that his system would have applica-
tion in a robot system. He does perform a limited set of experiments on
real data, albeit generated from polyhedra, but he indicates that much
work in this area is still to be done.

Quite different from any of the approaches already described are
the neural models of Trehub (1978), Dev (1975) and Nelson (;975). Dev
and Nelson proposed rather similar models using facilitation and inhibi-~

tion between binocular units. Dev's model will now be briefly de-
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scribed. Using the ideas of Julesz (1971) she constructed a cooperative
model for detecting disparity. Her model consisted of five layers of
neural-like elements, representing disparities of -2, -1, 0, 1, or 2
units in the left-right direction. Inter- and intra-layer connections
provided support for adjacent activity within a layer and inhibition be-~
tween the same positions in different layers. Presented with a pair of
stereo, linear, binary (simulated) images, the system would converge
with high activity in those layers in the correct retinotopic positions
to represent the 'objects' at the corresponding depth in space. While
this parallel, distributed system conforms very much to the spirit ex-
pressed in this thesis, there are several problems with it, expressed
well by Levine et al. in their criticism of Julesz:

"....This forms-the basis for an algorithm which is

restricted to inputs which do not contain areas of

uniform brightness, which are digitized into two grey-

levels, and which do not contain excessive differences

in depth. The latter condition is imposed in order

to limit the number of difference fields. Apart from

the severe restrictions on the input data, the main

drawback of this method is that it requires an analy-

sis of the complete set of difference fields, a signi-

ficant task for complicated images with large depth

variations."
Of course, having paréllel hardware would put a completely different
complexion on things. However, for making this kind of algorithm suit-

able for present-day machine vision systems, the three-layer model of

Richards (1971) for those regions in front of, inside and behind the

focal plane, might be appropriate. It might be noted in conclusion that

Marr and Poggio (1976) suggest a cooperative model which is a variant of

the Dev model (see Burt (1977) for a comparison).
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1.6.3 Change Detection

Much of the work {n change detection is from aerial and satellite
photography. The first system we will describe here is that of Quam
(1971) which was used in comparing pictures taken in the Mariner 6 and
7 fly-by missions. Quam's work laid the basis for that of Hannah and
Thompson.

Quam first geometrically normalized the two images to a common
point of view, and then photometrically normalized them to eliminate
differences due to different camera characteristics and different re-
flectances in the écene. In order to perform these normalizations, he
needed accurate geometric models of camera and scene, the photometric
response of the camera, a reflective model of the scene, and finally to
know that some points in the séene.did not move so that the ensuing
cross-correlation might be effective. The next step was registration
by maximizing the cross-correlation between the pictures. In performing
the registration he introduced the concept of 'misregistration vectors',
which were the "predominantly translational alignment errors" after reg-
istration. He termed as 'blunders' the misregistration vectors which
did not fit into any systematic model; these were caused by the appear-
ance of clouds and shadows. He models the misregistration as a poly-
nomial function of position in the image, and for each misregistration
vector calculates the 'residual' as the difference between the empiri-
cal and predicted values. Blunders are removed by finding residuals
which are large and do not cluster with other residuals.

The papers by Lam and Howt (1972) and Henrikson (1972) describe
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change detection systems for aerial photography. Their recuirements are
unusual because (1) the photographs are taken by side-looking radar, and
(2) they need réal-time operation. Their purcose is to let the computer
detect the changes, but allow humans to determine their significance.
After preprocessing, images are registered by correlation, and then dif-
ferenced. Detection of change is simple in this case - objects are
bright against a dark ground. Their registration problem also is often
simple, since most points in their images will not have moved.

Price (1976, 1977) uses a technique for change detection in some
ways similar to the methods used by Nagel's group for motion analysis.
He forms a complete segmentation of the images using Ohlander's (197S)
algorithm. He generates features such as area, location, eccentricity,
orientation, etc. for each region as do Dreschler and Nagel (1978) and
compares each region in one frame with every one in the other. The
matching process is guided somewhat by using a region's neighbours as
part of its feature-description, The best-matching region is considered
to be the corresponding one, even if there is no correct match. The
time taken to perform his change-detection is very large. Even though
‘planning' is used in the segmentation process, 24 minutes is a rather
long time for a single segmentation.

Work is in progress at Bell Laboratories for the efficient coding

of moving picture sequences for transmission and storage. The goal of

‘Limb and Murphy (1975) is to estimage the velocity of moving objects,

so that, for example, they only need send those parts of a picture which

have changed from frame to frame (see Haskell (1375)). The calculate
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but for the extraction of units representing physical entities, such as
a very simple approximation to velocity using measures called the
edges, on which the correspondence is to be performed. Based upon psy-
“frame difference signal" and the "element difference signal”. The
chophysical observations, he derives a scheme for predicting between
first compares corresponding points between frames, the second neigh-
which points apparent motion will be perceived. He defines the 'affin-
bouring points within one line of a frame. They must assume that all
ity' between potential matches to be, inter alia, a decreasing function
movement is in one direction. 1Indeed, only horizontal motion is mea-
of distance and orientation difference. He then computes the 'corre-
sured directly, while vertical motion is measured statistically. Frames
spondence strength' between points, which is a function of their affin~
are delayed in order to make comparison between successive frames pos-
ity for each other, and for neighbouring points. The greater the re-
sible. By delaying individual lines as well, and generating a "line
sultant correspondence strength, the greater the probability that motion
difference signal®, they could measure vertical velocity directly, and
. takes place between the points.
hence more accurately. They are concerned with real-time operation and
. He uses real-world constraints to impose structure from motion lat-
have built a system which operates entirely in hardware. However, their
er on, but, unlike us, he does not use these constraints to help form
system cannot cope with rotations or multiple motions, much less occlu-
. ' the correspondence between two frames to predict that between subsequent
sion. ’
frames. His algorithm is not iterative, however, but computes the cor-

1.6.4 _Some Psychophysical Experiments raspondence in a single pass. It would appear that this is because he

observes that in psychophysical experiments with just two or three dots,
There are many points of contact between our ideas and those of
the movement of just one dot does not influence the movement of another
Ullman (1977, 1978) and Stevens (1977). We will now briefly describe
(Ullman (1978)). He attempts to generalize from this, but it is not
the work of these two researchers, and make further references at appro-
clear to us that the same effects would be observed from a large field
priate points during the rest of the thesis.
of dots, or from just a few dots but much closer together.
Ullman's (1977) thesis was directed at the problem of interpreting
In Ullman (1978) he uses a different approach to forming the match-
the motion and three-dimensional structure of a collection of moving
es, namely that of linear programming. He employs the ideas of paralle-
dots, observed at discrete times. He obtains the result that three
lism, locality, and simplicity, making his paradigm similar to ours.
frames”and five points (belonging to one object) are usually sufficient )
His algorithm requires, however, that one processor be assigned to each
to infer the motion of the object. To do this, however, he must find .
. element in the image. Although we do just that in the initial develop-
the matches of the points between frames. He argues against correlation,
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mant of our algorithm MATCH, we find we can dispense with this con- .
straint. His method is to minimize the sum of the displacements of the
elements over possible matches, and he proves that in the case of trans-
latory or radial 'flow', the correct match minimizes the total displace-
ment of elements over 1 - 1 mappings. He says nothing about rotation,
however; as we will see, our method handles rotation with no added com-
plexity.

Stevens (1977) observed that by superimposing a pseudo-random dot
pﬁttern that has been rotated, translated or expandea, over the original
pattern, one percelves circular, linear or radial Moire-like patterns.
These patterns were found to have locally parallel structure, from which
it was deduced that the human visual system is performing a correspon-
dence between these dots in these situations. These percepts were found
to be relatively independent of the dot density, but did depend on the
amount of movement. He found experimentally that parallel groupings
could be formed if, on the average, no more than two or three 'incorrect'
dots were nearer a given dot than the 'correct’, corresponding one.

He used the construct of 'virtual lines' as a representation of the
local structure. These lines were drawn from a given dot to all other
dots within a small circular neighbourhood, whose size is a function of
dot density. His goal was to select one of these on the basis of its
similarity of orientation to that of the local structure of the pattern.
All of the virtual lines were considered, but the shorter ones were
weightéd more.

He computed the local structure by constructing a histo-

gram of orientations of these virtual lines in a small neighbourhood.
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The peak of the histogram corresponded to the orientation of the pattem
locally, and for each dot the incident virtual line which was closest to
this orientation was chosen.

In further experiments, he superimposed two differently transformed
copies of a pattern on itself. The original ané one of the copies were
of the same but variable intensity, the other of fixed, bright intensi-
ty. When all three patterns were of the same intensity, the locally
parallel structure was difficult to perceive. When the elements of the
variable pair were of lower intensity than those in the third pattern,
then these were perceived as forming the Moire-like patterns, the bright
dots forming the background. It may be concluded that the visual system
will try if at all possible to form locally parallel pairings of points,
with a preference to matching points of similar intensity. This may be
generalized to a preference for similarity of any appropriate feature,
such as orientation in the case of edges.

Some relations between Stevens' work and our own will now be out-
lined. As he does, we will attempt to match points in a manner that
produces locally parallel directions of match, and we use the influence
of the local neighbourhood of a point to do this. Our optic flow repre-
sentation may be likened to his use of virtual lines. We favour matches
between nearest neighbours, as does Stevens, but we compute 'distance’

in a three-dimensional space composed of one feature-based and two sp;—
- tial dimensions, whereas he oﬁly suggests using similarity of intensity

in his histogram computation, but does pot actually put it into effect.

While Stevens forms a histogram of orientations and computes the
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maximun in a dot's neighbourhood, we will use a weighted average. Al-
though different quantitatively, it may readily be appreciated that
these techniques give qualitatively similar results. We find the aver-
aging method more elegant due to its lack of discontinuity.

Stevens concedes that his method is not very effective for consid-
erable displacements between dots. In fact, were he to move rectangular
grids of points by multiples of the grid-width, a paradigm we use ex-
tensively, he would find that his algorithm fails miserably. This is
presumably largely due to the fact that, like Ullman, his algorithm is
non-iﬁara:ive. and does not let information propagate outside of small

ﬁeighbouxhoods.
1.7 Summa

We have seen many different systems using the various techniques of
pixel-differencing, cross~correlation, vertex-matching and region-match-
ing. Some handle occlusion, some do not. Differing restrictions are
placed on the degrees of freedom of the motion permitted. Most motion
analysis systems used estimated velocity from previous frames to predict
positions in succeeding frames, though only a few used similarity of
neighbourhood motion to constrain the search.

The system we will describe in Chapter V will have the following
form. A very fast, partial segmentation will be performed by extracting
features such as edges and corners. ﬂatching will take place via a Te-
laxation procedure which uses two consistency gonditions similar to

those of Aggarwal and Duda (1975). The internal representation or model

.
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of the motion will be a vector velocity field originating from Gibson's
idea of Optic Flow. The vectors here correspond to Quam's misregistra-
tion vectors, and indeed we will £ind that 'blunders' occur in motion
too, only we will use them as an indication 6! occlusion. We can find
regions (ecbjects) by looking for discontinuities in the velocity field,
but will not go so far as modelling occlusion at the 'level' of object.
We will instead find occluding boundaries and so be able to segment all
of our moving objects. We will use predictions from previous frames to
guide analysis of successive frames, thus incurring a greatly reduced

computational cost per frame.



CHAPTER II

SEGMENTATION OF STATIC SCENES

Introduction

We describe in this chapter a set of Programs that are used to per-
form a boundary analy;is of static images of outdoor scenes. Each pro-
cess can operate in parallel across the whole image, since the value
computed at a pixel is a function only of a small neighbourhood around
it. Due to the modular nature of these programs, they can easily be
"unplugged” and replaced by more sophisticated versions, or left out al-
together if desired. The relaxation process in particular (described in
Section 2.2.4) was designed to be a minimal functional implementation of
the ideas behind the algorithm. A more sophisticated elaboration of
these ideas is described in Hanson and Riseman (1978a). The techniques
described in this paper have been developed for use in the VISIONS scene

analysig system (Hanson and Riseman 1978b) .

Overview of the System

The goal of the system is to form a segmentation of a static image,
that is, to delineate the boundaries of the objects in the scene. This
is done via differentiation using edge masks, a process which finds
discontinuities in the intensity image. Prior to this stage, however,
preprocessing is required to clean up the raw data somewhat. After dif-
ferentiation, a relaxation process will consolidate the edges formed on

the basis of local consistency requirements. Individual edges are then
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linked together during the binding stage to form extended line segments.
Finally, properties of these line segments such as confidence are com-
puted, allowing removal of low-confidence 155&5.

Conceptually there are four stages to our line-finding process.
Each of these is implemented as one or more computatiornal modules.
(1) Preprocessing: this stage cleans up the raw data.

(la) UNMIX cortects.fot "mixed pixels" introduced in digitization.

(1b) CONDITIONAL AVERAGE smooths out random noise and fine micro-
texture.

(2) Generating the Edge Representation: this is the heart of the whole
process.

(2a) DIFFERENTIATION finds the apparent edge-strength at each
point in the image.

(2b) SUPPRESSION removes "multiple edges" formed by spatial dif-
ferentiation of boundaries which are composed of a gradient:
across many pixels.

(2c) RELAXATION drives the probability of an edge ?t each point to
1l or 0 on the basis of local support or inhibition.

(3) Grouping: this stage joins edges into line segments and finds fea-
tures of these lines.

(3a) BIND joins contiguous edges together to form line segments,
and each line segment is given a unigue label.

(3b) FEATURE EXTRACTION produces features such as length, contrast
and location for each line segment.

(4) Postprccessing.

(4a) TRIM1 removes selected line segments (e.g. short, low con-
trast lines).

(4b) CONFIDENCE generates a confidence for each of the remaining
segments that it actually is a meaningful line segment.

{4c) TRIM2 removes low confidence lines by thresholding on their
confidence level.
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2.1.1 UNMIX (Step la)

. . Figure 2.1. The "mixed-pixel"problem. 2.la: Digitization grid super-
The first process is deisgned to eliminate what is known as the imposed upon a portion of an image. 2.lb: Intensity values recorded in
" : ) this grid. 2.lc: "UNMIX" correction applied to 2.1b.
mixed-pixel” problem. This problem occurs whenever images are digi-
tized, and is due to the fact that boundaries in the image will not in
general fall in register with the digitization grid. Thus, the inten-

sity recorded at a pixel might overlap two regions, and therefore repre-

=
-

sent a weighted average of them (see Figure 2.1).

The procedure must test to see if a two-step intensity gradient oc-
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curs at the same place in all of the three colour images. If it does,

then a mixed pixel is assumed to have been formed (of course this as-

sumption might not be correct and then errors would be introduced). It
is consequently "unmixed" by assigning to it the values of its nearest
neighbour along the direction of the gradient. This has the effect of Tigure 2.2. Neighbourhood considered in "CONDITIONAL AVERARCGE",

shifting the boundary by a fraction of a pixel (see Figure 2.lc).

2.1.2 CONDITIONAL AVERAGE (Step 1b)

The second process is a variation of a smoothing process described

in iev et al. (1977) which helps eliminate noise in the image. 1In this
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process, the intensity value at each point is replaced by the average of
itself and its neighbours, except that if the difference between the
value of the point and a neighbour is Greater than a certain value T,
then that neighbour is not included in the average.

F;r the neighbourhood {Ni) of the point Ny in Figure 2.2, its up-

dated value is given by:

where S = {N, : lNi - NOI < T} and n is the cardinality of S. Note that

S always contains N This procedure has the following effects:

0°
(1) Within a homogeneous region, it smooths out small amounts of
noise (small relative to T).

(2) Near a region boundary whose contrast is greater than T, it
includes no points across the boundary in the average. This
allows a smoothing of the points on either side of the bound-
ary without blurring the boundary as a nondiscriminatory av-
eraging process would do.

(3) Within an intensity gradient, the Process averages a point
with roughly as many other points that have small intensity as
greater. This will smooth noise within the gradient, but it
will not destroy the gradient.

(4) In a textured region, if the texture elements differ little in
intensity (relative to T), they will be smoothed into a homog-~
eneous region. If the texture elements differ by more than T,
then no averaging will occur, except perhaps within the tex-
ture elements themselves.

After experimental testing of the differential operator (to be de-
scribed later) on images that have selectively undergone the UNMIX and/

Or CONDITIONAL AVERAGE passes, it wasrsébjectively concluded that an

application of both processing techniques gives the cleanest results

(i.e., no loss of any important lines, or addition of extraneous ones).
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Examples of the combined use of these preprocessing stages on intensity

images are shown in Pigure 2.3,

2.2 sStage 2 - Generating the Edge Representation

Representation of the Edge Imace

The input consists of an array of numbers representing the light
intensity of each position in the image. Since each of these pixels is
to be in some region, it is reasonable to constrain the boundaries of
regions to fall only between pixels. Representing the image on a rec-~
tangular grid and constraining edges to lie between pixels imposes a
boundary that consists entirely of horizontal and vertical edges (as in
Brice and Fennema 1970; Yakimovsky 1976). This greatly facilitates fur-
ther processing, in particular the relaxation phase described in 2.2.3.

We are attempting to form segmentations of static images via bound-
ary-based analyses. To find the boundaries we will ge loéking at dis-
continuities in the gray-scale in the images. We will now discuss
briefly some considerations affecting the level at which the analysis
will take place. By 'level' is meant how local or global a view is
taken when extracting edges. A more global approach might attempt to
extract entire boundaries, perhaps by a least-squares technique, while
the more local approaches would sxtract the edge segments or components
of the boundaries, which must then be joined together to form extended
boundaries.

The overriding consideration in our case is that we are examining

local, parallel techniques for scene analysis. In particular, we are

oy 3 ) Doy oY
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Figure 2.3, Preprocessing. Figures 2.3b and d show the results of ap-
plying UNMIX and CONDITIONAL AVERAGE to the images in Figures 2.3a and
c respectively. HNotice the sharpening of most of the boundaries and t?e
smoothing of much of the texture, especially in the roof of the house in

Figure 2.3b.
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using analyses which 'see' through windows on the images as small as
3x3 (or 5 x5 in the case of UNMIX). This leads us to the use of lo-
cal edge-detecting mechanisms (masks), and local reinforcement tech-
niques (relaxation) discussed in this section and the next. 1Indeed, the
masks we will use are very small, taking into account only the most im-
mediate neighbourhood of the edges concerned.

While this.(temporaty) neglect of other nearby information might
seem to have serious drawbacks, it should be remembered that we are
dealing with relatively low resolution imageé (256 x 256). A 1 x 2 mask
applied to such an image is equivalent to an 8 x 16 mask on a 2048 x
2048 image. This latter size of mask is wholly unacceptable in our
case, since it would cover an appreciable amount of the image, over
which there is more useful-information than could be captured using such
masks. Indeed, the number of possible edges or combinations of them
within an 8 x 16 window (and hence the number of masks needed to detect
them) is too large to contemplate for current computing equipment.

Our data is digitized on a rectangular grid, and we find it most
convenient to restrict our edges to lie along pixel boundaries. Thus
line-segments, whatever their global orientation, will appear locally as
a series of horizontal and vertical segments. For example, a line of
orientation 73.5° (arbitrarily chosen) will appear as the zigzag line
shown in Figure 2.4 where the ratio of vertical to horizontal segments
tends to 3.38 = tan 73.5°.

It is clear that, at a local level, it is not possible to deduce a

line's orientation except very grossly. That is, a line's local orien-
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Pioure 2.4. Digitization of a Slanting Edge. This figure shows how a
line oriented at 73.5° to the horizontal would appear in a digital repre-
sentation (heavy lines). The ratio of vertical to horizontal segments
tends to 3.38 = tan 73.5°.
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tation (horizontal or vertical) is not a gocd determinant of its global
orientation. This idea influenced the edge relaxation process described
in Section 2.2.3, where parallel or perpendicular continuations of edge
segments are considered equally acceptable. With higher resoluticn, im-
ages and larger edge masks capable of determining the or;entations of
lines more accurately, the local orientation of the lines will play a

more important part in the relaxation process.

2.2.1 DIFFERENTIATION (Step 2a)

Differentiation is the most drastic transformation that the data
undergoes, so it needs careful attention. Ideally, edges syould be
placed only.between regions that differ with respect to some feature
(in our case intensity), and nowhere else. In practice, problems occur
due to texture within a region, blurred edges, gradients, etc. However,
our simple preprocessing of the data will reduce the impact of these
problems. Let us consider the three cases separately.

(1) Texture within a region. Fine low contrast micro-texture will
have been largely eliminated by the conditional averaging process. Very
distinct texture elements of high contrast will be prominent, and so
will produce edges. At this point it is not tbe task of the differen-
tiator to determine whether the edges are boundaries of texture elements
or the boundaries of a textured region. Texture edges may be removed by
a subsequent process which eliminates short and/or low contrast bound-
aries, or one that detects texture patterns if necessary. This will be

performed when more reliable glcbhal infcrmation {s available. Alterna-

33 oy o3 oi_3 t_3 3
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Figure 2.3. Preprocessing. Figures 2.3b and 2.3d show the results of
applying UNMIX and CONDITIONAL AVERAGE to the images in Figures 2.3a
and 2.3c respectively. Notice the sharpening of most of the boundaries
and the smoothing of much of the texture, especially in the roof of the
house in Figure 2.3b.
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Figure 2.22. Edge images which are used to compare the two confidence
measures described in the text. In figures 2.23 - 2.25 these images are
shown thresholded at different levels. Due to the different scales
produced by the two measures, an exact comparison is impossible, but

sequences of comparable threshold values were chosen for the two
algorithms.
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Figure 2.23. Successive thresholdings of the edge image in Figure 2.22a.
Figures 2.23a - 2.23d show line-segments with statistical confidence
measures under successively decreasing thresholds. Figures 2.25e -

2.25h show the same with heuristic confidence measures.
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Figure 2.24. Successive thresholdings of the edge image in Figure 2.22b.
Figures 2.24a - 2.24d show line-segments with statistical confidence
measures under successively decreasing thresholds. Figures 2.24e -

2.24h show the same with heuristic confidence measures.
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Figure 2.25. Successive thresholdings of the edge image in Figure 2.22c.
Figures 2.25a - 2.25d show line-segments with statistical confidence
measures under successively decreasing thresholds. Figures 2.25e -

2.25h show the same with heuristic confidence measures.
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tively, texture regions may be clearly defined with the aid of a reyior-
growing process. (See Hanson and Riseman 1974 and also Section 5.5 be-
low for a discussion.)

(2) Blurred edges. Many of these will have been corrected (or re-
duced) by the "UNMIX" process. Some of those that were introduced
through noise or some other means and were not corrected will give rise
to two adjacent parallel edges; ;ane of the pair will be eliminated

through SUPPRESSION.

(3) Gradients. This problem is a more general version of (2),

where the change in intensity occurs over several pixels. One procedure

for detecting gradients is to use a hierarchy of i:hérea'sing-sized masks B

(Riseman and Arbib 1977; Hanson and Riseman 1974; Marr 1975; Rosenfeld

and Thurston 1971). While this pfocednte can be shown to work in simple
cases, it is difficult to make it work in general. Many masks of dif-
ferent sizes at varying distances from a boundary can detect that bound-
ary, and it is difficult to organize them consistently. In addition

. i . Figure 2.5. An example of a l-pixel-wide region that is intermediate
genuine gradients are indistinguishable in a digitized image from three in intensity between that of its neighbours. The grey strip is a real

or more parallel one-pixel-wide regions with intensity monotonically region, and not a gradient.

varying across them. For an example refer to Figure 2.5. Since there
is no way that this distinction can be made without using very high-
level knowledge, the system will treat all such cases as gradients. We

will accept the fact that such one-pixel-wide regions will be lost.

The Differentiation Operator

The standard technique for differentiation is to convolve edge
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masks with the image. It can be genéralized to apply a set of masks,
and to compute the ocutput as some function of the results of these
masks, often the maximum response.

For sharply defined boundaries, the simplest mask possible is all
that is necessary (see Figure 2.6a)., We will call this a 1 x 2 mask.
In this and subsequent diagrams of masks, a héavy line indicate; the
edge position to which a mask's output is associated. On long straight
boundaries a better response might be achieved using a 3 x 2 mask (see
Figure 2.6b), since the information from three 1! x 2 masks in a line is
used to average out the presence of occasional noise peints. However,
the relaxation processes that follow should be able to f£ill in such an
edge, and we believe it will render the benefits of the 3 x 2 mask un-
necessary; its limitations are described below.

Diagonals and corners can be detected by using diagonal masks (Fig-
ure 2.6¢). This mask might be used in the computation of the edge
strength of a vertical section of a diagonal. Note that application of
this mask alone would give a positive response when applied to a hori-
zontal edge (see Figure 2.7a and 2.7b).

Therefore, the difference between its output and that of its mirror
image should be used. This will give strong response to diagonals, but
not to horizontal or vertical edges. Other masks may‘be used to detect
gradients; for example, the mask depicted in Figures 2.6d and 2.6f can
be generalized into a hierarchy of mask sizes (Hanson and Riseman 1274;
Marr 1975).

The more varied the collection of masks, the more guarantee there

2.6a
RR
RN
2.6¢ 2.6d
B
= B i
3
2.6e

2.6f

Figure 2.6. Typical masks. 2.6a. 1 x 2, 2.6b: 3 x 2 straight,
2.6¢c: 3 x 2 diagonal,2.63: 3 x 4, 2.6e: exranded 3 x 2, 2.6f: ex~
panded 5 x 2.
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Figure 2.7. 2.7a shows a 3 x 2 diagonal mask on a horizontal boundary
between two regions. 2.7b shows the output of this mask (if used above).
The response is seen to be (20+20+5 - (5+5+5))/3 = 10, which is sig-
nificant, since it happens to be 2/3 of the difference between the re-
gions. 2.7c shows a 3 x 2 straight mask overlapping the corner of a
dark region. 2.7d shows the spur procduced by this mask and a similar
horizontal mask in a neighbouring position.

S1

is of detecting the edge. However, using large masks has unfortunate
consequences in positions where no edge is desired. Figure 2.7c shows
a 3 x 2 straight mask superimposed upon a corner of a region. 1In this
position there will be a response, albeit weak, giving rise to a "spur"
in the differentiated version. A horizontal mask will cause the same
problem, giving a result as shown in Figure 2.7d.

Larger masks will give more and longer spurs, which cause serious
problems. During relaxation, it is possible for them to grow lines
where none ought to exist; if they are close to other spurs formed simi-
larly, they can get linked together during grouping processes. The ra-
sult of the whole process begins to get quite ill-defined.

A comparison of these different combinations of some of these masks
is presented in Figure 2.8. It can be seen that the 1 x 2 gives fairly
good results; the absence of spurs is quite noticeable in contrast with
some of the other masks. For this reason, we decided to use a simple

1 x 2 mask as our differentiation operator.

2.2.2 SUPPRESSION (Step 2b)

The weakness of a 1 x 2 mask is that it will be prone to missing
boundaries of wider gradients. However, most of the boundaries in the
several scenes examined in this paper were detected. Of course, the
problem of gradients still must be dealt with since tge system will be
blind to edges, such as wide shadows on a cylindrical surface. Ideally,
the total strength of the wide gradient edge ought to be collected

(Riseman and Arbib 1977), which is the goal of employing masks of in-
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2.8b

Figure 2.8. Effects of usinc large masks. Figure 2.8a shows a portion
of the house scene of Figure 2.3b differentiated using a 3 x 2 mask.
The spurs that are so prominent here are not produced by a 1 x 2 mask,
as shown in Figure 2.8b.
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creasing size. Rather than deal with some of the problems discussed in
the last section, here instead we seek means to suppress multiple paral-
lel indications of edges.

While the UNMIX procedure will eliminat; some narrow gradients,
others will inevitably remain and give rise to parallel maltiple indica-
tions of the same edge. These can be removed by what is known as multi~
ple edge suppression (Riseman and Arbib 1977). Consider the image in
Figure 2.9a representing brightness, and its derivative in 2.9b repre-
senting the strength of the gradient. The suppression technique works
as follows: consider three pixels in a vertical line as in Figure 2.10.
Let p, g, r be the horizontal gradient at the lower boundary of these
three cells. If it happens that either

la| = |«
or

lal < lol
with q the same sign as r or p respectively, then q is set to zero. A
similar operation is applied to vertical gradients in a horizontal row
of cells. Hence, in Figure 2.9b the row of 10's will be set to zero,
resulting in Figure 2.9c. This type of suppression is restricted to the
cases where the pair of edges have the same gradient sign. Therefore,

in Figure 2.10 the suppression process does not remove either of the

boundaries of the one-pixel-wide region.

An improved version of the SUPPRESS procedure requires an increase
in the values of the local maxima of gradients by the sum of those val- -

ues that were suppressed in a direction perpendicular to the gradient.
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Figure 2.9. 2.9a
differentiation.
2.9d the top line

shows typical intensity values. 2.9b shows 2.9a after
In 2.9¢c the top line in 2.9b has been sugpressed. In
in 2.9b has been suppressed and its strength added in

to the bottom line.

Figure 2.11.
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2.1la: A light strip on a dark backgound. 2.11b: The
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mhree horizontal edges in a vertical column (see text).
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Thus in Figure 2.9b, the 10's will be set to zero, and the 15's will be
set to 25 as in 2.9d. This more accurately reflects the strength éf the

boundary since it is between regions of intensity 15 and 40.

2.2.3 _ RELAXATION (Step 2¢)

The edge strengths produced by the differentiation process depend
upon the local contrast in the image. Weak edges may arise from low-
contrast boundaries, gradients extending over many pixels, or from tex-
ture internal to a region, or indeed from noise. The output of the dif-
ferentiation process is thus usually far from being clean, If the
strengths of edges are viewed as probabilities, or confidences, of éhe
existence of edges, usually few of them would be considered to have
probabilities of 0 or 1. An edge probability that is neithe¥ Onor 1l
effectively is an ambiguous interpretation of the entity concerned.
However, the local context around each edge contains information for up-
dating the probability so that ultimately the ambiguity will be reduced
and interpretations will be locally consistent. A relaxation process
may be used to deate these confidences in parallel. We will firstly
discuss what is meant by relaxation.

Let X = (xi) be a set of units corresponding to features of a sys—
tem M, and let S = (51} be a (possibly infinite) set of states that the
X might individually assume. Let £: X + S be an assignment of states
to the xi. Now, if M is a physical system, then the laws of physics
will determine whether f is globally consistent, that is whether the

assignment corresponds to some physical reality. However, the set of

-3 -3 3 3 3 {3 _3
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under the general description of relaxation given above.
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such mappings Sx may be so large as to defy directly testing whether a
fiven f belongs to the subset of ‘realistic’ mappings.

The nature of M may result in certain relationships amongst subsets
of x.. These relationships too will be subject to real-world constraints.
Thus if xi and xj obey a generalized adjacency relation ﬁl.e. they in-
teract directly) then although individually they may assume any values
of S, as a pair they are restricted to a certain subset of 52. Testing
the validity of an assignment of states to just two (or some other small
number) of the units may be computationally éeasible, whereas the test-
ing of global consistency is not.

In order to take advantage of these local conditions, techniques
known as relaxation processes have been defined. 1In such a process, the
assignment of states to-units is performed so that all local constraints
are satisfied. This is generally done in an iterative manner, where in
some sense each unit 'closes in' on its final state. A point of faith
in all applications of relaxation is that local consistency everywhere
will guarantee global consistency. In those cases where the local con-
straints are well-defined and accurately reflect all possible physical
situations, this tends to be true, but in more complicated cases, such
as scene analysis, global consistency is by no means guaranteed. In-
deed, there may even be no guarantee of convergence.

We will look now at three different paradigms, all of which fall
They differ in
the main by the kind of states that may be assumed in the units x, in

i

the problem, and in the way these states are changed from one iteration

3 3 'y Lad 3 3 &
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to the next.”

The first problem we will discuss is that of the numerical soiution
to simultaneous equations with large numbers of var%ables. In fact, it
was from an early solution to such problems that the method got its
name (Southwell 1935). Here the x are the variables, and s; the real
nurbers. The basic operation (ignoring modificatidns such as over-
relaxation) is as follows. 'Reasonable’ initial guesses are made for
the x,. One variable, say * is adjusted so that the first equation

i
holds exactly. A second variable, say Xy is then adjusted so that the

second equation hoids exactly, using the new value for xl. This process
is continued cyclically until all the discrepancies or 'residuals‘ are
within certain tolerances. The individual equations correspond to the
'local' constraints. However, since all variables may appear in any
equation, the constraints are in some sense global. It is for this rea-
son that, if the equations are neither under-determined nor ill-condi-
tioned, this kind of relaxation usually does find the unique solution.
In Chapter V we examine a variation of this application where (1) only
a small subset of all variables take part in each equation, so they may
truly be said to be local, and (2) the updating is performed at all
units in parallel.

The second method to be discussed here is not usually known ag re-
‘laxation, but as it conforms to the general description given above, it
will be included here. In this instance, S is the power set of some set
T, say, of labels, The goal is to associate a unique label of T with

each x. Initially, however the association is made with a subset of T.
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As the process proceeds, candidates are discarded according to the local
constraints. The method is thus simply an iterative constraint-satis-
faction process. Two examples of its use will be mentioned. In their
Interpretation-Guided Segmentation (IGS) sys£em, Tenenbaum and Barrow
(1976) initially associated an entire set T of object-descriptors with
each pixel in an image. By imposing certain spatial adjacency con-
straints they were able in most cases to eliminate all but one label for
each pixel. Waltz (1972) used a similar approach for determining the
3-D interpretation of a collection of polyhedra by examining constraints
on edge- and vertex-types.

