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Abstract

The research presented in this paper concerns the
development of a distributed iterative refinement algorithm
for network traffic light control. Many distributed problem
solving applications, including distributed network traffic
light control, exhibit a natural spatial distribution of
sensors and/or effectors. In order for these types of
applications to be distributed effectively, processing
should reflect the natural spatial distribution. Often this
will require processors to operate on local data-bases that
are incomplete and possibly inconsistent because the cost of
maintaining complete and consistent data-bases can be
prohibitive.

The iterative refinement technique appears well suited
for this type of distributed problem solving because it
Supports the desired problem decomposition and can operate
on incomplete, 1local data bases. Two general classes of
iterative refinement algorithms are examined: single-label
and multi-label. Members of the first class of algorithms
resemble classical "hill-climbing" algorithms; members of
the second class of algorithms resemble "relaxation"
algorithms which are often used in image processing
applications. The various algorithms developed are
described, results of experiments with the algorithms are
presented, and error and uncertainty in the algorithms is
discussed.
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s Introduction

Distributed problem solving is a new area for research
in artificial intelligence (AI) which involves performing
such AI problem solving tasks as signal-interpretation
(Erman and Lesser 1975; Riseman and Arbib 1977; Hanson and
Riseman 1978b], planning [Sacerdoti 1977; Tate 19771
etc. in a distributed processing environment. In a
distributed problem solving system, the the goal of the
decomposition 1is to permit parallel operation of processors
on different parts of the problem with 1limited sharing of

information, limited synchronization, and distributed
control.

Many applications such as network traffic light
control, distributed sensor networks, distributed air
traffie control, ete., exhibit a natural spatial
distribution of sensors.and effectors. In order for these

types of applications to be distributed effectively,
processing should reflect this natural spatial distribution.
Not all problem solving techniques can be replicated
directly or partitioned based on the distribution of the
sensors and effectors. Rather, it may be necessary to
modify the techniques so that they operate on local
data-bases that are incomplete and possibly inconsistent,
due to the communication and synchronization costs of

maintaining complete and consistent information. For some
techniques (e.g., A¥, dynamic programming, etc.), such
modifications are difficult or impossible because of their
reliance on complete and consistent information. However,

other techniques (e.g., relaxation - a form of iterative
refinement, hypothesize-test, etc.) appear to Dbe more
easilly transferrable to a distributed problem solving
environment because of their ability to function with
incomplete and inconsistent information.

The research presented here analyzes the suitability of
a general problem solving technique, Iterative Refinement
(IR), for distributed problem solving. Using the R
approach, a problem is decomposed into subproblems, each of
which is solved wusing 1limited information. The set of
subproblem solutions (partial solutions) defines the overall
solution.

The limited information wused 1in solving subproblems
comes from using only 1local (sensory) data &and the
"tentative" solutions to a small subset of other
subproblems. These other subproblems are chosen because the
solution to the desired subproblem is strongly dependent on

their solution. Usually, these strongly dependent
subproblems are neighboring subproblems;  that is, they are
ohysically adjacent with respect to tne spatial distribution
of sensors and effectors T“nis .s acvantageous for a
discributed zystem Dbecause i limits communication to
neighboring processors
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Subproblem solutions are tentative since they may be
incorrect due to limited information. Incorrect subproblem
solutions are corrected through repetitive processing. In
each repetition, missing information necessary for the
correct answer to a subproblem is acquired indirectly
through the refinement of interdependent subproblem
solutions. This 1iterative refinement process continues
until a fixed-point (i.e., a solution for which there are no
further refinements) has been found.

There are a number of classes of IR algorithms,
reflecting different forms of partial solutions, update
(refinement) functions, and control schemes. A partial
solutions, of a single-label IR algorithm is a single value
(a label); the update function selects a new label on the
basis of 1local context and neighbors' current labels. A
partial solution of a multi-label IR algorithm is a
probability distribution on the possible 1labels of the
partial solution. This type of IR is called relaxation, and
its update function produces new probabilty distributions
for partial solutions on the basis of 1local context and
neighbors' probability distributions. For both types of IR
algorithm, a control scheme determines when and where to
make refinements. This may 1involve serial or parallel
refinements to different parts of the solution utilizing
local and/or global rules.

) Work on using IR for distributed problem solving is
just beginning. Baudet's work on asynchronous iterative
methods [Baudet 1976 and 1978] 1is encouraging, but is
11@1ted to problems involving continuous operators with
unique fixed-points. Unfortunately, many real world
applications are formulated in terms of discontinuous
operators with multiple fixed-points. The 1literature on
lmage processing includes many applications of relaxation
[Waltz.1975; Zucker, Hummel, and Rosenfeld 1975; Hanson
gnd Riseman 1978a] which could operate on parts of an image
in pargllel if implemented on an appropriate parallel
processing system. However, in these applications

sdepgndencies between non-neighboring subproblems are weak.
Again, some real world applications cannot be structured so

as to avoid strong dependencies among non-neighboring
subproblems.

In order to test the suitability of IR using a real
worlq application, we have chosen to study the problem
domain of Network Traffic Light Control (NTLC); NTLC
prob;ems are familiar and easily understood, have a natural
spatial distribution, and exhibit strong dependencies
betyeen non-neighboring subproblems. In our formulation of
a dlstr;buted NTLC system, every intersection with signals
1s equipped with sensors for detecting incoming traffic
volumes. Each intersection that is equipped with a signal
a}so has a processor that controls the intersection's
signals based on the local sensory data and on communication
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with the processors of neighboring intersections.

The NTLC problem addressed in this paper 1is presented
in more detail in Section 2. A centralized NTLC algorithm,
SIGOP II [Lieberman and Woo 1976], which provides the basis
for our research 1is described in Section 3. Section 4
describes our research on single-label IR. The approach
involves the adaptation of SIGOP II for distributed NTLC.
In adapting the algorithm for a distributed envirgnmept,
certain approximations must be made to limit com@unlcatlon
and computational requirements. A number of algorlthms_have
been developed to explore the tolerance of the IR algorithms
to uncertainty introduced by the use of these
approximations.

A multi-label IR, or relaxation, approach to
distributed NTLC 1is discussed in Section 5. This approach
uses the same basic knowledge as that wused by the
single-label IR algorithms. Conclusions and a discussion of
future directions for research follow in Section 6.

2. The Problem Domain: Network Traffic Light Control

Network traffic 1light control involves controlling
signals so as to optimize traffic flow in a network with
signals at each intersection [DOT/FHA 1976; Wagner et al
1971; Lieberman et al 1974a,b]. The research presented in
this paper concerns the problem of finding an optimal¥
network timing plan for a network under moderate traffic
conditions. As traffic conditions change, new timing plans
are determined and implemented.

An optimal network timing plan for the moderate flow
regime maximizes traffic flow on major arteries of the
network by appropriate traffic signal settings which
minimize stops and delay incurred by vehicles traversing the
arteries. A key assumption used in developing an optimal
network signal control pattern for moderate traffic flows is
that vehicles travelling along roads (links) between
intersections (nodes) are released together in platoons from

a signal, and travel together 1in platoons to the next
signal.

