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In this short report, I wish to briefly and informally discuss the scope of joint
work with Michael Arbib on 'partially-additive semantics'. The time of this writing is

May 1979.

). Why Order Semantics?

Th~ Knaster-Tarski theorem was introduced by Kleene to define a recursive function
as the least fixpoint of the continuous functional induced by its recursive definition.
Owing to the work of Scott and many of his colleagues, this approach provides a wide~
spread foundation for the semantics of recursive programs. Indeed, in the textbook
[Manna, 1974] order semantics is introduced as if it were the only conceivable founda-
tion.

My interest in 'fixpoint semantics' is recent. 1In a first pass at the literature
I was unable to isolate compelling 'computer science' motivations for the proliferation
- of papers and books which explore the effects of introducing ordered sets ([Bioom, 1976]
(Kamin, 1979], [Goguen et al., 1976, 1977), {[Lehmann, 1978], [Lehmann & Smyth, 1977],
[Meseguer, 1978], [Milne-Stratchey, 19761, Scott, 1970, 1971], [Stoy, 19771, [Tennent,
1976], [Tiuryn, 1977], [Wagner et al., 1979], [Wand, 1977], to name some). I feel that
'why order semantics?' is a challenge that needs to be met.

Michael Arbib and I introduce Eartiallx-additive semantics as a viable alternative,
worthy of further study. The spirit of our investigation also provides guidelines for
other, as yet uninvented, semantics.



2. _Canonical Fixpgint;.

I have heard many people say that "one needs ordered sets to be able to talk about
least fixpoints." But this is misleading, for we shall now see that what makes least
fixpoints special is not that they are least.

To begin, what is the context of the Knaster~Tarski theorem? As it is usually
stated, one is given a single object A = (a,<,h) where (A,S) is a partially-ordered
set with least element L and in which every countable ascending chain has a supremum,

and h: A — A preserves such suprema; the theorem asserts that
sup(h™(1) : n 2 0) (1)

exists and provides the least fixpoint of h. What is striking about (1) is that its
form is independent of A. To a category-theorist, this immediately suggests wnaking A
an object in a category in the hope of discovering 'functoriality' or 'naturality’
axioms characterizing (1) as an A-indexed construction.

I shall immediately generalize. Let End be the category whose objects are pairs
(A,h) where A is a set and h: A — A is a function and whose morphisms ¢: (aA,h) —-
(2',h') are functions ¢: A — ' satisfying h'¢ = ¢h. Let i be an arbitrary cate-
gery and let T:gl — End be an arbitrary functor. The motivating example is:
o'd-object = (A,<,h) as above; a morphism ¢: (A,s,h) — (A',<',h') Preserves L and
suprema of countable chains, and satisfies h'¢ = ¢h; T(a,s<,h) = (a,h).

Definition: Given T:g{ — Epd, for A el write TA = (Ayeh). A fixpoint of a
is a € A, with h(a) = a. A canonical fixpoint of (d,I) is an assignment o of a fix-

point &y of A to each A subject to the requirement that for all ¢: A — B in A,

(r¢) a, = e

Canonical fixpoint theorem: Let TI':_d4 —~ End, and let &l have an initial object I.
Then there is a bijective -.correspondence between fixpoints i0 of I and canonical fix-
points of (o4,T) given by a, = I(I —a) (io). 0

Corollary: For T:od — End as in the motivating example, the Knaster-Tarski
formula (1) provides the unique canonical fixpoint.

Froof: I = (W u {»}, 5, 5) with s(n) = n+l, s§(®) = o is an initial object of
al, the unique map Y: I —+ A « (A,<,h) being y(n) ==hn(J.), P(o) = Sup(hn(J.)).

Since «@ is the only fixpoint of I, o.A = )(®) = Sup(hn(J.)) is the unique canonical
fixpoirt. |

The whole point of the above corollary is that it allows (1) without mentioning
the word 'least'. (1) is the unique canonical fixpoint for a certain (cd,T). Having
begun with the somewhat negative question "why oxrder semantics", I should now like to

rephrase it in a more positive form: Why not a better (.4,)? Indeed, a new (4,T)
is offered in Section 6.