The third type of relaxation to be covered here is that of Rosen-
feld et al. (1976). In their scheme, the states are n-tuples of real
numbers (pl""'pn)' where n is usually small, say in the range 2 to 10.
There will be an associates set A of n 'target-states' or labels Xi'
where Y represents the probability or confidence that Xi is the correct
state of the unit concerned. The p; are therefore usually in the range
0 ~ 1, and in each n-tuple they sum to 1. The updating takes place on
the basis of compatibility of labels. This compatibility is expressed
in the form of pre-defined 'compatibility coefficients' between labels
on interacting, i.e. adjacent units. This kind of relaxation is useful
in edge-detection techniques for scene analysis, since at each point in
the image it may be assumed that either no line, or a line at one of a
small set of orientations may exist. The local constraints manifest
themselves in terms of local continuity of line-seghents (and in some

applications continuity of derivative). We will now look at this appli-
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cation of relaxation to scene analysis in more detail.

The set of labels A can be a sat of edge-descriptors, such asl“hor-
izontal edge", "vertical edge", etc., and will typically include a spe-
cial label, the "null edge" label, which is an assertion that there is
no edge at that point. A is chosen so that the labels are mutually ex-
clusive, since it is desired that ultimately one lahel will be present
with probability one, the others with probability zero at each point.
The labels may be regarded as competing at each position in the image
during relaxation. 1In this process, each probability for every label at
every position is ;hen updated in parallel according to its compatibil-
ity with the labels at neighbouring positions (in some predefined
neighbourhood). Under quite restricted conditions convergence can be
guaranteed (Zucker et al. 1976), although not necessarily to any mean-
ingful glebal interpretation.

A consideration of the relaxation model described in detail in
Rosenfeld et al. (1976) (and summarized above) leads one to conclude
that the heart of the scheme is in the setting of the (many) compatibil-
ity -coefficients. Not only are there many of these which need to be
set, but due to heavy interdependence of effects there is no direct cor-
relation between the setting of an individual weight and the perfor-
mance of the system. Thus, tuning can be very difficult, since it re-
quires optimization of many variables simultaneously. Furthermore,
there is no guarantee that it is possible to set weights such that all
the desired effects can be achieved simultaneously. while it is fairly

straight-forward to set the weights so that some of the more obvious
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cases are taken care of, there is rarely enough leeway to adjust them so
that the more “awkward" cases, such as when part of an edge's neighbour-
hood supports it and the other part inhibits it (case 0-1 described be-
low), are managed correctly. Indeed, it is difficult to determine where
the system is failing, or how it is achieving its results.

It appears that one source of these difficulties arises when the
updating process employs a single formula that is used to take care of
the various very different cases that arise. 1In the next section, an
alternative scheme is proposed which will deAl with each of the afore-

mentioned problems separately, in a clearly structured manner.

A Different Representation for Relaxation

In the scheme just described, several labels are competing for each
position in the image. Thus for a point on a diagonal boundary, both
horizontal and vertical labels will be competing. In our representa-
tion, we can allow both labels to coexist at a pixel since we are plac-
ing edges at interpixel boundaries, not on top of the pixel. Therefore,
at each vertical pixel boundary the only labels we need to consider are
"vertical edge" and "no edge", and similarly for horizontal edges. In
this way, the set of two probabilities at each edge location
{Pi(A)Il € A} can reduce to a single parameter Pi' The probability of
an edge at position i is Pi' while the probability of the null label "no
edge" at position i is 1 - Pi. Relaxation is very much simplified as a
result of this representation.

We will use the notation of Figure 2.12 to describe the edge-con-

Py 3 'y L ) 3 3

(i



63
62
figurations under consideration.
An open rectangle will represent the edge to be updated,
a dotted line will represent an edge position with no edge present,
a thick solid line the presence of an actual edge, and
a thin solid line an edge of undermined strength.
Now let us describe the algorithm. Associated with each edge-posi-
——ee = o ¢
tion will be a value indicating the probability or confidence that an
2.12a 2.12b
— edge exists at that position. Every edge-position has two end-points
e
b 9 at which that edge could continue, and every end-point will be classi-
— € L fied as one of four "vertex-classes" according to the strengths of the
2.12¢ 2.124 2.12e incident edges. The vertex classes of ‘the end-points of the edge-posi-
tion under examination will then determine how the edge-strength is to
be updated.
Cases for Updating Edges
An iterative procedure for updating the probabilities is described
Figure 2.12. Notation. 2.12a: Edge position with no edge. 2.12b: below. We will denote the configuration of continuing edges at an end-
Edge position with edge. 2.12c: Edge to be updated. 2.12d: Edge of
unknown strength. 2.12e: Configuration of edges around central edge e. point by an integer n in the range O to 3, representing the nurber of

such edges in the pattern. Recall the discussion of Section 2.2 in
which we saw that the local orientation of an edge was a poor determi-
nant of the edge's global orientation, and that edges of all orienta-
tions consist of sequences of horizontal and vertical segments. Failing
.any additional information, we will suppose that parallel and perpendic-
ular continuations of an edge are equal}y likely. A configu:gtion of n

edges at a vertex of edge e will be considered equivalent no matter
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which of the three possible edge positions to that side of e that they
take. These four equivalence classes of continuing edge patterns are
depicted in Figure 2.13.

Now it will be remerbered that few edges are present or absent with
any certainty. Therefore the usual case is that each equivalence class
has a probability of being true which is a function of the probabilities
of the individual edges. The determination of which classes, or vertex
types are present, computed as a function of the probabilities of the

three edges to either side is now discussed.

Computation of Neighbourhood Patterns

We would like to classify the configuration of edges to each side
of e as one of the four vertex types of Figure 2.12a-d. Consider one
end-point, say the left one, in Figqure 2.12e. We will assume that the
numerical values associated with edges are in the range 0 - 1, repre-
senting probabilities of the presence of an edge.

Since we are treating perpendicular continuation as equivalent to
straight-line continuation (i.e. a and ¢ have exactly the same effect on

e as does b), we can assume without loss of generality that a 2 b 2 c.

Assuming independence of the edg (unfortunately, often a bad as-

sumption), a probability-theory based argument would give for vertex
types 0 - 3:

Conf (type 0) = (1 - ;)(1 - b}l - c)

Conf(type 1) = a(l - b) (L - ¢}

Conf (type 2) = ab(l - c)

-3 '3 _3» _.3 '‘_3 '_3 '_3 ._3
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2.13a)
Type 8

2.13b)
Type |

2.13¢)
Type 2

2,134d)
Type 8

Figure 2.13.
edge e.
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Conf(type 3) = abe.
The case with the highest confidence is then chosen as being the "state”
of the left side of edge e.

However, there are cases where, for example, b and c are very low
and a is considerably larger than them, but perhaps not close to 1. In
such situations we would like a strong indication of a type 1 vertex
(see Figure 2.l4a). .Th; remedy would be as follows: instead of sub-
tracting a, b, and c from 1 to form the no-edge confidences, we can sub-
tract from m, where m = max(a, b, ¢) = a in this casé. m thus repre-
sents very locally the confidence-level of a high-confidence edge. Thus
we have

Conf(0) = (m - a)(m - b) (m ~ ©)
Conf(l) = a(m ~ by(m - ¢c)
Conf(2) = ab(m - ¢}

Conf(3) = abc.

There is one difficulty with this formulation; that is that it
forces Conf(0) to be zero at all times. It could occur that a is much
larger than b or ¢, but also be very close to zero (see Figure 2.14b);
our formula would calculate a larger value for Conf(l) than Conf(o) when
type 0 should actually be selected. This can be easily fixed by anchor-
ing m to some minimum value g. We need a lower bound for m because
there is always a chance that a stronger edge could be present. This
will quarantee type O to be the most probable Vertex type when all inci-
dent edges have very low strengths. Thus the final definition of m is

m = max(a, b, ¢, q) and
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2.14a 2.14b

Figqure 2.14. Two configurations depicting low-probability neighbours of
e. Vertex-type 1 is indicated in 2.14a, and vertex type O in 2.14b.

Figure 2.16. Edge e is classified as being type 0-3. If its strength
is high, it is likely that edge a will join up with it. The desirabili-
ty of this effect is not so clear if e is weak.
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conf(0) = (m - a)(m - b) (m = ¢)
Conf(l) = a(m - b)(m - ¢)
Conf(2) = ab{m - ¢)

Conf(3) = abc.

Since we will select vertex type i, where Conf(i) = mgx[Conf(j)],
we only need to know the relative sizes of the Conf(i), so we do not
need to normalize these probabilities. ¢ can be calculated as a func-
ticn of edges in some neighbourhood of e in the image. A suitable such
function might be u - g, where u is the average edqé strength and ¢ its
standard deviation. We found that a constant value for q of about .l

performed very well over several images.

Calculation of Direction of Update

The following notation 'is used to depict the neighbourhood charac-
teristics (or state) of an edge: the symbols i - j denote that configu-
ration i is at one vertex of central edge e, and j is at the other. Ob-
viously, i - j = § ~ i, so we need only consider the ten cases of i - j
where i € j, shown in Figure 2.15. It will be remembered here that we
are only interested in the possibility of the continuation of an edge,
not the direction of such a continuation (cf. Figure 2.4).

Now in states 0-0, 0-2, and 0-3 one can quite confidently say that
there is no good support for e, and in 1-1, 1-2, and 1-3 one can gquite
confidently say that there is. However, if e is in state 0-2, for ex-

ample, it is conceivable that the situvation is really as in Figure 2.16.

In such a case, the current strength of e itself may be a determining
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factor for the case that b and e should be grown in to complete the
line.

Two points may now be made. First, in some of the above cases it
is clear how edge e should be updated. Therefore, the updating process
should explicitly increment or decrement the edge. Secondly, as infor-
mation may need to organize and propagate for some period of time over
some distance in the image, updating increments {(decrements) should not
drive the probabilities to one (zero) too quickly. Rather, the in-
crease (decrease) whould be some small amount on each iteration. 1In
this manner the influence of regions which are initially locally consis-
tent will spread into "less confident" regions, much as "islands of re-
liability" played a part in the HEARSAY speech analysis system (Lesser
and Erman 1977).

So in cases 1-1, 1-2, and 1-3 we will let e increase (see Figure
2.17a); and in cases 0-0, 0-2, and 0-3 we will let e decrease (see Fig-
ure 2.17b). In all other cases the context is not very clear. Leaving
aside case 0-1 for the moment, we see that in none of the cases 2-2,
2-3, 3-3 (see Figure 2.17c) is the presence or absence of e critical for
the continuation of a neighbouring edge since they have alternative di-
rections for continuation. It will not introduce or eliminate "cracks"
- edges terminating at an indeterminate point. Whether e should exist
or not depends largely upon its contrast‘strengch, as well as continuity
properties on either border, and little else, at least until more global
views and higher level knowledge is available.

Case 0-1 is really the only problem. The neighbourhood on one side
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Figure 2.17. Cases for updating edge.
those cases where the central edge should be incremented, and in 2.17b
those where the edge should be decremented.
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In Figure 2.17a are dericted all

Figure 2.17c shows the un-



72

strongly supports e, yet the other suggests that e should be absent.
As no sensible decision can be made, no action is taken here (or in
cases 2-2, 2-3, and 3-3). This is a very important decision: it implies
that in the updating process, the 0-1 case remaining constant will pre-
vent a line from growing into noise or from being eaten away at its ter-

minating point.

Performing the Update

The operation of the system in updating an edge may now be de-
scribed. Let C: be the confidence (in the range O - 1) of edge e at
time t. The decision to increment, decrement or leave the edge~-strength
alone has been made on the basis of the vertex-types at either end-point

of the edge. The updating formula depends on the situation as follows:

Increment case: c:+l = Min(Q1, ct + k)

e
Decrement case: C:+1 = Max(0, C: - k)
Uncertain case: C:+l = Cz

where k is a constant. That is, we add k, subtract k or do nothing to
the current confidence, making sure the value stays within the range
0 - 1. 2Zucker and Mohammed (1978) argue against a fixed-increment up-
dating procedure because, in general, the fixed-point of the relaxation
algorithm might be skipped over. This is not a problem in our case.

A large value for k gives fast convérgence, but does not permit
information to propagate very far bef&re the confidences of edges con-
verge to 0 or 1. For small k the opposite is true. By experimentation

on several images, values in the range .15 to .20 were found to be most

N
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suitable. Typical results of using this relaxation process are given in

Figure 2.18.

2.3 Stage 3 - Grouping

2.3,1 BIND (Step 3a)

The next stage is to decide which neighbouring edges link up to
form extended line segments. It is clear that those points in the cur-
rent representation which have 1, 3, or 4 edges entering them, i.e.,
vertices of degree 1, 3, or 4, are natural termination points for these
line segments (see Figure 2.19). Breaking boundaries in these places
will tend to form segments which lie between only two regions. This is
a highly desirable effect, since there will then be less variation of
properties (such as intensity) on either side of the segments. This was
a major design consideration in the RSE representation of low-level out-
put in the VISIONS system (Hanson and Riseman 1976) .

The first stage of the binding process, then, is to mark all ver-
tices which terminate segments as in the configuratioms in Pigure 2.19.
Following this computation, it is straightforward to track all segments
between vertices and assign a unique label (line-number) to each bound-

ary segment.

2.3.2 FEATURE EXTRACTION (Step 3b)

For each unique line-segment a set of properties can be established,
some requiring recourse to the original intensity image, or at least,

the intensity image that was differentiated. Tvpical properties to be

3 iy -3 3 '3 _23 _3
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2.18a

Figure 2.18. Differentiation and relaxation. Figure 2.18a shows the
data in Figure 2.3a differentiated. Edce strengths have been threshold-
ed at .25 for display purposes only. This form of display was chosen to
demonstrate that by way of thresholding prior to relaxation at a value
chosen so that most wanted edges and few unwanted edges appear, most of
the desired edges have gaps in them. It is relaxation which both fills
in the gaps, and reroves many unwanted lines. It will be remembered that
in a threshold image, at any point with no visible edge there may be a
sub-threshold edge present. The gap in the top of the garage roof

{point A in Figure 2.18a) consists of such edgeg.
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A
5

2.18b

Figure 2.18b. Results after 5 iterations of relaxation applied to Fig~
ure 2.18a. Small 'bubbles' such as points B and C in Figure 2.18b and
points D and E in 2.18d were present in the pre-relaxation data (Figures
2.18a and 2.18c) but were sub-threshold. Due to the mutual reinforce-
ment of the component edges, they came through as strong edges. They
are rermoved in a later stace of processing.
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Figure 2.18c. Differentiated version of Figure 2.3b.

have been thresholded at .25 for display purposes only.
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Results after 5 iterations of relaxation applied to Fig-
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associated with the segment label are:
(1) coordinates of end-points,

(2) N-length (defined as the number of edges that comprise the

line),
(3) E-length (defined as the Euclidean distance between the end-
points),
(4) frequency with which the edges that comprise the line change
direction,
(5) mean and variance of contrast across the line, computed along
its length,
(6) mean and variance of difference between neighbouring points
::c on either side of the boundary computed along its length.
c\ IL rL Properties 2 and 5 can be used to give a measure of confidence that
9 G
o -L g the extracted segment represents a meaningful unit of a visible bound-
ary. The greater the length of, and the smaller the variance of the
contrast across the line, the more confident one may be of the line.
Property 6 gives an indication of the homogeneity of a thin peripheral
strip of the regions that the line bounds. Properties 1, 2, 3, and 4
can be used to compute a measure of the straightness of the line. These
properties are important for later use in the interpretation phases of
Figure 2.19. Three kinds of vertices. (a) order-1. (b) Order-3. processing.

{c) Order-4.

2.4 Stage 4 - Postprocessing

2.4.1 _ TRIM (Step 4a)

Most unwanted line segments can be eliminated on the basis of low
confidence (see Section 2.4.3), but it turns out that certain kinds of

low-confidence edges result as a consequence of the idiosyncracies of
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thg particular relaxation procedure employed. In particular, spurious’
edges are sometimes formed because multiple edges on a gradient are mis-
takenly believed to be distinct bouéda:ies ( a problem with any process
where the gradients in the data are significantly wider than the largest
mask), and any noise points remaining despite the earlier preprocessing
stages get bounded by 'bubbles' (see below); these unwanted edges are
best removed by a distinct procéss. Since they can be detected by their
'topological' nature, they can be removed before the confidence genera-
tion process in Section 2.4.2. This improves the latter procedure, as
is explained in th;t section.

TRIMI detects two kinds of unwanted edges: short edge-segments with
at least one order-one vertex - called 'spurs', and some or all of the
edges surrounding one-pixel regions - called 'bubbles’'. For example,
all edges marked with a cross in Figure 2.20 will be removed. Results

of applying this process are shown in Figure 2.21.

2.4.2 CONFIDENCE GENERATION (Step 4b)

The confidence associated with a line segment will be based upon a
measure of how dissimilar the points in the regions on either side of
the line are to each other. While each line segment has been generated
from edges which in turn were formed on the basis of local discontinu-
ities, the line confidence will reflect the global difference between
the regions in the neighbourhood of the line.

Some of the lines generated by the processes described up to this

point are true, strong boundaries, and hence are desirable components of

8l

a3 A ¥ o
X X X X X X
¥ o €
2.20a 2.20b 2.20¢ 2.204

Figure 2.20. All edges marked with a cross will be removed to eliminate
"bubbles" from the image. In Figure 2.20c, it is an arbitrary choice
whether the left and upper, or right and lower sides of the bubble are
removed.

g
1

Figure 2.26. BD should be eliminated as a low-confidence edge. AB and
AC should be merged to form AC which, being longer, will have greater
conficence than AB or BC.
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2.21a 2.21b

Figure 2.21. Postprocessing. In Figure 2.2l1a the short edges and most
of the smallest (l-pixel) regions have been removed from the data in Figure 2.21b., Postprocessing applied to the data in Figure 2.184d.

Figure 2.18b.
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a segmentation. Some others, though, are less clearly desirable; this
set is characterized by lines of short length and/or low contrast. To
experiment with the elimination of these lines we devised a simple heu-

ristic confidence measure based upon length and contrast.

A Heuristic Confidence Measure

Let i be the length of a line segment, and L* the length of what

one would call a "long" line - say 1/4 the width of the image. Let Ci

be the average contrast across the line and C* the maximum average con-
trast one would exbect to sea in an image - say 3/4 of the difference

between the extremes of the intensity scale. Then define

ii = normalized length = Min(Li, L*) /L*

-

Ci = noxmalized contrast = Min(ci. c*)/Ccr

Our heuristic confidence measure for the line is given by

f= Li + C1 - Lici .

This value is 1 if either L, or C, alone equal 1, zero if both are zero,

and is monotone increasing in I.i and Ci for all other values.

A _Statistical Confidence Measure

In order to test the effectiveness of this simple heuristic, we

develop an alternative confidence measure based upon a statistical analy-

sis. While much more elaborate compntationally, this analysis is more
justifiable on mathematical grounds than the other one.

For any line segment L we consider sets of pixels S. and 52 on

1

either side of L. We now test the hypothesis H, that the points in S
N

1 1
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and s2 belong to different regions, against Ho that points in S1 and S2

belong to the same region. This statistical test is an extension of
Yakimovsky (1976), but the manner in which it is employed differs in an
important respect. Yakimovsky used the test to form the edges which
comprise his boundaries. Foé each edge calculation, a predetermined
neighbourhood was used for selecting the points in S1 and sz. Each

edge was processed independently of each other, so the sets Sl and 52

taken each time did not necessarily accurately reflect the region struc-
ture formed by the boundary as a whole. In our case, on the other hand,
the entire boundary is available for processing. This allows a better
determination of the pixels which are to contribute to the analysis.

Let so be S1 [} 52' Under hypothesis Ho, s° is one region and will
be modelled by the normal distribution N(uo, 00); under hypothesis Hl'
S1 and 52 can be modelled by N(ul, 01) and N(uz, az) respectively. A

maximum likelihood analysis leads to

as a measure of the confidence of L, where |Si| =n i=0,1,2, and

il
n, =0y + n, (Yakimovsky 1976).

Let §; = {(xij, Yij' Iij)' 3= 1,...,ni}, i=0,1,2, where Iij is

3 Yij) in set Si. The model described above

assumes the Iij are normally distributed about mean ui. independent of

their location in the image, i.e., it is supposed that the readings Iij

the intensity of pixel (xi

are governed by the probability distributions

3 3 3 .3 _3 _H3 3 '3 v 3 3 _3» 3 -3 -3 I3 3 3
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independently of (xij, yij]' We can improve the test procedure by using
a more sophisticated statistical model of the regions on either side of
the putative segment L.

Rather than assume that there are no spatial dependencies in the
gaussian distribut%on of the Iij in each region, we will improve the
model by assuming that B, can vary linearly across the region. This
leads us to the concept of a dynamic mean u*, which is a function of the
spatial coordinates, and represents the expected value of the intensity
at a given point in the region. Our model should be better than the
simpler one since object brightnesses in real world images are not usu-
ally constant but vary across the surfaces concerned. We will suppose
that at each point (xij, Yij) the intensity is normally distributed

about the dynamic mean ui’(j) =uy + aixij +b,Y This assumes that

1°43°
there is a constant gradient of intensity (strength a; in the X-direc-
tion, bi in the Y-direction) across the region, which will be fairly
realistic, at least over small parts of the region. To ensure the ac-
curacy of the analysis, then, we see that the sets Sl and 52 should be
composed of pixels lying within a short distance of L.

The values of a; and bi for i = 0,1,2 will be determined by a

least-squares fit. In those cases where there are no inteﬁsi:y gradi-

ents, a_ and bi will evaluate to zero, showing that our approach covers

i
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all those cases where the simpler analysis would have been sufficient.
For each of the sets S, = {(xij, Yij' Iij)} we perform the follow-
ing computations:
(1) AQdetermine constants ‘i' bi' ui which minimize

2
Eilxij - (ui + aixij + bivij)]

(2) determine the variances (ai')2 by

*,.0 12
© *)2= . (1” - w0
i

jesy ny .
The measure of the confidence of L is now given by

« 2N
. 0
(0’0 )

P(L) = 3
40 .
(¢,7) (02 )

2n,

or, alternatively, but preserving the ordering of the confidences of the

various line segments,

loge ' logo, *
0950 nl Ogdl -n

*

P(L) = n 5 -

logo

0 2

In Figures 2.22 - 2.25 we compare this confidence measure P with
the heuristic one f described earlier. The pictures display all those
line segments with confidence greater than a suitably scaled tnreshold
value. It will be seen that both methods do equally well regarding the
assignment of high confidence measures to long high-contrast lines, such
as the sides of windows or houses, and low-confidence values to many of

the boundaries of texture elements in the trees and shrubbery.
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Figure 2.22. Edge images which are used to compare the two confidence
maasures described in the text. In Figures 2.23 - 2.25 these imaces are
shown thresholded at different levels. Due to the different scales pro-
duced by the two measures, an exact comparison is impossible, but se-
quences of comparable threshold values were chosen for the two alco-
rithms.

Figure 2.23. Successive thresholdings of the edge image in Figure 2.22a.
Figures 2.23a - 2.23d show line-segments with statistical confidence
measures under successively decreasing thresholds. Figures 2.23e-2.23h
show the same with heuristic confidence measures.

i,
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Figure 2.24. Successive thresholdings of the edge image in Pigure 2.22h
Figures 2.24a - 2.24d show line-segments with statistical confidence
measures under successively decreasing thresholds. Figures 2.24e-2.24h
show the same with heuristic coniidence measures.
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Figure 2.25.
Figures 2.25a - 2,25d show lin. segments with statistical confidence
measures under successively decreasinc thresholds. Figures 2.25e - 2.25h
show the same with heuristic confidence measures.

Successive thres:oldings of the edge image in Figure 2.22c.
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This does not mean that the ‘sophisticated’ analysis is not good.

On the contrary, it sets a standard with which our heuristic measure may
be compared. The heuristic shows itself to produce very acceptable re-

sults, and if it proves to be generally reliable, it is recommended over

-
3

the other method due to computational efficiency.

2.4.3 TRIM2 (Step 4c)

Line segments can be removed on the basis of their relative confi-

dence ratings by removing lines with confidences less than some thresh-

2.25¢

old T. This process should be performed conservatively (with a low

‘¥5p?¥“=?‘*q~l”"f L threshold) for the following reason. Consider Figure 2.26 and suppose
that AB and BC have average confidences, while that of BD is relatively
low. Any reasonable threshold should get rid of BD, but if it is set
too high there is a danger that either AB or BC could be removed as
well. This is to be avoided because as soon as BD is gone, ABC might
become a single line segment with a much higher confidence than that of
either AB or BC alone.

The process of removing weak and uncertain line segments may be
performed iteratively. Instead of immediately adjusting threshold T to
what is thought to be an optimal level, it can first be set to a lower
level T'. Lines of confidence < T' will be removed, stage III grouping
reapplied, T' increased somewhat and the whole process repeated until

. the desired level is reached. In fact, regrouping could occur after

each line segment is removed.
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2.5 _ Conclusions

Not many segmentation systems using relaxation have been tried on
outdoor scenes such as the ones examined in this pPaper. An application
which does use real data,_ though, is that of Zucker et al. (1977) : here
they examined with some success the data in LANDSAT images. Their use
of the probabilistic ;elaxation (the third kind described in Section
2.2.3) had a tendency to form boundaries two or three pixels thick, how-
ever. This did not seem to pose a great problem with their data, which
had relatively few boundaries, but it is unclear how their techniques
would fare on very detailed images.

Bajcsy and Tavakoli (1976) used a sequence of processes to recog-
nize roads and intersections, again from satellite images, although they
did not employ relaxation. The processes they used include, with the
equivalents in our system noted in parentheses, a Strip Detector (DIF-
FERENTIATION), a Road Grower (RELAXATION), a Thinning Operator (SUPPRES=-
SION) and a Short Segment Eliminator (TRIM). Interestingly, they
thinned their edges (roads) after the extended segments had been formed
through the road-growing process, whereas we perform multiple-edge-
suppression first, followed by relaxation to join the individual edges.
Their system was successful in detecting most of the major roads in the
images they processed for that paper. However, due éo the differences
in the ‘details of the algorithms and the tyces of images used, it is
difficult to make a more pointed comcarison between their work and ours.

In fact, it is in general a very difficult problem to make explicit

measurements' of the success of a segmentation system. It has long been
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argued in the scene-analysis community that a set of standard images
should be constructed and distributed so that different techniques may
more easily be compared, and this is just now being done. Unfortunately
this venture may be premature, since little work has been done on the
very important problem of establishing criteria for judging the perfor-
mance of a segmentation system.

For a scene-analysis system such as the one described in this pa-
per, it may only be possible to make assessments in the light of the

system in which it is embedded. For ple, the success of this system

might be measured by how good a model the VISIONS system can make from
it. Even if that were possible, however, it would not be clear to what
extent the success was due to any particular component of the system.
The matter is complicated by the fact that the system which uses the
segmentation might have been tuned to accept the kind of segmentation
peculiar to that subsystem. We are left with a situation where the only
judgements that can be made, for the time being at least, are subjective
ones. This was done explicitly in the case of the two confidence mea-
sures, and is essentially the only way that, for example, different re-
laxation schemes may be compared.

We have presented a boundary-analysis system consisting of four
stages: pre-processing, generat ng the edge representation, grouping and
post-processing. The output of the system is a set of line segments
with a list of attributes, such as length and confidence. This output
may be used in conjunction with region information for making semantic

hypotheses about'object identities.
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) . CHAPTER III
Segmentation is a difficult problem, as is borne out by the com-

BIOLOGICAL IMPLICATIONS
plexity of the processing it appears to require. We have chosen an im-

plementation in which this complexity takes the form of a series of pro- Introduction

cessing stages, each of which performs a fairly simple, direct function.

In this chapter, we will investigate two aspects of biological sys-
The advantages of this modular approach are twofold. Firstly, the ef-

tems which may lend themselves very well to cooperative analysis by
fects of each stage are reasonably well understood, so that the state of

. neurophysiologists, neural modellers and machine vision experts. We
the data at every point is fairly well-defined., Thus each stage can be

will look at current physiological knowledge and suggest certain direc-
tailored to suit the data upon which it must act.

. tions for further explorations and experiments to be performed. First,
The second advantage is that any stage can be omitted, or replaced

. i we will examine the data on 'multiple visual systems' which suggest the
by a more sophisticated variant, if desired. This greatly facilitates

separation of detection of motion, tracking of motion and static 'form
system development; in particular, it makes experimentation with differ-

analysis'. The implications of this kind of division of function to a
ent algorithms very straightforward.

control system for directing the gaze will be discussed. We will then
examine the receptive field organization of several 'layers' in biolog-
ical visual systems, and briefly investigate possible reasons for the
existence of large receptive filelds, concentrating on the idea of 'popu-
lation encoding'. We will suggest that the encoding of information by
populations of neurons may be the device by which visual systems achieve

much higher visual acuity (along several dimensions) than is possible

otherwise.

3.1 Evidence for Separate Form and Movement Channels

We will present below evidence that there are, inter alia, three
main visual pathways from the retina to higher brain centres in mammals,

two projecting to the cortex, and one to the superior colliculus. We

29
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will also present evidence from psychology that there are separate chan-
nels mediating form and movement perception. We will attempt to show
that these are the retino-cortical projections, while the superior col-
liculus plays a part in the detection of and orient;tion to novel visual
stimuli.

It is widely argued that there are two major, separate and parallel
(but not necessarily non-interacting) channels in the visual systems of
the higher mammals for what might be called 'form' and 'movement' per-
ception. These claims are made from studies of, for example, behav-
ioural changes after brain lesions/ablations, and from adaptation stud-
ies (Tolhurst (1973); Kulikowski and Tolhurst (1973); Frisby and Clat-
worthy (1974); Ingle (1967); Nelson (1974); Schneider (1967); Trevarthen
(1968)). Furthermore, neurcphysiologists have revealed several pathways
along which information travels from the retina (Enroth-Cugell and Rob-
son (1966); Fukuda and Stone (1974); Ikeda and Wright (1975); Stone and
Prehez (1973) ; Stone and Fukuda (1974)). We will discuss these findings
in some detail, and investigate their relationships. This study may be
used to suggest the allocation of functions to different components in

a machine vision system.

3.1.1 Neurophysiological Evidence

In the following discugssion, we will generalize over several spe-
cies, in particular the cat and the rhesus monkey. There is overall a
very close correspondence between features in the respective visual sys-

tems (see, e.g. Schiller and Malpeli (1977)), but one must be careful
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not to draw any hasty conclusions, because some differences do exist.
For example, cells in the monkey surerior colliculus exhibii little or
no directional selectivity, while about 3/4 of those in the cat exhibit
it strongly . As this might be due to the different ecological niches
that these animals occupy (Cynader and Berman 1972), it is important

to remember that there is a difference between "vital for the cat” and
"vital for vision in a higher organism".

Enroth-Cugell and Robson (1966) found that they could classify
most retinal ganglion cells into one of two types, called X and Y cells.
They and other workers, e.g. Hoffman (1973) have derived a large set of
properties used to distinguish these cell-types:

X cells are sustained or tonic; Y cells are transient or phasic.

Y cells are more sensitive to stimuli or low spatial frequency
than X cells.

Y cells are less sensitive to stimuli of high spatial frequency
than X cells.

Y fibres (i.e. fibres from Y-cells) are faster conducting than X
fibres.

Y cells respond best over a very different stimulus speed range
than the best range for X cells.

Y cells have larger receptive fields than X cells.

Y cells are proportionally denser in the periphery, while X cells
are denser in the center of the visual field.

Signals from photoreceptors in X cells' receptive fields add lin-
early; this is not true for Y cells.

The segregation of the two channels is maintained from retina to
cortex (Stone 1972; Stone and Dreher 1973), and there is evidence that

simple cells may be the targets of the X fibres, and (some) complex
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cells the targets of the Y fibres (Maffei and Fiorentini 1973; Hoffman
and Stone 1971).

The Y fibres from the retina bifurcate, the second branch leading
to the superior colliculus. A brief comparison of the collicular and
cortical systems will now be given, to demonstrate that they are signif-
icantly different in a functional sense.

Cells in the superior colliculus are well known to be very sensi-
tive to moving contours. They are almost entirely binocularly driven
{Cynader and Berman 1972; Sterling and Wickelgren 1969), while cortical
cells contain proportionally more monocular cells.

Cortical cells have high orientation specificity (Hubel and Wiesel
1965, 1968), while collicular cells don't show such selectivity (Cynader
and Berman 1972; Sterling and Wickelgren 1969; Goldberg and Wurtz 1972).
Colour sensitive cells are found in the cortex (de Monasterio énd Gouras
197S), but there is evidence that none exist in the superior col}iculus
(Humphrey 1970).