The -use of a platoon-based traffic flow model can be
represented graphically with a time-space diagram, as shown
in Figure 1. Several important features are illustrated in
the figure. Progressive movement of platoons in the network

¥ Optimality is based on "steady-state" conditions
(i.e., transient behavior resulting from changes in timing
plans has died out and a steady state has been achieved).
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is represented as green waves. The 1location of a green
wave, also termed a green band or through band, 1is
determined by the control setfings of signals in the network
and a set of rules governing the structure of the‘g(een
wave. The bandwidth indicates the period of time avalllblg
for traffic flow within the green wave. The cycle length of
a signal is the length of time in seconds for a complgte
sequence of signal phases. The split specifies what portion
of the cycle is taken up by the green phase. An offset
expresses the time relationship between the start of a cycle
and a reference point common to all nodes.

The timing plan for a signal can be specified as a
cycle length, a split, and an offset. An alterpate
specification consists of a cycle length and switching times
which describe when within a cycle length a signal switches
to the next phase. A network timing plan is made up of
timing plans for all signals 1in the network. Our spudy
concerns algorithms for computing network timing plans given
a common cycle length and fixed splits for all signals of
the network; thus, what must be solved for are offsets (or
green switching times) for all signals.

Optimality of a network timing plan is determined on
the basis of global disutility. Disutility is a measure of
stops and delay incurred by traffic traversing links of the
network. An optimal network timing plan minimizes global
disutility, the sum of disutility of all individual links of
the network. To simplify our study we have limited it to
single artery networks with single (primary) platoon flows
for each direction along the artery. This eliminates such

problems as modeling turning traffic and multiple platoons,
and coping with loops in flows.

Disutility incurred by traffic traversing an individual
link depends on the control settings for the signals at each
end of the link and the arrival times of platoons entering
the 1link.* Since these platoon arrival times depend on the
control settings and platoon arrival times for other
signals, disutility on a 1link is, 1in general, a global
function of all signal control settings. As will be seen in

future discussions, this is a very important characteristic
of the problenm.

By wusing state variables which represent platoon
departure times, the " link disutility calculations can be
performed using only local information. This leads to the
problem specification depicted in figure 2. The major
ramification of utilizing platoon departure times in

* The arrival time of a platoon at node j on link (i,3)
is equal to the departure time for the platoon at node i on
the 1link plus the free-flow travel time for platoons
traversing the link from node i to node Jj.

82




83

-t
MIN Cf.... D(-ng'srj'tdij+dij'pij)
%€ (1,§)¢€L

constants:
S is the set of all intersections, i, equipped with a signal; 1% i€ N.
L is the set of all links, (i,J),
where platoons flow from intersection i to intersection j; L < SxS.

C is the common cycle length.

dij is the free-flow delay for platoons on link (i,j).

Py is the bandwidth for platoons on link (i,j).

gy is the duration of the green phase of the signal at intersection i.
control variables: SE = S8yt SBpr - » SBy

sg; is the green switching time for the signal at intersection i; 0= sg;<C.

state variables:
tdij is the platoon departure time for platoons
leaving intersection i on link (i,j); sg; ¢ tdij‘ sr; .

sg; ir=In|(h,1)eL A h?]
td. . =
1 . .
37 | ps(sgyasryatapg*dyapyy) 1f Inf(n,i)enand;
auxillary variables:
sT; is the red switching time for the signal at intersection i; Sry=sg;+g; -
ta. . is the platoon arrival time for platoons arriving at

l.
l]ltEISEC bi on I’ on ll]lk l’ !J. t,a! .-—tdo .'.(1. -_"'Sg -+“ La. .--SE 4' IIHHI “).

functions:

D(sgj,srj,taij.pij) is the disutility function:

0] C SE3 é.taij csrj-pij
D(ng'srj’taij’pij) = ﬂ(taij+pij~srj)(c—srj+p) if Sr3-Py j ﬁtaij‘ ST §
I i £ ta. :
“pij(55j+c ta13+p) %4 ST talj<'ng+C

PS(sgi,sri.tahigphi) is the platoon structure function:

a, . i ; . . & B,
- ’mlJ if sgaétala ST 5

SE i ST ftaij< sgj+C

PS(SE ) STy ta: ¢y Ps ¢
(sgjisryita; 5Py

roblem Statement
Figure 2



specifying the problem is that the platoon depar;ure times
for the whole network, which depend on upstream §1gna¥s, may
need to be updated whenever any signal's setting 10 the
network 1is altered. The state variables can be viewed as
representing an environment which reacts to changes 10
signal settings. In order to asses the worth of changes to
signal timing plans (control variables) and provide a
consistent base for further changes, the effects on traffic
flow (the environment) must De simulated by updating the
platoon departure times (state variables).

3. The SIGOP I1 Algorithm

The traffic light control algorithms developed in thils
paper are based on 2 centralized network timing plan
generation program for moderate traffic: SIGOP 11
[Lieberman and Woo 1976 . < SLGOR- LT appeared to be the most
feasible of a number of NTLC approaches [Little et al 1974;
Kinney et al 19771. The SIGOP II program attempts to find a
network timing plan which minimizes network disutility using
a flow model which represents traffic flow explicitly as
platoons of vehicles traversing 1links 'in the network.
Knowledge of the network geometry (link lengths) and platoon
bandwidths for platoons of each network link (predicted on

the basis of 1link volumes) is used to determine a network
timing plan.

The centralized SIGOP II algorithm is structured as an
iterative refinement algorithm 1in order to reduce the
complexity of problem solving. The problem of finding a
network timing plan which minimizes network disutility 1is
broken up into wunit problems which involve finding a
signal's timing plan which minimizes 1local disutility.
Local disutility is disutility incurred by vehicles
traversing 1links of a "mini-network" which consists of an
intersection, it's neighbors, and the connecting links. The
overall optimization process proceeds as follows:

1. Determine the sequence of nodes along a
maximal spanning tree (M3T) of the network. This
ordering lists nodes attached to high volume links
before nodes attached to low volume links.¥

25 Prime the control settings at all
intersections to optimize traffic operations along
this ordering. Also platoon departure times are

* The MST of a network consisting of only a single
artery includes all network 1inks and has exactly one or two
branches. A seqguence along any MST begins with a root node
and proceeds along the branches to the leaf nodes.
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determined.

3. Reverse the sequence of nodes to get a
new MST.

4. For each node, in the order indicated by
the MST sequence, optimize the control setting
pbased on local disutility and update local platoon
departure times. In these calculations, the most
recent values for signal settings and platoon
departure times are used.

5. Calculate network-wide disutility (this
entails updating platoon departure times until
they are consistent, calculating local
disutilities, and summing the local disutilities)
and if zero or unchanged, stop.

6. If a predetermined number of sweeps over
the network have been completed and convergence
has not been achieved, select the best solution
and stop, else continue with step 3.

The optimization is carried out by starting with an
approximate solution (the prime) which has been obtained
heuristically (steps 1 and 2) . This priming process
involves setting the signal at the first intersection
arbitrarilly and chosing settings for the remaining signals
in the.indicated sequence on the basis of local disutility,
ignoring 1links attached to intersections where signal
settings have not yet been determined. The prime is then
repeatedly improved on by successive applications of local
optimization (steps 3 through 6).

