HIERARCHICAL PLANNING IN A DISTRIBUTED ENVIRONMENT

Daniel D. Corkill

i it
Computer and Information Science

University of Massachusetts
Amherst, Massachusetts, 01003

February 1979

Keywords: Distributed Planning, Distributed Processing, NOAH.

ABSTRACT

Planning is a crucial aspect of many applications which are naturally
suited to the use of distributed processing hardware. These
applications often occur in situations where sensory devices, processing
capability, and devices to be controlled have wide spatial distributions
and are even mobile.

Use of a centralized planner is generally incongruous with effective
distributed problem solving systems. The inappropriateness of
centralized planners in most distributed applications motivates
generalization of centralized planning techniques to accomodate multiple
and distributed centers of planning control.

Such a generalization of Sacerdoti's NOAH (Nets of Action Hierarchies)
planning system is described. This generalization involves distribution
of NOAH's criticism and world model mechanisms. The suitability of this
type of distributed planner is discussed, and a potentially more
appropriate distributed planning organization 1is outlined.

This research was supported Dby National Science Foundation
MCST78-04212.

Grant

1.0 INTRODUCTION

Planning is a crucial aspect of many applications which are
naturally suited to the use of distributed processing hardware. These
applications often occur in situations where sensory devices, processing
capability, and devices to be controlled have wide spatial distributions
and are even mobile. Command and control systems, inventory control
systems (car rentals, airline reservations, etc.), and tasks involving
mobile robots are all examples of such applications.

Use of a centralized planner in these applications 1is incongruous
with the development of distributed problem solving methodologies. Due
to the high cost of interprocessor communication, transmitting
environmental information to a centralized planner and distributing
completed plans to appropriate processors is potentially expensive. Use
of a centralized planner in these environments also invalidates such
advantages of distributed systems as: increased reliability and
flexibility, enhanced real-time response, lower processing cost, and the
handling of complex tasks through decomposition [Lesser and Corkill,
19781]. The inappropriateness of <centralized planners in most
distributed applications motivates generalization of centralized
planning techniques to accomodate multiple and distributed centers of
planning control.

This paper describes such a generalization of Sacerdoti's NOAH
(Nets of Action Hierarchies) system [Sacerdoti, 1977]. Section 2
discusses a range of possible planning decompositions for distributed
environments, Section 3 discusses why NOAH is an appropriate candidate
for distribution and, through blocks world problems, illustrates a
technique for distributing NOAH's criticism and world model mechanisms.
Section 4 highlights a major weakness of the distributed NOAH system and
outlines a potentially more appropriate organization for distributed
planning.

2.0 PLANNING DECOMPOSITIONS FOR DISTRIBUTED ENVIRONMENTS

As is the case with other problem solving tasks, planning can be
decomposed for a distributed environment in a number of ways. One
possibility is not to decompose the planning task at all. The
advantages of this approach are:

1. Planning is 1localized to a single processor--therefore,
centralized planning techniques can be used without
modification.

2. Since planning is performed at a single processor, there is no
interprocessor communication cost to the planning process
itself.

However, use of a centralized planner has a number of
disadvantages:

1. Environmental information collected by the various processors
must be transmitted to the planning processor, potentially
requiring a large amount of communication.

2. The completed plan must be distributed to appropriate
processors, again potentially requiring a large amount of
interprocessor communication.

3. There is no parallelism during the planning process.

4, Generating the entire plan at a single processor may require
substantial processing capability at the planning node, forcing
the need for non-uniform processing capabilities in the
distributed system.

5. 1In order to protect the system from planning processor failure,
redundant planning processors would be needed, further
increasing the communication demands on the system.

At the other end of the planning task decomposition spectrum is the
allocation of every subgoal to a process. These processes are then
assigned to appropriate processors for execution (plan generation).
This approach is in the spirit of the multiple process structures of
newer AI languages (such as SAIL [Feldman, et al, 19721) in which
alternatives are explored concurrently. This approach has the following
potential advantages:

1. Communication required to generate a world model 1is reduced
because some environmental data is available locally and
because planning of subgoal achievement may proceed using an
appropriate partial world model.

2. The completed plan is automatically decomposed and distributed
as a result of the subgoal allocation process (however, the
distribution is not guaranteed to be appropriate for plan
execution).

3. There is maximum parallelism during the planning process;

4., Failing processors only mean the loss of subgoals--not complete
plans.

5. Local processors only plan for subgoal achievement, a 1less
complex and processing intensive task than planning a complete
plan.

The disadvantages of this approach are:

1. Techniques for coordinating this type of planning in
distributed environments must be developed.

.

2. A distributed mechanism for intelligent subgoal allocation must
be developed (the Contract Net formalism [Smith, 1978] seems an
appropriate framework in which to develop a suitable subgoal
allocation technique).

3. Detection and resolution of interacting or redundant actions
require interprocessor communication.

These two extremes in planning task distribution have complementary
advantages and disadvantages. Clearly, what is desired is an acceptable
balance between world model acquisition and plan distribution costs at
the one extreme, and the cost of detecting and resolving action
interdependencies at the other extreme. This also involves balancing
subgoal allocation, based on a priori task knowledge, with
redistribution of the completed (sub)plans. These balances must be
based on the spatial nature of the particular distributed application:
the spatial distribution of environmental sensors, processors, and the
effectors which carry out planned actions; the spatial nature of action
interdependencies; and the spatial cost of communication.