There is considerable evidence that while the cortex mediates pat-
tern discrimination, the superior colliculus mediates orientation in
space. By differentially ablating visual cortex and superior colliculus
in the hamster, Schneider (1967) has shown an anatomically-based dis-
sociation between the animal's ability to learn and identify a stimulus
(cortex intact), and its ability to orient to the stimulus in space
(superior colliculus intact). Trevarthen (1968) also proposes the ex-
istence of two visual systems; one for orientation and the other for-

object identification, using the superior colliculus and cortex respec-

.
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tively as major units in the processing. Our conclusions are that the

situation is more complicated than that, and will be presented below.

3.1.2 Psychophysical Evidence

Frisby and Clatworthy (1974) examined the effect of similarity of
stimulus on degree of adaptation. The test stimulus was a moving grat-
ing whose orientation and/or movement axis could be the same as or dif-
ferent from that of the adapting stimulus, giving four combinations.
The fact that only one dimension of similarity (e.g. the same orienta-
tion but different axis, or vice versa), gave an intermediate amount of
adaptation was used to argue for two channels in the visual system; one
for movement, the other for form perception.

It has been shown that motion after-effects (MAE's) can be medi-
ated either by monocularly or binocularly driven neurons (Gates 1934;
Barlow and Brindley 1963; Freud 1964; Walls 1953). It has been pro-
posed that this is due to these neurons being at different sites along
the same pathway (Anstis and Moulden 1950). However, Favreau (1976) has
shown that interocularly transferred and dichoptic MAE's exhibit sub-
stantially different decay rates, which would tend to rule out this
thesis, and suggest instead that the neural populations must be operat-
ing in parallel on different pathways.

Similarly, Pantle and Sekuler (1969) found that subjects experi-
enced different thresholds foé test gratings after adapcacioq to grat-
ings at different contrasts. By varying the contrast of the adaptation

grating, they discovered two comronents in the response to test grat-
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ings. One component depended on the grating's orientation and was in-
dependent of its movement., The other component was dependent on the
direction of movement. These two components were different functions
of contract. These results suggested the functional separation of ori-
entation and direction-sensitive elements in the visual system.

Again, Kulikowski and Tolhurst (1973) showed that it is umlikely
that motion detection is performed by neural elements mediating very
fine spatial discriminations. In particular, there is evidence that
motion perception takes place in (at least) two different channels.

We see, then; that it has been suggested a number of times in the
literature that there exist two distinct visual systems in higher mam-
mals. However, it is apparent that there are at least three: two with-
in the cortex and one in the superior colliculus. We will propose now
the roles that these three systems play in visual and, in particular,

motion perception.

3.1.3 The Collicular System

We will start with the superior colliculus. Schneider (1967) has
shown that it plays a crucial role in a hamster's orientation ability
in space. Fukuda and Stone (1974) have shown that Y cells project to
the superior colliculus, but X cells do not. Their targets in the su-
perior colliculus thus have large receptive fields, located primarily
in the Jperiphery of the visual field and sensitive to moving boundaries,
but not particularly so to the exact shape of Ehe boundaries., This is

exactly the kind of input characteristics required of a system which is

N
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to determine, by an analysis of the optical events on the retina, the
orientation and perhaps speed of moving objects.

It is also well-known that the superior colliculus plays a part in
eye-movements. Mohler and Wurtz (1976) found a "visually triggered
movement cell" at the border between superficial and intermediate layers
of the superior colliculus. This type of cell would increase its dis-
charge rate before saccades made to a visual stimulus, but not before
spontaneous saccades of equal amplitude made in the light or dark., The
size of the movement fields of these cells was about the same as the
size of the visual fields of the superficial layer cells (see also
Schiller and Koerner 1971). It is strongly suggested that the superior
colliculus is involved in making saccadés to novel stimuli entering the
visual field, but in the role of "agent, not initiator" (Wurtz and Moh-
ler 1976). The results did not rule out the possibility that it may
play the part of "co-initiatox".

Schiller and Koerner (1971) suggest that the superior colliculus
may well also be involved in the smooth pursuit of visual targets, as
well as making saccades to the targets. However, this may be just be-
cause the only access the visual cortex has to the oculomotor system is
through corticotectal projections (Palmer and Rosenquist 1975). The
findings that cortical cells prc’ect to collicular cells which “see" the
same area of the visual field (McIlwain 1977) would support this view.

It may be concluded, cheﬂ, that the branch of the Y fibres to the
superior colliculus is centrally important in indicating movement in the

periphery of the visual field (to which saccades may be made). It will
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be noted that the exact shape of such a stimulus is unimportant at this jects is possible, as they would rarely trigger the Y cells. We should

, v eds €
stage; the visual system merely needs to know its position relative to note, therefore, that it has been observed that the fovea is more sen-

the ob: er. i
server sitive to very slow motion than is the periphery (Lichtenstein 1963) al-

3.1.4  The Cortical System v though the opposite is true for high velocities.

We may thus make the following conclusions:

It is our further contention that the X and Y systems projecting 1. Movement detection in the periphery (or a saccade to such move-

he t ions: i s
to the cortex subserve two quite different functions: form perception ment) is mediated by the superior colliculus.

tracki. bjects tively. This i t t .
and tracking of moving cbjects respec of s is not to say tha 2. Tracking objects at moderate speeds is performed by the Y sys-

the X and Y systems are totally separate; they undoubtedly interact, but tem in the cortex.

we propose that they are the major informational channels of their re- 3. Tracking objects at very slow velocities is performed through

spective systems. the X system.

)
While Hubel and Wiesel's (1962) hierarchical model of processing in As it would be very unreasonable to suppose that these systems op-

the visual cortex may be partially valid, it is generally regarded nowa- erate in disjoint but contiguous ranges of speeds and eccentricities,

.
days as not being strictly accurate. Hoffman and Stone's (1971) data there must be some overlap. 1Indeed, it is assumed that there is a con-

suggest that the X and Y systems feed differentially into the simple, tinuum of effect, with each system always contributing something to the

.
complex and hypercomplex cells. Maffei and Fiorentini's (1973) data analysis; the major contributors in each range being as given above.

suggest that the direction sensitive clements may be in the Y system, The maintenance of a stationary percept of the world during fixa-

N“dl the orientation sensitive elements in the X system. This would lend tion drifts must be accomplished somewhere: the above argument would

credence to the suggestion that the Y system is involved in motion de- suggest it to be in the cortex (X system) since the stimulation would be

tection and the X system in pattern recognition. The high concentration similar to that from slowly moving cbjects. From studies of brain le-

of X cells in the fovea would support this view. In fact, so would the sions which indicate the location of sensory and motor functions rele-

relative scarcity of the Y cells in the fovea, since because tracking is vant to central vision to be primarily in the cortex, Trevarthen (1968)

concerned with detecting deviations from the current fixation point, it voncludes that "determination of fixation drifts.... is essentially a

would require detectors off-centre. cortical function™.

This would not explain how fine tracking of very slowly moving ob-
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3.1.5 Implications for a Motion Analysis System

The existence and properties of these separate channels suggest how
motion detection may be handled by a machine. Simulation experiments
with models of the human visual system can provide insight into the bio-
logical mechanisms, and in turn suggest further experiments in a way
that the more ad hoc Artificial Intelligence approaches to motion detec-
tion cannot. We therefore suggest that a motion analysis system should
incorporate as far as possible what is known of the human visual system;
in particular its }mxlti—channelled nature. This will mean that one
should not actempcv to construct a single processing module which will
perform "motion analysis" per se. Rather, one should'be permitted to
use different mechanisms for different kinds of motion analysis (e.g.
orientation and tracking), possibly with separate submechanisms for sub-
sets of operational ranges (e.g. speed). A central problem to be over-
come in this paradigm is to ensure smooth transitions when different
modules become active as the stimulus parameters change.

One may conceive of a basic system consisting of two modules. One
module will detect novel motion, that is, when an object enters the vi-
sual field or when an object within it accelerates. This will be an an-
alogue of the collicular system fed by the Y fibres. The primitive re-
ceptive elements will be ones which fire when a boundary (of a specific
contract and/or direction) enters their receptive fields.

It. might be thought that these elements should be 'velocity detec-
tors' - neural elements which directly signal speed; there is, however,

no firm evidence for their existence in biological systems. On the oth-
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er hand, Pantle and Sekular's (1968) results indicate that there are
several channels responsive to separate but overlapping velocities.
Thus if there is a set of channels C = {Ci, i = 1l...n} fed by popula-
tions of neurons responding maximally to different velocities, and if
fi(v) is the response to a moving boundary in channel i, then the n-tup-
le (£f1(v), £2(v),..., fn(v)) will in some sense be the signature S(v) of
the velocity v (see Erickson 1974). S(v) should contain enough informa-
tion to determine v, as long as the response profiles of the different
channels overlap sufficiently to cover the entire range of velocities
detectable by the system, Benefits of population encoding are looked at
in some detail in the next section.

The goal of the system will be to determine at what point in the
field of view motion has taken place, and what is the direction and ve-
ry and

locity of this motion. Such information is pr bly

sufficient for a saccade to be made to the vicinity of the object.

Considering that neurons in the superior colliculus are not partic-
ularly selective for the specific contours of a moving object (Cynader
and Berman 1972; Goldberg and Wurtz 1972; Sterling and Wickelgren 1969),
we suggest that the system not be expected to derive more than a very
gross estimation of the size and shape of the moving object ( at this
point).

The second system should be concerned with the tracking or pursuit
of a moving cbject. It will be assumed that the object is fixated, or

nearly so, and is being tracked at approximately the right velocity.

What will be observed, then, is a gradual drift away from or jitter a-
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bout the fixation point. The primitive receptors will respond to the
presence of edges at different orientations in their receptive fields.
They will not be velocity detectors, but will of course respond to mov-
ing objects, since such movement will entail the object's entering the
receptive field. This system, then, will detect movement on the basis
of change-of-position of the object, rather than a direct perception of
its velocity.

In order to perform an analysis of movement in digitized data based
upon change-of-position, it is necessary to determine what points (in
the general sense) ‘in one frame correspond to points in the subsequent
frame. For this reason, the Stimulus Matching problem becomes of cru-
cial importance in motion analysis, aﬁd wil} therefore be discussed in

great detail in Chapter V.

3.2 Receptive Fields and Feature Detectors

Given the existence of the various biological visual systems de-
scribed in the previous section, one might well ask how they accomplish
their tasks. It would be useful to discover what language the brain
uses in its visual analysis, i.e. what are the primitives with which it
describes the visual world, at the early stages of processing at least.
Once again we turn to neurophysiology and look at some results obtained
in attempts to trace the flow of visual information from the eye to
higher centres in various animals.

One of the earliest of these experiments was performed by Lettvin

et al. (1959). They recorded responses along fibres leading to the

111

frog‘'s optic tectum as the animal was presented with certain visual
stimuli. They discovered four distinct classes of response to particu-
lar stimuli in localized regions of the visual field. The four kinds of
stimulus were (1) local sharp edges and contrast, (2) curved edges of
dark objects, (3) moving edges, and (4) local dimming. =Zach class of
fibre terninated in a different layer, the layers being retinotopic maps
of the visual field and in reqister‘with each other.

In their famous series of experiments, Hubel and Wiesel (1962, 1965,

1968) found somewhat similar effects in the cat and monkey. They re-
corded responses of cells in the visual cortices of these animals on
presentation of selected visual stimgli. Again, they found that each
cell had an area in the visual field to which it was responsive, and
that the cells in different layers formed registered retinotopic maps.
They classified the cells into three groups according to their re-
sponses. "Simple” cells also responded to edges, but were less speci-
fic. Both the light and dark edges of a moving stimulus caused a re-
sponse in the same region, the activating region showed no subdivision
into spatially separate zones, and the receptive fields were larger.
The third class of cells were called "hypercomplex". The resgonses of
these cells were inhibited by stimuli extended along the axis of orien-
tation, thus making the cells maximally excited by corners and ends of
bars.

Now, Hubel and Wiesel suggested that these cells formed a hierarchy
with the simple cells feeding the complex cells which in turn fed the

hypercomplex. Subsequent results, such as those of Harmmond and McKay
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(1975) who showed that kinetic contours excited complex cells but not
simple ones, have shown that this model is not entirely valid. The re-
sults of Schiller et al. (1976a, b), however, suggest that some complex
cells may receive input from simple cells, while ochezs do not.

Whatever the precise mechanism may be, it is clear that there are
many retinotopic maps of the visual field present, each one exhibiting
some kind of transformation of the visual information. It is not known
yet exactly what the visual system does next with this information, but
the very fact that this processing occurs suggests that a similar pro-
cedure may be useful in machine vision.

Cells which are responsive to certain kinds of stimulus may be re-
garded as being detectors for these stimuli - the magnitude of the re-
sponse increasing with the 'fitness' of the stimulus. Indeed, the type
2 cells of Lettvin et al. have been called "bug detectors", since the
properties of the stimuli to which they are maximally sensitive charac-
terize flies and other food objects for the frog.

These properties of biological visual systems suggest how machine
vision systemsAmay be structured. A machine vision system may be orga-
nized as a series of arrays or layers of data, each containing some ret-
inotopic transformation of the visual data. To achieve this, we can
imagine registered arrays of processing elements to perform these compu-
tations, each such element receiving its input from a finite, localized
zecepéive field in one or more layers. [N.B. 1In an implementation on a
serial machine, this will of course be simulated.] One of these proces-

ses will extract edge- and corner-like features from the visual image.
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Now, the retinal ganglion cells in higher marmals, e.g. the cat and
monkey, have centre-surround organization (see, e.qg. Kuffler 1953) and
it is suggested (Schiller et al. 1976b) that the edge-specificity of
cortical cells comes about by lateral inhibition between cells whose di-
rect input is solely from cells in the Lateral Geniculate Nucleus.
(These cells themselves have centre-surround receptive fields.) This
multi-stage process can be avoided by applying certain edge-operators or
templates directly on the visual image, performing a kind of spatial
differentiation. This approach was taken in Chapter II and will be tak-

en again, in a slightly different form, in Chapter IV.

3.2.1  Large Receptive Fields

Most of the receptive fields éf cortical cells receiving input from
in or near the fovea are in the range 1/2 - 5 degrees across (see, e.g.
Hubel and Wiesel 1962). Much larger fields are found too, especially
near the periphery. These sizes are much greater than that of visual
acuity. A good discussion of the geometric properties of visual systems
with large receptive fields is given in McIlwain (1976). The question
arises, what benefit is there in these large receptive fields? We are
particularly interested in the role such large fields play in the analy-

sis of motion.

- Possible Reasons for Large Receptive Fields

(1) Redundancy. In a large receptive field (R®) situation as ex-

ists in mammals, neighbouring RFs overlap to a large extent. Thus the
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projective field of retinal points on the ganglion cell layer is large.
HaQ; cells are simultaneously responding to a single point of stimula-
tion. So, if due to noise or any other reason a small number of these
cells fail to fire, others will still signal the existence of the stimu-
lus. :

(2) 1Intensity Encoding. As (1) above, but the thresholds of those
cells in the projective field of a retinal receptor cover a wide range.
If 'this is the case, out of those which can potentially fire given a
stimulus, the number which do respond will be a mea;uze of the intensity
of the stimulatiaq: The use of population encoding as a general device
in sensory perception is discussed below.

(3) Fatigue. Slow-moving stimuli (or ones that are being tracked)
" will remain within the RF of a responding cell for an appreciable period
of time. If the cell fatigues, and lateral inhibitory connections are
present, inhibition on neighbouring cells will be reduced, so their re-
sponses when the stimulus enters their RFs will be enhanced. This pro-
cess may act as a dynamic gain control in a feedback control circuit,
the purpose being to get the eyes (back) on target as quickly as possi-
ble.

(4) Slow Movement. If a stimulus moves slowly across a large RF,
the ganglion cell will fire continuougly, but may not receive informa-
tion of the right kind to determine that the stimulus is moving at all.
Thus, no sudden offset-onset will occur in neighbouring cells as the
stimulus passes over their RFs, so no neural network which simply tests

for this_situation (cf. Barlow and Levick 1965) will work. 1In fact, it
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may be a desirable thing for an organism not to notice very slow move-
ments. (N.B. As it happens, this is not a situation unique to biolog-
ical vision systems. In machine vision systems, the average pixel=-
width is a lot larger than that of a retinal receptor, in terms of visu-
al angle. Thus if a dynamic image is sampled frequently enough, intex-
frame movements are very smail, and ‘objects' may remain 'in’ a given
pixel for a number of frames.]

(5) Large RFs have the advantage that even if objects in the visu-
al field are sparsely tectured, neighbouring cells {(ganglion or corti-
cal) will still signal movement across the entire width of a moving sur-
face. In this manner, region-growing becomes feasible as a means of

grouping points for segmentation.

3.2.2 Population Encoding

Receptive fields of the ganglion cells may be anywhere from about
S5 degrees to 30 degrees across, and hence must overlap to a considerable
extent. Thus instead of a stimulus being encoded (accurately) by a
small number of signals, it may be carried by many signals, none of
which alone describes it very precisely. We suggest that it is by means
of population encoding that the visual system achieves accuracy other-
wise unattainable.

There are several attributes of a stimulus that the visual system
may wish to determine, including location, orientation, direction of
motion, speed and colour, We claim that it is plausible that all of

these computations are performed with the aid of ropulation encoding, a
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view supported by Erickson (1974).

Let us consider the two very different organizations mentioned a-
bove. 1In general, a system employing the first organization consists .of
a large number of very finely tuned neurons. There would possibly be a
need for as many neurons as discriminations are to be made. Moreover,
if one of the neurons which were to fire in a given situation did not do
so, then much of the information would be lost. Now, in the second or-
ganization, the neurons are much more broadly tuned and have large re-
ceptive fields. Many neurons will fire for any (appropriate) stimulus,
and it is the relative strengths of these signals which will ultimately
describe the stimulus.

We can see that the small receptive field case certainly seems to
have serious problems, but how would population encoding achieve the ac-
curacy required? We will address two issues. Firstly, how could the
broadly-tuned neurons do nearly as well as finely-tuned neurons? vThe
answer is that the recognition of a stimulus would be by means of what
Erickson (1974) calls an "across-fiber pattern", i.e. the pattern of
activity evoked across the population of responding neurons -~ that which
we called a 'signature' in Section 3.1 above. He demonstrates how by
examining the activity in a collection of neurons, a number of stimuli
could easily be distinguished, where no one neuron could make a single
discriﬁination.

It_is likely that this kind of mechanism underlies the perception
of colour. Through combinations of just three hues (red, green and ‘

blue) at different intensities, humans can perceive a whole spectrum of
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of colours. In fact, not even all three are necessary for the impres=-
gion of the entire visual frequency range (McCann and Benton 1969).
Some interactive process between the responses of the photoreceptors
undoubtedly takes place to achieve this.

We will dwell for a minute on some more recent experiments reported
by Land (1977) in order to suggest an experiment conspicuous by its ab-
sence. The experimental paradigm used by Land and his colleagues con-
sisted of matching up coloured pieces of paper in a multicoloured col-
lage with standard colour ‘chips' when viewed under different coloured
lighting conditions. They found that the perceived colour of Qn area
was independent of the light flux reaching the eye from that area. In-
stead it was a function of how the ratio of the components of the light
in certain wavebands compared with the light reflected. from a white sur-
face. They calculated the ratio of the reflectance of the given surface
and the white one by forming the sequential product of such ratios a-
cross all boundaries along any path between the surfaces. They use a
simple technique for discovering which area has the highest reflectance,
and this is taken to be white; in every experiment, at least one of the
coloured surfaces was white. They do not report performing the experi-
ment with no white present. If perceptions of colour are still accurate
in such a modified situation, then their theories would be confounded.
If, on the other hand, an area (such as pale yellow) had the highest
lightness of all surfaces in ihe three relevant wavebands, and if every
colour was perceived as, in this case, ."too blue" (i.e. green as blue-

green, yellow as white) then their theories would be confirmed.
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The second problem we will look at asks how broadly-tuned neurons,
achieve better accuracy than single very finely-tuned neurons. This
leads to the further question of, given the responses of several broadiy
-tuned neurons, how to compute the relevant parameters of the stimulus
to which they are responding. While it is true that in some circum-
stances the visual system may not need to 'decode'’ the population code,
in other circumstances it might. We will investigate below a method by
which the responses of a collection of units, taken in pairs, may be
translated into the unique stimulus which gave rlse'to the responses.

Consider the problem of the determination of an object's velocity.
The existence of separate 'channels' for different velocity ranges is
supported by the adaptation experiments of Pantle and Sekuler (1968).

At the neural level, though, while some neurons are more sensitive to
certain velocity ranges than others, they are generally very widély
tuned (Pettigrew et al. 1968). To illustrate how to extract precise in-
yfornation from a collection of signals, each with potentially ambiguous
information, suppose that each neuron has a response curve like that in
Figure 3.1. Given a certain response from one neuron, the stimulus
could fall within two parameter subranges. Given the response from an-
other, differently tuned neuron in addition, and knoging that they both
signal the same stimulus, greatly narrows down the possible stimulus
ranges. Figure 3.2 shows how the accuracy is improved given the re-
sponse and error margins from just two neurons.

The mechanism by which the neuron populations arrive at an accurate

determination of stimulus parameters is unknown, but an iterative method

Possible Stisull

Figure 3.1. Ambiguous Response from a Sinole Stimulus. Given a re-
sponse of a feature-detector with possible error margins indicated by
the horizontal strip, the stimulus could have fallen within either range
indicated by the vertical strips.
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Figure 3.2. Reduction of Ambiguity Using Two Detectors. Suppose two
detectors (response curves shown) respond to a given stimulus. Then al-
though each response alone is ambiguous, taken together only one stimu-
lus range is possible. Note that the width of this range is narrower
than that from either response alone. The larger the number of differ-
ently-tuned detectors that respond, the more exactly the stimulus can be
pinpointed.
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seems entirely feasible. The general procedure would be to arrive at a
global consensus, that is everywhere locally consistent with the input,
via cooperative mechanisms. We are interested in the analysis of mo-
tion, and therefore would like to see if the inherent ambiguities in
motion may be resolved this way. We present below one.possible itera-

tive solution, not in any way claimed to be the biological mechanism.

A 'Velocity Detector' Processing Network

In this section we will consider a neu?al-like architecture which
may be appropriate for the computation of velocity. Let us suppose that
there is a layer or array, each unit of which computes the velocity sig-
nalled at the corresponding patch of retina (its receptive field).
Neighbouring units with similar indications of velocity would link up to
form a segmentation of the object. Boundaries of several objects with
different velocities may be found simultaneously this way.

The problem with this approach is in the local determination of
velocity. Suppose that for each small patch of retina there is a set of
computational elements (xi} each of which respondé maximally when an
edge at orientation a, passes over the patch in a direction perpendic-
ular to that of the edge. Suppose there is a mechanism for selecting
the maximum response (c¢f. Didday 1970). Suppose further that an edge of
orientation “j passes over this patch moving with velocity v in a di-
rection of O where Iuj - 8| is not necessarily % . Then the response
will be as if the edge were moving in a direction aj b % with velocity

vsin(aj - ©) (see Figure 3.3). So at a local level there is not enough

Yy 31 .y 3 a3 23 __]
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rFigure 3.3. The local Ambiguity of a Moving Edge. Suppose that edge Ei
is moving with speed V in direction ©, and let a; be the orientation

of E,. Then a movement detector in the circular area in the figure will
only be able to deduce that the component of the velocity perpendicular
to the edge is V sin (ai - 0).

information to determine both v and ©, but only a relationship between
them. By using interactions between neighbouring elements, the ambigu-
ity may be resolved.

We will assume that a moving object has a polygonal boundary con-
sisting of a set of edges Ei at orientations a; relative to som.e arbi-
trary reference orientation. We will suppose that the object is moving
with velocity v in direction 6. We will also suppose that the detectors
are 'sufficiently' dense, and that each one responds maximally to edges
moving in a certain direction. If at each small patch Pi the maximum
response of all local detectors is computed, then this will be (at least
approximately) equal to the component o-f the object's velocity in a di-
rection perpendicular to the edge E

crossing P The actual velocity

i i°
and direction of the object is not computable at this point.

Let the maximum response at Pi be Ri' s0
R = vsin(ai - 0. 1)

We will assume that o and R1 are known locally at Pi' Although (1)

also is insufficient for solution of v and ©, given the response Rj for
edge Ej’ where oy # uj, then v and © may be determined as follows. ' For

EJ.,

= s - . 2
Rj vsin(uj 0) (2)

Solving (1) and (2) we get

2 2, 2 2,
v = (Ri + R,7) cosec (°j °1) - 2R, R cot(aj - °1) coaec(uj a.)

b 173 i

R,sina, -~ R sina
tan@ = A—1 3%

=
RiCOSGj - RJ.{:C)SG1 .
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from (3) and (4)
These are fairly complicated equations which may not easily be solved in Now suppose w = “j' but et # aj' We have fro

biological systems, and besides, their solution is not well defined for

. i - (s5)
o, = uj, especially with noisy data. We will therefore seek an alterna- sin(a; - el s:.n(ai ei’

o]
-

si.n(uj e sin(uj - Gj) .

L}

tive approach. We will allow the computational elements to interact

with each other so that they arrive at a consensus via an iterative pro- o o
set ¢, = -

i i
cess.
: §, =0, -0
Let xg be a detector which responds maximally to edges at angle a 4 b ] 3
Sul':pose a moving object passes over the retina with velocity v and di- Bi b ei
rection 6. Suppose xg estimates the velocity and direction to be ug Bj . “j -9, .
3
and ©, respectively from response r,.
From (S)
For two neighbouring detectors xi and xj.
sin(B, + B,) sinB,
r = vsin(ai - e)- 3 sin(Bj + 5j) = ainBj
:j = vsin(a, - O) .
J Expanding,
For consistency, cosB.sind .
si.nBjsi.nBic:\:sGi + si.nBjf.:osB“._si.mSi = sinaisinﬁjcoséi + sinBi 3 3
I = uisin(ui - 61) 1)
11 6,8, we have
r, = usin(a, - 0,) For small %%
b] 3 3
U, “j' 91 and ej are time-varying, but must always obey (2). Let us COSGi d °°95j =1
‘see how xi and xj may cooperate to achieve consistency, i.e., simsi P ai
u =u ind, =~ & .
i i) sin j j
91 = Bj .
Hence tan8.
If uy Ed uj, where u, > uj, say, then the following is done. We set Gi/sj = = A, say.
tanB
uj to equal u . and adjust Gj to maintain the relation (4). So ej be 3
comes a, - sin"Y(z . ru.) We will use A to estimate ¢. Consider Figure 3.4, which depicts a posi-
] b A

4 -3 3 3 3 .3 3 .3 3 3.3 3 I3 3 I3 I3 I 3
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tive 61 and a negative & It may be seen from the Figure that

5°

-5
= 4 (e, -
o =0+ CHEER)

Gi—dj
. 619 - 6!6i
61 - Bj
. Aei - 9i
a-1 .

ei and Sj are now set to this value. v, and uj are then re-evaluated
fron

u

y =T cosec(a1 - Bi)

Figure 3.4. Relationship between angles used in cooperative computation
of velocity (see text).
u, = r_ cosec({a, - 6.)

i 73 3 3

using the new values for ei and Gj.

This procedure was tested for several polygonal figures. The up-
dating process was applied to each pair of edges taken in series around
the perimeter of the objects. Table 3-1 shows the results of presenting
the system with an equilateral triangle moving at a constant speed of
10 units, moving in thirteen directions at 10° intervals (see Figure 3.5)

- Three detectors were simulated. The estimations of each detector after
10 iterations are given in the Table. The success of the method is evi-

dent.
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Figure 3.5. Motion of a Triangular Figure. Three detectors (in the cir-
cles) seek to determine the object's velocity. Locally, they can only
compute the components of the velocity perpendicular to the ;ides.
Through interaction, they can arrive at a consensus and compute the cor-
rect velocity (V, 9). The results of running a simulation Zor several
values of O are shown in Table 3.1.

129

Angle Detector 1 Detector 2 Detector 3
c] Speed |Direction| Speed |Direction| Speed |[Direction
o 10.00 0.00 10.00 3.07 11.00 0.00
10 10.34 Q.67 9,08 a,na 10.01 9.98
20 10.02 108,95 10.00 25.0¢0 10,00 20.90
30 10.00 30.09 10.00 37.09 a.85 30.00
Ln 10.00 ko,00 10.09 Ln.o9 10.00 k0.00
50 10.00 51.00 10.00 50.00 11.00 50.00
60 1n.00 £1.09 10.00 60,00 10.00 60.00
70 10.09 69.93 10.00 70.00 11.00 70.00
80 10.00 80.00 10.00 80.90 10.00 80.00
90 19.00 20.00 10.00 90.90 10.00 90.00
100 10.00 100.01 19.19 100.90 10.00 100.00
110 10.00 110.01 17.00 119,97 10.00 110.00
120 10.00 120.00 10.00 120.90 10.00 120.00

Table 3.1. Results of a Motion Detection Experiment. Three interacting
processors were used to detect the passage of the sides of an equilateral
triangle as it moved in different directions. Each detector 'saw' the
motion of one side, but could only determine the component of the object's
velocity perpendicular to the side it saw. By interacting with the other
processors, each under the assumption that they were all responding to
the motion of the same object, each processor was able to compute the
object's speed and direction. The processors' estimates after 10 iter=-
ations are listed here.
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As far as may be determined, there ls no direct evidence of this
kin.d of cooperation in biological visual systems. It would be very in-
teresting if an experiment could be devised where the response is re-
corded of a cortical cell which is the only one in its neighbourhood re-
ceiving visual stimulation. This response may be compared with. that
which occurs when neighbouring cells too get stimulation. In this man-
ner, it might be possible to deduce if the neighbouring cells can influ-
ence the neuron to interpret the response from an edge at orientation a,

say, to be from an edge at orientation b, a ¥ b. Of course, this argu-

ment p PP that th perative pr take place in the cor-

tex, but since we believe that they take place early in visual proces- 3.6a
sing, the cortex is a reasonable place to look. It is possible, though,

that the computation takes place in a cortico-geniculate interaction.

3.2.3 _ Correlation vs. Feature Extraction

Let us consider two approaches to motion analysis, given two suc-
cegssive frames of motion data.

Method 1. For each point in frame 1, compute its correlation with
frame 2. The result may be histogrammed as a 2-d distribution; a typi~

cal 1-d slice is sketched in Figure 3.6a. The highest peak (usually)

corresponds to the displacement between the frames. 2.6b
Method 2. Extract features from each frame (such as spots of high, .
- ( P an/ Figure 3.6. Effects of Lateral Inhibition. Laterally inhibitive net-

low intensity, edges, bars lots of high ature). Now match’these works have the progerty of sharpening curves and eliminating all but
ow Y, edges, + PO gh curv the strongest peaks. Thus such a network when applied to the curve in
features as before. In general, the distribution will be much sharper 3.6a might produce that in 3.6b.

and/or have fewer peaks, since there is a lot more information in each
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extracted feature-point (see Figure 3.6b).

Presumably, if one goes as far as extracting entire regions as fea-
tures, then the correlation function may have only one peak, but to do
this may be computationally infeasible (since the extraction of such re-
Ggions may be the goal of the process).

Unless the whole scene has moved by the same displacement, the im-
mediate correlation method will only work when based upon small regions.
The question arises, how small is small? Moreover, if the match is be-
ing made on intensity level, then there are almost always ambiguous
matcpes within a small displacement. If, for example there are 64 in-
tensity levels, then within a window of size greater than 8 x 8 there is
bound to be at least one intengity value represented more than once.
Furthermore, the effects of noise will increase the ambigquity dramati-
cally. With extracted features, however, if a good match can be found
in a local neighbourhood, there is much less chance that this match is
incorrect.

Now, it has been widely suggested that the visual system employs
Fourier analysis (see, e.g. Campbell and Robson 1968; Cornsweet 1970;
Blakemore and Campbell 1968), although this view is not held universally.
While this may or may not be true, the following analysis of the use of
feature extraction versus correlation uses the Fourier transform to re-
veal an interesting property of receptive field size. We will examine
Methods 1 and 2 described above in cﬁe one-dimensional case.

Let £(x) and £'(x) be two consecutive frames. Then their cross-

correlation is given by
afe) =J £(x)£' (x + e)dx .

T -3 _32 _3 3 3 3

It will be possible to sharpen the correlated images by effectirg con-
trast enhancement through lateral irhibition, modelled by a linear 2il-
ter r(x). Thus

c(d) = fale)r(d - e)de.
For example, the lateral inhibitory networks of Ellias and Grecssters
(1975) and Grossberg (1976) would, when applied to the function in Tig-
ure 3.6b, produce an output like that in 3.6b.

We will see if we can achieve the same effect by applying a feature-
extraction process (centre-surround) prior to the correlation. Suppose
that the feature-extraction process is pexformed by convoiution with a
mask h(x), so that

gly) = [ £(x)h{y - x)ax

g'{y) = [ £ (x)h(y - x)dx.
Correlating these two processed images gives
bld) = [fgly)g'(y + d)dy.