The use of a MST to determine a sequence for processing
nodes is an important heuristic employed by the SIGOP 11
algorithm. The MST is determined based on traffic volumes;
processing nodes along this spanning tree amounts to
"sweeping" updates along the major flows of the network.
This tends to preserve the validity of the platoon structure
at the site of updates (see figure 3). Thus, wupdating of
the network platoon structure can be eliminated after
individual updates. Complete platoon structure updating,
however,” is still required periodically and is performed
after each sweep to evaluate potential solutions because a
valid platoon structure at all nodes is required to evaluate
a network timing plan accurately. :

Another, more subtle feature of the MST. heuristic
ordering 1is the reversing of the sweep direction after each
sweep. This reversal, in addition to allowing each node to
be updated exactly once on each sweep, aids in finding a
good solution, as will be shown in section 3.2. It should
be noted that each wunit problem (local optimization)
involves only variables of a node and its immediate




neighbors. This apparently makes the SIGOP II problem
decomposition well suited for placing processors at
intersections and utilizing neighbors-only communication.

3.1. Test Version Results

A SIGOP II test version was developed in order to
provide a comparison for the distributed versions to be
developed. The test version, SS, does not implement some
features of SIGOP II which, for our purposes, would add
unnecessary complexity. SS does not, for example, model
secondary platoons and turning traffic. The tests, however,
were conducted only on arterial networks where these
features were relatively unimportant.

The performance of SS was - measured on 6
six-intersection arterial configurations. Three test runs
are depicted in Figures Ua,b, and c. The configurations

include two variations of network geometry (intersection
spacing) and three variations of platoon bandwidths (to
simulate inbound, balanced, and outbound traffic flows).
Optimal solutions were obtained for four test
configurations, a close but suboptimal solution was obtained
for one configuration, and a poor solution was obtained 1in
one configuration. An average of two sweeps (one at minimum
and four at maximum) was required to converge.

Additional tests on twelve-intersection arterial
configurations were conducted to determine the algorithm's
sensitivity to the network size. The quality of solution,
measured as the average distance from optimal in units of
disutility, was affected very little. The average number of
sweeps to convergence was also changed little; however,
sweeps were twice as long, effectively doubling the amount
of computation required for convergence.

3.2. Additional Serial Versions for Comparison

A number of modified SIGOP II test versions were
developed to determine the importance of certain features of
the basic SIGOP II algorithm. For example, SSP is a version
that wutilizes an arbitrary prime (as will be used by the
distributed algorithms); results of tests on SSP indicate
that ' the use of arbitrary primes for the simple arterial
test cases does not significantly affect performance.

A number of features of SIGOP II's MST heuristics were
tested with other versions called SRP, SRPE, SSPU, SSPA, and
SSD. Versions SRP and SRPE compute updates in a random
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serial order rather than along the MST. SRPE differs from
SRP in that extra platoon structure updating 1is performed
between iterations to ensure accurate data for further
updates. Version SSPU does not reverse the sweep direction
after each sweep, and version SSPA skips updates that would
increase global disutility. Results of tests on these
versions, depicted in Figure 5, demonstrate that the many
features of SIGOP II's MST heuristic node processing order
Are important.

Test version SSD determines the global worth of each
node's proposed refinment, selects and implements the best
single refinement, and then completely updates the platoon
structure before determining the next refinement. This
"steepest serial descent" algorithm is very stable because
refinements can never decrease global goodness. This
happens also to be true for version SSPA which was mentioned
in the previous paragraph. Results of these versions seem
to indicate that a small number of refinements which result
in a decrease 1in global goodness can be tolerated and can
even be beneficial in single-label IR algorithms.

4, Distributing SIGOP II: Single-label Iterative Refinement

In order to understand the effectiveness of the IR
approach, it 1is important to review in what way partial
solutions are approximate and how iterative refinement of
approximate partial solutions 1leads to "correct" partial
solutions. A partial solution is correct if it is part of
an overall solution that maximizes some global metric of
goodness (or minimizes a metric of disutility). Partial
solutions are approximate when 1limited and possibly
incorrect information is used to construct them. The use of
this type of information leads to uncertainty as to which of
the set of possible solutions for a sSubproblem will
contribute to an overall solution that maximizes the global
metric (i.e., an optimal solution).

One way of categorizing the types of uncertainty in
partial solutions comes from analyzing the set of
assumptions used for a particular algorithm. When
-assumptions may be violated, there is uncertainty as to the
validity of computations based on these assumptions. These
uncertainties can affect two major aspects of an IR
algorithm: its stability (resistance to oscillation) and
its ability to find an optimal or nearly optimal solution
when multiple solutions exist.

The basic computation in an IR algorithm involves the
updating of =single subproblem solutions. Two assumptions
are commonly employed to limit the information needed for
updates. First, an update which increases goodness locally
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VERSION DESCRIPTION UNCERTAINTIES
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LVU sSUU EWu
188 'SIGOP II test version P E I
[=————— e e e P —— ———
{SEP i85 but arbitrary prime P E I
+SRP iSSP but random order for updates i E i i E |
i SRPE 1SRP with extra environmental updating | E ! i i
{88PU iSSP but unidirectional sweep PE Lo
i SSPA 188P but skips updates which ' i ' :
i H increase globai disutility i C I A
188D iSSP but picks globally best single ' ! H i
{ H update on each Sweep P C o g i
(PP ipure parallel tast version i E 0 E g
P m———— R R e e i P m—— ——
{PML PP with modulation by fixed limit ‘RM IRM ! i
iPMLA iPML improved iRM IRM ! '
{PMP-x PP with modulation by percent ‘RM {RM | i
i=m———— B e e e e e R oty
{PRC-x PP but probability of a node i i H )
! ! being allowed tog change of x iRF {RF ! H
+PDMST  IPP  with MST heuristic iRF IRF | |
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{PPESS—x ! PP with embedded §g to extend size i i H H
i i of neighborhoad to Encompass i ! ; i
i : X nodes on each side g¢ a4 node i RMF I RMF | i
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{PSDML.  I1PSD with modulation by fixed limit P € ¢ i i 3
iPMLSD  lapproximation to gradient descent - B i '?
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el 10

uncertainties:

LVU - Local~View Uncertainty
sSUU - Simultaneous-Update Uncertainty &
EUU - Environmenta1~Update Uncertainty :

key:

= Exists

exists for networks with loops only

— Compensated foy in some way

RM - Reduced in Magnitude

RF - Reduced in Frequency

RMF - Reduced in both Magnitude and Frequency

O ¥ M
I

Table 1
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uncertainties:

GUF — Gross Uncertainty Frequency

GUM - Gress Uncertainty Magnitude

LVUF = Local-View Uncertainty Frequency

LYUM = Local-View Uncertainty Magnitude

SUUF1 - Simultaneous—-Update Uncertainty Frequency
for iterations with parallel updates

Simultaneous—-Update Uncertainty Frequency
for all iterations

SUUM - Simultaneous-Update Uncertainty Magnitude

I

SUUF2

Table 3
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FREE-FLOW DELAYS: AB=10, BC=10, CD=10, DE=10, EF=10
PLATOON BANDWIDTHS: LEFT=15, RIGHT= 5

3E36 3648 3 34t
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1 S, 30 5 30 5,35 2L6
2 R 0 10 0 0 194
3 15 5 0 30 5. 35 118
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Run of PP, the Pure Parallel Version
Figure 11b
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Run of PP, the Pure Parallel Version
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is assumed to result in a global 1increase in goodness.
Second, neighboring subproblem solutions are assumed to be
correct and to remain constant during the time a node makes
its update.

The first of these assumptions 1s often invalid,
especially where there is strong interaction between
non-neighboring subproblems. Thus, uncertainty which we
call local-view uncertainty may be present. Figure 6
illustrates how local-view uncertainty can lead to the
possibility that an update will decrease global goodness.