3. Metric Spaces, a D;version

A number of workers [Bloom, 1977] [Schiitzenberger, 1962] have used the Banach con-

- traction theorem instead of the Knaster-Tarski theorem for problems of 'fixpoint
semantics'. This theorem also provides an instance of the canonical fixpoint theorem.
Let A have objects (A,d,h) where (A,d) is a non-empty metric space and h: (A,d) —(A,d)
satisfies d(hx,hy) < Kd(x,y) for all x, y, for some K < 1. Morphisms ¢ can belong to
any subcategory of the category of all functions A — A' satisfying h'¢ = ¢h. The
one element set with its unique metric and endomorphism is the initial object of & and
possesses its only element as unique fixpoint. (The proof here requires the well-known

fact that each object of ;4 has a unique fixpoint.)

4. Partially-additive Analysis of a Simple Iterative Program

Consider the following program scheme computing a partial function £: N —-N :

(2)

x €« b(x) X + a(x)

—

£(x)

Here a,b: N — N are partial functions and p,q: N — {true,false} are total func-
tions called 'predicates'. By inspection, it is clear that

If p(x) (meaning 'not p(x)')

then f(x) is not defined. (3)

In a larger program, the deduction of such facts is more complicated and it would be
nice to have a systematic method to isolate (3) from irrelevant aspects of (2). I do
not think that the Kleene sequence (h™(L) : n 2 0)  is optimal here, because

it does not 'deal with pieces any smaller' than the original program.

On the other hand, in the partxally-addltive analysis of (2) we shall see that
each path of the flowchart becomes a 'term' in an infinite series expansion. There is
one 'straight-through term' aqp and there are two 'return terms' bgp and p. This
suggests that the semantics of (2) is

(<]
£= I (agp)(bap + p)". (4)
n=0



The precise definition of (4) is as follows. Each predicate r: A — {true,false}

induces two partial functions r ' X ¢t A — A where
true false

a if r(a) = true a if r(a) = false
r (a) = r = (5)
true undefined else false undefined else
These notations are cumbersome and henceforth I shall write r for r and r for r
true false.

Then adp, bgp and P in (4) are partial functions N — N, using the operation of com-
position of partial functions. The sum of any family (fi : 1€1I) of partial functions
fi: A — B: is defined only when the domain dom(fi) is disjoint from dom(fj) when 1i# j;

and then fj(a) for the unique j with ace¢ dom(fj)

(Efi) (a) = (6)
undefined a ¢ Udom(fi)
But it is now clear that (4), with its two uses of sum (finitary ¥ is written with
infix +! is the correct semantics of (2).
A number of authors such as {Zeiger, 1969] [ge Roevér, 1976] have discussed sums of
multi-functions and relations which can be applied to partial functions but, as far as
“wWe are aware, the emphasis on a partially-defined addition yielding an axiomatic theory

such as that discussed in the next section is new.

Summation of partial functions has a number of Pleasant properties:

If fi+fj is defined i #j, Efi is defined. (7)

If f: A — B, 9;: B—C, h: C— D with Egi defined
then Ehgif is defined and is h(Zgi)f. (8)

If I is partitioned into (I, : jeJ) then
» IJ(f:_L : 1el) = ZZ(ZD(fi : ite): jed) (9)
in the sense that if either side is defined then so is the other,

and they are equal.

For any two sets A, B there is a zero for the addition, the partial function
1: A — B 'which has empty domain. Any composition of partial functions is I if one of

the factors is.

If p,p: A— A is a predicate, the following equations hold:

PP = 1 = pp
PP=p =3 (10)
p + p = id.

Here is the analysis of (4). Expanding (adp) (bqp + p)" for n = 1,2 gives

(agp) (bgqp + P) = agpbgp + agpp = agpbqp + ajL = agpbqp
- -2 - - - - 2
(aqp) (bgp + p)” = agpbgpbgp + agpbgpp = agp(bgp)
which leads one to conjecture that (agp) (bgp + §)n = (aqp) (bqp)n; this is easily
verified oy induction. Then (3) is obvious since every term ends with p and pp = 1,
We may further deduce that if f(x) is defined, (adp) (bqp)n(x) is defined for a

unique n. Since qp(x) = x when defined, the final value of f(x) in this case is
ab™(x) .