We ask whether an h(x) exists such that b(d) = c(d), i.e. that the
diagram of Figure 3.7 commutes. In the frequency domain, these equa-
tions become, where capital letters indicate Fourier transforms,

A{w) = F(W)F' (=-w)

C(w) = A{w)R(w)

G(w) = F(w)H(w)
G'(w) = F'(w)H (w)
B(w) = G(w)G' (w).
Putting C(w) = B(w) gives

R{w) = H(w)H(-w)

2 3 3 iy 3 2 3 3 3
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or

Feature R(w) = H(w)H(w)

Extraction if H(w) is even.

V

Frame 1 |Frame 2

) ’ ' -

£0x) £ (x) gly) g' (y) For many parameter settings, h(x) will be the same shape as r(x)
but may be much wider. For examzle, if the upper cur;e in Figure 3.8
represents h(x), then the lower curve would be r{x). The vertical line-
segments indicate minima. 1In this example, then the centre of the in-
hibitory region of h(x) is about one and a half times as wide as that of
r{x). That is, performing the feature-extraction prior to correlation,

Correlate Correlate
rather than contrast enhancement afterwards, requires a much larger re-

ceptive field size.

a(e)
c(d)
=b(d)
Contrast >
Enhancesent
r(e)
e d
Figure 3.7. Two Algorithms for Velocity Detection. Given a pair of

frames, it is desired to determine the gross motion that has taken Place
by the objects in then. Method 1 correlates the frames and sharpens the
resultant curve. Method 2 extracts features from the images and corre-
lates these features. In the text, the conditions under which these al-
gorithms are identical are discussed. In this figure, one-dimensional
data only is considered.
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h(x)

r {x)

—

Figure 3.8. Effect of Using Feature Extraction. A process using fea-
ture extraction requires a wider receptive field (h(x)) than one using
correlation then contrast enhancement (r(x)).
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CHAPTER 1V

ANALYSIS OF A MOTION-DETECTING SYSTEM
4.1 Introduction

There are very many ways in which a system may be qonstructed to
perform motion-analysis. We have seen in Chapter I that a large number
of different algorithms and methodologies are being tested, with greater
or lesser success. To a large extent, though, these systems are all
'ad hoc': the authors often fail to provide 5ustification for their
methods, other than the fact that they work reasonably well in the lim-
ited domains in which they are tried out.

It is by no means clear in most cases whether these systems can be
extended to work outside their proven domains. Now, presumably one of
the goals of scene-analysis is to produce a ‘complete’ machine vision
system - one which can address the dynamic problems of detecting and
tracking motion under both high and low velocities (quite different
problems) as well as the more static considerations of object and scene
identification. It is unlikely that this can be achieved unless careful
consideration is given to the necessary extensions and integrations of
the separate subsystems as they are being designed.

We are not about to describe such a complete, integrated vision
system - that is outside the scope of the work présented here. We are,
however, going to lay some foundations for the desicn of a vision sys-

tem, and to construct, in the next chapter, part of a motion-analysis

system based upon these principles.

137
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Overview

We begin the chapter by intreducing the concept of 'Optic Flow'.
Optic Flow is a central concept in this thesis, and since the low-level
representation of perceived motion which we will use in Chapter V may be
identified with it, we will look at it here in some detail. We will see
how it may be generated from dynamic visual input, and what information
it conveys. We will claim that an optic flow field is a very convenient
but 'raw' representation of motion in the visual world. The effect of
the visual system_'fillfng-in' those areas deprived of moving visual
stimulation will also be discussed.

In the next section we develop a set of edge-operators for the ex-
traction of feature-points from the moving-image data. These operators
may be thought of as analogues of biological feature-detectors. The
feature-points themselves will be the objects of the Stimulus-Matching
process described in Chapter V.

Properties of co-moving objects will next be examined in the light
of moving-dot experiments. We will see how the definition of ‘common
vector' may be extended to cover the general case, and how along with
the 'field velocity' concept it may be used to explain various percep-
tual effects. We will also demonstrate its use in extracting the rota-

tional and translational components of a moving body.
. 4.2 tic Flow

Gibson (1966) has stated that the dynamic‘visual'envircnment is

full of information just waiting to be 'picked up'. We agree that there
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is a great deal of information there, but feel that at least some pro-
cessing is required to extract it, before the organism (or machine) can
make use of it.

Suppose that we have available two consecutive frames of a movie
sequence. If(we superimpose these frames, identifying points common to
each and joining them up with small arrows, we generate a graphic de-
scription of a vector veiocity field depicting what Gibson has called
the ‘Optic Flow'. Optic Flow is one of the most important kinds of vi-
sual information. It may be represented as ; retinotopic array, each
point containing a vector signifying the projected motion from the 3-d
world onto the corresponding part of the retina. We will examine in
this section those properties of tﬁe motion that may be deduced from the
flow, and how a segmentaticn of the visual world may be performed Qi-.
rectly from the flow field.

The information inherent in flow is present when the observer is at
rest and objects move about him, when only the observer is moving, or in
any combination. The only difference is that when the observer moves,
there is non-zero optic flow associated with the ground and stationary
objects, unlike whén he is still. 1In either case, the optic flow on a
moving object is substantially different from that on the background.
Indeed, when the observer moves, the optic flow is constant on surfaces
at equal distance from him; the optic flow on a surface extending in

depth would change smoothly over the surface.
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Segmentation from the Optic Flow

The optic flow produced by the relative motion of an object and ob-
server will vary smoothly across the surface of the object. This flow
will in general be different from the flow on neighbouring objects in
the image. Therefore, by finding discontinuities in the flow, a segmen-
tation of the image may be forme§.

In order to find boundaries of objects in space, Nakayama and
Lo;mis (1974) proposed ‘convexity detectors' which consisted of centre-
surround receptive fields sensitive to different velocities. Their pur-
pose is simply revealed to be to differentiate the generated optic flow.
The discontinuities so found in the velocity field may be interpreted as
a

g tation of the with respect to depth. Intensity gradients

on the surfaces of objects wili not show up in this representation,
since the velocity field associated with an object varies continuously
over its surface. However, if an object is moving with respect to its
background, ;r if due to the cbserver's motion it appears to move with
respect to the background, then at the object's boundaries there will be
discontinuities in the velocity field. The points on either side of the
boundaries found this way will lie on objects at different depths from
the observer.

It should be stressed that this approach is in distinction from
spatial brightness differentiation, commonly used in static scene analy-
sis, which locks solely at contrast in the image to perform its segmen-
tation. In differentiating the optic flow, there is n; danger of con-

fusing the .internal surface structure of objects (texture, lighting ef-
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fects, different colourations) with the object’s boundaries, a common

problem in scene analysis.
)

4.2.1 Properties of Optic Tlow

We will describe the kinds of flow that may be observed in a real-
world situation from the viewpoint of a moving robot in an arbitrary en-
vironment. (In our later simulations, the robot will move through an

artificial forest.) The robot will be able to deduce certain properties

of the environment from the perceived flow, and thus be able to avoid

collisions and navigate to his intended goal. We are not interested
here in the problems of motor control.

We will centre our coordinate system at the robot. It may move
only in the (horizontal) x-z plane. 1Its line-of-sight is also horizon-
tal, but is independent of his direction of motion. The robot will have
a planar retina parallel to the x-y plane, which will be indexed by the
coordinates £ and n. Using perspective projection, we have

ax
£=7 (0

bv

n ==
z

where a and b are scale constants (see Figure 4.1), and may for conven-
ience be Aropped if desired. It will be noted that to aveid an inverted
image we are using a ‘virtual retina'.

Before we proceed with the analysis, we should note that Lee (1974)
examined the case of a moving observer with an‘infinite cyiindrical ret-

ina. The particular choice of retina emploved will simplify some of the

U I B . NG N
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Ple,y,2

Figure 4.1. Use of a Planar Retina. O is the origin of coordinates at
the observer's eye. The retina is parallel to the x-y plane. In order
to avoid an inverted image, a 'virtual' retina in front of O is used.
point P(x,y,z) in space projects to point (£, n) on the retina.

r——”%g r—~‘%§ f‘“-ig (\’_Ei r-‘-Té p/~*~§ r"*?? r*~4§§ (u——§§ f-¢§§

143

equations and relations derived, but may complicate others. Some of our
results are equivalent to his, but are expressed in terms of our coordi-
nate system., Our choice of retina is more natural, and its attendant
optic flow exhibits certain rather attractive properties (as we will
see) .

The projection of Figure 4.1 only applies when the robot is looking
along the z-axis. To avoid complicated expressions when the direction
of gaze is different from this, use will be made of the fact that optic
flow is a measure of the relative velocity of observer and environment.
Thus the same flow will result from the robot moving with velocity v, or
with the robot and the environment as a whole moving with velocity -v.
The effect of a shift in the robot's direction of motion is accomplished
by a rotation of the environment, which since the robot is at the origin,
is simply a rotation of the coordinate system.

We can therefore keep the robot fixed at the origin of coordinates
and looking in a constant direction (the z-axis), and move points in
space to simulate its own motion. It is clear that we can also take
care of those cases where points in the environment have their own in-~

trinsic motion.

Linear Motion: No Acceleration

Let P(x, y, z)} be an arbitrary point in the robot's field of view.
Suppose that the path of P relative to the rokot is given by the

straight line
zZ = mX +c
(2)
Y=Yy
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From (1),
ze B,
n
x = 2L
an
o
Substituting for x, y and z we get, for the projection of this line on z
the retina,
a
wby, (& - o = Teen (3
which is again a straight line. ' Thus, » /
0 a) .
' Result.l. Flow lines deriving from linear motion are ;
straight,
Now suppose that the path of P is at an angle (0 % a < 7) to the /
. ’l
x~axis (remembering that the robot always looks along the z-axis) and P',
the projection of P on the x-z plane, to a dist d of the robot
at its 'closest encounter'. (The point here is that if P is on a verti-
cally oriented object, P' will be the point on the object that comes
closest to the robot.) We find it more convenient to parametrize the
i i i i Figure 4.2. Path of Point in x-z Plane. The relative linear motion be-
linear motion with @ and & instead of m and c. Since ) tween observer at O and point P' is given parametrically by the line
. z = x tana - d seca.
m = tana
and ¢ = -dseca
(2) can be re-written
z = xtana - dseca "(a)

(see Figure 4.2), so that (3) becomes, again substituting x and z from

Q),

ne % sina(f - acota) . (5)

T SRR R UL IR U T G TS G N SN SR N A R0 I I RN G RN UV N AU N NS, BN S S W R D A
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I1f the environment is (in reality) stationary, then relative to the
robot, all points on it will move on lines of the form (4), with a the
same for each. Thus all lines of the form (5) pass through the point
(acota, 0). This is the projection of the point-at-infinity to which
the robot is heading. Because flow-lines seem to emanate from this
point, it is known as_the Focus of Expansion (FOE). These lines through

the FOE will have slope

dn _ by
AE " 2d sina. . (6)
Any. object moving with respect to the envi will prod flow of

the form (5), but with a different v‘a.l\xe of a from stationary points, so
will have its own FOE. This may be summarized as:

Result 2. Under linear motion, flow lines are straight and
emanate from the single focus of expansion, whose
location depends on the direction of relative ve-
locity.

Now, (6) has the following implications:

Result 3. If the rcbot is looking in a direction perpendi-
cular to his motion (a = 0), then all flow lines
are parallel to the x-axis, and are (from (5)) of
the form n = by/d.

Result 4. If an object is on a direct collision course with
the rcbot (4 = 0), then the corresponding flow
lines are vertical, and are of the form { = acota.

These results are rep:eéented in Figure 4.3.

collislon coxrse

Figure 4.3.

é=p
y>8
Y, y
y>8 ! r y>8
d(B\ d>8
FE ~
(d cotana, & i
y<u/ y<e
d<e J d>8
f
y<®
d=8

Relationship between y, d and direction of ortic flow.
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Collision Avoidance

Let the robot have a width of 2k. Then an object whose course is
plotted by (4) will not collide with the robot if
d > k. n
Suppose that the object's velocity in the x-z plane is v. Then
x' = vcosa
(8)
z' = vsina.

(Note on sign convention. (8) implies that for positive v, and
0sa<n, 2 wi];l be positive, meaning that the object is receding from
the robot. In nnt;st cases of interest to us, the objects visible to the
robot will be moving towards it, which would require a negative v accord-
ing to our convention. This should be borne in mind in the equations
that follow.]

From (1) we get

£ = 2% -axz'
z 2 (9

n = R¥Z'
2
z
For simplicity, now consider the case when the robot is looking where it
is going, that is, when a = n/2. 1In this case, (4) reduces to
x=d (10)
with

x'=0

z2'=v,

3 .3 .3 3 3 3 i3 i_4d
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_Substituting in (9), we get

But since, from (1),

we get

(11)

Since we also have from (1) and (10)
4 = bfy/an
we have finally

N4 (12)

iy (13)

For no collision, (7) tells us @ > k, so (12) gives

2

v v ‘
£' < ak . (14)

Let us see what this means. Consider a point P whose projection P'
passes a distance d from the robot to its right (a = 0 in Figure 4.2).
From (S), its flow is

n = by€/ad

3 1.3 3 3 L 3 13 i3

L

i3
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and since v is negative, so is 2z', so, from (9) or (11), £' and n' are
positive. Also, from (5), the FOE is at the origin on the retina. The
flow, at point (£, n) is given by (§', n'), where £' and n' are computed
from {9).

We know that &' and (-v) are both positive. (14) tells us then
that if §' is sufficiently small in magnitude, then no collision will
occur. The rationale here is that many points in space project to a
given point (£, n) on the retina. All of these subtend the same angle
fzom the robot's direction of gaze. Those with smail associated flow
will be those fu:éhest away, and so will be those which, when they
eventually pass, do so with the widest berth.

For those objects that pass to the left of the robot, d is negative
in (4) and Figure 4.2. Thus from (12), £' is negative, and the colli-
sion avoidance condition (7) becomes

la| <
so that (14) becomes, in general,
2
led < 1552
Thus
Result 5. At each point on the retina, a simple test on the
optic flow (15) is all that is needed to see if a
collision will occur.

For completeness we may note that if there are hazards in the ver-

tical direction, like overhanging trees, then if the robot reaches to a

height h above its 'eye', then (13) gives

-n2v
bh

' <
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for collision avoidance.

Segmentation

Consider the case where the robot moves along the z-axis with velo-
city v in a stationary environment. For any point P(x, Y, z) in the en-

vironment, we have from (1) and (9)

. =Ev
g =8 an
n; - “hv

The retinal velocity uret is then

A
uret = - ¥e2 L 12

- ¥

z

where r is the eccentricity of P's retinal projection. Thus we clearly
see that for neighbouring points on the retina, flow velocity is in-
versely proportional to depth. Segmentation may therefore be performed

by finding discontinuities in the optic flow.

Inference from Optic Flow

Equations (15) and (16) give conditions for collision avoidance.
To do this correctly, the robot must know the ratios v/ak and v/bh.
However, as v is likely to vary considerably from time to time, while a,
k, b and h are unlikely to do so, it would seem plausible that the robot

learn the products ak and bh adaptively, and v from vestibular or other
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propricceptive information. .
From (5) we find that the FOE is at (acota, 0) on the retina. We
may infer:
Result 6. Knowing a, the robot can deduce the angle between
its directions of gaze and motion.
Alternatively, he may know this from proprioceptive information, but
will not know proprioceptively the angle with which a moving object is
coming at it.
The slope of the flow lines give information of the object's height
y and 'close-encodnter' distance d by means of (6). It is only possible
to deduce from this the ratio y/d, though. Tﬁat is, two objects, one of
which is twice as tall and will pass twice as far away as the other will
induce identical flow lines. However, these flow lines wili be tra-
versed at different rates.
The components of the velocity of a point along a flow line are
given by (12) and (13). Therefore we have '
Result 7. Knowing the velocity of a point along a flow
line, the robot can deduce its height y and

passing distance d independently.
Rotation

Now suppose that the rocbot rotates on the spot, or alternatively,
that P(x, y, z) moves in a circle axbund it. Recall equation (1):

. £ = ax/z

n

n = by/z.

SN D I

If the polar coordinates of P are (R, 0), we have
x = R sin @ (18)

z = Rcos O .

Combining (1) and (18) we get

£ = a tan ©
n = by sec 3/R

from which we get

2.2 2
LIS N AR R 19
2 2
a
2,2
or %-%nl v (20
B a
where
Aea
B = by/R.

Equation (20) represents a hyperbola, or rather a family of hyper-
bolas parametrized by B. All points in space with the same value for
R/y will give rise to the same hyperbola. For a given hyperbola, its
vertices are at (0, *B) (see Figure 4.4). We have
Result 8. For any point (Eo, no) on the retina, only one

hyperbola of the family (20) passes through it.

This hyperbola is given by

n2 62
—°2—--°?=1. (21
Bo A



154

O. RETINA

Figure 4.4. Hyperbol
pure :otational motio
FOE at (-a“/§q, 0).

ae Induced on Retina by Rotational Xotion. During
n, all points with abscissa §_  have instantaneous
The angle between any point in the x-z plane and

its FOE is 90 degrees.
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pifferentiating (20) we get

nn' _ EE'
B A
so the gradient is
an _ g8?
ag nA2
The tangent at (Eo, no) is thus - 2
0 Q
(n-n)s— —(£-§)).
T S

or, substituting B:

We now have

Result 9.

from (21), we get after rearranging,

n g 2
n = °°2(£+§‘—).
a2+€° [+

The tangents to all points on the hyperbolas with
abscissa €0 pass through the point (-azlio, 0)

(see Figure 4.4).

Suppose that the robot turns with constant angular velocity w.

From (17) we have

LI 3
x Rw cos © (22)

z' = -Rw sin ©

Substituting (17) and (22) in (9) we get

' = aw sec? © , 2

n' = -%5 w sec © tan O
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or using our original retinal coordinate system
e =2as+ed
Now consider equation (19). From the flow-line itself, the robot

can only deduce the ratio y/R. Therefore we have

Result 10. Unlike the translation case, the velocity of the

flow (25) does not give y or R separately.
Finally, consider any point on the line £ = Eo in Figure 4.4. It
corresponds to a point in space in a direction @ from the robot's di-
rection of gaze, where from (1)
tan 01 = Eola.

The point's instantaneous FOE is the point (-a2/€°, 0) which corresponds

to a direction 92. where from (1) again

tan Bz = -a/io.
The angle between these directions has tangent

Eo/a + 8/50
1- an/aEO
which is infinite, so 61 - 62 must be a right angle. Our final result
of this analysis is
Result 1l. The FOE for any point in the visual field during
pure rotation is always the same point, the two

points subtending a right angle at the observer.
{See Figure 4.4.)
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Results of a Simulation

_ In summary, we present some outputs from a simulated robot system.
The robot is placed in the middle of an artificial forest populated by
trees consisting solely of vertical trunks. The trees are randomly
placed and have varying radii. On the trunks are simulated texture
markings consisting of short vertical lines. For computational reasons,
it is not possible to generate a sufficient number and variety of tex-
ture markings to give any suggestion of the richness of optical texture
on real trees.

The operator of the system can ask for any of three 'views'. He
may ask for a 'bird's eye view' of the forest, to determine the location
of the robot relative to the trees. He may ask for the view the robot
has of the forest at any instant, or the optic flow generated as the
robot takes a step. [N.B. In this simulation, the stimulus-matching
problem is trivial, since each point in the simulated environment is

uniquely labelled.] Further details of the system are given in Appendix

-I1.

A typical bird's eye view is shown in Figure 4.5. The correspond-
ing view in front of the robot is given in Figure 4.6, and the flow gen-
erated as the robot takes a step in Figure 4.7. Notice the common focus
of expansion of all the flow-lines. The robot may now be turned to face
(and move towards) the tree just to the right of straight-ahead; the
resultant flow is shown in Figure 4.8.

If we make a tree move, as in Figﬁre 4.9, we see that it has its

own focus of expansion. If this tree is made to move on collision-

(.3 ‘3 3% (3 ‘v_3 ‘_3 ‘_2
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Figure 4.6. Static View of Forest. The trunks of the trees seen in an
approximately 120° wide angle in front of the robot are shown here.

Figure 4.5. Bird's-eye-view of Forest (1). Although appearing uniform Dashed lines indicate the simulated texture markings.

here, the trees (represented by circles) have randomly distributed radii.
The arrow indicates the robot.
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Figure 4.7. Optic Flow (1). Flow is generated from the end-roints of
the tree-boundaries and texture edges. Notice that the extragolations
of all flow lines will pass through the FOE (circled). Figure 4.8. Optic Flow (2). Flow generated as the robot heads towards

the tree just to the right of the TCE in Tigure 4.7. The flow-lines oa
this tree are now vertical (and near-vertical).
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Figure 4.9. Optic Flow (3). Flow generated as a tree moves simultan-
eously with the robot. The moving tree has a different FOE from the

other (stationary) trees.
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course with the robot, then its flow lines will be (near) vertical (see
Figure 4.10). Note that being on collision course with an object does
not mean moving towards the instantaneous position of the object, but
rather, the relative velocity is in the direction of the object (see the
bird's eye view in Figure 4.11). Finally, if the robot turns on the
spot, environmental points describe hyperbolas on the retina (see Figure

4.12).

4.2.2 Computing Opntic Flow

We have seen that optic flow represents the passage of points in
the scene during time. The computation of this flow consequently de-
pends on successfully matching up points from ore frame to the next (the
Stimulus Matching problem).

A word should be said here about ‘'velocity detectors'. It has been
hypothesized that one of the functions of the retina is to signal di-
rectly the speed of edges, spots, etc. moving across it. Were this to
be the case, the optic flow could be directly 'read out' - indeed, some
authors, e.g. Clocksin (1978) suppose that this is possible. However,
biological velocity detectors have not been convincingly demonstrated.
That evidence which does exist, however, does not provide us with veloc-
ity detectors with nearly sufficient resolution to produce the necessary
information directly. A discussion of how, in such conditions much more

_accurate information may be achieved by cooperative processes was pre-
sented in Chapter III. In fact, as far as their implementation in ma-

chine vision systems is concerned, their existence would merely push the
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Optic Flow (4).
moving on collision course with the robot.
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The tree that moved in Figure 4.9 is now
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Figure 4.11. Bird's-eye-view oI Torest (2). The moving tree indicated
by an 'X' is on a collision course with the robot. The individual ve-

locities of the robot (V;)} ané the tree (V) are marked. Their relative
velocity (¥3) is cn a line joining them, indicating that they will col-

lide. .
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Figure 4.12. Optic Flow (5). Flow generated by rotation is in the form

of vertical-axis hyperbolas. In this instance, the robot‘has turn:d

through 100° anticlockwise in 10° increments. The heavy .}ow on4t57

right is due to the many trees ‘north' of the robot (see Figure .th

passing out of its field of view. The flow on the left %s due to the
trees 'west' and 'south-west' of the robot coming into view.
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problem down one level, the question now becoming "how do the velocity
detectors work?", the solution to which returns us to the Stimulus

Matching problem!

Consistency Conditions

Although one particular method of computing optic flow will be the
subject of the next Chapter, some general comments about this problem
will be made now. The underlying structure of the physical world is
manjifested in a number of so-called 'consisiency conditions' which apply
to the optic flow. These conditions place restrictions on the optic
flow in such a way that solving the Stimulus Matching problem is possi~
ble in a computationally feasible way.

We will list six consistency conditions and then describe each of
them briefly.

1. Feature Compatibility.

2, Boundedness of Distance Travelled.
3. Path Consistency.

4. Neighbourhood Match.

S. Common Motion.

6. Environmental Model.

1. Feature Compatibility. The features associated with corre-
sponding points in two frames must be similar. The transformation be-
tween the features must be a possible consequence of motion during this
time-step (and the digitization process).

2. Boundedﬁess of Distance Travelled. Assuming a bound on real-

world velocities puts a bound on the magnitude of optic flow vectors
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(possibly as a funttion of eccentricity). Thus matches will be found
'néarby'.

3. Path Consistency. Under the assumption that jerky movements
happen relatively rarely, then the motion of a given feature-point be-
tween frames N and N+l will be the same (to a first-order approximation)
as that between frames N-1 and N. '

4. Neighbourhood Match. The neighbourhood of a point may be de-
scribed as the geometric arrangement of other nearby feature points a-
round it. This neighbourhood will tend to be ptesérved from one frame
to the next.

S. Common Motion. Nearby points on the same object will move with
the same (or similar) velocities.

6. Environmental Model. As.we saw earlier, the type of motion un-
dergone places constraints on the optic flow produced. For example,
translatory motion in a static environment produces linear flow emanat-
ing from the FOE.

We will see in Chapter V how some of these consistency conditions
may be embodied in a relaxation process used to generate the flow. It
might be noted here that it is the failure of these consistency condi-
tions which gives a goed indication of the occurrence of occlusion and

disocclusion, and of the location of boundaries.

4.2,3 Completion of the Optic Flow Field

We have discussed the generation of optic flow by matching up ex-

tracted feature points £rom one frame to the next. The feature extrac-
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tion process selected these points due to their 'special' nature; how-
ever a (possibly zero) velocity may be associated with every point in
the visual field, so every point should have an associated optic flow
element. Of course, the density of the flow field is limited by the
resolution of the visual process. Assuming, though, that feature points
are not found 'everywhere', the problem remains of filling in the re-
mainder of the field. We will describe two possible approaches, one of
which will be carried out in Chapter V.

A popular concept in AI is that of multiple levels of representa-
tion. Aan analysis of low-level data (such as lines, dots, corners) can
cause invocations of higher-level entities (such as objects) to ‘cover’
the low-level ones. Hypotheses of higher-level constructs can cause an
analysis of lower-level representations for supporting data. There can
be many levels altogether in a system; HEARSAY-II (Erman and Les;er 1975)
and VISIONS (Hanson and Riseman 1978b) for example, both use several.

One of the main contributions of feedback from higher levels is
that filling-in can occur. After recognition of the shape (or possibly
even the identity) of an object the optic flow may be completed within
the object's boundaries. These higher levels of representation will not
be used in the work described here, so we will seek an alternative low-
level approach.

The continuity of some feature f over a region can be described by
Laplace's equation Vz f = 0, or its discrete counterpart, over inte-
rior parts of the region. Weisstein (Weisstein and Maguire 1978;

Weisstein et al. 1977) has demonstrated that humans can perceive ‘ghan-
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tom' patterns; that is, they can fill in missing portions of patterns
under certain conditions. The patterns experimented with were all peri-
odic, as are some of the solutions to Laplace's equation. A typical
pattern is presented in Figure 4.13a.

Now, it is just the continuity of the velocity field over an object
which is expres#ed by the consistency condition 5 (Common Motion). As
we will see in Chapter V, one component of our system will be a process
which seeks to generate optic flow for which Laplace's equation holds.
In so doing, this process will be able to £ill-in the optic flow in

those areas of thé visual field lacking ‘significant’ features.

A_Proposed Experiment

It was mentioned above that Weisstein's experiments ueze_performed
with simple periodic patterns. It would be interesting to see if the
class of patterns amenable to the ‘phantom contour' phenomenon included
those not obeying Laplace's equation, for example identical with the top
but not completely out of phase with it. This experimental paradigm, or
extensions of it, may be very useful in exposing the brain's interpola-

tion mechanisms.

4.2.4 _ Decomposition of Flow Field into Components

In Chapter V we will see how the optic flow may be generated from
the feature points on moving objecté. The movementg may be any combina-
tion of translation and rotation in space. For purposes of approach/

avoidance, the translatory component of a moving object may be more im-
\
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4.13a 4.13b

Figure 4.13. ‘'Phantom-Contour' Experimental Patterns. The gap in the
centre of Figure 4.13a was 'filled-in' in Weisstein's phantom-ccatour
experiments. Note the regularity of the pattern. The pattern in Fig-
ure 4.13b differs in that it does not have vertical uniformity. It
would cast some light on the 'filling-in' process to see if this pattern
is also subject to phantom contours.
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portant to the observer than the combined motion. We will show below
how an arbitrary (but assumed smooth) vector velocity field may be re-
solved into translation and rotation components in a local, parallel,
distributed manner.

Suppose that there are N vectors vi, i=1,....,N in the flow field

v, =8, +r (1)

i i i’
where the sy are the translation components, and the T, the rotation
components, We will wish to fir;d. via a relaxation process, s; and T
such that R

s st for all i, j

In this manner, the translation component will be the common vector dis-
cussed in Section 4.4.1 below.

For purposes of analysis, we will imagine that the si and ri are
functions of continuous time, and so can be modelled by differential
equations. In the computer simulations that follow, though, they will
be ‘updated during several iterations of a relaxation process. The s;
and r, will be initialized (see later) and the relations (1) will be
preserved throughout.

The uniformity of the desired tra:'xslation component can be ex-
pressed by the requirement that each translation component tends toward
the average of its neighbours, thus

ds

i
— = - 2
EY k”.:sj NSi]. (2)

—3 i__3

The desire that the rotation vectors sum to zero can be expressed by

making each component adjust itself in a direction to make this true,

thus
d_t_i e k'L r (3)
dt j
j
Let us put I v, = V. Then using (1), (3) becomes
-ds:.L
ac ﬂklgsj-vl. {(4)

We may combine (2) and (4) to get, for weights A and u

dsi
Ty =x[l_:sj—Nsi] +u[—7}sj+vl
) J (s)
= (A -p) L8, - )Ns, + V.
u 3 j i ¥
Summing (5) over i, we get
dals
—1 = - -
Ty N(A - u) zsj )«Ntsj+uw
e -Nutsj + uNv.
Hence
ts, = Re Mt 4 oy, (6)

Thus in the limit, I s_.s tends to V, which is eguivalent to L :j
tending to zero, as desired. If we initially set ri(o) = Vi si(O) =0,
for all i, then the constant A in (6) equals -V, so we have

L s5 = v - e Nt

13 rj = \Ie-m'lt .
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This is a straightforward case of exponential decay. However, we

have not yet examined the effect on the individual values r1 and s;-

Substituting (7) in (5), we get
i

Ty =-1Nsi+uv¢v(l—u)(l-e

Nuty | (8

Clearly, since (8) represents an uncoupled system of first-order linear
equations, the equilibrium point does not depend directly on si(O). How-

ever, due to the forcing term wv + V(A + u) (1l - e-m‘t

), the equilibrium
point will depend on V, which 1; a function of s {0), so the initial
conditions will determine the outcome.

With initial conditions s, (0) = 0, (8) has solution

v Nut

si(f.) = a (L - e ) (9)

Thus we see that the individual values s N tend uniformly to V/N, the
common velocity, again by exponential decay.

The above analysis shows that if the summations in (3) and '(4) are
carried out over the entire field, the estimated translation and rota-
tion coméonents proceed monotonically to the actual values. We present
below results of computer simulations where each element in the flow
field only interacts with its immediate neighbours. Thus if there are
n, points in the neighbourhood N

i i
point i becomes, from (S)

of point i, the updating equation for

81(t+1)=si(t)+(k-u) L aj-kns +y I v

. jeNi i chi ¥

We set ri(O) = Ve si(O) = 0 for all i.

.Fig\u;‘e 4.14 depicts the flow generated by rotating the grid about
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(a) Combined Motion ~ \ \

(b) Rotational Motion
1
(¢) Translational Motion —_ N\ \

(b) (c)

Figure 4.14. Resolution of Flow-Field into Components. Figure 4.1l4a
shows the flow generated by the rotation of a grid of points about the
bottom left-hand corner. Figures 4.14b and ¢ show the rotation and

_translation components of the motion respectively, as generated by the

relaxation process described in the text.
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a point near its bottom left-hand corner. Figures 4.14b and ¢ show the
translation and rotation components, again after 60 iterations with
A= u=,05. It is clear that all the translation components are equal,

and that the rotation components sum to zero as required.

4.3 Extraction of Features

We examined in the previous section the computation of optic flow
from two successive frames in a moving-image sequence. The generation
of optic flow depends upon the ﬁatching—up of what~we call ‘feature-
points' in the iméges. Thege feature-points are the locations of opti-
cal events in the images, that is, points having certain distinguishing
characteristics. The characteristics in which we are interested are
functions of the gradient of image intensity. Our feature-points cor-
respond to Marr's (1975) 'place-tokens', the components with which he
constructs his Primal Sketch. They are also equivalent to Ullman's
(1977) 'correspondence tokens'.

We will be looking for edges and corners of objects, which manifest
themselves (ideally) as sharp discontinuities in the intensity. These
discontinuities may be detected by the standard practice of applying

edge-masks, as di d in Section 2.3. This technique is somewhat

analagous to the use of on-off receptive fields in biological visual
systems.

’Many such operators have been defined, from the relatively simple
(Kirsch 1971; Roberts 1965) to the more complex (Hueckel 1973). For a

very good comparative review of edge-operators, see Bullock (1974).
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while these‘have been fairly successful at picking out local edge ele-
ments, they have not been so good at producing clean boundaries of the
objects in the images examined. However, we saw in Chapter 1II how such
boundaries may be extracted by using several stages of (rather time-
consuming) processing. As far as our motion analysis is concerned, we
intend to track the motion of these extracted edge and corner elements -
our 'feature-points' - and so we will find simple differentiation again
sufficient.