Local-view uncertainty can affect the stability of an
IR algorithm since refinements of a subproblem may lead to a
decrease in global goodness and can undo previous
refinements of interdependent subproblems, leading to
possible oscillatory behavior. Note that local-view
uncertainty is present in SIGOP II, and as a result,
convergence of the SIGOP II algorithm cannot be guaranteed.

The second assumption, that neighbors will not alter
their control and state variables, is violated by parallel
updates, thus introducing simul taneous-update wuncertainty
into the computation. This type of uncertainty is not
present in SIGOP II since there are no parallel updates.
Another type of uncertainty can Dbe introduced if the
platoon-flow in the network is not completely recalculated
after each local refinement. We call this type of
uncertainty environmental-update uncertainty, and in
addition to Simultaneous-update uncertainty and local-view
uncertainty, it too can affect stability. These types of
uncertainty are introduced by an algorithm's control
structure which governs the way (local) updates are
combined.

Other assumptions lead to uncertainties which do not
affect the stability of single-label IR algorithms. For
example, an initial assumption of a prime determines where
in &the overall search space the search will start, and thus
may affect the outcome of the search, but does not affect an
algorithm's ability to converge. The assumption that the
global metric (in our case, disutility) 1indicates some
measure of distance from the optimal solution leads to
uncertainty when multiple local (non-optimal) maxima exist

using the metrie. The uncertainty concerns whether an
update that increases the global metric will lead the
algorithm towards the optimal solution or towards a
non-optimal solution. Depending wupon the shape of the

disutility "surface", it may be possible for a move towards
a non-optimal solution (and away from the optimal solution)
to increase the global metric. There is little that can be
doné to correct this problem because there 1s no way to
distinguish between the arrival at an optimal or non-optimal
fixed-point (i.e., an overall solution that {ig  lloieal iy
coherent in that further refinements are not possible).
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4.1. Distributed SIGOP Il Test Versions

A number of test algorithms were developed which are
based on the same traffic flow model and local optimizations
as SIGOP II, but which perform 1local optimizations in a

lock-step parallel fashion. Section U4.1.1 describes and
reports results of one of these parallel algorithms that
employs no inter-node coordination. The remainder of

Section 4.1 concerns a number of versions which employ
various inter-node <coordination schemes to control or
compensate for the wuncertainties observed in the pure

parallel version. These coordination schemes include
modulation of updates, reduction of parallelism, and
extension of local neighborhoods. Several additional

versions are introduced in Section 4.2 for comparison, and a
general discussion of single-label IR follows in Section
4.3. Results of all these versions are tabulated in Tables
1-3, and are graphically presented in Figures 7-10.

b.1.1. Pure Parallel Version

The first parallel test algorithm, PP, wuses the same
traffic flow model and local optimizations as SIGOP 1L, bub
performs local optimizations in a lock-step parallel fashion

Wwith no other inter-node coordination. After each
iteration, the platoon structure is updated and the
tentative solution 1is evaluated as is done after sweeps 1in
SIGOP 11, It is hoped that the need for lock-step

synchronization and complete platoon structure updating
between iterations (which provides a consistent base for
evaluation and further updates) can be relaxed in later
versions. An alternative approach which does not require
this global calculation will be discussed in Section 5.

Sample runs of the algorithm are depicted in Figures
1la-d. Since SIGOP II's priming process is serial in nature
and thus not suited to PP, performance is based on twenty
test cases which consist of the same 6, six-intersection
arterial configurations used to test SS but with a number of
primes. The primes for each of the six configurations
include arbitrarilly chosen poor primes, and good primes
which represent near-optimal solutions.

The results indicate that PP's performance 1is quite
poor. The quality of solution, which is inversely related
to the difference in disutility between the solution and
optimal, was quite low despite the fact that the best
tentative solution of a run was taken to be the final
solution. The optimal solution was found in only one case
out of twenty. Convergence took place only in this one case
where an optimal solution was found. Instead of
convergence, large oscillations occured; these oscillations

Em««mwvﬂw‘&u;:aremwadsé.mn&w&?{w Fro “iay iony =T e o eI R s EARPA
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span from one to seventeen (8 on average) iterations.
Detection of such oscillations requires considerable memory
and processing time.

A number of measurements of various types of
uncertainties present in the PP algorithm were taken. The
frequency and average magnitude of error in the assumption
underlying each uncertainty was measured. Local-view
uncertainty 1is measured by comparing the disutility
associated with the current network timing plans to the
disutility associated with network timing plans generated by
changing only a single signal _ timing plan.
Simultaneous-update uncertainty was measured by comparing
the assumed values of neighbors' timing plans and platoon
structure before updates with the actual values that result
after updates. '

An additional measure of uncertainty, gross
uncertainty, is a combination of the other uncertainties.
Gross uncertainty indicates overall uncertainty as to
whether an iteration's updates will decrease global
disutility or not. Note that an algorithm with no gross
uncertainty will always converge since global disutility
will always be decreasing. For PP, U47% (almost half) of
iterations result in an increase in global disutility; the
magnitude of the increases was on average 37 wunits of
disutility. This is in comparison to version SSP where the
frequency of error due to gross uncertainty was found to be

4%, and the magnitude of error averaged 14 wunits of»

disutility.*

Frequency of errors in predicting the worth of changes
to signal timing plans due to local-view uncertainty;
‘measured as the percent of iterations where one or more
nodes make updates based on local views that alone would
increase global disutility, was found to .be 13%; the
average magnitude of error in the predicted worth of changes
averaged 13 units of disutility. Simultaneous-update
uncertainty was also measured; 90% of iterations involving
a simultaneous-update had some information about the value
of a neighbor's state variables (platoon departure times) or
control variable (signal switching time) invalidated by the
parallel wupdate. The average magnitude of error in either
control or state variables due to simul taneous-update
uncertainty averaged 12 seconds. Note that the error could
be at most half the cycle length (in this case 20 seconds) .

% Note that the disutility value of network timing
plans varied from 0-28 units of disutility for optimal

network timing plans, to 200-350 units of disutility for
poor timing plans. _ '
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span from one to seventeen (8 on average) iterations.
Detection of such oscillations requires considerable memory
and processing time.

A number of measurements of various types of
uncertainties present 1in the PP algorithm were taken. The
frequency and average magnitude of error in the assumption
underlying each uncertainty was measured. Local-view
uncertainty is measured by comparing the disutility
associated with the current network timing plans to the
disutility associated with network timing plans generated by
changing only a single signal timing plan.
Simultaneous-update uncertainty was measured by comparing
the assumed values of neighbors' timing plans and platoon
structure before updates with the actual values that result
after updates.

An additional measure of uncertainty, gross
uncertainty, is a combination of the other uncertainties.
Gross uncertainty indicates overall uncertainty as to
whether an iteration's updates will decrease global
disutility or not. Note that an algorithm with no gross
uncertainty will always converge since global disutility
will always be decreasing. For PP, 47% (almost half) of
iterations result in an increase in global disutility; the
magnitude of the 1increases was on average 37 units  of
disutility. This is in comparison to version S3P where the
frequency of error due to gross uncertainty was found to Dbe
44, and the magnitude of error averaged 14 wunits of
disutility .*

Frequency of errors in predicting the worth of changes
to signal timing plans due to local-view uncertainty;
measured as the percent of iterations where one or more
nodes make updates based on local views that alone would
increase global disutility, was found to be 13%; the
average magnitude of error in the predicted worth of changes
averaged 13 units of disutility. Simultaneous-update
uncertainty was also measured; 90% of iterations involving
a simultaneous-update had some information about the wvalue
of a neighbor's state variables (platoon departure times) or
control variable (signal switching time) invalidated by the

parallel update. The average magnitude of error in either
control or state variables due to simultaneous-update
uncertainty averaged 12 seconds. Note that the error could

be at most half the cycle length (in this case 20 seconds) .