5. Partially-additive Categories: Axioms and Diatr.ibe -

The summation operation on the set of partial functions from A to B suggests a

number of abstract definitions. Let us get them out of the way.

Definition: A partially-additive monoid (M,Z) is a set M equipped with a partially
defined operation Z on finite or denumerable sequences of M subject to

Partition associativity axiom: The same as (9), but I is countable.

Limit axiom: Given (mi : ieI), if E(mi : 1€F) is defined for each finite subset
F of I, E(mi : 1€I) is defined. This weakens (7).

Unary sum axiom: (If I has one element) Zm is defined and is m.

The empty sum provides an additive zero, denoted 1.

Definition: a morphism f£: (M,Z) —- (M',Z2') of partially-additive monoids
satisfies: if Emi is defined then E'fmi is defined and equals f(Emi).

Definition: A partially-additive semiring is (R,Z,+,1) where (R,Z) is a partially-

additive monoid, (R,*,1) is a monoid and the left and right multiplications m » ma,

m " am are morphisms (R,Z) — (R,I).

Definition: A partially-additive category is a category A with countabls co-

products in which for each pair of objects (A,B) the set &l(a,B) of‘,ﬂ—morphisms from A
to B has the structure of a partially-additive monoid in such a way that the following

three axioms hold:

Distributivity axiom: If £f: A' —p, g: B — B' then go-Of:aﬂ(A,B)——zA(A',B’)
is a morphism of partially-additive monoids. (In particular, endomorphism monoids

are partially-additive semirings.)
For A in gd, I a countable set, write copower injections as
inj: B — I*B and define 'quasiprojections’ pr.: I*B — B (11)
by priinj = 6; (Kronecker delta).

Compatible sum axiom: If f: 2 —» I+B, 2(prif : ieI) exists in A (A,B).

Untying axiom: 1If fi: A — B and Zfi exists then Einifi: A — I+'B exists.

In-theoretical physics, aesthetically-appealing mathematical models must also be
validated by experimental evidence, but it may be detrimental to progress to fail to
publish results which ‘almost work' (cf. the Klein-Gordon equation which would have
been Schrddinger's if he had not been too scared to publish it [Dirac, 1971, bp. 37-401).

I suggest similar criteria for pProgramming semantics. We should publish all

- appealing ideas, but should measure them for 'realigy'. For example

Appealing idea Reality
Data types are ordered sets. It's not always true. Besides, should

any formulation restrict, a priori, the
internal structure of data types?

lterative algebraic theories motivated by '"Time' is implementation-dependent.
'timed' partial functions. (Elgot, 1975]

Relations, not just partial functions. For ultimate progress in ‘parallel
processing', very important. For the
standard case, it's just not true.



Some of my colleagues have insisted that it is unnecessary to deal with partially-
additive monoids since the union operation for relations deals correctly with the
issues involved and allows I to be always-defined; 'at the end', if necessary, one can
verify that 'partial functions lead to partial functions'.

Primary rebuttal: Relations are there, just as complex eigenvalues and eigen-
vectors are there in the process of finding real solutions to linear differential
equations with constant real coefficients. But in aﬂy foundations ~- which, for me,
should be robust enough to specialize in several ways -=- one specialization should be,
exactly, partial functions since this is the major concrete case in programming.

Secondary rebuttal: After all, the set of relations from A to B'with Z = y is
a partially-additive monoid. The primary objection to the general ¥ seems tc be
psychological: partially-defined algebraic operations are 'unpleasant'. But even
matrix notation struck engineers as 'unintuitive' when it was first introduced, but is
now accepted as an aid to intuition. Arbib and I experienced the same transition with
growing familiarity with partial-addition.

6. Partially-additive Monoids and Recursive Calls

Definition: Let (M,Z) be a partially-additive monoid. Say that £: M — M is
n-additive if when all but one of the n arguments are fixed, the result is a morphism
(M:E) — (MIZ) .