A word or two about colour would be appropriate here. Most of the
receptive-field-mapping experiments that were performed by neurophysiol-
ogists were done with black and white étimuli, because these provide the
greatest contrast. However, it has been shown that some ganglion cells
in the monkey, for example, have colour-opponent centre-surround recep-
tive fields (de Monasterio and Gouras 1975). This suggests that we may
find colour a useful feature to use. Now, all of the differentiation
operators described earlier were designed to work on black and white im-
ages. By the use of filters, the red, green and blue (RGB) components
of the images may be generated; the guestion is, is there any benefit
in using colour features? Robinson (1977) investigated the relative
usefulness of differentiating the RGB images as well as certain other
representations of colour-space. Segmentations were performed on all of
the component images. By a subjective analysis, it was concluded that
the component most related to simrle black and white intensity carried
the most information. Consequently, we will stick with black and white

images, although we recognize that in so doing some information will be
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lost.

In Chapter V we will show how by extrapolating the optic flow into
the next time-step, we can greatly diminish the time taken by the relax-
ation process which computes the flow, thus dxastiéally lowering the
computational cost per frame. Since feature-point; must be extracted
from every frame, this saving will be to no avail unless the edge detec-
tion is a very fast process. Therefore, as in Chapter II, we will use
extremely simple edge-masks. The ‘'broken-wheel' experiments of Ullman
(1977) suggest that individualiedge elements are used in the correspon-
dence process ratﬁer than the extended linked line-segments. So again,
we find that the preliminary processing need not be very elaborate, a
situation we consider very desirable.

Not only do we wish to extract these feature-points, but we want to
label each of them with a ®feature-type'. These feature-types will
characterize the kind of feature present at the feature point. In our
case, orientation of edge/cormer will be the feature-type used. These
Jabels will serve to aid the relaxation process of Chapter V in deciding
whether feature points from consecutive frames match each other. For
this purpose, a 'feature-metric’ is required in order to associate a
1distance’ between different feature-types. We may again compare our
ideas with those of Ullman (1977). He uses the concept of raffinity’
between correspondence tokens to determine whether correspondence takes
plac;. His affinity is, amongst other things, a decreasing function of
orientation difference between line-segments.

We will use masks to extract edges at eight equally separated ori-
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entations. Because of the spatially quantized nature of digitized im-
ages, diagonal edges appear locally as corners, indicating the need for
both edge and corner masks. Feature points will be those points at
which the output of at least one mask exceeds threshold T. We consider
the mask to be a detector which 'fires' when this occurs. For conveni-
ence, we will use separate masks to detect edges at orientations 180 de-
grees apart, that is, the same apparent orientation but with different
direction of contrast.

Horizontal and vertical edges are detected by the masks in Figure
4.15a-d. Related 'corner' masks are shown in Figure 4.15e-1, but we
will show that their effect can be closély simulated by a combination of
horizontal and vertical masks. Let us suppose that the shaded regions
of the masks ‘detect' low intensity, and the open regions high intensity.
Thus the mask in Figure 4.15a when applied to the portion of the image
shown in Figure 4.15m will fire if (b + c) - (a + d) > 2T.

We will define the feature-type of a mask to be the inclination of
a line, parallel to the edge detected by the mask and with dark on the
left. Thus the feature-type of the mask in 4.15a is 90 degrees.

Consider the detection of 45 degree edges. This may be achieved by
the masks in Figures 4.15f and 4.15j. We may therefore want a 45 degree
feature point if either mask fires, i.e, if

3b-a-d-¢>3T
or
a+b+c- 332> 3T,

1f neither fires, then
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Figure 4.15. 2 x 2 Masks.
and diagonal 2 x 2 masks.
combining outputs of masks a - d.
an arbitrary 2 x 2 portion of an image.
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Tigures 4.15a - 1 depict horizontal, vertical
The effects of masks e - 1 may be achieved by
Figure 4.15m shows the labelling of
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3b-a~-d-cs 3T

a+b+c-3d s 3T
hence

b - a g 3tr/2.

Now, the O degree mask {(4.15d) will fire if

b+c~-a-d4>2T,
and the 90 degree mask (4.15a) will fire if

a+b-¢-d>2T.
If both fire, then we must have

b -4 > 2T,
Consequently, the firing of both these masks guarantees that either 45
degree mask would have fired. Although the conditions for firing are
more strict, they are not significantly so, so we will not use diagonal
masks, but employ solely the horizontal and vertical ones. The edges
detected, and the (ccmbinations of) masks which detect them are given in
Table 4.1.

A great advantage of using just horizontal and vertical masks is
that the joint firings of masks listed in Table 4.1 are the only ones
possible, since a mask and its 180-degree counterrart will never simul-
taneously fire (for positive T). Therefore at any point in the image,
only one feature-type (if any) will be present. The distance between
any two feature-types may be simply defined to be the difference between
them, modulo 360 degrees.

We should note that it will commonly hazren that horizontal edces

‘transform’ into vertical ones, and vice versa. For example, consider

(3 (_3 t_3 3 {3 (-2 '3 '3 1_3
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the solid diagonal edge of Figure 4.16. As it moves to another position
(dotted) along the direction of the diagonal, this effect clearly takes
place. However, this is just a variant of the Stimulus-Matching Problem
(Burt 1976), where the global movement of, for example, the square in

Figure 4.17 is not evident from a very local view. Information from the

end-points of the line-segments and perative effects from the co-

moving individual elements in the line-segments will combine to produce

the co t .
Edge Mock(ed i ) e correct matching
. 4.4 Common and Field Velocities
[} [ a
45 el o
okb In this section we study the concepts of Common Velocity and Field
88 83 b .
Velocity. Both of these arose out of experiments in the psychophysi-
135 881 188 bte
168 168 < cist's laboratory, but are extended so that they may be of use in real-
25 168 & 278 ctd world situations.
2 78 d
815 8878 ot d 4.4.1 Common Velocity

Johansson and his colleagues have performed several studies on the
motion of dot patterns (see, e.g. Johansson 1950 Ch. V; Borjesson and

von Hofsten 1973}, and have coined the term ‘cormon vector' to denote a
Table 4.1. Edges at the orientations listed in the left-hand column are

detected by the masks in the middle column. These masks are depicted by . common component of the dots' velocities. The common vector may be for-
the corresponding parts of Figure 4.15, indicated in the right-hand
column. mally defined as that unique vector which when subtracted from the mo-

tion vector of each dot leaves residual vectors which sum to zero (Bor-
jesson and von Hofsten 1973). Thus for a set of dots rotating about an
arbitrary point, the common vector is the translation of the centroid,

and the residual vectors represent the rotation of the other points a-
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Figure 4.17. Stimulus Matching Problem. From a local view, e.g¢. within
the circle, the global motion of the sgure is not apparent.

Figure 4.16. Moving Diagonal BEdge. A digitized diagonal edge will ap- -
Pear as a sequence of vertical and horizental segments, as shown by the
S0lid line in this figure, As it moves céiagonally urwaré ané to the
right by one unit (dotted line), horizontal edges acpear to change into
vertical edges, and vice versa.
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round the centroid. We will use the terms common vector and common ve-
locity interchangeably.

Johansson was concerned with maximally simplified stimulus events -
on the threshold in terms of information. 1f the extraction of the com-
mon vector is an important process in the perception of moving objects,
then since biological organisms do not deal with such simplified condi-
tions outside of the laboratory, then this process must be applicable to
real stimuli.

In some of the experimants.which they performed, movement in depth
was perceived from an objective motion of points in the plane, the com-
mon vector being the translatory component. However, such a common vec-
tor can not in general be defined uniquely for more than three dots.
Their experiments resulted in the perception of a rigid objéct rotating
in depth only because three dots moving in the plane have six degrees of
freedom, as do rigid bodies moving in 3-space. But for an arbi;rary
number of independent motions (dots in the plane) some other definition
of common vector is required.

Suppose that the visual system tries to superimpose a motion on the
set of stimulus points that leaves the smallest residue or difference
between the actual motions and the would-be common motion. While it
seems that the visual system knows about 3-d motion (but not about 4-d)
we will suppose that it only knows about 2-d motion. (The erucial point
here is that there are more constraints than degrees of freedom. The
simplification facilitates the mathematics, a?d can ?ossibly be justi-

fied by an argument that the third component will be close to zero.)
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Suppose that there is a collection of n stimulus objects {dots)
with velocities Vi in the plane and weights "1' where the weights are
normalized to sum to one. The weights may be, for example, functions of
brightness, size, eccentricity, etc. Suppose that the system tries to
find the common vector C which minimizes I wi(vi - C)z. This C is eas-
ily seen to be C = L wivi, that is, the weighted mean of the velocities.

It is clear that this definition is in accord with that of Borjes-
son and von Hofsten. If C is that vector which leaves residuals which
sum to zero, then I (Vi -C)=0,s80C=1L vi/n by their definition,
i.e., the simple (non-weighted) mean.

To summarize so far, Johansson and colleagues introduced the con-
cept of common velocity as a frame of reference used when stimuli are
undergoing various motions. We have shown that the ue;qhted mean of the
stimulus velocities gives a value which minimizes the mean-square dif-
ference of the other velocities from it; this is in agreement with their
definition of common velocity as being that velocity which when sub-

tracted from all stimulus velocities leaves residuals which sum to zero.

4.4.2 The Attraction Function

The trouble with using common velocity as a frame of reference in
real-world scenes with multiple motions is that one would like to have
it coincide with the actual velocity of an object or collection of ob-
jects, so that the object(s) may be viewed as stationary within that
frame of reference. The common velocity, computed as above, will not in

general do this. This is because is is essentially an average of the
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motions of different objects.

If the human does indeed perform this kind of common velocity cal-
culation, then it would seem likely that there is a.mechanism whereby
the resulting value could be adjusted to coincide with the actual veloc-
ity of at least one of the moving objects. It would not seem unreason-
abie to expect that th adjustment is in the direction of the 'nearest'
actual velocity.

Let us define an Attraction function A(x; S), where S is a set of
points {xi} in some space with metric d, and x is some arbitrary point
in that space, to compute that Xy in S which minimizes d(x, xi). If
more than one xy satisfies this condition, then one may be chosen at
random from this subset.

To see the use of the Attraction function, consider the following
classic example of induced motion. Suppose that a large frame of ‘size’
M moves with velocity V, and inside it is a small stationary point of
'size' m(< M). The small dot will appear to move backwards with veloc-
ity v, the frame stationary.

We have the common velocity vector C = MV/(M + m) > V/2. If we de-
fine s = {v, 0}, then A(C; S) =V, which is the velocity of the frame -
our 'frame of reference'.

The velocity V above is an example of a 'Field Velocity' as de~
scribed by Burt (1976). The field velocity may be regarded as the ve-
locity of the environment, or in the case of observer motion, that ap-

parent velocity induced by the motion of the observer.

Consider the 'railway-carriage phenomenon': when one is sitting

)A
5
.
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in a stationary railway carriage and a train on an adjacent track begins
to move, the impression is that the the train on which the observer sits
is moving. This may be explained using the field velocity concept.
Essentially, two velocities are presented in the field of view: V,

that of the mo&ing train, and 0, that of the stationary window-frame and
carriage. If the moving train fills a sufficient portion of the field
of view that the common velocity evaluates to a figure > V/2, then the
Attraction function will compute the field velocity to be V. Thus the

moving train becomes the frame of reference, and, relative to it, the

stationary train seems to move with a velocity of -V.

The Continuous Attraction Function

We notice that the Attraction function defined above is not a con-
tinuous function. It might be interesting and profitable to formulate
a continuous Attraction function.

Let § = {xi. i=1,...,n} be an arbitrary set of n vectors xi, and
let X be the vector whose "nearest match" in S is desired, according to
some metric d. Thus we wish to define i(x; S), where ; is in some sense
close to A, but is continuous., Bearing in mind that the common vector
may be defined as the weighted mean of the stimulus velocities, consider
the formula

g(x; s) = z ajX;

Laj

This is the weighted average of the xi, where the weights, known as

Attraction Weights, are functions of the distances between the Xi and X.
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Suppose that f is a very fast-decreasing function of one argument,

for example,
vl
fy) =¥

Then if d is the Euclidean metriec,

2

. £ x, o iX %l

AX; §) = At .
T RIEER A

i
i
Now, if for a particular i, Ix - xil is significantly less than

2
lx - le for j # i, then the weight e—lx - xil

% - 2
REEEN

will be significantly
greater than for 3 # i, and so ; will be very close to xi.
This definition of ; has an interesting property in the case that
the ‘nearest’' to X is not well-defined. Suppose that two values xi and
X, have 'minimum distance' to X, that is, [x = x. = |x = x| << [x - le,
i # j # k (for our purposes, |x - Xil and Ix - xkl need not be exactly
the same). Then the weights e-lx - xi‘z and e‘lx - xk|2 will be approx-
imately the same, but will be very much greater than e-lx - lez for
i#3j#k, sothat ; will evaluate to the mean of xi and xk. (Compare
the frog sometimes snapping at the 'average' fly in Didday (1970).)
This may be a significant feature for the following reason. We
will see in Chapter V the incorporation of the Attraction function in
the relaxation process which performs stimulus-matching. If two points
at xi and % respectively are equally good candidates for match with
some point X, then it may be a wise thing to temporarily 'hedge one's

bets' rather than to choose one or the other arbitrarily. If an arbi-

trary decision is made and it turns out to be wrong, then because of the
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way in which information travels in a relaxation process, the effects
may spread and the system may never recover, or if it does, it may take
a long time to do so.

It is interesting to note that the continuous Attraction function
g may be described algorithmically by a program that has a linear flow
of control. The discontinuous nature of A arises out of the fact that
a program to c&mpute it would require conditional b{anching. It is pos-
sible that the continuous function might be favoured in a particular ap-
plication, since with thé right equipment it.may be computed in a single

step.

4.4.3 Extension of the Field Velocity Concept

Psychophysical experiments concerned with induced motion in the
laboratory and the railway-carriage phenomenon have given rise to the
idea of a field velocity - the common motion of the ‘'majority' of the
points in a scene which becomes the reference by which all other motions
are judged. We will show that there is no need for the field velocity
to be spatially uniform.

Consider the case of a visual organism moving on a flat surface
with certain fixed objects at some distance - say a dense forest to
which the observer is both looking and moving over an open plain. The
optic flow.pzoduced would be something like that in Figure 4.18. This
flow is an easily generated and maintained part of the organism’s inter-
nal representation of the current state. This velocity, by no means

uniform, can be used as the field velocity. It will be constantly sub-



Figure 4.18.

Diagrammatic Flow Field.
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This figure depicts the kind of

flow field one might expect to be generated while travelling over an
open field towards a forest. -

s,

)

L2
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tracted from the instantanecus optic flow, and the lack of any discrep-
ancy will imply that there is no imminent action to be taken by the or-
ganism. Any irregularities, however, such as bumps on the ground, or

one t:.:ee being much nearer than the others will be detected instantly,
so that the organism may take evasive action. The important point here
is that the field velocity may be represented by a velocity field, not
just a uniform velocity.. This extension allows the concept to be of

more general applicability than before.
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CHAPTER V

SYNTHESIS OF A MOTION-DETECTING SYSTEM
5.1 Introduction

At the heart of the problem of the analysis of moving-image data
lies the matching-up of corresponding points in consecutive frames.
This has been termed the Correspondence Problem (Duda and Hart 1970) and
also the Stimuius-Matching Problem (Burt 1976). It has been tackled in
a variety of ways, but most often with simplifying assumptions, such as
no rotapi&n, no occlusion, binary images, single motions, etc. (see,
e.g. Aggarwal and Duda 1975; Potter 1977; Dreschler and Nagel 1978;
Radig 1978). The correspondence problem also arises in stereopsis,
where two frames taken at the same time but from dif?e;enc positions
need to be matched (see, e.g. Levine et al. 1973; Thompson 1975; Nevatia
1976; Ganapathy 1975). For either application, it has aroused much in-
terest as a procblem in cooperative computation in neural-iike circuits
(Julesz 1971; Dev 1975; Marr and Poggic 1976; Nelson 1975; Trehub 1978).

In this chapter, we explore the use of a cooperative algorithm, but
using computations which are not necessarily neural-like. The 'control-
structure' of the algorithm, however, is based on concepts from neuro-
physiology. Our data is in, the form of retinotopic arrays or ‘layers'
being protessed in parallel by arrays of computational elements. These
elements have certain 'receptive fields', that is they obtaig their in-
put from localized neighbourhoods in the layers of data. ODue to the

overlap of these neighbourhoods, these elements communicate with each
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other. Since the computations are iterative and proceed until certain
local critgrla or ‘'consistency conditions' are met, the process may be
regarded as an example of a relaxation process (see Chapter II for a
general discussion of relaxation processes).

We discussed in Chapter IV how Optic Flow is a good low-level re-

presentation of motion. We describe here pr to comp the Optic
Flow from the motion of dot-patterns. We will, however, reserve the
phrase 'Optic Flow' to refer to the veridical flow associated with the
motion, and use the term 'vector velocity field' to denote our estima-
tions of the flow field.

We will demonstrate at the end of this chapter that by using ex-
trapolation techniques we may greatly decrease the computational cost
per frame over a series of frames of data; a possibility that has not
received too much attention elsewhere to this data. We will use real

data in this demonstration.
5.1.1 Overview

In this chapter we follow the development of a motion-analysis sys-
tem known as MATCH. We generally suppose that two arrays of layers P
and Q of feature-points extracted from consecutive frames of data are
available to the system. The task of MATCH is to generate and maintain
the vector velocity field layer D representing the motion of these
points.

We start by specifying the consistency conditions which are used

to constrain the motions of the points. These conditions are incorpor-
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ated into a relaxation equation which ;s used to generate the vector
velocity field. This is perforﬁed on two consecutive frames of feature-
points, with the initial assumption of no occlusion. Experiments are
firstly carried out under three conditions ih which the velocity field
elements are in register with the points in the Q layer.
(i) Velocity field components correspond only to extracted fea-

ture-points. This is the basic experimental paradigm.

(ii) Velocity field components in the background are 'filled in'.
This arrangement simulates the occurrence of homogeneous regions of a
moving surface, over which no feature-points are extracted, but for

which it is desired to associate a flow-field.

(iii) Velocity field P ts in the background correspond to a
stationary background object. This arrangement simuiates the different
relative motions of two adjacent objects in the image.

(iv) We next extend the system to cover the (more realistic) case
where the stimulation (set of feature-points) is not in register with
the discretized vector velocity field. We see that this requires the
addition of an extra layer C between the D and P and Q layers (see Fig-
ure 5.1).

(v) The discussion then turns to the problems of analysing se-
quences of more than two frames of data. We see that it greatly facili-
tates the analysis to impose certain nominal restrictions uéon veloci-
ties manageable by the system. For very slow velocities, where stimulus
points remain within receptive-fields (pixels) for more than one frame,

an averaging process is applied to smooth the inferred motion.

3 xR} 3 _d _D t_ _d _3

D layer

C layer

P and Q layers
superimposed

Figure 5.1. Organization of Data Arrays. P and Q are two consecutive
frames of extracted feature-points. They are superimposed in this fig-
ure, the open squares representing points in P, the filled squares points
in §. The points drawn all fall within the receptive Zield of a single
element in the D-layer. The C-layer contains 'corrections' to the D-
layer derived from trying to match points in P with points in Q, using
the vectors in D as 'estimates'. These ccrrections will in turn provide
one of two updating components for the elements in the D-layer. The
other component (not drawn) is from a weichted average of surrounding
elements, used to swocth the flow. In the early experiments described
in this chapter, the flow vectors in the D-laver are in register with
the feature-points in Q, so the C-layer is not needed explicitly. Note

that, in the general case, the receptive fields of adjacent D-layer ele-
ments may overlap.

3 t_3 3 3 3 3 iy 2 '_1
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In order to track the motion beyond the second frame, the internal
representation of the motion, the vector velocity field, needs to be
propﬁga:ed. To do this, we introduce an algorithm for perfoéming the
tracking. We present results of running the system on sequences of
frames of real data. The feature-points are extracted in the manner de-
scribed in Chapter IV.

(vi) Finally, we describe how the system manages occlusion and dis-~
occlusion, and discuss how the segmentations produced as a result of oc-
clusion-detecting processes may be integrated with other segmentation

processes.

5.2 The Basic Stimulus Matching Algorithm

The frames of data consist of arrays of intensity .values. At some
of the positions in these arrays the feature-detectors have determined
that one of a set of features is present. In this section we study the
matching of these feature-points, or gimply points, in tw§ successive

pre-processed images.

5.2.1 Specifying the Consistency Conditions

Let us define a pre-processed image P to be a set of pairs {(PX(i),
pPT(1)) i = 1,...,n}. The pair (PX(i), PT(i)) is an assertion that fea-
ture PT(i) is found at location Pk(i). We will sometimes use the abbre-

-viated notations (xi, Ti) £or-(Px(i), PT(i)) if P is understood, or Pi
if the location and feature attributes do not need to be referred to in-

dividually.
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Suppose that P and Q are two successive pre-processed frames from
a movie sequence, Q being the more recent. The goal of MATCH is to find
the Vector Velocity Field associated with P and Q.

We will not initially address the problem of occlusion directly.
From the observation that, in general, if a pofnt becomes occluded or
disoccluded at a given instant, then it will stay as such for some (pos-
sibly considerable) time 1nca:§a1, we may conclude that the phenomenon
pécurs sufficiently rarely, in the temporal sense, at a given spatial
location that it can be treated as noise. In performing the correspon-
dence, we make use of the fact that the vast majority of points which
are present in P are also present in Q, and vice versa. It will be
noted, though, that the disappearance or ;ppenrance of points may be
taken as a strong cue for the occurrence of occlusion or disocclusion
and hence the existence of a boundary in the vicinity. This point will
be addressed in detail in Section 5.5.

As we have just observed, almost every point in Q will have a pre-
decessor in P. Thus we will be able to associate with each such point
Qi at location QX(i) a vector DX(i), and to find some (PX{j), PT(j)} in
P such that

(1) PX(3j) + DX(i) = Qx(i)
(2) PT(j) = QT(i).

Due to noise, illumination and topological changes between frames,
and other factors, we will only £ind approximate equality in {2) when-
ever we process real data. In any case, while these (approximate) con-

ditions are necessary for a correct match between Qi and Pj' they are
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not sufficient. There is no guarantee that PX(j) really did undergo
movement DX(i) to reach point QX(i). In fact, given any two successive
frames P and Q there is never any guarantee that a point in P and a
poing in Q correspond to each other. However, given certain assumptions
about the motion, we may be able to say with a high degree of confiderce
that the two points correspond.

The most important assumption that we make is that we are viewing
real-world rigid motion. Under this assumption, points on the surface
of a moving object move with a valocity whic£ is very close to that of
neighbouring points. That is, the Vector Velocity Field is continuous
across the object. For the mgment we will put aside boundary problems
;nd assume that all the points in P and Q belong to only one object.

' Consider Figqures 5.2a 'and 5.2b. The symbol + corresponds to
points of P, the A to peints of Q, and the arrews to the.associated
velocity field DX. Now, if, for example, the feature T for all these
points is the same, then conditions (1) and (2) are satisfied for both
S.2a and 5.2b. However, if we make the agssumption that these points be-
long to an object which has undergone rigid motion, then 5.2 b is clear-
ly correct, and 5.2a incorrect. In fact, the crossing phenomenon of
5.2a is never observed in apparent motion situations (Kolers 1972). We
can express this fact by adding a third condition:

(3) DX(i) is (approximately) equal to the average of

the value of DX at neighbouring points.
This condition will not hold across boundaries of objects.moving

with respect to their background. This phenomenon is explored in Exper-
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Figure 5.2. The Correspondence
group of four feature-points in
correspondences are shown. The
ferred due to the uniformity of
sing of the flow in Figure 5.2a
situations.

S

v

+ 4
(b)
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two consecutive frames.
correspondence in Figure 5.2b is pre-

the generated flow.

Two possible
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In fact, the cros-
is never observed in apparent motion

{.’hig
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iment 8 (Section 5.3.3) below, where it is seen ;hat the discontinuity
in the flow is not sufficient to prevent the correct correspondence from
heihg formed. A more drastic form of discontinuity occurs when points

- disappear due to occlusion; this is discussed in Section 5.5.

To see why we use the average in (3), consider a smooth surface
with vector vé;ocity D(x, y) associateéd with each point at coordinates
(x, y). By assumption, 6(x, y) is continuous. If the gradient of th&

_ velocity field is not too large, then the field is approximately linear
in x ;nd y. It follows.that D(x, y) is, to Eirst order, the average of
neighbouring values. It is sufficient that we only require apcroximate
equality in (3) for two reasons:

(i) the points in P and Q will not necessarily be equally spaced,

and

axc
(1i) if the motion contains a rotation mp t for ple, the l

assumption of linearity will be inaccurate (see Figure 5.3).

We can use conditions (1), (2) and (3) to generate the Vector Ve-

locity Field. This is done essentially by a relaxation process which Figure 5.3. Effects of Non-linear Motion. DX(i) is the disrlacement
associated with 9X(i) which was formed when PX(j) rotated about 0.
makes corrections to the value DX at each point according to the degree DX(i) is not equal to the tancential velocity at either PX(3) or 2X(i).

to which (1), (2) and (3) are in error. The derivation of the relaxa-
tion equations may be seen by examining the action necéssary under a
slight perturbation from the state of convergence.
Suppose that DX(i), for some Qi' is perturbed from the equilibrium
_ state, while 2all the other points zemaiq unaffected. Let Pj be the cox-
rect match point Zfor Qi' Unless the perturbation is too large, the

quantity QX(i) - DX(i) will still be closer to PX(j) than PX(k), for
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any k ¥ j. So, using the Attraction function described in Section 4.3,

A[(EX(i); P] will pick out P,, where EX(i) = (QX(i) - DX(i), TX(i)) is

3
the estimated match for Qi' By condition (1), then, the correction to
DX(1) will be ’
OX(i) - A[EX(i); P] - DX(i). (4)
By cond.i.t:l:on (3), though, the correction to DX(i) would be
Twg DX{j)
-4 - . DX (i) (5)

T wij

that is, the weighted average of DX at neighbouring values where the
summations are carried out over all Qj in some neighbourhood of Qi'

The wi 3
since we wish nearer points to have a stronger effect.

are decreasing functions of the distance between PX(i) and PX(J)

Thus the combined effact will be to impose a correction to DX(i) of

size

At z w“bx(j)
T w”

for suitable X and p (see Section 5.2.3 for a discussion of the setting

- DX(i)] + ulox(i) - A(EX(i); P] - DX(i)] _(8)

of these parameters and, in particular, conditions under which it is

computationally useful to violate the natural condition X + u = 1).

5.2.2 Dpefining the Relaxation Process

So far, we have developed a correction (6) to DX without reference
to condition (2). We may incorporate this constraint by letting the
distance between feature points depend also upon the difference between

the features. Thus if we use the feature-metric described in Section

~r 3 3 _3
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4.3, which we will denote by F, then for the continuous Attraction func-

+ T,) be=-

tion A, the attraction weight a 30 T4

13 for points (Xi, Ti) and (X

comes
)2

2 .
R AR R RN .

2y

where the parameter k determines the ralative importance of the featurae-
types in the m:n:ching process. A value of ;bout .015 was used in the
experiments described later in the chapter.

In order to appreciate how fast the a; 3 fall off with distance,
and P

2 3
, and are of distances 1, 2 and 3 grid-units respectively from

suppose that three points Pl' P, have identical feature-types to

a point Po

P Then a = ,0001, compared with a

o o1 202 203 o
The exponential function was used simply because it has the right shape.
1

-x.)2 2
1+ X xj) ""F(Ti'Tj’

= .37, = .018, 0= 1

are more ef-

Whether other functions, such as

fective depends on their relative ease of computation (which will in
turn depend on whether the substrate for implementation is biological
or mechanical), time to convergence and other factors. This issue was
not explored any further here.
Our formulation for the continuous Attraction function is then
3
(Loa (X, T)
Atx,, 1) 8 =222 A 4 1 : ®
b R l,':l a
i=1 13
and the discontinuous Attraction function is simply
A[(Xj, ’l‘j): S] = that (xi,.ri) which maximizes aij
where § = {(X,, ), 1i=1,...,0}

3 X B
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The p-component of equation (6) is now fully defined. 1In (5) we
wish the w* 5 to behave like the attraction weights, that is to fall off
quickly with dista}nce, but we are not interested in the similarity of
the features associated with the points. So we simply set

2

v =% - X

13 3
to give
Dx(l)tu = Dx(!.)t + ABl(i) + uBz(i..) (9)

where the correction align DX(i) with neighbouring field elements is

T v, DX (3)
B (1) = ——— - o) (92)

L ":Lj

and the correction to extend DX{i) to reach to the nearest feature-
point in P is

Bz(i) = QX(1) - DXx(i) - A[EX(i); P} . (9b)

5.2.3 Setting of Update Parameters ) and u

Our earlier analysis' indicated that for small perturbations, either
of the correction components (9a) or (9b) of (9) wil} provide a fairly
accurate adjustment. Thi_s implies that for speedy convergence, A + u
should equal 1. If the system is starting up, with DX(i, 0) = 0 for all
i, and if there was a sufficiently small movement between the first two
frames that the attraction function will pick the right point each time,

t-hen putting u = 1 will guarantee immediate convergence. In other
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cases, however, such as when every DX(i) is correct except one, which
is terribly wrong, then we would wish A to be 1.

It was found expeﬂn;entally (see Experiment 1 described below),
that setting A = u = 1 for a few iterations and then reducing them both
to .5 worked very well. The parameters A and u correspond to time-con-
stants in differential equations. The initial use of values for A and
u which sum to a value greater than 1, which is equivalent to a state of
Lx;stability (i.e. the corresponding differential equation will diverge),
is important in getting over the 'inertia‘' in the start-up condition.
As we will see later, when subsequent frames are presented, the DX array
only needs minor modifications from one frame to the next, so setting
A = u=5 is completely satisfactory here. The ‘'best' time to reduce A
and 4 to .5, that is the eazliest. time which guaranteed convergence,
turned out to vary slightly between experimental conditions, but it also
turned out to matter very little exactly when this took place. It also
happened under some conditions that convergence was a little quicker if
A was reduced before u.

In cases where only two frames exist (e.g. stereopsis), and it is
desired to let the relaxation continue to convergence, then we may let
A continue decreasing to zaero after it has been already reduced to .5.
This procedure leaves 9b (the Attraction function) the only contributing
updating component, and therefore guarantees that a match will be found

for each point in Q.
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Experiment 1. Setting of Time-Constants A and u

To demonstrate the usefulness of changing A and u dynamically, the

following simplified experiment was performed. A relaxation process was '

tested using three equally spaced points a, b and ¢ along a horizontal
line as the first frame P, which was displaced by 0.6 times the inter-
poiné distance to the left to form the second frame Q. Denote the dis-
placed points by A, B and C, and let the points in P be dépicted as cir-
cles, and those in Q by squares, as shown in.Figure 5.4, No feature-
types were _associated with the points, so they all appeared identical.
In the averaging process, only immediate neighbours were considered.

A vector Ds is associated with each square S (S = A, B, C), and in-

dicates, as the iterations p d, the P of the correspondence
process as it tries to .ﬁnd a match for the squares. Due to the lineér
nature of the problem, all of the vectors will be horizontal, and may be
represented by positive or negative displacements. The triple D = _(DA,
DB' Dc) will be used to denote the entire velocity field at a given
time, .