¥ Note that the disutility value of network timing
plans varied from 0-28 wunits of disutility for optimal

network timing plans, to 200-350 units of disutiliity - for
poor timing plans.
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4.,1.2. Modulated Versions

The first attempt to improve PP, the pure parallel
version, involved modulating (reducing) the magnitude of
updates. The new version, PML, reduces the magnitude of
updates in the following way: a desired change in green
switching time of more than 5 seconds is 1limited to 5
seconds, and a desired change less than or equal to 5
seconds is limited to 1 second. A number of improvements
should be realized in the new algorithm including a
reduction of the magnitudes of simultaneous-update and
local-view uncertainties because changes in timing plans are
limited, and a capability to gather additional information
from the extra searches made along the projected way. Note
that modulation is a purely local mechanism, and hence is
ideal for our distributed problem solving environment.

The performance of PML was measured utilizing the same
twenty test cases used to test PP, and-was in general quite
good. On the average, solutions obtained using PML had
about 50% more excessive disutility* than solutions obtained
using SSP, the best SIGOP II test version. Convergence for
PML took about 20% more iterations than SSP (refer to Table
2 and Figure 7). Recall that a single iteration for PML
involves N wupdates in parallel (where N is the number of
nodes), whereas a single iteration for SSP involves only one
update; although a single iteration for PML involves N
times the computation required for a single iteration of
SSP, the time it takes for both algorithms to advance an
iteration is the same.

Although a small oscillation around a solution was
often encountered, it spanned only two iterations and was
therefore as easy to detect as normal convergence. For this
reason, convergence was considered to have been achieved
when either true convergence (stability) or small
oscillation was detected. PMLs sensitivity to prime is 2.5
times that of SSP (see Figure 8).

A very strong point for PML is its low sensitivity to

: network size (see Table 2 and Figure 9). The quality of

solutions is affected very 1little by a doubling of the
network size and the number of iterations required for
convergence increased by only a third. SSP (and SS), on the
other hand takes twice as many iterations when the network
size is doubled. These results indicate that PML should be
significantly faster than SS on very large networks.

PML, as did PP, exhibits a high degree of parallelism,
which accounts for its high speed of convergence despite the
reduction in magnitude of changes. Measurements of the

¥ Excessive disutility is disutility in excess of that
found in an optimal solution for the configuration.
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uncertainties in PML confirm expectations that the

magnitudes of uncertainties would be reduced through

modulation. The magnitudes of gross and local-view
uncertainties was reduced by 40-50% (compared to PP), and
that of simultaneous-update uncertainty was reduced by 78%!

A small improvement in the quality of solutions was
achieved with PMLA, a modified PML, at slight additional
cost to speed of convergence. PMLA incorporates a mechanism
which breaks small oscillations to allow convergence to the

nearby solution. Since this mechanism only comes into play

if a small oscillation is detected, the behavior of PMLA is
very much like PML (see Table 2 and Figures 7-10).

Tests on versions PMP-25, PMP-40, PMP-50, PMP-60, and
PMP-75 which employ modulation of updates by a percentage
indicate that modulation by a percentage is an inferior
mechanism. for controlling uncertainty when compared to
modulation by a fixed limit as employed by PML and PMLA (see
Tables 2 and 3, and Figures 7-10) Not only was the quality
of solution and speed of convergence poorer, oscillation

spanning multiple iterations was observed in PMP-25, PMP-40,
and PMP-50.

4.1.3. Reduced Parallelism Versions

Another approach to reducing simultaneous-update
uncertainty 1is to reduce the potential for conflicting
interaction among nodes by reducing parallelism. One way to
accomplish this 1s to have each processor draw a random
number before each iteration to determine if it 1is allowed
to change. Test versions PRC-.2 through PRC-.7 employ this
strategy with a probability of a node being allowed to
change on a given iteration of 0.2 through 0.7,
respectively. This rule is well suited for distributed
processing because it involves no global coordination.

As might be expected, a reduction of the frequency of
simultaneous-update uncertainty was realized. The reduction
was indirectly related to the probability of a node being
allowed to change, and also led to a decrease in gross
uncertainty frequency. Unfortunately, however, performance
was mediocre at Dbest and significant parallelism was lost
(see Tables 2 and 3, and Figures 7-10).

An interesting observation is that although the quality
of solutions 1is poor when a node's probability of changing
is moderate or high, speed of convergence is reasonable and
no large oscillations were encountered. This was apparently
due to randomness of updates which prevents a reoccurrence
of the same sequence of wupdates that comprised the
oscillation. On the other hand, this randomness in updating
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uas also responsible for slow Convergence when the
probability of updating Was low.

A secong method of reducing conflicting node
interaction, and hence reducing simultaneous-update
uncertainty, involves incorporating 4 version gf the maximal
SPanning tree (MST) heuristie in the Paralle) algorithnm.
SIGOP 1T utilizes ap MST to order Updates, 4 NeW parallel
algorithm uses the MST to give Priority to SOme updates by
inhibiting Oothers. js with SIGop II, the MST i determined
‘once, g¢p the basis of current link traffic Volumes, before
- Solving for network timing plan.* Once the maximal
SPanning tree has been established, a local rule can pe used

A new vVersion, PDMST, €mploys such a rule: an update
for - g node is allowed jr the node's neighbors which are
higher (closer to the "root") on the MST do not wish ¢to
Change, Performance of the PDMST algorithpy Was in many ways
Similar to the Performance of PRC-.y, from quality of
Solution and degree of parallelism, to the Magnitudes ang
frequencies of Uncertainties (see Tables » and 3), Note

hat simultaneous-update uncertainty between neighbors

involv1ng control Variables (signal Switching times) has
been eliminateq in PDMST because Settings of neighboring
Signals cannot both be altered, However,
simultaneous-update uncertainty between neighbors involving
state Variables (platoon departure times) remains gz problen
due to Non-local Subproblen interaction.

Another version, PDMSTA, Utilizes » more complex MST
heuristic. This ey heuristie incorporates additional
features found in SIGOp II's MST neuristic. For example
the direction of Priority along the MST is reversed after
€ach node has haq 5 Chance tgo update (g5 Was .the Sweep
directionp for - - SIcop I1), ang nodes are Not permitteq to
update more than once untij the priority direction changes,
As might be expected, the Parallelisp of PDMSTA is less than
that or PDMST. However, the quality of Solutions was
significantly improved (see Tables » and 3, ang Figures
7-10) with only g slight lncrease ip the number of

and gan increase in interaction among Signals appears to
ACcompany gp increase 1 “tha Number of signals in the

* See [Dalal 19771 2ang [Spira 18711 for distributegd
lgorithms for determining the maximagl SPanning tree of a
etwork.
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4,1.4, Extended Neighborhood Versions

A final attempt to modify the pure parallel test
version PP so as to reduce simultaneous-update uncertainty
involved replacing the assumption that control and state
variables of a node undergoing an update will not change
with a prediction of their values. In order to make
accurate predictions for its neighbors' actions, a node must
plan for 1its neighbors. This requires that the node
communicate with its neighbors' neighbors. The cost of
these predictions is an increase in the size of local search
spaces, accompanied by an increase in communication required
to support the extended neighborhoods.