Definition: An abstract recursion scheme is (M,Z,H) with (M,X) a partially-

additive monoid and H = (Hn :tn=20,1,2,...) with Hn: M —+ M n-additive (0O-additive
= constant) subject to the requirement that
h(m) = Z Hn(m,...,m) (12)
n20

is defined for all m in M.

Ey a scheme morphism ¢: (M,Z,H) — (M',2Z',H') we mean a morphism of partially-
additiv~ monoids such that H;¢ = ¢Hn for all n.

It follows at once that h'¢ = ¢h and hence that r(M,Z,H) = (M,h) is a functor
I' from the category AbSRS of abstract recursion schemes to Epd.

Our thesis: a recursive definition induces an abstract
recursion scheme whose canonical fixpoint (discussed below) (13)

provides semantic meaning to the definition.

Let's test this thesis. Here is an APL Program which evaluates tne determinant
of a square matrix by cofactor expansion along the first row.

VZ<DET MAT ;I;N
[1] N«(cMAT)[1]
£21 +(N=1)/END
[3] 2+I<0
(4]l LOOP:~(N<I+I+1)/0
{51 ZZ+((T1)%1+I)XMATLI;1IXDET MATL(I2\N)/\N;1+1(N-1)]
(el  -+LooP
7] END:Z«MAT[1;1]



The desired function is an element of the partially-additive monoid (M,2) with M
the set of all partial functions from the set of all square matrices with real entries
to the set of reals (with Z as in (6)). Then define

HO € M by Ho = if MAT = [all] is l-by-1 ;ggg,all else undefined

H:M—M=1 always undefined

1o, 11 %12

Hyf ¥ —M by Hy(m,m) = if MAT = a

1 %22
then a,ym ([a22]) - a, 2([an]) else undefined

] is 2-by-2

N1 %2 34,

3 . . .
H3. M — M by H3(ml,m2,m3) = if MAT a21 a22 a23 is 3-by-3

831 33 233

a a_.." a a a a
22 23 21 23 21 22
11 l a32 a33 1272 a31 a33 133 a31 a32

and so on. H is non-trivial for all n # 1. Clearly glse undefined °
DET + h(DET) = Z H_(DET,...,DET)
n
n20
"is the intended recursive call. Other examples, including vector equations and
Ackermann's function, appear in [Arbib & Manes, POC].

Theorem (Arbib & Manes, POC]: ég§§g=——£;ﬂ-§§g‘ has a unique canonical fixpoint.

Proof Qutline: Let Tree be the set of all finite-depth finitely-branching trees

with one root. Let I be the set of all subsets of Tree. Then I = (I,2,ll) is an
abstract recursion scheme if 3 is defined only for pairwise disjoint families to be

union, and ﬁn(sl"”"sn) is the set of all

N

S, .. S
1l n

with s; € Si' In fact, I is the initial.object, and the unique wA: (I,i,ﬁ) —
(M,Z,H) = M to the arbitrary M is wM(S) = E(S# : S€8S) where s# is that element of
M obtained by labeling each n-ary branch of s with Hn and each terminal node of s by
HO' and evaluating. Moreover, I has unique fixpoint, namely all of Tree. The stated

result then follows from the canonical fixpoint theorem. O

Indeed the proof above gives a specific semantics which should be regarded as the
partially-additive version of the Knaster-Tarski formula (1):

The partially-additive semantics of the abstragt recursion scheme (M,Z,H) is

E(s# : s € Tree) 4 (14)

(the theory guarantees that this sum is always defined).
Notation: Let RBfn denote the category of sets and partial functions. The set
Pfn(A,B) of partial functions from A to B is both a partially-additive monoid (6) and

a partially-ordered set with least element and suprema of countable-ascending chains.



9.

Theorem: Given an abstract racursion schema of form (£fn(A,B),H) (L as in (6)),
then h(m) « ZHn (m,...,m) preserves Suprema of countable ascendir.g chains. Moreover,
the partially-additive and least fixpoint semantics coincide:

2(3"I t B € Trea) = Sup(hn(J.) :n20). (15)

Proof Outline: we showed in {[Arbib g Manes, 1978] that the partially-additive
semantics of a recursive definition coincides with its interpretive semantics, which is
known to equal the least fixpoint semantics. The present more general theorem is
Proved with the canonical fixpoint theorem.