The functioning of the relaxation process can be examined by fol-
lowing the state of D over a number of iterations. In Table S.l1 the
progress of the system is shown over 20 iterations where A = u = 0.5,
and in Table 5.2 tﬁ‘e results for A @ 4 = 1.0. Table 5.3 shows the re-
sults of running the process with A = u = 1.0 for the first 12 itera-

" tions, then setting them both to 0.5 for the remainder. Only in this
last case does the system converge correctly. It is clear that it is

necessary to use initially large values for A and u, but that their con-

—r B3 3 B B i_» __D
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] &7 ©

Figure 5.4. Experimental Setup of Three Points in a Line. Three points
in a, b and ¢ (indicated by circles) were displaced .6 units to.the left.
The new positions of the points (relabelled A, B and C) are indicated by
squares. Initially hypothesized matches (nearest neighbours) are indi-
cated by arrows.
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211 212
Iter. DA DB Dc
2 0. €BCRE -6 40003 -0, 4
< 8. 20490 -0, 956eT -0. 43333 Iter. D, Dy D
I 0.5:667  -0.45556  -0.23332 ¢
eSS
3 0.12339  -0.00185  -¢. 51111 <1 0.30006  -0.20060  -0. 20060
s 0. 53213 -0. 53117 -8. 14537 2 8. 32580 -0. 21667 -0, 20000
s 0. 08228 0. 98637 -0. 59290 3 9. zaroe -0, 23294 -Q. 22917
7 0.€11S1  -5.63410  -9. 06837 4 8. 3237 -6.23900  -0.34028
3 -9. 62230 B. 26845 ~0. c8687 S 9. 32229 -0. 24258 -0. 24482
9 0. 71462 0. 22581 0. 04666 3 8. 21865 . -0. 24437 -0. 24685
1¢ 3. 255882 0. 78322 -0. 1042 ? 9. 21382 -0. 24%2 -0. 324720
2 8. TrIas @ 14628 0. 1082 3 0. 31839 -0. 24571 -0. 34827
12 9. 28622 Q. 79605 0. 61972 3 8.218a7 -0. 24582 -0. 24849
13 0. 85431 @ 27123, 0. 0817 28 2.31306  -0. 24604  -0.I4861
13 0. 25818 0. 36584 3 23186 11 9.31800  -0.24818  -6. 23866
13 @. §5422 8. 23865 2. 81264 12 0.3L798  -@. 2481C -8. 34868
13 9. aT1e 0. 95328 o. 33802 iz 9. 31753 -0, 24614 -0. 24870
1" 0. 92201 e. 17627 5. 91259 14 @. 31795 -0. 24615 -9. 34871
13 0. 22663 1. 03456 6. 22184 a5 0.31735 -0, 24515 -0. 34371
13 1.0333¢ 9.0232 1.0°1z¢ 16 8.21795  -8.2461%  -0. 24872
20 8. 09459 0. 27287 8. 69600 1?7 8.21795  -9. 24615 -0, 34872
13 9. 34728 -9. 24615 -9, 24872
12 9. 31755 ‘-0, 24018 -0, 34872
28 8. 31735 -9. 24615 -0. 34872
Table 5.1. Successive States of Experimental System (1). The state of
the triple (Dy, Dy, Dg) is shown over 20 iterations for A = u = .5
throughout. The system did not converge. Table 5.2. Successive States of Experimental System (2). The state of
the triple (D,, + Dg) is shown over 20 iterations for A = u = 1.0

throughout. The system did not converge.
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Table 5.3. Successive States of Experimental System (3). The state of
the triple (D,, Dy, Dc) is shown over 20 iterations, where A=u=1l.0
for the first 11 iterations, then S for the remainder. In this case,

the system did converge.
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tinued use at these levels prevents convergence, so that they should
eventually, that is after some number N iterations, be decreased. 1In
the particular experiment just described, convergence was achieved when

N toock any value from 12 to 20. With experiments performed with 4 x 4

grids, to be described later, the smallest possible value for N varied

somewhat from run to run, but using N = 6 was found to work very well

in general. It is felt that the dynamic modification of A and y is an

interesting problem, and one which may provide an important contribution
to efforts to solve the correspondence problem. However, no further ex-

periments were done in this vein beyond those described above.

5.3 Experiments with MATCH

Some experiments with the basic version of MATCH, as defined so

far, are described below. The original, discontinuous Attraction func-

tion was used throughout these experiments. The data were simulated.

A rectangular grid P of points was generated, and to each point was
assoclated random real numbers between 1 and a variable limit R (which
we will call the 'feature-spread'), representing the feature-type. The

feature-metric used is simply the absolute difference between the fea-

ture numbers. The set of points Q is generated from P by causing P to

undergo whatever motion or combination of motions was specified by the

experimenter. The points in P are considered to lie in a plane perpen-

dicular to the experimenter's line-of-sight, and may undergo any rigid

3-d motion. A description of this computer system is-given in Appendix

Three.
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A regularly spaced grid of points was used because it can produce
the potentially most ambiguous motions, viewed at a local level at least.
1£, for example, a large rectangular grid is moved sideways by one intex-
element distance (IED), then on regarding the interior of the grid it
would seem as if it had not moved at all. Only the fact that in some
cases the features do not match up, and the more obvious situation at
the boundary, indicate that motion has taken place. Even so, it is new
er clear at a very local level exactly in which direction motion has
taken place, and the interaction of neighbouring processing elements is
required tc: resolve the problem. Using a rectangular grid was therefore
thought to be a useful test-bed for the stimulus-matching relaxation
process, and was used extensively in testing algorithms. -

Experiments were performed using a wide variety of motions between
P and Q. 1In all translation cases, if the displacement was less than
half an IED, then convergence was immediate, as the earlier discussion
predicted. ‘

If the motion was a rotation about line-of-sight, then the systenm
oscillated a little before settling down, even if the displacements were
all less than half an IED. This was because the displacements DX(i) be-
tween a point Qi and its 'partner' P 3 is not exactly equal to the tan-
gential velocity of P j (see E‘igurg 5.3). We see that the DX array is a
displacement .field, and is only an approximation to the Vector Velocity

"Field. Because of this, 9a wil.ll not be exactly zero at the same time
that 9b is, so the relaxation process will adjust the value of DX({i)

vegy slightly away from its 1correct' value OX(i) = PX(j) in oxder to
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reduce 9a and so smooth out the displacement field. This error is small

b\:\t noticeable. In images which. have a higher density of feature-
points, such as real-world images, the smoothing action of 9a will be
less drastic. Besides, the displacements undergone by these points are
far qreatet~ than would be expected in a movie sequence where frames are

typically J:/30 second apart. In any case, the error is removed by let-

ting the contribution of 9a tend to zero, as described in Section 5.2.3.

Experiment 2. Comparison of Simultaneous and Sequential Updating
Algorithms

At this point it may be beneficial to compare the relaxation ap-
proach we have used with a variant which, it might be expected, would
easily overcome the problems of inexact matching described above. Our
relaxation process updates ea;:h ‘;elocity field vector by two components,
the one adjusting the vector to the average of its neighbours, the other
to match up with its nearest neighbour. These updates occur simulta-
neously. The suggested variant would make the adjustments sequentially.
That is, at each even iteration, for example, every velocity field vec-
tor would be replaced by or adjusted towards the average of its neigh-
bours, and at every odd iteration it would be adjusted to close in on
the (possibly new) nearest neighbour.

This modified algorithm has one minor and one major drawback,
though. Consider first the case of rotation about the line-of-sight,
and suppose that the system is close to convergence, that is, both up-
dating components 9a and 9b are everywhere close to zero. Consider how

the alternating algorithm would work. At an even iteration, every ve-
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locity vector would be corrected to reach to the nearest feature-point,
which is, by assumption, the 'correct' one. This state of cenvergence
is not stable, though, because the velocity field is not locally uni-
form, so that the next iteration will further adjust the vectors in an
attempt to smooth the field. The overall effect will be oscillatory
behaviour, although the states encountered are all near the desired one.
This problem will vanish; though, if the two iterations are considered
to comprise a single step. 1In this case the.re will be no oscillation.

The major drawback with the proposed algorithm is that in certain
circumstancdes, it will never ‘get off the ground'. We will consider the
situation discussed earlier in the section dealing with setting of pa-
rameters A and y. We have three pt;lnts a, b and ¢ equally spaced along
a horizontal line, and these points are displaced to the left by 0.6 *
times the inter-dot distance, as depicted in Figure 5.4. As before, the
circles represent the points before moving, the squares A, B and C the
points after moving. Again, we will suppose that the points are a1.1
identical, and that only immediate neighbours are considered in the av-
eraging operations. Let us associate an initially zero vector with each
square.

We saw in Section 5.1.3 how the simultaneous-update algorithm per-
formed; we will now examine the alternating-update algorithm. As before,
due to the simplicity of the experiment, we can represent the state of
the system, i.e. the entire veloecity field by a triple of values D, rep-
resenting the ve}ocity field components of the three points, in left-to-

rigat order.

3 -3 '3 3 _3 '3 _23 _3x _23 ]
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In the first iteration, each vector will match its corresponding
square with the nearest circle, as shown in Figure 5.4. The state will
thus be

(.6, -.4, -.4).
That is, A is matched with a, B is matched with a, and C is matt;hed with
b. The averaging in the next iteration will result in the state

(.1, -.67, -.4).
Now, the nearest circle to the point .l units to the right of square A
is circle a. The nearest cizc]:e to the point .67 units to the left of
square B is also circle a. The nearest circle to the point .4 units to,
the left of square C is circle b. So all of the associations made in
the third iteration will be the same as for the first, resulting in the
same state of the system, namely . .

. (.6, -.4, -.4).

The system will therefore oscillate, and never come close to finding the
right correspondence.

This example was used to highlight the problems with this algorithm
which appear also in more complicated situations, but in more subtle
ways. Because of the failings of this algorithm, we will continue to
use the originally proposed algorithm which makes both kinds of update
simultaneously.

We should note, though, that the simultaneous-update algorithm is
also rrone to failure in certain circumstances. If updating components
9a and 9b at a point are equal but opposite, then the net 2ffect will

be Zero, and the system will be stable there. This is a particular case

2 .y 3 a2 .3 _3 _J _1
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where the dynamic modification of time=constants A and p (and hence the

updating contributions) might play an important role.

5.3.1 Some Results with the Basic Experimental Setup

Experiment 3. Translation of a Grid of Points

Pigure 5.5 shows the action of presenting the system with a 4 x 4
grid of feature points (P), and the same grid shifted down and to the
left by one IED (Q). A value of 5 for the feature spread R was used
here. Note that since this value is very small (see discussion under
Experiment‘4 below), the feature-types have little influence on the
matching process, so that after the first iteration, for example, each
point is matched with its nearest neighbour. The graph in this and sub-
sequent figures shows t‘he t.otal discrepancy from convergence at each it-

eration, i.e. the sum of the distances from each 'free-floating' arrow-

head to its correct 'target' point.

Experiment 4. Translation with Feature-Types of Varying Distinctiveness

The same run as in Experiment 3 was made with different random num-
bers as feature-types in the range 1 - R, and different values of the
range-limit R. The purpose of this experiment was to see to what extent
the relaxation process depended on the distinctiveness of feature-types
to sort out the right matches.

Table 5.4 shows the number of times the system converged out of
ten trials with selected values of R. It is seen that when R was equal

to, 10 or greater, the system most often converged. In these cases the
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(a) (b)

oA 1/\__
JAT L

Figure 5.5. Translation in the Plane. A 4 x 4 grid of points was dis-
placed down and to the left by one grid unit. Figures a - 1 show the
generated flow after the first 12 iterations. A random spread of 5 was
used. Due to the smallness of this value, the feature-types associated
with the points did not influence the match process very much, as is
evident in figure a, where initial matches were made with nearest neigh-
bours. Figure m shows the state of the field after 20 iterations. The
graph in this and succeeding figures depicts the total discrepancy from
convergence at each iteration. This graph is generated by a supervisory
process which knows the correct correspondence, (the MATCH process itself
does not know this).
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RANDOM SPREAD SUCCESSES (out of 10)
s | 2
7 6
10 6
13 7
15 9
18 8
20 10
1 Table S.4. Effect of Random Spread on Convergence. This table shows
1 the number of times out of 10 the system converged with selected values

1 of the random spread R, when a 4 x 4 grid of points was shifted down and
h _to the left by 1 IED.
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average difference bet two domly ch feature-values would be
about 3. Putting this value in (7), we see that, for k = 1/64, this
difference was equivalent to about 3/8 of the inter-dot distances in the
grid. Now, this is a relatively small value, indicaiing that the system
only needs a slight bias from the feature-type comparisons in order to
work .well, Inc;eed, when R was less than this value, the system often
converged, even in some conditions when R was equal to 1, i.e. when ev-
ery point had the same feature-type. To better appreciate the meaning
of a given magnitude of R, R was increased until the system found the

correct match for every feature-point at the first iteration. It was

" found that values around 400 were necessary to achjieve this.

Experiment 5. Non-translatory and/or Non-Planar Motion

Further runs were made with motions other than translation in the
plane. In Figures 5.6, 5.7, 5.8, 5.9 and 5.10 the motions were rotation
about the line-of-sight (LOS), rotation about a line parallel to the
LOS, rotation about a line perpendicular to the LOS, translatory move-
ment along the LOS, and combined rotation about and translations along
the LOS. After lo-ite:ations, A was gradually reduced to zero, as dis-
cussed before, with u always equal to 1 - A. In all of the non-e?ans-
latory cases, this was necessary to get exact matches. Without this
modification, though, the errors were quite small, and non-qualitative.

Notice the distinctive flow-patterns formed by these motions.
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Figure 5.6. Rotation in the Plane. Figure 5.6 shows the flow generated
vwhen a 6 x 6 grid of points is rotated.
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Figure 5.7. Rotation about a Line Parallel to the Line of Sight. A

6 x 6 grid of points was rotated about a point near the bottom-left cor-
ner of the figure. Note that for points in the top right-hand corner,
the nearest neighbours are not the correct matches.
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Figure 5.8. Rotation about a Line Pervendicular to the Line of Sight.
Figure 5.8Ba shows the two frames of points superimposed prior to the
matching process. Figure 5.8b shows the correspondence formed. Bound-
ing Quadrilaterals of the two sets of points have been drawn in.



229 230

PEN N4

——p ey e— . — — ey

AR
7T TN

ITERATION

el
P

B POl AR

—— .
-
oo mmm

nOMX™M

------------------------------

Figure 5.9. Movement along the Line of Sight. A 7 x 7 grid of points
was translated away from the observer. Mote that around the periphery,

arest neighbours are not the correct matches.
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Experiment 6. Comparison of Attraction Functions

We discussed two Attraction functions in Section 4: the original,
discontinuous one A, and the continuous analogue i. Experiment 4 was
repeated using R instead of A to see if either did significantly better

j / than the other. As before, a 4 x 4 grid of points was generated and
‘//’ ‘—_—-‘“‘-. displaced 1 IED down and to the left. Several runs were made with the
\ ] 7 — same (random) feature-type as used in the corresponding run with the

discontinuous function. The results are plotted in Figure 5.11. As

creasing R. However, for every value of R tried, the continuous func-
tion did as well or better than the former one. This effect is probably

\\ R\\ with the discontinuous function, the continuous one improves with in-
/r due to the averaging properties of the continuous Attraction function

A(X, S), when there are two close candidates S_. and 52 in S for ‘'nearest

1
to X. By not committing itself too early, the system avoids making

wrong decisiors.

Figure 5.12 shows the result of a particular run in which the con-

tinuous function achieved the correct correspondence, while the discon-

ITERATION

tinuous function did not. The outstanding error in the lattcr case was
due to two points incorrectly matched. The system got 'hung-up' in this

Figure 5.10. Combination of Translation and Rotation. Note again that case, a possibility noted at the end of Section 5.3.
near the periphery, nearest neighbours are not the correct matches.

5.3.2 Experiment 7. Filling-In of Grid Positions not Occupied by
Feature-Points

In the previously described experiments, there was a vector in the

D-array associated with each point in Q. In the experimental scheme de-
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RAHNDOM SPREAD

Comparison of Attraction Functions. For a variety of

values of the random "feature-spread" R, ten runs of Experiment 3 were

performed with each Attraction function.

In every case, the continuous

function converged more often than the discontinuous function. Lines of
-best fit of successes against R are drawn in.

3

L

- J

Figure 5.12. A Run which did not Converge Correctly. Under the discon-
tinuous Attraction function, the system stabilized in the state shown
above. At those positions where the flow vectors are incoxrect, the up=-
dating components are equal but opposite, and so cancel out. 1In the
graph, the dotted line indicates the progress of the system using the
discontinuous function. then the continuous function was used, indi-
cated by the solid line, the system converged.
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scribed here, there are vectors associated with grid positions in space
extending beyond the feature-points in Q. Thus they serve to fill in
the vector velocity field at positions where there are no stimuliﬂ and
simulate the occurrences of homogeneous regions, over which the feature-
extraction process such as the one described in Section 4.3, could not
£find any featuxg-points. For example, the rectangle in Figure 5.13 pro-
duces feature-points only at its edges, although it is desired to have
the flow associated with the entire surface. These vectors are influ-
enced by their neighbours as usual during relaxation, but do not havé
any dizectzinput from point-matching via the Attraction function. This
may be clarified by examining the updating equations.
The relaxation equation for tﬁese 'filled-in' positions is
I w, _ DXx(3)
DX(1) ) = DX() + ) —3"1—,:13,——-—— - Dx(1)]. (102)
j#L i) :
That is, these ‘filling-in’ positions are updated solely on the basis of
maintaining a smooth velocity field. The other velocity field elements,
namely those associated with feature-points in Q, will, as in (9), be

updated by two components, viz

‘g‘ wi' ¥ (j)
: i
CDXM) L, = DRI, AL T - Dx{i))
. L i (10b)

+u [ ox(i) - DX(i) - Al EX(i); P} )

The Qefinition of the attraction weights in (10) is slightly modi-

fied, however, to cope with the different cases that arise. The attrac-
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Figure 5.13. Object with Homogeneous Interior Region. The configura-
tion of points depicted here represents a rectangle with feature-points
generated solely in narrow regions along its top and bottom boundaries.
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- - 2
tion weight for points X, and X, is wiy " kje (xi' xj) , where k, = 1

i 3 3
(as before) if position xj has direct stimulation, and kj = ,25 other-
wise. This is to ensure that vectors at non-stimulated positions do not
have as great an influence as those which do. The results of running

the program in this mode are shown in Figure 5.14. The computed field

varies smoothly over the object, as desired.

5.3.3 _Experiment 8. Stationary Background

In this mode, different motions of two nearby objects were simulated.
The set of‘feature-points P was generated as before, and was displaced
to the positions in Q. A set of points was generated in surrounding
grid-positions, however, and these points were not displaced at all.
These two sets of points then represent points on two objects, one of I [ ] ] l I I
which moved while the other stayed still. Since with two adjacent but ) I I I ] I I I
different motions it is their relative velocities that are important, we
may arbitrarily choose one velocity to be zero, without loss of general-

ity. Since the relaxation equation (9) takes no account of whether

ir e ) is i t s . : . : s
pairs of points belong to the same cbject or not (this is not known to Figure 5.14. After translating the points in Figure 5.13 in the vertical

direction, the flow in Figure 5.14a2 is generated. lote how the flow in

the program oints s object-boundaries will influence each other. A
program}, p acros J . the interior is “filled in".

A critical test of the relaxation procedure is how well it performs
under these conditions; results are shown in Figure 5.15. During the
relaxation, the vector velocity field shows a gradient at the boundary
instead of a step-discontinuity. However, this discontinuity extends
over only two IEDs, and it is still clear where the boundary is. As we

shall discuss in Section 5.5, the gradient will suggest a boundary to

- 3 _» _3¥ _3 _3 3 3 _ 2 3 3 _3 2 _3 3 _r _3 _13
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Figure 5.14b. After rotating the points in Figure 5.13 about a point to
the left of and just below the middle of the figure, the flow in Figure
5.14b is generated. Note how the flow generated in the interior of the
object helps visually to identify the centre of rotation.
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SENENENE

5.15a 5.15b

mOmOM

TTERATION

Figure 5.15. Stationary Background. A 3 x 3 grid of points was trans-
lated in front of a stationary tackground grid of dots. The different
flows associated with the foreground and background caused the system
to take longer than usual to converge, but nonetheless did not prevent
convergence. Figure 5.15a shows the state of the flow after 10 itera-
tions, 5.15b after 20.
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another process; this may weaken the. influence (i.e. the attraction

welights) between points across the boundary, thus in turn si\arpaning the
boundary. Again, with only two frames to consider, we can let equation
(9b) take over after several iterations, and. end up with a sharp bound-

ary, as shown in Figure 5.15b.

5.3.4 Exveriment 9. Feature-Points out of Register with Processing
Elements (in_D-layer)

In MATCH there was-an element of the vector velocity field associ-
ated with e__ach stimulus-point in the following frame Q. For several
reasons it would appear preferable to use an array of vector velocity
elements at fixed positions, independent of the instantaneous stimula-
tion pattern. FPirstly, instead of representing frames such as P and Q
as lists of pairs (location, teatui:e), the representation can be truly
retinotopic. That is, we need only consider an array of feature-values:
the position is implicit in the array index. The other major reason for
the change is that the distances between velocity elements, and hence
the attraction weights, are fixed and do not have to be continually re-
computed. Moreover, since the attraction weights fall off very quickly
with distance, the set of other elements to be considered when updating
any vector velocity element can be reduced to just the immediate neigh-
bours, instead of the whole array as before. Thus the weights in (9a).

* can be represented by the array in Figure 5.16‘ where a = e-kz and k is
the inter-element distance. For simplicity, the ne_gative logarithms of

the weights are given, relative to the centre point *. The neighbour-

hood of * can be limited by regarding each weight e_K to be zero, for

-3 -3 _3 32 _3 _3 2 _3

Figure 5.16. Attraction Veights.
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A number X in a cell indicates that

the Attraction weight of that cell with respect to the central cell * is

e . K=20 at *.
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each X greater than some K, thus providing a finite window around *.

We will introduce an extra layer C which will represent the updat-
ing component evaluated throught (9b). The CX (i) will be dixectiy asso-
ciated with QX(i), whereas the DX(j) are fixed in space. The density of
elements in the D-layer will not necessarily correspond to the resolu-
tion in the P, Q and C layers. Therefore there may be several points in
the C layer which fall within the receptive field of a particular ele-

ment in the D-layer (see Figure 5.1). Thus

cxX(i) = [ ox(i) - ;(Qx(i) - DX{i'); P) - DX(i") ] (11)

where i' is that element of the D-array in whose receptive field QX(1)
lies. .

This is interpreted as follows. Point Qi is in the receptive field
of Di' and thus uses DX(i') as its 'own' flow-vector. .The Attr§ct10n
function finds the closest match of QX(i) - DX(i') in P. CX(i) is then
calculated as the discrepancy between QX(i) - DX(i') and.this closest
match.

The D-layer is updated by

(12)
T w DX(k) .
DX(i) = DX{i) + A (i’“‘z < - DX(i)) + u (*171 L cx(3)
igk ik jCJi
(12a) (12b)

where JL is the set of Ni stimulus points in the receptive field of

point i in the D-layer. (12b) is thus the average value rep:ésented in

this area of the C layer. (12b) is taken to be zero if Ni = 0, in which

cade (12) reduces to (10).
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Several results of running the MATCH program in this configuration
are shown in Figures 5.17a-d. In all of these figures, the optic flow
vectors are not in register with the feature-points. The motion of the
feature-points is snown by dotted lines, the flow vectors by solid lines.
Notice how the flow-field is filled-in in a smooth manner in all posi-

tions.

5.4 Sequences of More than Two Frames

Although motion analysis and stereopsis share the correspondence
problem, motion has the added feature of a sequence of frames of data,
instead of just two. These extra frames contain information that is of
use to the analysis processes. We would like to be able to use the cur-
rent representation of the motion extracted from early frames in the se-
quence to aid the analysis of subsequent frames. In this manner the
computational cost per frame for subsequent frames may be greatly re-
duced. There are some problems which need to be considered first, in
extending the model to deal with such a stream of input data.

(1) Feature-points will frequently appear and disappear as sur-
faces occlude and disocclude each other, or through noise in the pre-
processing stages.

(2) Most of the fecature-points will stay from frame to frame, and
the vector velocity field will remain applicable to succeeding pairs of
frames in the large part. The problem is how to use this information to
speed up the relaxation procedure.

(3) 1If the vector velocity field was calculated to be v at loca-
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tion x on analysis of frames F1 and F2, say, then on analysing F2 and F3
it should be found to have value v at location x + vét (approximately),
where 6t is the inter-frame time-step. That is, the vector velocity
field should be extrapolated by an amount p?oportional to its local val-
ue.

vix + v(x, t)8t, t + 6t) = v(ix, t). (13)

Suppose we have a vector velocity field D which has been computed
from two or more frames. Suppose that the most recent frame was P, and
that the next to be processed is Q. What we shall do is to use D to
predict th; position of feature-points in Q from those in P. Having
shifted D between frames as given in (13), we can start off the relaxa-
tion process for the new frame with the D-layer in this initial state,
instead of a quiescent zero state. The following will occur:

(i) In the case of no occlusion or disocclusion, the same feature-
points are in the P and Q layers, and D will locally be close to the
displacement between corresponding points in the P and Q layers. If the
motion is not accelerating, or accelerates very little between frames,

D will ﬁe almost exactly correct. In either case, the relaxation pro-
cess should reach convergence in a very short time.

(ii) If there is occlusion, it is likely that a strip of points
will appear or disappear, as one surface moves in front of another. How
this may be dealt with will be described in Section 5.5:

We will describe below how the vector velocity field gets displaced
between one frame and the next. The problem is thdt of moving the in-

ternal representation of an object to keep in step with the actual move-
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ment of the object in the real world, and was discussed in the one-
dimensional case by Burt (1975). We are going to treat the two-dimen-
sional case; a more complete description of the differences between the
approaches is given in Section 5.4.3. Our treatment will be entirely
local, that is, each element in the vector velocity field will communi-
cate solely with its immediate neighbours. We are not concerned with
movement at the 'object-level’.

Now, occlusion raises a problem here. Suppose that two objects are
moving towards each other, and the instantaneous vector velocity field
is as shown in Figure 5.18. Both objects would appear to occupy the
shaded region in the next time-instant. Presumably, one will occlude
the other, but unless the program knows the relative depth of the two
objects, it cannot predict which object will remain visible. So how
does the program shift the velocity field? It turns out that it is suf-
ficient to ignore the problem and to perform the displacement as usual
(to be described below)f The resultant vector velocity field in the
shaded region will be an average of the two incoming fields. It will be
remembered, though, that this value is just the starting value for the
relaxation process. This process will now have more work to do to match
up the points, but no more than in the start-up case when the velocity
field is initially zero. A process which keeps track of the persistence
of points over time may find that occlusion has taken place, which in
turn would indicate the presence of a boundary. This is discussed in

more detail in Section 5.5.

-3 -3 2 _» ¥ 3 3 2 3 1
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Figure 5.18. Occlusion. In this figure, the movement of two obiects
approaching each other is depicted. The arrows depict the flow gener-
ated by the leading edges of the objects over two frames. In the next
frame, both objects will be in line with the shaded region. Which one
. gets occluded depends upon their relative depth.
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5.4.1 Level of Resolution of Velocity Field

We have talked about the introduction of an extra layver (C in Fig-
ure 5.1) in order to handle fields of feature-poinés (P and Q) of dif-
ferent resolution than the flow-field (D). This may be desirable for
computational reasons. We will discuss below the relationships between
velocity levels in the different layers in this arrangement.

Let us suppose that the reduction in resolution between the C layer
and the D-layer is r:1l, so that 22 pixels of P and Q fall within the re-
ceptive field of one element in the D-layer. Let us choose a velocity
scale so that 1l unit corresponds to 1 IED in the D-layer per inter-
frame interval (IFI). This therefore corresponds to r units per IFI at
the retinal level. If our input array (which is of the same size as the
P and Q arrays) is 256 x 256 pixels, and the field of view of the system
is, say, 128 degrees squared, and if the frames are generated at an IFI
of 1/30 second, then one velocity unit corresponds to

r x 30 x 128/256 = 15r degrees per second.

If r is, say, 4 (not an unreasonable value), then 1 unit = 60 de-
grees per second. It will be convenient in what follows if 1 velocity
unit is the largest velocity the system can keep track of successZfully.
Almost all reasonable motions seen by the system, whether due to motion
of the environment or the camera, will be less than 60 degrees per sec-
ond. .In any case, we will only expect the system to track motions of
less than this velocity. We may therefore regard 1 as the upper limit
of the velocity in the D-layer. It is a useful strategy to restrict the

dis-placement at any time to be less than or equal to 1 IED, since then
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each element in the D-layer need only 'talk’ to its immediate neighbours.

5.4.2 Smoothing the Inferred Motion

There would appeaxr to be a problem with generating the velocity
field from the relatively small velocities frequently encountered in the
real world. These velocities can best be expressed, not in pumber of
IEDs per unit time, but rather as number of time units per IED. Suppose,
for example, that an object's velocity is 1/5 at the pixel level. As a
consequence of using digitization-related proeesses such as UNMIX (de-
scribed in Eection 2.1), a point on the object will be within one pixel
for up to 5 time units, then move to a neighbouring pixel and stay there
for a further 5 time units and so on. This is related to the effects of
using large receptive fields, discussed in Section 3.2, We see then
that the velocity of a point as it is tracked over the image will appear
to follow the sequence

OvO 00100002000010000......
the average value is 1/5, as required, but it oscillates quite far from
this point. We would like to smooth this sequence out somehow, so that
the velocity field remains fairly constant for smooth, slow motion.

Recall equations (11) and (12):

CX(3) = QX(3) - A[QX(j*): P) - DX(j") (11)
DX(1),,; = DX(), + (22)
I w DX(k)
Al "‘kz ik - DX(i) ] + (12a)
AN
igk ik :
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Wl == & cx() {12b)

i jEJi
(for an explanation see Section 5.3.4). If we assume that the vector
velocity field has been generated and is constant over a large area,
then the averaging texrm (12a) will be zero. The resultant equation can

be written in a simplified manner as

D{t + 1) = D(t) + uéD(t)

= (1 - u) D(£) + u(D(t) + &D(t)) (14)

where D(t) is the average of all corrections to D(t) at a point i within
the receptive field Ji of that point in the C-layer.

D{t) may be regarded as the 'old’' value for D, and D{t) + &D(t) the
'new estimate’' through the Attraction equation. D(t + 1) is thus the
weighted mezn of the two values. Let us write E(T) for D(t) + SD(t).
E(t) will take on sequences of ones and zeroes as discussed earlier.
Let T be the operator 'one unit negative time-step' (i.e. (TE)(t) =

E(t - 1)), and let ' = ) - y. Then

(1L ~ u'T) D(t+ 1) = uE(L). (15)

So formally,
b yE(e) (16)

s (L +u'?+ u'2'1'2 + ... ) HE(t)

Dt + 1) = (1 - u'T)"

= u(E(L) + 'E(t = 1) + p'2E(t = 2) + ... )

- "
B I u'E(t - i)
i=0
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Now supposé that the velocity concerned is 1/n, so that E follows
the sequence

0 veeeaea 010 cc0eeeo 010 2000 010 ..t

n-1 times n-) times n-1 times

and that E(t) = 1.

Then
Dt + 1) =u@+p ™ e a e ) an
- B
1l - u'n
1 -y
l -~ u'n
= u'
1 +u' + u'z + U+ L.
@ -
s wetowh
i=0 :

D(t + 2) will then be u'D(t + 1) + (L - u')-0 = u'D(t + 1), so that n
values of D in sequence starting at D{t + 1) will be

, u.(n-l)D(t+l)

D(t + 1), u'D(t + 1), u'zn(c +1), ... (18)

withpie + 1) = ( £ wi)™,

i=0

The sum of these values is clearly 1, so the mean is 1/n. We there-
fore see that D follows a sequence of values whose mean is the desired
velocity, as does E. The important difference is that the individual
values that D assumes are all much closer to 1/n than the values of E.

It is clear that the closer p' is to 1, the closer each value D takes is

to 1/n. The disadvantage with having ' too close to 1 is that the con-
tribution of E to D is governed by ¥ = 1 - u'. If u' is close to 1, then
u will be close to 0, so the system will be very slow to respond to
changes in the motion.

Tt should be noted that if w is close to 1, the u' will quickly
drop off to zero with increasing i. This will not be a probleﬁ if n is
not large (say 2 or 3). In fact, the process can be iteratively applied
to the sequence (18) producing sequences of values with the same mean
but smaller variances.

If we are concerned with finding an optimal value for u, then by
regarding (16) as a linear filter we observe some interesting proper-
ties. Suppose that

E(t) = M(t) + cN(t),

where M is a message signal, N is noise and 1l/¢ is the signal/noise
ratio, being in the range 0 - 1. We wigh to minimize the mean sguare
error of D from the message M, i.e. to minimize

EXPECTATION(Z E(t - i)u'i - Mt + 1))2
with respect to u', for given M, N and ¢. That is, given the signals
M and N, we wish to find which value of u' minimizes (19) as a function
of c.

several simulations were performed, with ¥ = sin (ut) and using
various waveforms, such as sinusoids of frequency different from w, saw-

tooth waveforms and even random noise for Ni While the exact valuesdif-

+These experiments were periormed in conjunction with Thomas H. Probert.
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fefad, the qualitative results were the same in each case. Plotting u
against ¢ showed a drastic step~discontinuity every time. For values of
¢ close to 0, the optimal value of u was close to 1. For values of ¢
close to 1, the optimal value of u was close to 0. At some value for c
between 0 and 1 (depending on the precise waveforms used) the optimal
value for u éhanged discontinuously (see Figure 5.19). By increasing ¢
beyond 1, further discontinuities were found.

The interpretation of these results in terms of our model for val-
ues of c near 0 and 1 1s.£a£:1y straightforward. For low noise (¢ = 0),
u should bé close to 1, so that E(t) provides the major contribution to
'D(t + 1). This is desirable, since with low noise, E(t) will not vary
too much. In very noisy situations (c = 1) u should be close to 0, so
that D(t) provides the major contribution to D(t + li,_i.e. the system
should be conservative. What is most interesting is th; sudden switch

in strategy when the noise increases beyond a certain level.