For an arterial network, where each node has at most
two neighbors to plan for, the local search space size is
cubed. Because a larger search space will take 1longer to
search an approximate search technique 1is appropriate.
PPESS is a new algorithm that employs a small (serial)
SIGOP II search on each extended neighborhood to plan for
neighbors' actions and determine updates. This embedding of
the SIGOP II heuristic search into the update computation
replaces the complete local search performed by each node.
Version PPESS-1 makes predictions for neighbors, and PPESS-2
makes predictions for neighbors and neighbors' neighbors.
In general, version PPESS-x involves making predictions for
x nodes on each side of the node.

Test results of PPESS are included in Tables 2 and 3,
and Figures 7-10. A definite improvement over PP 1is
realized by the PPESS versions. The quality of solutions
found by PPESS-1 was mediocre, but convergence was fast and
no oscillations were encountered. Further improvement can
be realized by increasing the neighborhood size. However,
communication costs, as well as time/space requirements
increase as the neighborhood size increases.

Variation in the quality of solutions found by PPESS-1
given various primes was moderate; variation in speed of
convergence was low. Surprisingly, measurements of error
due to the uncertainties in PPESS-1 indicate that although
both the frequency and magnitudes of error due to local-view
and simultaneous-update uncertainties was moderate, the
frequency and magnitude of gross uncertainty error was low.
This discrepency can perhaps be explained by noting that the
measures of error due to local-view and simultaneous-update
uncertainties indicate the percentage of iterations where at
least one instance among all nodes is detected rather than
how often a single node makes an error.
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4.2. Additional Parallel Versions for Comparison

4.2.1. Global View Versions

In order to determine the extent to which 1local-view
uncertainty affects performance, comparison versions PPGV,
PMLGV, and SSPGV were developed. In previous versions, a
node's search Space, used to determine an updated signal
setting, represents a local view of the affects of changes
in the node's signal setting,. For the new global view
versions, the global rather than local value of changes are
computed in constructing a signal's search space. This is
done in a straight forward manner, one node at a time, at
the éxpense of significant additional computation and
communication. Note that neighbors are still assumed to
remain unchanged during nodes' updates. Thus, when parallel
updates are allowed, simul taneous-update uncertainty still
remains. '

Version PPGV is as unstable as version PP. Performance
of versions PMLGV and SSPGV (see Tables 2 and 3, and Figures
7-10) indicate that a little local-view uncertainty is, in
fact, beneficial. It appears that the algorithms can
recover from a small number of "incorrect® refinements, - and
the incorrect updates may lead to the gathering of
additional information, which in turn leads to better
solutions.

§.2.2. Global Coordination Versions

A new parallel algorithm, PSD, was developed which
utilizes extensive communication and computation to achieve
global coordination of parallel updates based only on 1local
information. This version was developed to see if brute
force compensation for local-view and simul taneous-update
uncertainties would produce a parallel algorithm which
performs well. The values of all combinations of updates
selected by nodes' local searches are determined, the best
combpination is selected and implemented, and then the
platoon structure is fully updated before the process is
repeated. The new algorithm converges very quickly to an
optimal solution if primed with a near optimal prime. Rapid
convergence to non-optimal solutions was observed, however,
when poor primes were used (see Figure 8).

Again, as with SSPA and SSD, the algorithm appears "too
stable" to find a good solution when started with a poor
prime. It was conjectured that modulation might provide for
the aquisition of new information which might lead to better
solutions. The version PSD was therefore modified
appropriately, yielding PSDML. Results confirm our
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expectations of improved quality of solutions

(see
Figure 7).

4.3. Discussion

In Section 4.2.1, the results of tests of a straight
forward IR algorithm for distributed network traffic light
control were reported. This algorithm, PP, failed to
converge in most cases because of excessive
simultaneous-update uncertainty. A number of modified
versions of this algorithm were developed for which the
Simultaneous-update uncertainty was lessened by various
mechanisms as indicated in Table 1. These algorithms
include PML and PMLA which employ modulation to reduce the
magnitudes of uncertainty, PRC and PDMST which employ local
rules to reduce simultaneous-update uncertainty by
coordination, and PPESS which utilizes predictions for

neighbors! changes to reduce simultaneous-update
uncertainty.

The algorithms were faced with the task of searching a
large search space of high dimensionality with multiple
maxima/minima and discontinuities. The algorithms are
similar in many respects to classical "hill-climbing"
algorithms [Cooper and Steinberg 1970]. In fact, the
SIGOP II algorithm upon which these distributed algorithms
are based, 1is a wunivariate algorithm that employs a
heuristic ordering for one-dimensional (line) searches.

The use of line searches along each dimension instead
of wusing the gradient to determine wupdates is highly
advantageous when starting with & .poor prime (see Figure 12)
because the algorithm is less susceptaople to convergence to
non-optimal solutions. In a distributed environment 1line
Searches on the global metric contours are not feasible
because of the communication required to determine the
gicbal contours. &pproximazations based only on local
information must be suostituted, thereby introducing
locai~view wuncerteiniy inco the computation. In addition,
Strong interactuicn between cimersions maxe the values of
combined (simuitaneous) upcates wuncertain, even given
accurate values for each individual updete.

These uncertainties coumbinea with the fact that the
magnitude of wupdates ac not cecrease as the number of
iterations increases, make & zuirantee of convergence also
impossible. The existance o° “witiple non-optimal solutions
end the lack of & backiracxing mecinanism or complete search
make a guarantee of finding an crtimal solution impossible.
Despite these iimitations. “.anhy of the algorithms appear
Quite robust in finding opr.mel or nearly optimal solutions
with reasonable speed.
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The excellent performance of the serial SIGOP II
algorithm was difficult to duplicate with a distributed

algorithm. SIGOP II's excellent performance appears
primarily to be due to its MST heuristic node processing
ordering. This heuristic introduces implicit non-local

coordination among nodes by controlling the order of node
updating. The heuristic can also be viewed as controling
the flow of information in the network about changes to
timing plans and platoon structures. Such a heuristic is,
however, difficult to incorporate in a parallel algorithm
without loosing significant parallelism and without wusing
costly global coordination.

PMLA is, perhaps, the most promising of the distributed
algorithms. Results of tests indicate that PMLA is almost
as good as SIGOP II for small networks and could be faster
than SIGOP II for larger networks. Uncertainty in PMLA is
controlled by a reduction in the magnitudes of changes
(modulation), which causes a reduction in possible error,
and hence in uncertainty.

From a distributed processing viewpoint, the need for
lock-step synchronization and complete platoon structure
updating between iterations in the parallel, single-label IR
algorithms developed is highly problematic. Complete
platoon structure updating appears necessary for the
accurate evaluation of a potential solution, as well as for
the detection of proper convergence., It 1is possible that
incomplete environmental updating with periodic complete
environmental updating will work; however, experiments with
partial platoon structure updating have not as yet been
tried.