Let o be the category of (A,B,H) such that (Rfn(A,B) ,H) is an abstract recursion
scheme (with £ as in (6)) ana with morphisms y: (a,B,H) — (A',E',H') being
¥: (Rfn(A,B),H) — (E£n(A',B') ,H') in AbSRS, and define F:cd — End by TI'(a,B,H) =
(Efn(A.B) ,h). Recalling the proof outline of the previous theorem and observing that
subsets of Tree under disjoint union correspond to elements of Bfp(Tree,1) (where 1 is
2 one-element set) in a E-preeerving way, (m,l,ﬁ) ~~ with the H of the Preceding
theorem-- is an initial object of (of,I') with a unique fixpoint, and 2(5# : S € Tree)
is then the unique canonical fixpoint.

We must ghow that Sup(hn(.L) in20) is also a canonical fixpoint. To begin, in
any partially-additive monoid (M,Z) say that 'me lim mk' if there exist x  with

k
mk-mk-l."xk k2 1)
o
m =m + I
07 Lk
and say that a function C between partially-additive monoids is continuous if c(m) ¢
lim c(ns‘) whenever m ¢ lim m - It is easily shown that if Fp: M, —& (M',Z') is

(16)

n-additive then m » F(m,...,m) ig continuous and that any pointwise sum (if defined)
of continuous functions is continuous. 1In particular, the h of any abstract recursion
scheme is continuous and all worphisms in ALgRS are continuous.

To conclude, note that when our partially-additive monoid is Pfn(A,B) under dis-
joint union, then the xk of (16) are unique, and m must be the supremum. Hence okserve
that a function Bin(A,B) — 2L0(A',B') preserves Suprema of countable chains if and
only if it is continuous and hence, by the corollary of Section 2, Sup(hn(.l.) :n 2 Q)
is canonical for (4,T). 0

Let me discuss further the relationship between order and sum on Pfn(A,B). The
order is easily recovered from the addition since f S g if and only if g = f + h
 for some h. There is, however, no equally direct way to recover Z (or even +) from <.
in Pfn(a,B) (although one can easily express disjointness in a lattice and then
Z = sup for disjoint families).

#s is well-known, the least fixed point of an arbitrary continuous h: Pfn(A,B) —
EAn(a,B) is hot necessarily recursive. The ‘'polynomials’ h(f) = Xﬂn(f,...,t):
2ip(A,B) ~— E2In(A,B) are a smaller subclass of continuous maps that appear adeguate
for all recursive definitions.

When Hn =1 forn>1l, the semantics (14) of (M,2,H) specializes to
- -]

n
z Hl(no). (17)



10.

There are many axamples of this:
(1) (20) below in any partially-additive category;

(ii) The Kleene iteration operation for subsgsets of X*, (A,B) » A.B, {(and I point
out that Kleene [1956] used this form, not A m» A.) arises as in (i) in tle partially-
additive category uﬂ?* (see below) for R the complete semiring of subsets of x*;

(iii) The behavior of an automaton (convert to recursive definition first as in
(Eilenberg, 1974, Theorem 6.4);

(iv) The semantics of an iterative program (convert to recursive definition using

the McCarthy transforﬁ'[Manna, 1974, Theorem 4.5].

Let f: A — B be the semantics of (Bfp(A,B) ,H). There are two useful proof
rules |[Arbib § Manes, POC], the first of wnich uses both H and <:

Tree’ induction rule for partial correctness: For any g ¢ Pfn(A,B), ¢ < g if and
only if
Basis step: Ho <g

Inductive step: If Hn # L and sl,...,sn ¢ Tree are such that sg S g for all i

# #
then Hn(sl,...,sn) < g.

Termination rule: For any a € A, f(a) is defined if and only if there exists

s € Tree witn s#(a) defined.

7. Partially-additive Categories: Mathematical Results

Theorem: A categorylis partially-additive in at most one way; that is, if X

exists it is unique.