5.4.3 Tracking the Motion - "Moving Memories"

Burt (1975) presented a neural network which supported the move-
ment of patterns of activity. This network was based upon the Wave
Equation,.and would propagate the activity in one dimension at constant
velocity. He also described other networks, which had requirements
that, for example, the patterns be binary, or that the motion be based
upon the local slope of the velocity. We would like to remove these
restrictions and develop a local process which would have the following

properties. Given a layer or array of elements at each of which a two-
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Figure 5.19. Optimization of Filter Parameter. Let D(t) be related to
E(t) by the equation D(t + 1) = (1L - m') L m'i2(t -~ i), which is a linsar
filter., Suppose E(t) = M(t) + cN(t), where M{t) is a message signal and
N(t) noise, 1/c being the signal/noise ratio. We wish to minimize the
expected value of [ I m'iE(t - i) - M(t + 1)12 with respect to m' for
given c. Using various waveforms, the value of ' which miminized that
value was found as c¢ ranged from 0 to 1 and beyond. The graph of m'
against ¢ was found to have the same shape, whether the waveforms were
sinusoidal, triangular, sawtooth or even guadratic; a typical such graph
is shown in this figure. The sharp discontinuity occurred in every case.
Note also the smaller step discontinuities for ¢ > 1.
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diménsional velocity is represented (our D-layer), then assuming that
the velocity changes continucusly over most of the layer, this local
process should shift the activity by a displacement which is directly
proportional to the local vector velocity. The pattern of activity in
our case is the velocity field, is not binary, and the motion is to be
two-dimensional. Let us assume that our D-layer consists of a rectangu-

lar grid of elements, and that each has connections with its eight most

imnmediate neighbours. The activity at each time-step at any location

will be a function of the activity at the previous time-step at that

location and its neighbours. The process can be considered from two

equivalent viewpoints:

(1) Diffusion view. Each cell 'sends' a certain amount of activi-
ty to each of its neighbours duxing each time-step.
(2) Recombination view. Each cell receives a certain amount of
activity form each of its neighbours during each time-step. Figure 5.20. Velocity Direction in First Quadrant. A velocity at cell
A in direction between 0° and 90° will influence cells E, F and G as the
These views are clearly reciprocal. We will describe the process velocity field is propagated.
from the diffusion point of view, although the program will calculate
the new states of the system through the recombination view applied to
each location.
Consider for the moment a velocity between 0 and 90 degrees to the
horizontal at location A (see Figure 5.20). We will denote this veloc-
ity by VA ='(Ax, Ay), and we will assume, following the earlier discus-
sion that 0 € Ax, Ay S 1. Now, we would like VA to shift entirely to
E if Ax =1 and Ay = O

F ifAx =1 and ay =1
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G if Ax =0 and Ay = 1
but not to shift at all if AX = Ay = 0, We would also like intermediate
effects for fractional values of the components of the vleocity. We can
imagine that VA gets split up and 'sent' or diffused to E, F and G in

the folloiwng proportions:

fraction that stays at A = (1 - Ax) (1 - ay) (20
fraction that goes to E = ax(l - ay)
fraction that goes to F = Ay
fraction that goes to G = (- Ax)ﬂy.

The recombination view would say that F (still assuming velocity in

the 0 - 90 degrees quadrant) would receive the following contributions:

from A AxAy (21)
from E (1 - Ex)By
from F (1 - Fx)(1 - Fy)
from G Gx(1 - Gy)

so that F is updated in the following way:

Fx(t + 1) = ({1 - Fx) (1 - Fy)] - Fx + [Gx(1 - Gy)] - Gx (22)

+ [AxAy] « Ax + [(1 - EX)Ey) - Ex

and similarly for Fy, where all the terms on the right-hand-side of (22) -

are evaiuated at time t.

Notice that the expressions in (20) sum to 1. It follows that
these are the exact fractions of VA that are diffused to the four neigh-
bouring cells, as expressed in (22). Moreover, if the field is constant
over A, E, F and G then (22) gives .

Ex(t + 1) = Fx(t)

i

L
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Fy(t + 1) = Fy(t),
so that the contributions which were diffused from A, E, F and G recom-
bine to give the same velocity as at the previous time-step. That is,
interior to regions of the D-layer over which the velocity is constant,
the diffusion/recombination process regenerates the velocity field pre-
cisely. At the boundgries, however, degradation occurs, and if the gif-

fusion process were to be repeated many times in succession, the veloc-

iéy field would.tend to smear itself out over the whole layer. It will

be remembered, though, that the purpose of shifting the velocity field
is to predict the whereabouts of stimulus points in succeeding frames.
The shifted velocity field will be the initial state of the D-layer in
the relaxation process, which when iteratéd will correct the erroneous
values in the velocity field. For smooth motion, then, the relaxation
process will simply rebuild the velocity field at the edges.

It will be noticed that having the velocity less than 1 in the giv-
en units is an essential factor in the correct functioning of (20), since
the complement of each component with 1 is used to represent the lack of
motion in the relevant direction. We saw that this requirement imposed
a limit on acceptable real-world velocities (60 degrees ger second in
the example given earlier). It turns out to be possible to relax this
requirement. To double the range of acceptable velocities, for example,
we merely scale the velocity down by a factor of 2 between the C and D
layers, and then iterate the moving memory process twice instead of once.
This will cause greater degradation between rebuildings than before, but

probably still within acceptable limits.
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It was supposed earlier for explanatory purposes that the velocity

made an angle with the horizontal of between 0 and 90 degrces. We show
below the amounts that central cell A diffuses to its eight immediate
neighbours E, F, G, I, J, I, L and M for arbitrary velocities (Ax, Ay)
{see Figure 5.21). We use H(x) to denote the function:

X, X > ‘D

Hx) =
0, xsS0.

The following are the amounts diffused from A to

E T e Q- lay)) - (ax, ay) 4 e (23) I[e

F {H{AX)H (AY)} - (Ax, Ay) # J :

G (@ - |axDuGy)) - (ax, Ay)  #

I [H(~-ax)H(AY)) + (ax, Ay) %

J ti-ax) (1 - fayy - (ax, AY) &

X (H(-Ax)R(-AY)) - (Rx, Ay) & Figure 5.21. Neighbourhood of Central Cell A. This figure depicts the
L (a- |Ax|)H(-Ay)] . (A%, Ay) 5@ . i‘aﬁili‘used in the text to refer to the eight immediate neighbours of
H [H(AX)H (-Ay)]) - (Ax, AY) - e

and remaining at A
(1 - |axr - fax])) - ax, ay) ges@ .

Notice that for any direction of velocity, most of these terms will
be zero. The non-aeroc terms for the four ranges of direction are as fol-
lows:

0 - 90 degrees #
80 - 180 degrees Y

180 - 270 degrees &
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270 - 260 degrees a.
For any velocity, only four cells, including A itself (indicated by the
symbols in the right-hand column), will get input from A. It is easily
seen that the sum of these inputs will be (Ax, Ay), that is, the current

value at A.

Results with Real Data

We present in this section the results of applying some of the fore-
going processes to some real data. The images were taken using a movie
camera £ro£ the front seat of a car as it travelled at about 35 mph down'
a country road. The frames were taken at 1/18 sec intervals and diéi—
tized into a 128 x 128 grid.t

Four consecutive frames were examined. The fifst of these is de-
picted in Figure 5.22. Notice tha rather coarse resolution. Due to
computational and storage reasons, it was decided to process only a
small portion of these frames. Accordingly, a small window around the
diagonal road-sign (just to the right of centre) was extracted from each
frame. These four 44 x 50 windows are shown in Fibure 5.23. It is
patent how ill-defined the sign's boundaries are.

Only a 20 x 20 subwindow in each of these frames was used in the
subsequent analysis. The feature-points extracted from these images are
shown in Figure 5.24, Here, a diéic N indicates a feature-type of 45N

degrees. A blank in any position indiates that no feature mask had an

fThe author wishes to thank Thomas D. Williams for making these images
available to him.
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tive frames taken at 1/18 sccond intervals.
pixel. Notice the diamond-shpated road sign just to the right of and

below centre.
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Figure 5.24. Feature-Points. Figures 5.24a - d show the feature-points
extracted in a 20 x 20 window around the road sign in Figures 5.23 a - d.
A number N in the range O - 7 indicates a feature-type of 45N degrees.
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. output above the threshold, which was set to 1/10 of the dynamic inten-
) 4 1 L 7 ‘: . sity range.
. i 1 “ 7 . The optic flow generated from these images is shown in Figure 5.25.
. i 1 - : . g ; . Figure 5.25a shows the flow generated by attempting to match the feature
A ; ; 3 g :;: s 7 ;’ 5 points from the first two frames. In this display, flow vectors small
1 7 i ; ‘ 3 :: - =: 3 in magnitude were thresholded out. This flow was then extrapolated and
. ; ‘: r‘ z used as a starting point in the. relaxation pr for puting the
,3 T 3 ; “ B 7 ; .fl'ow between the second and third frames (see Figure 5.25b). Finmally,
_-; :.j 3 3 1 i " this flow was used in the same way to generate the flow between the
e 2E RIS third and fourth frames (see Figure 5.25c).
5,24¢c Notice how the shape of the sign is apparent right away in Figure
[l i ~ ) 5.25a. The displacement motion between f;ames 5.242 and b is mainly
: Jl. t '; horizontal (left to right) and this is reflected in the flow vectors
L 1 Z '7' 5 = A in Pigure 5.25a. The displacement in-between frames 5.24b and ¢ is min-
. i o« : S :-’\' 7 Z g _imal however, resulting in a much reduced flow in Figure 5.25b. We dis-
1 } L 7 ; sy 33 g 77 s cusged earlier that the motion, when looked at locally (in the temporal
.:.‘ 7av ? 5 s :; S sense), will appear jerky due to the digitization process; the lack of
J ' = L E’ displacement here is a goocd example of this phenomenon.
-15 = 3% : o 4 1 .: The displacement between frames 5.24 ¢ and d is both upwards and to
é Z E, 7 11 ! 3-‘ Z, the right, which brings about the flow shown in Figure 5.25c. This flow
17 13 5 ;., : A A ; : being a weighted average of the flow over the last three time-steps, is
- = - . L presumably a better estimate of the actual motion of the sign than the
5.244 other flows in Figures 5.25a and b. It is expected that a longer se-

quence of frames would produce increasingly accurate flow by this meth-

od. It should be pointed out that the 'extra' material at the bottom of
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Figure 5.25. Optic Flow from Real Data. Figure 5.25a shows the flow
generated from the frames of feature-points shown in Figures 5.24a and b.
Figure 5.25b shows the flow generateé from the points in Figures 5.24b
and ¢, using the flow in 5.25a after extrapolation as a starting-point
in the relaxation. Similarly, 5.25c shows the flow generated from the
points in Figures 5.24c and 4, using the flow in 5.25b as a starting

point.
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the flow fields is due to the posts which may be seen in Pigure 5.22,
! ! ! ! . and whose motion is similar to that of the sign.

What is especially important to us is the computational effort re-

S R I R
. quired by the system to perform this analysis. In performing the compu-
. / ,
' ' ’ ‘ / / / tation, the system kept track of the total change in the flow field be-
| | I , / / / Y A ’ tween iterations. This change is graphed in Figure 5.26. The vertical
axis represents the change in the flow field, the horizontal axis the
' I I / / ~ - s / ! ' ‘
iterations of the relaxation process. Introduction of a new frame is
i _— - - .
! / / 7 / ~ ! ’ ' indicated by an arrow under the horizontal axis.
' l . I / 7/ S — T — - ’ ¢ Two things are clear. Firstly, the system required a great deal
more computational 'effort', as measured by the area under the graph, in
A Y Y A
generating the optic flow from the first two frames than in maintaining
' ! ! / / / 7 /7 /s - - and updating it in the subsequent frames. The second point is that many

fewer iterations were required on presentation of the third and fourth

frames before the activity reached a ‘suitably' low level.
5.5 Occlusion

Figure 5.25¢c Occlusion is potentially the most difficult aspect of the corre-
spondence problem since when it occurs, no correspondence exists for the
points concerned. In this section, we address two issues. Firstly, we
discuss how our MATCH process may handle occlusion, that is, how the
disruptive effect of occlu;ion on its opézaeion may be minimized. sec-
ondly,-we look at ways in which a maéhine vision system may make act_ive

use of the occurrences of occlusion for purposes of segmentation.

Throughout the following discussion, the principles that apply to occlu-
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Figure 5.26. Computation Cost.
cost of processing the four frames of real

data.

This fiqure shows the computaticnal
The iterations of the

relaxation process are marked along the horizontal axis of the graph.
The vertical axis shows the total change in the flow field between iter-

ations.
frames were processed.

Arrows on the horizontal axis show the points at which new
It is clear that (1) less 'effort' is expended

per iteration, and (2) fewer iterations are required for processing the

third and fourth frames than the first two.
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sion apply equally well (but, where appropriate, in reverse) to disocclu-

sion.

S.5.1 Occlusion and the Matching Process

It was stated at the beginning of this chapter that, for the time
being at least, the existence of occlusion would be acknowledged but ig-
nored.

The rational for this will be repeated here. Consider any point

in any frame of the moving-image data. Even in a complex environment,
it might be expected that the point would continue to be present for a
number of frames, especially at high sampling-rates. If the point gets
occluded, then it might also reasonably be expected that the point would
stay hidden for a number of frames. Thus over an extended period of
time (frames), there will only be one time at which an 'incongruity'’
appears at that spatial location, i.e. when a point is present in one
frame but absent in the next.

Now, in the case of processing real data, noise and digitization
produce a 'pseudo-occlusion' effect; points may tend to appear and dis=-
appear, although there are no boundaries present. The system we have
developed can easily 'absorb' these temporary inconsistencies, for two
reasons. Firstly, as we saw in Section 5.4, many fewer iterations of
relaxation are needed to process frames 3 and beyond than are needed for

the first pair of the sequence. Thus the system will barely dwell long

enough on the inconsistency to be disturbed by it. ([N.B. We will later

discuss the detection of occluding edges by a separate process.] Sec-

condly, it will be remembered that each element in our D-layer is up-

(U R U (RGN [ VU U R N I N
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dated by components from several elements in the C layer, of which the

occluded point provides a single input (see Figure 5.1). This local av- | BOUNDARY
ANALYSIS

eraging process automatically counters small local variations. The fact

that we do not need to associate a processor to each feature-point, and

that we can maintain the optic flow representation at interior regions

of an object where there are no feature-points, leads to the success of

the process.

5.5.2 Sémntaciou from Occlusion

In Chapter II we performed static segmentation of images by finding
sharp gradients in the intensity over the images. In Cliapter IV we ob-
served that optic flow was a pan-.tcixla:ly useful representation of dy-
namic images because discontinuities in the flow occur at f;he boundaries
of objects. We may now add a third dimension to the segmentation pro-

cess by using occlusion to indicate the existence of boundaries, too.

We should note that segmentation may be performed by region extraction
techniques (see, e.g. Nagin 1979, Ohlander 1975). These are static im-

age technigues, and suffer from the same problems as our static segmen-

tation process.

The relationships between the three segmentation processes are de- Figure 5.27. Segmentation and Motion. In this flow diagram, three seg-
. . mentation processes are depicted. (1) Static image segmentation via
picted in Figure 5.27, which is a partial flow diagram of a dynamic boundary analysis. (2) Segmentation by differentiating Optic Flow. (3)

Segmentation formed by detecting sites of occlusion.
scene-analysis system. We will note that the three kinds of boundaries

formed obey certain subset relationships, and that they are all produced
by certain kinds of discontinuities.

Static grey-level differentiation produces lines representing not
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only the boundaries of objects, but also boundaries of texture elements,
(artificial) patterns and shadow edges, all on the objects' suxfaces.
These latter kinds of edge are indistinguishable from object boundaries,
failing any semantic knowledge. In fact, if the background of an object
is of the same intensity as the object itself, then at least that por-
tion of the boundary of the object that is adjacent to the background in
the image will be indiscernible. Thus there are two drawbacks to using
static segmentation to find object boundaries: (1) extra, unwanted lines
will be found, and (2) some wanted lines will not be found.

The s;cond of these problems can be overcome by using discontinui-
ties in the optic flow to indicate object boundaries. As all markings
on an object w;ll move with the same velocity (at least locally), not
only will they not produce spurious edges, but will aid the analysis by
producing 'feature-points' (see Section 4.1), which are.used to generate
the optic flow.

In general, this method does not suffer from problem (1) of static
image differentiation mentioned above. However, in the (presumably rare)
cases vhere an object at distance d moves with velocity v, and behind
it another object at distance kd moves with velocity kv, then thev in-
duce the same flow on the retina, and so the boundary of the nearer ob-
ject will not be found. This possibility can usually be ignored.

The occlusion process produces boundaries also. As one object
moves in front of another, feature-points on the further object become
hidden. This phenomenon gives rise to discontinuities in the matching

pProcess itself, since the continued matching of these points from one

~3 3 _3 _3 —3 -
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frame to the next gets interrupted. We mentioned earlier that 'pseudo-
occlusion’, i.e. the disappearence of features due to non-occlusion pro-
cesses, can be handled well by the system. Pseudo-occlusion, due mainly
to noise and the effects of the digitization, appears in an essentially
random fashion in the data. Occlusion boundaries occur in a systematic
manner, both spatially and temporarily, and it is this property that al-
lows their useful exploitation.

Just as boundaries formed by differentiating the optic flow, i.e.
depth boundaries, form a subset of grey-level discontinuities, so the
occlusion boundaries form a subset of the depth boundaries. Occlusion
boundaries occur at the leading edges of moving objects (and disocclu-
sion boundaries at the trailing edges). Those boundaries of objects
which 1ie parallel to the direction of motion, or nearly so, will not
cause occlusion, so will not become evident in this way.

Let us examine the nature of occlusion edges. In one frame, they
all appear in the form of (not necessarily linear) sequences of loca-
tions where the matching process fails. By using grouping techniques,
such as relaxation, these locations may be linked to form extended bound-
aries. This process will be hampered by the fact that, unlike edges de-~
rived from grey-level differentiation, these edges will lack local di-
rection components. This may be remedied by considering the occlusion
process over more than one frame.

Although a particular feature-point will, in general, only disap-
pear once per occluding edge, neighbouring feature-points in the direc-

tion of the motion will disappear in subsequent frames. By letting in-

i3 9 3 3 (3 3 i3 __3
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formation from the two consecutive frames interact, the local orienta-
tion of the edge may be deduced. However, this computation is not direct,
for the following reason.

Let E be an occluding edge locally of crientation a and moving with
velocity v in direction 9. Let Pi and Qj ke feature po%nts occluded by
E in two successive frames P and Q. Suppose that the line joining them

is of length d and at orientation 8. Then
v sin (8 - @) 2 d sin (a - B)

(see Figure 5.28). The closest such Qj to Pi will satisfy a= B + 90°.
We have then
v sin (8 - a) Fa

or

v cos (0 - B) = 4. 0

d and a will be known locally, but v and ©.may only be found with re-
spect to each other. v and © may be determined explicitly by using co-
operating processes from adjacent portions of the image. This problem
Figure 5.28. The Occlusion of Two Feature-Points. Edge E at orienta-
was discussed in detail in Section 3.2. tion o is moving with velocity V in direction 9. Two points P; and Qj

distance d apart are occluded. For equations, see text.

5.3.3 Merging of Representations

We have discussed three boundary detection techniques, and have
seen their relationships. The major p{oblem of integrating the results
of these different processes remains. Three possible approaches will be
outlined below., We will call the result of the static segmentation
SEGMENTATION 1, the result of differentiating the optic flow SEGMENTA-

TION 2, and the output of the occlusion process SEGMENTATION 3. The
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processes will be called PROCESS 1, PROCESS 2 and PROCESS 3 respectively.

We should note that PROCESS 3 is expected to form a subset of all
real object boundaries, that is, every boundary produced by this process
is a real boundary, but it might miss some. SEGMENTATION 1 will only be
an approximate superset of the desired boundaries, since as well as hav-
ing superfluous texture-based edges, some object boundaries will be mis-
sing. SEGMENTATION 2 will be expected to be close to the desired seg-
mentation.

(1) Feedforward (see Figure 5.29). The boundaries extracted by
each proce;s will be fed into an additional process which will attemp;
to find the 'best' segmentation. This process would probably form the
union of SEGMENTATIONs 2 and 3. Any obvious gaps or discrepancies may
be filled in by reference to SEGMENTATION 1.

(2) Feedback (see Figure 5.30). The outputs of SEGMENTATIONs 1,

2 and 3 will be fed back into the processes producing SEGMENTATIONS 2
and 3, 1 and 3, 1 and 2. The three processes will then 'try again’',
using the information frpm the other processes as guidance. For example,
boundaries present in SEGMENTATION 2 and/or 3, but not 1, might cause a
local lowering of a threshold in PROCESS 1 allowing boundaries to be
formed there that were previously rejected. 1In addition, the lack of
boundaries in SEGMENTATIONs 2 and 3 might cause a raising of thresholds.
This procedure might be repeated éithez until a consensus is reached, or
for a certain number of iterations.

(3) Inter-Process Cooperation (see Figure 5.31). This may be re-

garded as a variant of approach (2) above. In this procedure, the three
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PROCESS 1 SERENTATION
1
INTENSTTY PROCESS 2 SERENTATION -
2 REPRESENTATIONS
PROCESS SERENTATION DL
$ 3 SERENTATION

Figure 5.29, Feedforward. Segmentation formed by merging the results
of three separate segmentation processes.
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PROCESS 1 SEBMENTATION PROCESS 1 p{ SESMENTATION
i . i
nﬂasrﬁ PROCESS 2 SEGNENTATION nﬂa;;;:\ PROCESS 2 SERENTATION
2 ~/ 2
PROCESS S SEGMENTATION ﬁggcgss 3 SEEMENTATION
3 3

rigure 5.31. Inter-Process Communication. Final segmentations are
formed by letting the three individual segmentation processes coorerate

Figure 5.30. Feedback. Three segmentations are formed by feeding back while forming the seamentations.

each of three separate G tation pr to the other two.
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segmentation processes operate concurrently and intercommunicate while
doing so. Thus, rather than making committments and then changing them,
as ih (2) above, the committments will only be made under consensus (or
maybe, under a condition of 'no contradiction'). One of these processes,
possibly PROCESS 2, may be regarded as the basic segmentation process,
which is influenced by the other two, so that the ultimate output of
this process will bé taken as the output of the entire system.

Whichever approach is taken, but particularly in (1) Feedforward,
the problem of 'merging representations' will have to be attacked at
some level. Some preliminary work has been reported (Prager et al. 1977)
but altogether this problem has so far Excaped much serious attention,
in the literature at least. This problem consists of two parts. Sup-
pose that two segmentations S1 and S2 are to be mergéd: The first prob-
lem occurs when Sl,.say, contains a line-segment in a r;qion of the im-
age, while S2 does not. The sacond problem occurs when they both pro-
duce segments, but due to the different ways in which the processes op-
erate, the line-segments may not be precisely aligned.

The second problem may be solved by allowing a match io be made if
the line-segments lie within a pixel or two of each other. Intersecting
lines of similar but different orientations (say 10° difference) may
cause difficulties.

The solution to the first pzéblem depends on many factors, for ex-
.ample whether it is known if either process generates a strict subset of
the actual object boundaries.

If not, ghen agsigninq confidence mea-

sures (see Section 2.5) may be helpful. Alternatively, only those

-3
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boundaries occurring in just one of the segmentations that are needed to
cause continuation of the common boundaries may be selected. Possibly a
scheme may be developed which involves relaxation based upon the confi-
dences of entire lines (as opposed to the relaxation described in Sec-
tion 2.4 which is based upon the local confidences, i.e. the local edge-~
strengths).

Altogether there is a large amount of work which remains to be done
before outputs of occlusion processes can be used. If the feedforward
approach is used, then the representation-merging process must be devel-
oped. If either of the feedback approaches are used, then the individ-
ual segmentation-generating processes need to be redesigned in order to
take advantage of incoming information.

It is hoped that the above

analysis provides a useful basis for further work.

3 i3



CHAPTER VI

SUMMARY AND FUTURE DIRECTIONS

6.1 what Have We Achieved?

in Chapter I we introduced the subject of dynamic scene analysis
and discussed many of the inherent problems. We looked ;t a number of
recent investiqétions in this field and the related fields of stereopsis
and chanqg detection. We saw that relatively few of the systems devel-
oped to this date used real data, and those that did generally had no
mechanism for dealing with rotation and/or occlusion. This motivated
the evolution of our system (descrlbe§ in detail in Chapter V) which,
through the maintenance of a low-level representation of the on-going
motion, can accommodate any-non-jerky motion of real data.

In Chapter II we described a system for the segmentation of static
gcenes. This system consisted of a sequence of processing steps, grouped
into four stages. Our major contributions may be briefly summarized as:
two preprocessing algorithms to correct for errors in digitization, a
very simple differentiation operator, relaxation using case-analysis, an
elaborate statistical confidence measure and a simple heuristic equiva-
lent of that measure.

We looked at some of the recent neurophysiological data on biolog-
ical visual systems in Chapter III. We found evidence for three or more
distinct visual gystems, and suggested that a comparable division of

l£unction might be profitable in machine-vision systems. We also ex-

plored the use of'population encoding as a device for achieving high
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resolution in any of several sensory modas.

In Chaéter IV we described a concept central to our motion-analysis
system: optic flow. We examined in considerable detail the information
available in the optic flow generated under linear and rotational motion.

We saw how the analysis provides an excellent test for possible colli-

sion, and di d how segmentation may be performed on flow-fields.

We locked at a method for resolving the translational and rotational com-
ponents of the motion of an object from its optic flow, and flow might
be filled-in in locations in the visual image where lack of texture and
boundaries cause no flow to be induced directly.

Realizing that optic flow may be generated by matching-up points in
successive frames, we developed a mechanism for extracting these points.
A set of masks was constructed which would act as detectors Eqr edges
and corners at various orientations. The output of these deceﬁtors was
a set of feature-points with associated feature-types, related to the
edgas' orientations. To aid in the determination of the best match in
one frame of a feature-point in another, a new function called the At-
traction function was developed. Both continuous and discontinuous ver-

sions of the function were defined. The application of the Attraction

function to psychophysical ph was di d

The efforts of the first four chapters culpinated in Chapter V. 1In
this chapter we presented a séries of programs called MATCH for the

matching of feature-points after they had undergone various motions.

The correspondence formed by the matching pr was repr d by an

optic flow field. This field was generated by a relaxation process in
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which were embodied certain consistency conditions which the flow field
must obey.

After demonstrating the success of the MATCH process on simulated
data, we turned our attention to real data. We firstly showed how the
optic flow field may be extrapolated in order to predict the positions
of objects in future frames. We then applied the feature-extraction pro-
cess to a sequence of four frames of moving-image data and used the re-
laxation process to generate the optic flow. We extrapolated the flow
generated from earlier frames to produce a starting-point for the relax-
ation proce;s applied to subsequent frames. We demonstrated that this
assistance from previous analyses greatly cut down the computational ef-
fort required to process the later frames. This was taken as a substan-
tiation of our claim that there is more information for segmentation in

dynamic scenes than in static scenes.

6.2 What Remains to be Done?

bDuring the course of the work described in this thesis we opened up
or extended several areas which deserve further exploration. These
areas were felt to be outside or beyond the sccpe of this thesis, but
will be outlined now for completeness.

The static segmentation system described in Chapter II consisted of
a series of modules, most of which were designed to be the minimal func-
tional implementation of the embodied ideas. The differentiation oper-
ator, being so small, could only capture gradients cxtending over two or

three pixels, although it was shown to work very well on several scenes.
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If it is desired to detect very wide gradients, then sets of masks of
different sizes could be used, but careful attention should be given to
taking care of multiple, equivalent edges. An alternative approach is
to extend the relaxation scheme, Presently, there is ne influence on
the edge to be updated by edges parallel to it. Furthermore, parallel
and perpendicular continuations of an edge are taken a priori to be
equally likely. While these have been shown to be entirely reasonable
choices for the current implementation, they are suggested as areas for
further investigation in more complex systems (cf. Hanson and Riseman
1978a).

The matter of assessing segmentations was also discussed. At pre-
sent there are no standards by which segmentations may be judged either
absolutely or in comparison with others. This is probably at least
partly due‘to the irmense number of boundaries in any natural scene.
Possibly only with the aid of machine interpretation systems can the ef-
fectiveness of a segmentation system be determined. However it is a-
chieved, such a methodology would be extremely useful to the development
of scene analysis systems.

In Chapter III we lockad at biological visual systems with a view
to modelling machine vision systems around their biological counter-
parts, in particular their multi-channelled nature. This should be re-
garded as part ;f an on-going effort, since new neurophysical data are
revealéd each week. Such data may also throw more light on the problem
of biological velocity detectors. Do they exist explicitly, rather than

being a by-product of some other mechanism, and is their use widespread,
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or do most animals get by without them entirely, and if so, how? Also,
do animals extract optic flow from moving images, i.e. are there neural
layers containing representations of the optic flow fields, we found so
useful?

Our relaxation equations developed in Chapter V contained two com-
ponents, each providing a contribution to the updating of the local flow
field based upon certain consistency conditions. These contributions
were weighted by factors A and u, which turned out to be equivalents of
time-constants in the associated differential equation. It was discov-
ered that the performance of the system (i.e. time to convergence) was
improved by varying these factors dynamically. However, an exhaustive
determination of the influence of these factors (or the general problem
of setting parameters in a relaxation paradigm too complex to be handled
mathematically) remains to be accomplished.

Further work should be undertaken on incorporating other of the con-
sistency conditions listed in Chapter IV into the analysis. For this
and other reasons the system should be extended to maintain high-level
constructs such as 'object', That is, not only should the system use
common motion to generate the flow, but should apply a segmentation pro-
cess based upon common motion (differentiating the optic flow) in order
to derive hypotheses of objects. Then the system should be able to
track occluded objects, and anticipate their re-appearance. This would
require the invocation of an object-schema to 'own' the space the object
occupies, or is thought to occupy (cf. Burt 1976).

We closed Chapter V with a discussion of how results of different
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segmentation systems may be merged. This remains a very difficult prob-
lem, and one which deserves further attention.

Throughout this thesis we have introduced algorithms for the hand-
ling of subproblems in the areas of static and dynaﬁic scene analysis.
Indeed, in Appendix IV we present two algorithms which found no place in
the body of the thesis, but were felt to be potentially useful. All of
these algorithms have been phrased in terms of parallel computations in
layered, retinotopic systems. Due to the great complexity of scene
analysis, the vast mass of data in a visual scene, and the fact that
parallelism exists in biological systems, we believe that this is the
most profitable approach. Martin and Aggarwal (1978} in their survey of
motion-analysis systems call for more parallelism: we hope that this work

provides a good initial response.
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APPENDIX I

We derive here the maximum likelihood estimate of the eonfidence of
an edge which is used in Section 2.5. We follow Yakimovsky (1976), mak-
ing appropriate modifications to cope with the use of dynamic mean.

Let S be a set of points { (xj, Yj' Ijx, j=1,...,n } where Ij is
the intensity of pixel (xj, Yj). Let v = % . We will suppose that the
intensity distribution is 'normal’' with variance 62 and dynamic mean

p*(j) =y +°xj +ij .
S may be considered to be a random sample from this distribution, so will

have probability density
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The logarithm of this likelihood function is
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Putting these derivatives equal to zero gives the estimators u, a,
b, ana 92, It is clear that U, a and b are those values which minimize
sy 2
T (X, - u*(3))°.
=1

We have

The quantity Ij - ij - BYj may be considered as a 'normalized'intensity
measure Ig, that is, Ij with spatial dependencies removed. In any case,
if xj and Yj are calculated with respect to the centroid of S, then

e X

n
o= I 1, .

= )

The probability density that I is gencrated by N(u, o) is there-
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-y - v(5112/252
e ? .

Yanig 2

Assuming independence, which is a valid assumption if the variation in
I* is due to noise, then the joint probability density for the whole re-
gion is the product

-(r; - G2t

3
n
- o -wan?
P SN S j=r 3
¥ang
LY
1 "2 1
= 7 © i
(21m) c

Now we consider the sets §, = {(Ilj. le. Ylj)' 3=.m),

s, = {(x,. Y .3 =1,... = =
2 0« 2J.x2) Yz;’ j=1, ,nz}andso s, us, ((xoj, xoj, Yoj)'

j 1,... =

j=1, .no} where ng n o+ n, andnthe points in s,
i .

Let v, = T,for_:.so, 1, 2.

are just the points

in S1 and 52 relabelled.

We calculate for i = 1, 2

n.
i
B, @, and b, to minimize I (I,, - a,X.. - b.Y..)2 so that
b § i j=1 i3 i%i) i"ij
*(3) = - -
ui (i) Ii.j a’.‘xi:i biYij. also

S BRSNS RS B N R NS R

0

315

a1l By
By n, T I,
j=1 M
n
1 i 2
o = —— IY (I,. = pr{i))
i ny =1 i i

Hence

* = * o *
ug = (nyu] * nu3)/n,

2 = 12 *2 % - Yk 2 * = yk 2
s, [nlo1 + nyoz” + nl(uo ul) + n2(u0 “2) )/no
1 ™o 3
Po™ T V% © T2 vg
(zm 0 tag) "0

.
We wish to test the hypothesis Hl that the points in S1 and S3 be~
long to different regions, against Ho that they belong to the same re-
gion. Assuming independence, in case Hl the joint probability density
of Pl and Pz is their product, viz
1 ] vl .
(2m Vo @2y 2

The maximum likelihood ratio, which we use to estimate the confidence of

SIS SN, B SO D BN S U B
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3 APPENDIX II
the line between s1 and 52, is
JASON: THE ROBOT IN THE FOREST
In this appendix we provide a description of a computer system sim-
v
plpz (602) 0 ulating the visual experience of movement through a forest. The system
—L 3 .
Po ( 2)V1(u 2)“2 is written in APL on the CYBER-74 computer with graphic output on a
1 2

Tektronix 4013 scope. No knowledge of APL is required to run the system
although some knowledge will allow the full power of the system to be

used.