Before moving on to a multi-label IR approach to the
NTLC problem, it should be noted that for a number of other
problem domains, such as image processing and possibly air
traffic control, non-local dependencies are fewer and/or
weaker. Often when this is the case, changes to labels
affect only nearby nodes. This means that local-view
uncertainty is lessened because the 1local effects of a
change in a label accounts for most of the overall effects
of the 1label change. Furthermore, simul taneous-update
uncertainty is lessened because the probability of
interacting non-neighboring nodes 1is lower, and partial
environmental updating between iterations might be
sufficient to obtain a consistent environment for further
updates. .
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5. A Multi-label Iterative Refinement (RELAXATION) Approach
el =l dbel INJ

Our second approach towards developing a distributed
algorithm for determining optimal network timing plans
involves using a multi-label iterative refinement
formulation. In this formulation a node holds a probability
distribution of its possible partial solutions rather than a
single partial Solution, Algorithms based on this
formulation are called multi-label IR algorithms because all
possible alternatives (the labels) are utilized.

) By holding alternative timing plans and manipulating
the confidence values of the alternatives,
Simul taneous-update uncertainty as found in the single-label
IR algorithms can be reduced. This is because changes in
confidence values are kept small (except when a label 1is
totally incompatible) and thus do not eliminate alternatives
Some neighboring node might assume to exist, Note the
Similarity of this mechanisn to modulation as used in the
single-label algorithm, PML. Modulation in PpML limits
changes in labels (only one is held at any one time) to
control simultaneous-update uncertainty.

The first complication €ncountered with this new
approach involves updating the platoon structure in response
to changes in signal timing plans. The need for updating
the platoon Structure can be eliminated by introducing a
platoon structure component into timing plans. Thus, a
signal timing plan consists of g2 cycle length, green and red
SWwitching times, and platoon departure times for each
direction (see figure 13).

A multi-label IR algorithm adjusts the confidence
values oif; alternatives until further ad justments are
sufficiently small. At this point it is hoped that at each
signal the confidence values are one for the alternative
which is part of the optimal global solution and zero for
the other alternatives. Initial confidence values can be
equal (corresponding to a no-information state) or not
equal, allowing for g heuristic pripe. The adjustments
weigh the confidence values of alternatives, and the
Compatability associated with the combinations of
alternatives. These compatabilities are determined on the
basis of platoon Structure consistency and disutility.

This new multi-labe} iterative refinement algorithms is
modelled after the "relaxation® algorithms used in a number
of AI applications, paritcularly those involving machine

vision.*¥ Sonme of these applications include: image
Segmentation [Hanson ang Riseman 1978a], vertex labeling in
dDlocks-wourld scenes [Waltz 19751, line and curve
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enhancement [ Zucker, Hummel, and Rosenfeld 19751,
Spring-loaded template matching [Davis and Rosenfeld 19761,
interpretation guided segmentation [(Tenenbaum and Barrow

19761, and hierarchical waveform parsing [Davis and
Rosenfeld 1977). 1In these applications, confidence values
associated with labels, representing alternative

interpretations of objects, are updated in accordance with
the confidence valuyes of an object's own and neighboring
objects! labels, and compatibility relations between labels
of objects. A relaxation process has also been used as a
model of the vertebrate central command system [Kilmer
et..al. 1969)].

It should be noted that all signals do not necessarilly
have the same set of alternative timing plans (labels). For
example, a signal at the left end of an artery will not have
labels for which right-going platoons depart midway through
the green phase, such as label 2 in figure 13. This is
because traffic is assumed to approach the artery from the
left at a steady rate which results in the formation of
platoons at the left-most signal that enter the artery
always at the start of the signal's green phase.

Another complication, equivalence classes for network
timing plans, results in the existence of multiple,
equivalent solutions. Other solutions within an equivalence
class can be obtained from a given solution through a global
shift in time of the signals! switching and platoon
departure times. A restriction in the set of allowable
timing plans at one intersection eliminates the multiple,
equivalent plans. A prime of unequal confidence values at
intersections provides another means to bias the algorithm
towards a8 unique solution within the the equivalence
classes. It should be noted that multiple solutions in
different equivalence classes are possible. '

An interesting difference between the Al applications
which use relaxation and the NTLC application examined here
is that the compatibility relation does not change for
subsequent runs on different data in the AI applications,
whereas a dynamic compatibility relation must be used for
the NTLC application. The need for a dynamiec compatibility
relation is due to the fact that the compatibilities between
neighbors' timing plans relates inversly with disutility
incurred on the links. Disutility varies for different
traffic flow patterns and volumes as well as for different
signal settings. Subsequent applications of the relaxation
algorithm under changing traffic conditions Wwill require
different compatibilities. Thus, environmental data is
factored into the compatability relationships rather than
into the initial distribution of confidence values for
labels as is done in AI uses of relaxation. Although the AI
applications have not utilized dynamic compatibilities, the
idea could be of some use. For example, image processing
applications might benefit from compatibilities which vary
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according to the lighting conditions or orientation.

A complication which has been put off for now, but one
which will have to be faced before the relaxation approach
can be wutilized for distributed network traffic light
control, 1is the 1large number of labels needed to achieve
adequate resolution in solving for an optimal network timing
plan. For example, a two-dimensional network with an 80
second cycle length and a fixed split of 0.5 requires more
than 65,000 1labels at each signal to achieve 5 second
resolution because all legal combinations of signal
switching time and platoon departure times must be
represented. More than 4 billion multiplications and
additions might be required to update a signal's labels'
confidence values! Some ideas for coping with the 1large
label set include: 1) the use of class labels to represent

groups of similar and as yet undifferentiated labels; 2)
the wuse of generator functions and thresholding to reduce
the number of labels communicated; and 3) the wuse of

processing at multiple 1levels of resolution to limit the
number of labels in use at any one time (a solution at one

resolution is used to select labels at higher resolutions to
try).

Preliminary tests on arteries with a 40 second common
cycle length and 5 second resolution (to limit the number of
labels needed at each node to 128) are presented in the next
section. Care has been taken to choose test cases which
should not need more resolution than is provided. Note that
the new algorithm can use the same platoon model and
disutility calculations as the single-label SIGOP I1I
versions described earlier in this paper to determine label
compatibilities.

5.1. Description of Test Versions and Results

The first step towards developing multi-label test
versions was the selection of an appropriate 1label
confidence update rule. The update rule is used once each
iteration for each label at each intersection. The updated
confidence value for a 1label at an intersection is a
function of the former confidence value of the label, the
confidence values of labels at neighboring intersections,
and the compatibility between the label to be updated and
neighbors!' labels.

Two standard wupdate rules are the arithmetic and
product rules [Zucker and Mohammed 1978]. These rules along
with an additional rule are presented in figure 1Y4. For the
arithmetic rule, contributions from neighbors, which are
sums of contributions from each label of the neighbor, are
summed . The probabalistic product rule multiplies the




contributions from neighbors. The product rule approximates
the behavior of the arithmetic rule, but yields faster
convergence since the incompatibility of a label with all of

Some neighbor's labels will quickly decrease the confidence
of the label.

The probabalistic product rule presented in Figure 14
Sums contributions from a neighbor's labels because a label
that is compatible with many labels at a neighboring node
has greater probability of being a part of the optimal
solution. A product rule with a "fuzzy"® set-theoretic
rather than probalistic interpretation is also presented in
Figure 14, For thnis rule, the contributions from labels of
a neighboring signal are not summed, but rather the maximum
contribution by a single label is taken as the contribution
of the neighbor.