'Proof Outline: wWe say fi: A — B are compatible if fi = prif (1e€I) for some
f: A -+ 1B, But compatible is equivalent to summable since if Xfi exists so does
f - Einifi by the untying axiom and fi o prif. Moreover, if o: IB —» B ig
defined by cini = id, Efi = gf, U

It follows that Pfn with Zfi extended to include all families which agree on their
overlaps is not partially-additive. (In fact SPe untyin%xeffzr ﬁiils.)

As explained in [Arbib & Manes, PaCat], -the theor%(of semi-
additive categories [Mitchell, 1965, 27-31] [Arbib & Manes, 1975, Sec. 5.2]. Here,
Pfp provides the central example of a partially-additive category whereas the category
of aﬂelian monoids is the Prototype semi-additive category.
’ An abstract characterization of partially-additive categories in terms of four
iaxioms which assert that ‘countable coproducts are almost products' is given in [Arbib
& Manes, PaCat, Section 5]. This suggests the 'half direct sum' symbol ? for copro-
ducts. To say a little more, if g is partially-additive the coproduct B F Z is 'almost
a product' in the sense that there exists a bijection between maps f: A — B P C

_and pairs (fB: A—B, f A — (C) defined by

f = pr_f, f =pr f

M
0
.
=
h
+
™
te]
Hn
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Further understanding comes from considering Pfn. Exercise: check directly that
(f ) is compatible if and only if dom(f ) N dom(f ) when i # j. Coproducts are dis-
j01nt unions with the usual injections. Thus {true false} = {true} + {false} and

the decomposition of r: A —~ {true,false} into r : A — {truel}, r : A —

true false
{false} is closely related to that of (5).
Still in Pfp, let £,9: A —+ B and consider
A A
£ g £ g (19)

B B

B

f + i in,
g 1nlf + 1nzg

Weueuﬁﬁhgmmlﬂw&uthu;meﬁwmmamsmmumnymum¢MOMy
when dom(f) n dom(g) = #. The flowchart on the left represents f + g. The flowchart

on the right then shows that the untying axiom asserts that the 'codomain join lines
may be untied'.

Proposition [Arbib & Manes, PaCat, 3.10]: If A is partially-additive,
fi: A — B, g;: B—>C (ieI) then if Efi exists, Egifi exists. 0
This motivates
Definition: Let R be a partially-additiye semiring. A family (rj : jJed) is
abstractly compatible if for every J-tuple (sj : 3e€J) in R, E(sjrj : jed) exists.
The matrix category ggga of R is defined as follows. Object = countable set. A

morpaism I — J is an I-by~J matrix (I indexing rows, J columns) of scalars in R
whose rows are abstractly compatible. Composition is matrix multiplication and iden-

tities are the usual identity matrices.
Proposition [Arbib & Manes, PaCat, 7.8]: Mat is partially-additive.

If R is the 2-element semiring [Eilenberg, 1974, p. 123] Mat! is the category of

sets and relations. If R is the two-element partially-additive semiring with 1+1 un-
defined, Mat is Pfn.

Comparisons between gggR and the matricial theories of [Elgot, 1976] as well as a
partially-additive version of free iterative theorles [Elgot et al., 1978] appear in
[Arbib & Manes, PaCat, Section 7].

C. C. Elgot was the first to point out the advantages of regarding ‘'the conditional’
as amap f: A—+BF C in a category (I will use '®' for coproducts in an arbitrary
category), and was also the first to regard iteration as a passage f£f: A — AP B »
ff: A — B,

In an arbitrary partially-additive category, we decompose f into fA: A — 21,

fB: A — B Dby (17) and define
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for f: A—+A+B, £ = I £ £, (20)
B A
nz0

Theorem: The sum in (20) is always defined.

¥roof outline: Much as in LISP, express £ in recursive form:

T +

£ — fAf + fB (21)
thereby inducing the abstract recursion scheme (Pfn(A,B),H) with HO = fB'
Hl(g) = ng and Hn =1 for n>1). Then (20) is just the semantics of (14). g
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