A2.1 The Simulation System

Our robot Jason lives in a simulated forest. This forest is popu-
lated by (a variable number of) simulated trees. These trees are gener-
ally stationary, although one of them can be made to move in order to
demonstrate the optic effects that motion produces.

In general, Jason may be made to move anywhere in the forest, al-
though the system is set up so that the user may easily specify any lin-
ear motion. Jason may look in any direction parallel to the ground,
either in a fixed direction in space, or to fixate some stationary or
moving object (tree).

Three forms of graphic output are available:

(1) a 'bird's-eye-view' of the forest,

(2) a static view of the forest as seen by Jason, and

(3) the optic flow produced as Jason takes a step.
The two frames concerned in case (3) are the static views before and
after the step. What Jason sees will dep2nd on the nature of his envi-

37
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ment, which will now be described.

Only the trunks of the trees in the forest are generated. These
are straight, and are all of height 5 units, compared wit£ Jason's
height of 1.0. Their radii are randomly det?zmined. In order to pro-
vide some semblance of reality, texture markings are generated on the
tree-trunks. These take the form of dashed lines regularly spaced a-
round the circumferences of the trunks. Since the texture markings rep-
resent fixed points in space, while the apparent edges of the trees de-
pend on the orientation from which they are viewed, the user is given
the abilit; to specify whether the optic flow should be generated from
the tree boundaries, the texture, or both. The flow is generated from
the end-points and mid-points of these lines. All of these points are
given unique labels, so that the correspondence between frames may be

directly determined.

A2.2 _APL Syntax

We provide below the minimal understanding of APL syntax needed to
use the system effectively.

Variables. The basic data-types used in the system are scalars and
vectors. A scalar is a single quantity with an associated name, e.g.'
HEIGHT. A vector is a list of scalars, and it too has a name. Individ-
ual items are referenced by indexing: thus X([3] is the third component
of vector X. Some of the scalars used are real-valued, others are used
as logical variables which can only {meaningfully) ‘take on the values 1

and 0 (representing TRUE and FALSE, respectively).

-3 -3 3 3 _3 3 3 i3
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Assignment. Values may be assigned to variables in the following
way. The name of the variable is typed, followed by a left-arrow, fol-
lowed by the value the variable is to assume, which may be the result’of
evaluating an expression. Thus '

A+C+D

B+1234.
The type of a variable is the type of the last value it is assigned. So,
in the example above, B becomes a vector, irrespective of its previous
data-type.

Printing a Variable. To examine the value of a variable, the name

of the variable is simply typed. The system responds with its value.
Thus
B
1234,

Functions. There are six kinds of APL functions. They may be ni-
ladic, monadic or diadic, depending on the number of arguments they take,
and they may or may not return a result. If a result is returned, it
may be assigned to a variable, used in an expression or simply printed.
The forms of the niladic, monadic and diadic function calls are:

FUNCTION

FUNCTION P

Q FUNCTION R
where.P, Q and R are the arguments. Typing the function name (with ar-
guments if appropriate) causes it to be evaluated.

When operating the system, it should be remembered that when APL is

3 i3 3 .} 2 ‘B q_»® '_3 ‘_a _p 13



~—3 —3 3 % % T3 ¥ 7% @ TW TF 7B OTF OWOTW W

320

ready for input, it will indent by six spaces. For more details, see

Wiedmann (1975).

A2.3 System Usage

Coordinates. In this system, the following convention is followed.
The Y-direction is vertical, and the X-Z plane is parallel to the ground.
The origin of coordinates is at the robot's eye.

System Variables and Functions. Provided below is a list of some

of the more important system variables and functions. The user may wish
to examine or change some of these vaxjiables. In the list that follows,
those varigbles that are scalars and real-valued are denoted by {(R), and
those that are logical by (L). Vectors of variable length will be de-
noted by (V), while those of fixed length N are denoted by- ).

The Forest. The forest consists of a number of trees randomly dis-

tributed on a 20 x 30 grid.

NUMTREE (R) the number of trees in the forest.

X (V) the X-coordinates of the trees.

z (V) the Z-coordinates of the trees.

RADIUS (V) the radii of the trees.

HEIGHT (R) the height of the trees (they are all of the

same height).

NUMDASH (R) the number of dashes per line of texture-
markings on the trees.

MTREE (R) the index of the moving tree (in the range 1-
NUMTREE). MTREE = 0 if no tree is to move.

TREEV (3) the velocity of the moving tree.

TARGET (R) the tree Jason is fixating (in the range 1-

NUMTREE) . TARGET = 0 if Jason is to look in

The Robot.
PR (3)

LoV (3)
T™v (3)

THETA (R)

The Display.
SHOWTREE (L)

TEXONLY (L)
TREEONLY (L)
NOPLOT (L)

ROERASE (L)

Useful Functions.

SEEFOREST

SEETREE N

GENFOR

SIMPLOT
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a constant direction (OV). -

the position coordinates of the robot.

the orientation vector (direction of gaze) of
the robot. N.B. 0V{2] is always 0.

the translation vector (velocity) o.f the ro-
bot. N.B. TV(2] is always 0.

the angle Jason will furn through after tak-
ing each step.

whether Jason's static view is shown after
taking a step.

whether optic flow generation from tree bound-
aries should be suppressed.

whethe::: optic flow generation from texture
markings should be suppressed.

whether display of optic flow should be sup-
pressed.

whether the screen should maintain the dis-
play from the previous frame while plotting
the next (used in generating extended flow-
line segments).

will provide a bird's-eye-view of the forest,

indicating Jason's position and approximate
orientation with an arrow..

. as SEEFOREST, but will mark tree N with an

.

will generate and display a new (random)
forest.

will display the forest as Jason sees it.
[N.B. This is only meaningful if Jason has
taken a step via MASTER (see below). Just
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changing PR and/or OV alone are not suffi-
cient for seeing the new view from this new

position/orientation.]

PARMS will print the current values of a number of
system variables.

RESET initializes the robot and blanks the screen.

A2.4 Running the System

(1) To access this system, after signing on to the CYBER, type
SETTL, 1000
APL, WS = JASON
to enter APL, then
)COPY * APLSO TEKTRON .
(2) To set Jason in motion, type
MASTER N
where N is an integer.

Jason will then take N steps. The system will

then respond with [J:, requesting input. By entering

an integer M, where 1 < M s 9, Jason will take M further steps,

and the system will prompt again
0o the function will terminate.

‘any APL expression in quotes' the system will execute that ex-

pression and then prompt again.

It is most usual to let Jason take one step at a time.

L
L

———

APPENDIX 111

USING MATCH ON THE GT-44
Introduction

In this Appendix we describe the use of the program MATCH on the
GT-44 computer. Two variants of MATCH have been written for running the
algorithm in certain special modes. A full users' guide to MATCH will
firstly be given, followed by a description of how the variants differ.

MATCH is the basic stimulus-matching program. The user may specify
configurations of dots, and the motions which these dots are to undergo.
There will be one ‘processor' agsociated with each dot, and in some con-
ditions (described later) associated with other (non-stimulated) points
too.

MATCH2 is the collective name given to a set of three programs used
to examine the effectiveness of two different matching algorithms (and
different parameter values) for the same motion of a given configuration
of dots.

MATCH3 is the name of a program used to simulate conditions where
the processes are not assigned to, or even in register with the config-
urations of dots.

A full description of the use of MATCH2 and MATCH3 will be given

following the users'-guide to MATCH. In the final sections of this ap-

pendix details of logging-on, compiling the programs, and setting-up the

plotter are given.

323
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- Every individual st i
A3.1  User's Manual for MATCH Y stage of the program may be exited by hitting

carriage return (CR), which will cause the next stage to be im-

MATCH consists of six stages for specifying the input to the model mediately entered. Thus during the running of stage S (1$S <6)
and running it. Each stage is described in a separate section. In each hitting CR 7 - S times will restart the program.
section the user interactions are covered in full, and the displays are - A summary of the significance of all keys throughdut the running
explained. of the model is given in Table A.l.

The sectiong that follow are: - The more points that are used in each run, the longer the compu-
Input tations will take. (The relationship is quadratic.)

1) Specifying conditions of the run.
2) Choosing the size and location of the moving object.

3) Determining the motion.

8

4) Checking the input prior to runmning.

5) Running - generating the ‘Optic Flow'.

6) Running - resolving the flow.

These sections are divided into four subsections: description, dis-

play, user action and exit.

General Comments

- To start running the model, after the usual starting-up procedure
{see Section A3.1l.5) type
R MATCH.
- The term Message Area refers to a small portion of the screen
down in the bottom left-hand corner.
- At any stage, the run may be terminated by hitting CONTROL/C

twice.
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Key or Key Stage Effect
Combination - -
Move object along:
1 3b TX: X axis in L-R direction.
SHIFT/1 3b -TX: s - R-L = = = = ~
2 3b : Y e~ aDelU =~ - -
SHRIFT/2 . 3b “TY: = = - = = U-D - = = = -
3 3b TZ: Z - == =FeB = = = = =
SHIFT/3 3b “TZ: = = - = = B-F - = - = =~
Rotate object.about:
4 3b RX: X axis clockwise.
SHIFT/4 3b ~RX: - - = anticlockwise.
5 3b RY: ¥ -~ clockwi;e.
SHIFT/S 3b -RY¥: = - - anticlockwise.
6 3b RZ: 2 - - clockwise.
SHIFT/6 3b ~RZ: - =~ ~ anticlockwise.
P 5 causes the program to complete the

iteration then PAUSE prior to plot-
ting the display

T 6 cause TRANSLATION component to be dis-
. played )
R 6 = - -~ ROTATION - = = = = = = = - — =

Table A.1. Keyboard Keys and Their Significance in MATCH.

~2 3 _3 3 _3 _3 _3 ._3

2

Any Integer N end of S
and Carriage

Return

Carriage 1,2,3a,3b
Return 4,5
(CR) 6
CONTROL/E 3b
CONTROL/C all
(hit twice) stages
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N further iterations are preformed
Pass to next stage of program

Restart

Cause name of motion to be output
{or not) to keyboard

Exit from Program

Table A.l. Keyboard@ Xeys and Their Significance in MATCH. (cont.)

i

1

3 4 3 a3 a4 3 _2
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a3.l.1 Stage 1: Specifying the Conditions of the Run R MATCH to re-enter, or CR repeatedly until Stage 1 is re-entered.
pescription Exit

The user is to make three selections in. this stage: To exit this stage and enter Stage 2, either hit ‘'next' with the
(a) Mode of Motion Description - The alternatives are 'Implicit', using light-pen or hit CR (once). The screen will be blanked and the Stage 2
light-pen, and ‘Explicit’, using the keyboard. This determines how display will appear.

in Stage 3 the object specified in Stage is to be moved.

(b) Background Condition - The alternatives are 'None', 'Fill-in', and

'Stationary'. The meaning of these is not described here.
(c) Size of Display - The number of points in the display may be chosen,
from 4. x 4 to 10 x 10. This is the size of the 'visual world' of

the model.

pisplay (Chinese menu)

Three columns are displayed, with the various choices under the ap-
propriate header. The currently selected choice is made to blink. When
the program is entered, certain defaults are already blinking. Choices
may be made and changed as often as desired during this stage. The word
‘pext' is displayed at the bottom of the screen and may be selected by

the light-pen for passing onto Stage 2.

User Action

Choose which alternatives are wanted and hit them with the light-
. pen until all desired choices are blinking. Due to occasional light-pen
'flakiness' it may be necessary to re-make old choices. If due to such
flakiness the program passes on to one of the real ;tages before Stage 1

choices are complete, hit CONTROL/C twice to exit the program and
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A3.1.2 Stage 2: Choosing the Size and Location of the Moving Object null set of points will be selected.
Description Exit

The user may now decide which subset of the grid points in the This stage may be exited either by hitting 'next' with the light-
#odal's visual field is to belong to the moving object. (The motion is pen or CR on the keyboard. The appropriate Stage 3 display will then
epecified in the next section.) At the moment the shape is limited to a appear.

rectangle oriented to the areas of the display, but the wide variety of
possible motions should o.ffset this limitation. In the 'Pill-in' back~
ground eohdiﬂ;on. the dots formed by reflecting the rectangle in the
centre of the figure are also selected, in order to generate a figure
with an ‘outside’, and a 'middle' to be filled in.
Display

A grid of n x n points. is displayed, where n was chose;n in Stage .i.
Superimposed upon this is a rectangle with 2 small boxes in diagonally
opposite corners. By moving this rectangle a set of points (those inte-

rior to it) may be defined.

User Action
The rectangle way be ‘picked up' with the light-pen at either of
the corners indicated by the small boxes and moved around until in the
desired position. The size of the included set of points may be any-
thing fromn xntolxltonxltolxn. However, the results will
be meaningless if the rectangle is turned 'inside ocut' by passing oppo-
- site sides over each other. This condition is indicated by the small
boxes being outside the rectangle. If this condition occurs, the rec-

‘tangle may be returned to its proper state, but if left 'inside out', a

-3 -3 _3 -3 _.2 _3 _3 _3 _3F ¥ _3 _3 .3 3 3 '3 3 3 _3
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A3.1.3 Dpetermining the Motion

Stage 3(a): Implicitly using the Light-Pen

Description

As a surface moves in space, so its projection on a watching retina
varies. By indicating how the projection changes, so the motion can be
described implicitly. In this stage, the surface selected in Stage 2
can be distorted to represent a motion.

Since the model attempts to deal with simulations of two successive

frames or smapshots, small distortions only are recommended.

Display

The display is the same as in Stage 2, except that
(1) all the dots outside the rectangle disappear
(1i) a small box appears at the top left and bottom right corner of

the rectangle, so there is now a box in each corner.

User Action

The rectangle can now be 'picked up' at any of its cornmers with the
light-pen and can be distorted to an arbitrary quadrilateral. There are
two caveats:

(i) do not turn the quadrilateral ‘inside out'.

(ii) wuse small distortions ohly.

Exit
Hit 'next’' with the light-pen or CR on the keyboard to pass to the

RUN phase.

r~—7® f*—ﬁ@ r?»‘i@ r%—j® r*—a% rﬁmg% rv—ﬁ@ fFWTﬂ rfP—?@ fﬁ??@
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Stage 3(b): Explicitly, Using the Keyboard

Descripticn

The object represented on the screen may be made to undergo any
combinations of 6 basic motions: tranglation in the X(L -+ R), Y(D =+ U)
and 2(F + B) axes, or rotations about these axes. These motions are de-
noted by TX, TY, TZ, RX, RY, RZ respectively.

For convenience, it is assumed internal to the program that the
surface displayed is always approximately in the X - Y plane. Thus the

display will only be roughly accurate for small motions in these areas.

Display

The display will be the same as in Stage 2 except that all dots
outside the rectangle and both small boxes will disappear. The rectan-
gle and remaining dots will move according to keyboard selections. The
most recent motion executed is displayed in the Message Area. A com-
plete history may be recorded on the keyboard typewriter by pressing

CONTROL/E. This combination is idempotent.

User Action

A small motion of TX, TY, TZ, RX, RY or RZ may ke accomplished by
hitting key 1, 2, 3, 4, 5 or 6 respectively. Multiple hits will produce
compounded motions. Hitting the SHIFT key simultaneously with 1, 2, 3,
4, S or 6 will produce the inverse motions, denoted by -TX, -TY, -TZ,
-RX, -RY, -R2 respectively. Thus, hitting '2' will move the object 1
unit up, 'SHIFT/2' will move it 1 unit down. All other keys except CR

are disregarded.
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Exit
_ A3.1.4 Stage 4: Checking the Input Prior to Running

Hit CR to pass to the RUN phase.

Description

This stage allows the user to view the input to the model just

prior to running, and to decide if it is suitable.

Display

The set of dots selected in Stage 2 is displayed with the dots in
their original positions. Also displayed, blinking, are the dots after
they have undergone the motion specified during Stage 3.

'PAUSE' is displayed in the Massage Area.

User Action/Exit
Examine the displacements which the dots have undergone. If this
is acceptable, hit CR. Else hit CONTROL/C (twice) to exit the program

and type R MATCH to restart (or CR three times).

[ B | . . . . B B I Iy, B D D RGP R SR SR R R |
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A3.1.5 Stage 5: Running: Generating the Optic Flow

Description

The model attempts to determine which flashing dot ‘came-from'

which stationary dot. Twenty iterations are used (at first).

Display
This depencis upon which background condition was specified in Stage

1 (and so does the computation of course).

(1) None. The dots in Stage 4 are dispiayed, along with a dis-
placement véctor at each flashing dot ‘reaching back' to its estimated
source dot.

(ii) Fill-in. As (i), but with displacement vectors at each back-
ground position not covered by the object that has moved. '

(1ii) stationary. A static background is represented by superimposed
flashing and non-£flashing dots at each background and position not cov-

ered by the moving object. Displacement vectors are associated with

. these as well.

The iteration number is displayed in the Message Area.

At the bottom of the screen a graph of 'Error' against Iteration is
plotted. The 'error' is calculated as the sum of the differences be-
tween the coordinates of the optic-flow arrowheads and their corract
matches ({target poin‘ts) . This correspondence is known to a monitor pro-
cess but not the matching process itself. N.B. During each iteration:
the error pertinent to the previous iteration is Ealculated. Thus after

N iterations, the graph only covers the first N-1 iterations, although
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the Message Area indicates the iteration in progress, i.e. No. N+l.

User Action

Watch!

If at any point the display is to ba plotted, hit P. At the end
of the iteration the program will PAUSE. When the plotter is ready,

hit CR.

Exit

At the end of 20 iterations, the program will display ‘'FURTHER
ITERATIONS?' in the Message Area. Typing a positive integer N and car-
riage return will set the program on N further iterations.

Hit CR (or @, CR) to pass to Stage 6.
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A3.1.6 Stage 6: Running: Resolving the Flow

Description
In this, the final stage of the program, the optic flow generated

in the previous stage may be resolved into translation and rotation com-
ponents. This process is not meaningful (at present) if any motion in
depth has occurred. The program will run for 200 iterations, then

PAUSE.

bisplay

The particular compone;\t selected at any instant is displayed on
the screen, with TMNSﬁATION COMPONENT or ROTATION COMPONENT in the Mes-
sage Area, as appropriate. The display is updated every iteration. At
the end of the run, when the program PAUSEsS, both components will be .

displayed together.

User Action
Press T to have the Translation component displayed, R for the

Rotation component. These keys may be hit any number of times.

Exit
Press CR when the program PAUSEs to restart. Alternatively, hit-
ting CR while the program is running will also cause the program to re-

start.
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A3.2  MATCH2

MATCH2 is the name given to a set of three programs MATCH1, CATCH@.
and DATCH2 used for the experimentation with different algorithms and

parameter setting.

A3.2.1 MATCH1

In order that experiments may be performed with exactly the same
motions of dots, the MATCH program was split in two. MATCHl consists of
the first three stages of MATCH (Input) and terminates by v'rtiti.m; all .

relevant information about the specified configuration of dots and their

motions to a file (MDATA.DAT).

A3.2.2 CATCH2 and DATCH2

The other two programs, CATCH2 and DATCH2, consist of the RUN por-
tion of MATCH (slightly modified, see below). Upon entry they read the
file MDATA.DAT produced by MATCHl. CATCH2 and DATCH2 are identical ex-
cept that they use different forms of the Attraction function (see Sec-
tion 4.3). CATCH2 employs the continuous form, DATCH2 the discontinuous
form. Also, in the error graph, CATCH2 uses a continuous line, DATCH2 a
dashed line. These are the only differences between the two.

CATCH2 and DATCH2 consist of an initialization and three other
stages:

(1) Random Spread input. The system prompts the user for a value of
the random spread to be input.
(2) Pause to examine the input prior to running.

(3) Running: generating the 'Optic Flow'.

-2 ¥ 3 _3» _3®p ‘_P® .. _¥» _3 ¥ _» _3¥ _-3 '3 D3 3 3 _3 .24
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Stages (2) and-(3) are identical to stages (4) and (5) of MATCH. Stages
{1), (2) and (3) are linked cyclically, so that hitting carriage return
will cause the system to pass from one stage to the next.

The purpose of CATCH2/DATCH2 is thus seen to be.to exanine the ef-
fectiveness of the different Attraction functions, on a given dot pat-

tern but with variable feature-spread.

The RUN NUMBER
The system keeps track of how many times the program is run in the

wvariable RUN NUMBER. This is displayed in stage (1) and incremented each

time stage (1) is re 4. - Since the system used a pseudo-random
number generator, the same feature hjpcs will be used for a given run
number on a given number of' dots. Thus runs performed by CATCH2 and
DATCH2 on the same data. with the same run number will start with identi-
cal conditions.

In the Initialization phase, after the data-file MDATA.DAT is read
in, the system asks for an initial value M for the run number. It them

ises the d b (M - 1)*N times, where N is the

number of dots in the pattern, in order to achieve the same state as if

R-1 runs had already taken place.

Plotting
At any time during the run phase (stage (5)) the display may be

plotted. If during this stage tha 'P' key is hit, the system will com-
plete the current iteration then PAUSE, to allow the user to ready the

plotter. When ready, hit CR. The system will plot the flow pattern.
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It will then PAUSE again. When CR is hit a gecond time, the system will
Plot the dots and the error graph. The purpose of the second PAUSE is
to enable the pen to be changed, if desired.

If Q' is hit instead of 'P', the system will jump straight to the
second PAUSE mentioned above at the end of the iteration. When CR is
hit it will.plot the error graph. This is useful if the error graphs of

two runs are to be superimposed;
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A3.3  MATCH3

MATCH3 is a program very similar in use to MATCH; the major dif-
ference is that the processing elements (PE's) are not in register with
the dot patterns. This situation is described in detail in Section 5.3.
Most of the stages of MATCH3 are the same as those of MATCH. The dif-
ferences will now be described.

(1) Between stages (3) and (4), the system 'pmpts for two variables:
RANDOM SPREAD and SIZE of FIELD. The RANDOM SPREAD is the size of the
range of feature-types used in the runs. The SIZE of PIELD § is used to
calculate the distance between the PEs.. Suppose in stage (1) a SIZE of
DISPLAY (dots) of N x N was chosen. Then the distance between proces-
sing elements will be GSN. There will be N x N such elements, although
the number of dots, as selected in stage (2) may be less than this.

(ii) 1In stage (4), the system displays, alt';\ng with the dot patterns
prior to matching, a grid representing the receptive fiel;l,s of the PEs.
In stage (4) each dot will 'report' to the PE in whose field it lies
(see equation 12 in Chapter V). The PEs are in the centres of the
squares in the grid.

(iii) Plotting is performed exactly as described in Secticn A3.2 on

CATCH2 and DATCH2.

—-B3 _ 3 __p '_2 3 __ 13
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(1)
(2)
3)
(4)
(5)
(6)
7

(8)

A3.4 Getting on the System

Turn machine on via key.

Insert disc 3 "JP" and press RUN on disc drive.
Set switch registers to 173100.

Press HALT, then LOAD ADDRESS.

Set swi;ch ragisters to 177406.

Raise ENABLE switch.

Press START.

le.

An RT-11 version 2 message should appear on the

Type GT ON
R ASSIGN
DAT dd-mmm-yyy
wvhere dd-mmm-yy is the day's date, e.g. 17-APR-79.

A program is run by issuing the command R <program

name>.
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A3.5 Compiling and Linking MATCH Programs

Since the linking procedure for most of the programs is rather com-
plicated, BATCH files have been generated to ease this process. To set
up the BATCH handler, issue the commands:

ASS TT LOG
LOA TT, BA
Then for each compilation/linking:
R BATCH
<proc file>
whare <proc file> is PROCLl for MATCH1
PROCC2 for CATCH2
PROCD2 for DATCH2
PROC3 for MATCH3.

The corresponding source file will be compiled and linked.

The four BATCH files are known to the system as <proc file> - BAT.
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A3.6 Using the Plotter

Setting up

(1) Turn the plotter on (rocker switch at left).

(2) Depress LOAD button.

{(3) Adjust paper on bed of plotter.

(4) Press LOAD button again so that it releases. The paper should be
held to the plotter bed electrostatically. Smooth out air bubbles.

(5) 1Insert pen in holder. .

(6) Using joystick, move pen to bottom left of desired plotting area
and press SET LOWER LEFT until there is a 'beep’'.

(7) Repeat (6) for upper right.

(8) Make sure LOCAL button is down

The plotter is now ready for use.

After Plotting
(9) Depress the LOAD switch. The pen will move off the paper.

(10) Remove paper and get new sheet.
(1}) Perform steps (3) and (4) abova.

The plotter is ready for use again. The dimensions and po-
sition of the plotting area may be changed at any time via steps (6) and
(7) above.

At the end of the session:

(12) Remove pen.

{13) Turn off plotter.



APPENDIX 1IVv

PARALLEL PROCESSING IN MOTION ANALYSIS

In this appendix we use two approaches to solving the problems of
motion analysis within a parallel computational paradigm. We will in
both cases consider arrays of computational elements whose task it is
to compute via interactive processes certain properties or functions of
the visual input. We will suppose that each element can 'see' a small
portion of the visual field, and can communicate with its immediate

neighbours.

Ad.1l Properties of an Avefaging Network

Suppose that a region in the visual field has been extracted (per-
haps by differentiating the optic flow),.and that it is desired to find
its centroid in a parallel manner. This isAa possible application of
the following process.

Let G = {V, E} be a network of N nodes, where the links from each
node vy include a link with \ itself. Let there be a value xi(t) as-

sociated with node Vi and suppose that at each iteration x5 is replaced

by the average of itself and the values at neighbouring nodes, i.e.

|-

x (£t +1) = T x (t)

. i (vi,vj)es J (*

where ki is the order of node vi. We will show that the xi converge

Ll

to a common value

.

T kixi(O)

E kg
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Choosing an arbitrary but fixed ordering for the nodes, if we av-
erage the xi as a column vector X, we can express the transformation at
each iteration by the eguation

X{t + 1) = PX(t)

where P is an N x N matrix with the following property. For each row
i of P, ki elements take the value l/ki’ and the rest the value 0. For
example, the following is the transition matric P for the network of
Figure A4.1l:

1/3 1/3 1/3 o]

1/3 1/3 1/3 0

1/4 1/4- 1/4 1/4

0 0 1/2 1/2

Clearly, for any such P,

Ip,_.=1.
14
j 5]
N X,
Put K = Z‘ ks . Define the matrix M to have components mij = -13— .

s=1
Then M is of the following form:

k., k ,........kn

1’ 72
1 N .
M-E kl ............. .
K Cvreecnenn ook
k1
Consider the product PM. The i - jth component of this product is
TP, M
(PM)ij = 1sM53

3 _3» _.3 _.3 .3 3 __3 __3
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Pigure A4.l. Example Network.
is given in the text.

The transition matrix P for this network

349
"k
- s
¢ ﬁ Pis) K
k
e -1
R

so it follows that PM = M.

Now, assuming that the network G is connected, P may be regarded as
the transition matrix of an irreducible Markov chain with ergbdic ele-
ments (see, e.g. Feller 1968 ch. XV ¢ 7). This guarantees that %ig "
exists, and must equal M. Thus,in the limit,

X = MX(0).

But as all of the rows of M are identical, the limit of the X3 is

independent of i, and is equal to

n I k,x (0)
I m_x,(0) = —i3
=1 i373 K

as required.
Interestingly, a kind of 'conservation of mass' law may be shown to

apply. Multiplying either side of (*) by ki and summing over i, we get

Ikx (t+1) = L I x.()
g 4 AL 3

= I k.x,(t)
33

3
since xj (for some j) appears as many times in the inner summation on
the R.H.S. as there are xi to which it is connected, i.e. kj times.

Suppose that G represents the pixels within an extracted region, as
Adiscussed above, with connectivity signalling adjacency. Suppose that

xi(O) at each pixel is the cartesian coordinate pair of that pixel.
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Then after several iterations, each pixel will contain a value (coordi-

nate pair) close to that of the centroid of the region.

Ad.2 Velocity Computation Via Intensitz Analysis

Suppose we have a rectangular grid, whose rows and columns are in-
dexed by i and j respectively. Suppose a light pattern falls upon some
portion of this array, and in the next instant is moved to some other
location, but preserving its orientation, shape and internal light dis-

tribution. Our aim is to compute the pattern's velocity. We will as~

sume that a;: each cell there is a detector capable of recording the in- 0 n 0 v
cident light intensity, and the change in intensity when the pattern is Ad.22 Ad4.2b
moved.

We will initially look at the case where the pattern is moved in
the direction of the rows by a displacement of v units per unit-time.
Take any row i. We will denote the incident light intensity at

Pigure A4.2. Example of Movement. Figure A4.2a shows a representation
{4, 3) at tize t by £,(3, £). We may for convenience drop the subscript of a distribution of light intensity. In Figure A4.2b this pattern has

i moved v units to the right.

Werwill assume nothing else about the pattern except that its max-
imum extent is less than n units from the origin of coordinates, in
either direction of motion. We will suppose that ché displacement does
not put it further than N units from the origin. Thus

‘ N-nz2v,
We will take the intensity of the background to be zero. The situation
for any row i is depicted in Figure a4.2.

We know that

£(3, t) =0 for j <0 and j > n.

-2 -3 _3 _3 _3» _3» _3» I I _3 _3» 3 _H -3 _» .3 _3 _D» 1B
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£(j, t+1) = £(3 -v, t), for J = v,...n + v,

Define
a(j, t + 1) = £(3, £ + 1) - £(3, t).
Consider
ntv n+v
£ ja@d, t+ 1) = T JULEG, t+ 1) - £15, )]
 =(n+v) -{n+v)
n+v
= I JIE(3 -v, t) - £(3, ¢))
- {n+v)
n n+v
= T (J+v) £l3,.0) - T J £, t)
-2V ~(n+v)
n l-n-v n+v
e TVvE(J, )+ T J£(3,t) - Lif(3,0
-n-2v -n=-2v n+l
» a1l tions are over j.

But £(j, t) = 0 for j < -n-v and J > n. Therefore

n+v n
L ja(3,t+1) = I vE(j, t).
={n+v) -n=2v

Hence, by adding and subtracting extra terms which are all zero,

N
I jd(j, £t +1)
=N
ve= N .
T £(3, v
. "N

Our 'detector' had a sufficiently large window to see across the

whole pattern. Let us examine what happens if it can only sample a por-

tion of it.
Suppose that the window is of width m at position k, so that ‘the

newm is from j = k to j = m + k - 1. Then

mbk-1 k-1
L3ald, t+1) = I jlE(J-v, t) - £{], t)]
k k
otk-1-v mk=-1
= I (G+v)E£(j,t) - L IE£Q.t)
k-v k
mtk-1-v mtk=l-v
-v T £(j,&)+ L (3£(3, 8) = (3+v) £(j +v,t) ]
k-v k-v
80
K m+k-l X mk-v-l
£ Z dd(j,t+l) = v T z £{j.t) +
ko-K j=k k=-K jsk-v
X mk=-1-v
T I JEWF, L) = (F+v) £() +v, )]
k=-K jok-v

Consider t_:he first term of the right-hand-side. The double summa-
tion has the effect of putting a window of size m across the row and
ghifting it by one unit each time. Therefore each term will be included
m times, except for those towards either end of the row. But for suf-
ficiently large K, £(j, t) = 0 for J in the neighbourhood of K.

Consider the second term of the right-hand-side. Here there will
be cross-cancellation except for terms with j near *K, but again, these

are zero for sufficiently large K. Assuming this is the case, then, we



354

have
K mtk-1 K
z £ ja(j, t+l)=wm L £(j, v)
k=-X . jek k=-K
mtk-1
or T jd(j, t+1)
K X
R | L T
k==K "
v K -
T £(j, t)
k=-K

Now, the term in square brackets is the mean of jd(j, t+1) evaluated
over a windc;w of size m located with its left hand and at j = k. The
outer summation adds these contributions for windows spanning the field
of view. The denominator is the total light intensity over the row.

Suppose now the displacement is v units in the j-direction, as be-
fore, and w units in the i-direction. That similar analysis holds is
shown briefly below.

Using an obvious extension of notation, we can modify (1) to get

N ntv N niv
L 3 ja(i, j, t+l) = I z JIE(L -w,j - v, t)-£(i,j,t)]
i==N Je-(n+v) i=-N j=-(n+v)

N n n
= £ { T JIE(E -w,j,t) =£(1,5,8)] +vI vV f(~w,j,t)}

j=N j=-n-2v j=-n=-2v
n N N n
= [ 3L [El-wI,0-fl,3,8))1+v I T £(i-w,j,t)
j=-n-2v i=-N i=-N j=-n-2v

356

N N-w N N N
= I 3( T fli,j.0)- EEWE,J,0)+v T IE£W,3.0
ja-N  i=-N-w i=-N j=-N i=N

N N
sv I I.E(i,3.8) .
jo=N i=-N

Hence N N

I £ jati,j.t+1)
io=N j=-N
v o AoNj=N
N N
3 L £{i,3,t)
i=meN jo-N

and similarly, N N
b T id(i,j, t+1)
im-N j==N

N N
£ I £(i,3.t)
i=-N j=-N
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