The compatibility between pairs of labels at ad jacent
intersections can be determined in a number of ways. Some
experiments were carried out with compatibilities which were
linearly, but inversely, related to the disutility
associated with the use of the timing plans represented by
the labels. Other experiments utilized a negative
eéxponential relation between disutility and compatibility.
Note that two labels are considered totally incompatible if
the platoon structure components of the labels do not fit
together. With either method for determining
compatibilities, the compatibilities range from a value of
zero for totally incompatible labels, to a value of one for
labels which are compatible with zero associated disutility.

The use of negative-exponentially related
compatibilities appears to be more appropriate for use with
a product rule for updating label confidence values because
multiplication of neighbors' compatibilities results in a
combined compatibility that corresponds to the negative
exponential of the sum of the disutilities associated with
the links to the neighbors. This coincides with the intent
to minimize the sum of the disutility incurred on all
nefwork links.

Sample runs of a multi-label IR algorithm wusing the
probabalistic product rule and negative-exponentially
related compatibilities are shown in Figures 15a and 15b.
Ncte the "no-information" prime used for nodes, and the
restriction of the left-signal to a single green switching
time to eliminate multiple equivalent solutions that result
from a global time shift. Convergence to poor, non-optimal
solutions was observed in all test cases; after 6
iterations,'labels which made up the solution were usually
the most probable labels for nodes.

The reéson nhon-optimal solutions were obtained seems to
be that 1labels which are compatible with many neighbors?
labels dominate over other labels which are compatible with
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only a few 1labels. Although the bias towards labels that
are compatible with many neighbors' 1labels 1is consistent
with the probabalistic nature of the rule, it often led to
the wrong choices of labels to favor. Normalization of the
compatibilities to aleviate this problem is not appropriate
since it would alter the relative relationship of disutility
between alternative combinations of signal timing plans.

Experiments using the fuzzy product rule were more
successful. The bias towards 1labels which are somewhat
compatible with many neighbors' labels, was not present in
these tests. Sample runs of the algorithm, which is called
MLP, are depicted in Figures 16a and 16b. The general
performance (average quality of solutions and average speed
of convergence) of MLP is compared to the performance of a
few of the single-label IR algorithms in Figure 17.
Although convergence of the multi-label IR algorithms cannot
be guaranteed because the label confidence update function
is too complex for current analysis techniques, the
algorithms always converged to a solution, and often
converged to a solution quickly.

Optimal solutions were obtained for half of the network
configurations. Non-optimal, but reasonably good solutions
were obtained for tests on the other, more difficult
configurations. Non-optimal solutions were obtained because
the confidence values for alternative signal timing plans
which were part of an optimal solution, were at some nodes
decreased prematurely. Thus, the <correct signal timing
plans at some nodes were not considered when information
supporting the alternatives arrived. We call this -problem,
which we have come te recognize as a problem inherent with
the relaxation technique, the over-enhancement problem.

Modulation, which could slow the changes to confidence
values will not prevent over-enhancement because modulation
slows the propogation of information. Over-enhancement has
the effect of weighing local evidence as to the desirability
of signal timing plans more than distant evidence. Thus,
although information from some non-neighboring nodes can
affect the choice of timing plans for a node, the 1limited
nature of the locality of effect is often apparent, and a
global optimal solution can be missed.

In an attempt to understand how much the distributed
control contributed to the problem of overehancement, the
parallel control structure of MLP was replaced with a serial
contrel structure, resulting in algorithm MLS. For MLS
label probability distributions for nodes are upd ated
sequentially, back and forth along a maximal spanning tree.
Sequential updating was considered because nodes would be
prevented from repeatedly updating their label probability
distributions before receiving new information. Information
should, therefore, propagate further, and better solutions
should be found. Experimentzal results confirm this
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conjecture of improved performance with a serial control
structure (see Figure 17).

5.2. Discussion

Uncertainties similar to those found in the
single-label IR algorithms can be found in the multi-label
(relaxation) algorithms. Simultaneous-update uncertainty is
present in the parallel relaxation algorithms, but is
generally of low magnitude since changes to most 1label
confidence values are limited. Local-view uncertainty can
also be found in the relaxation algorithms. A node updates
its 1label probability distribution on the basis of a local
view: neighbors' 1label probability distributions and
compatabilities. When its neighbors' 1label probability
distributions 1incorrectly indicate the global worth of
labels, a node may update its label probability distribution
incorrectly. As nodes continue to make incorrect updates,
over-enhancement becomes a problem.

From a distributed processing viewpoint, a multi-label
IR algorithm is more desirable than a single-label IR
algorithm. This is because the multi-label IR algorithms
require no environmental wupdating between iterations and
should be able to run asynchronously. Although the large
label-set size 1is an inconvenience, the update process is
not complicated and can be performed relatively quieckly and
efficiently. In addition, thresholding of label confidence
values can help minimize communication and update time. It
also happens that updates become faster as the number of
iterations increases because many labels are eliminated.

The success of the relaxation approach in many image
processing applications can most likely be attributed to the
well distributed nature of initial information, and to
weaker interaction among subproblem solutions. For reasons
similar to those discussed at the end of Section 4.3, error
due to 1local-view and simultaneous-update uncertainties
should be less frequent and of lower magnitude than error

due to local-view and simultaneous-update uncertainties
found in the NTLC application.
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6. Conclusions and Future Directions for Research

A distributed iterative refinement algorithm for
network traffic light control produces on the average good
but not optimal solutions. 1In general, convergence to an
optimal solution (or to any solution) cannot be guaranteed
for many real-worild applications wusing an IR formulation
sin%e these formulations are usually in terms of local
operators that are discontinuous and not convex. For such
applications, the negative effects of these types of
opepators is significantly reduced by sequentializing the
application of the operators in the network. We have found
that it is very difficult in a distributed version to
reproduce the performance of the sequential versions, in
terms of quality of solutions, without significant
additional inter-node communication and synchronization.

A single-label IR algorithm can be -effective when
coupled with good heuristics. However, synchronization
requirements and the need for extensive environmental
updating before iterations make this approach somewhat
inappropriate for a distributed system. Thus, the
multi-label IR algorithm appears to be more suited for
distributed processing since it does not require inter-node
synchronization and environmental updating between
iterations. More extensive tests, however, will have to be
conducted on a more complex network before the IR algorithms
can be effectively judged.

In addition to extensive tests of a larger and more
complex network with a more complex platoon flow model and
neasurements of time, space, and communication costs,
studies of reliability or fault tolerance in the face of
sommunication or processing errors should be undertaken.
furthermore, the use of iterative refinement in other
problem donains such as air traffic control could be
explored. Performance could be significantly better for
applications where non-local dependencies are weaker than
those of the NTLC application.

>

.;0One more direction for future research is to examine
atheg approaches to solving the NTLC problem. A promising
approach based on the distributed Hearsay 1II architecture
.Lesser and Erman 1979) involves the incremental aggregation
»f partial solutions., Partial solutions corresponding to
sub-network timing plans are formed through this aggregation
)rocess. This approach is unlike the IR approach, where we
'eel there is too much abstraction of information, because
rocessors can see what non-neighboring processors are
loing. By keeping explicit track of partial solutions that
1ake up larger partial solutions, non-local interaction
imong subproblems can be handled correctly and with
ertainty. The major issues to be faced with this approach
.nclude the minimization of communication and redundant or
I1Iseless processing. We hope to be reporting soon on this
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new approach.
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