A middle-ground approach is taken in distributing NOAH in which
certain high-level conjunctive subgoals are allocated to individual
processors. Division between conjuncts is appropriate because
conjunctive goals are initially assumed independent by NOAH. To the
degree that the conjuncts are indeed independent, there is no need for
interaction between processors to linearize the subplans and the
subplans can be executed in parallel. However, this approach does not
guarantee a close correlation between the spatial distribution of the
planning process and the spatial distribution of environmental
information and of effectors required during plan execution.

3.0 A DISTRIBUTED NOAH SYSTEM

3.1 NOAH as a Framework for Distributed Planning

NOAH is a suitable candidate for generalization to a multiple
center distributed planner for several reasons:

1. Plan expansion in the centralized NOAH system is already
localized to the expansion of individual actions. Distribution
of plan expansion is simply a matter of locating plan expansion
(SOUP) procedures at each processor. Separation of plan
expansion from consideration of action interdependencies
(criticism) allows expansion to be performed locally, prior to

the necessarily non-local analysis of interactions.

2. The integration of nonlinear and hierarchical . planning
techniques in the centralized NOAH system reduces the
combinatorial growth of planning. This reduction in the size
of - the planning space also potentially lowers the amount of

&5

TS S e e o S

et

interprocessor communication required in the distributed
system.

3. Plans generated by NOAH retain their nonlinear representation,
allowing for parallel distributed execution without additional
processing to detect potential parallelism.

To complete distribution of NOAH's planning phase, the world model
and general criticism mechanisms must be distributed. In the following
sections, we will use "classic" blocks world problems to present the
distributed world model and criticism mechanisms. Although illustrative
of the interactions between distributed planning elements, these
problems have a high. degree of interaction between actions, and the
resulting plans tend to be linear in nature.

The distributed critics presented are extensions of NOAH's original
Resolve Conflicts, Resolve Double Crosses, Eliminate Redundant
Preconditions, and Use Existing Objects crities. The centralized
versions of these critics are retained in the distributed NOAH system
and are used to operate on the local plans, with interprocessor
criticism performed by the distributed criticism techniques. In the
following sections, a suitable subplan to processor allocation mechanism
(a Decompose Plan critic) is assumed. '

3.2 Distribution of Resolve Conflicts

To show how a distributed Resolve Conflicts critic can be
implemented, we will look at a simple problem involving three blocks and
two planning processors {1]. The initial state of this problem (which
is assumed to be known by both processors) can be expressed with the
following three assertions:

(ON C A)(CLEARTOP B) (CLEARTOP C).
The goal state of the problem is:
(AND(ON A B)(ON B C)).
These initial and goal states are illustrated in Figure 1.

A single processor, P1, is given the goal state. As in the
centralized NOAH system, the top level goal action is entered on Pi's
local procedural net (Figure 2a) and expanded into a conjunction at the
second hierarchical level (Figure 2b). Parent/child links are not
included in these illustrations.

After the plan has been expanded and criticised by the other
critics at the second level, P1's Decompose Plan critic allocates one of
the conjuncts, (ACHIEVE(ON B C)), to a second processor, P2 (Figure 3a).
The other conjunct, (ACHIEVE(ON A B)), remains P1's responsibility

(1] This problem, as well as others to follow, is from Sacerdoti (19771,
and the blocks world SOUP procedures can be found in the appendices of
that reference,

et e e e omm o TER R MR @R R o GE B TR R R - W

i

aiiedigd T WRNEES T LMD T

——

e

e

fama o

(Figure 2c). The subplan which P1 will generate to achieve (ON A B) is
modelled by P2 as the MODEL node (PLAN:1a). MODEL nodes are similar to
PHANTOM nodes [Sacerdoti, 1977], except that their add and delete 1lists
represent expressions that are to be made true by actions of another
processor. In this case, (PLAN:1a) contains (ON A B) on its add 1list.
The subplan which P2 will generate to achieve (ON B C) is modelled by P1
as (PLAN:2a).

P1 expands (ACHIEVE(ON A B)) to the third level [2], as shown in
Figure 2d. Since (PUT A ON B) deletes the expression (CLEARTOP B), P1
must inform P2 of this change by sending the message (DENY(CLEARTOP B)).

P2 performs an analogous expansion (Figure 3b), sending the message
(DENY(CLEARTOP C)) to P1 [3].

P1 receives (DENY(CLEARTOP C)) from P2 and enters it into the
delete 1list of the MODEL node (PLAN:2a). P2 does likewise with
(DENY(CLEARTOP B)), entering the expression on the delete 1list of
(PLAN:1a).

P2's Resolve Conflicts critic notices (via its Table of Mulitple
Effects mechanism [Sacerdoti, 1977]) a conflict between the denied
expression (CLEARTOP B), in the MODEL node (PLAN:1a), and the PHANTOM
node (CLEAR B). In effect, the expression (CLEARTOP B) is a resource
that will be used by both processors during plan execution, P2 will
require temporary use of (CLEARTOP B), while P1 will require permanent
use (deletion) of (CLEARTOP B). Therefore, the distributed planning
system must allow P2's temporary use before granting P1's deletion of
(CLEARTOP B) [4]. Resolve Conflicts establishes this ordering by
synchronizing the distributed conjuncts to insure that the endangered

action (PUT B ON C) will be executed before the violating action
(PUT A ON B) modelled in (PLAN:1a). This synchronization-is performed
by inserting a signalling action, (SIGNAL:2a), into the plan (Figure 3c)
and sending the message (WAIT:2a(DENY(CLEARTOP B))) to P1. When P1
receives this message it inserts a wait action, (WAIT:2a), preceding

[2] For expository ease, we assume that the distributed processors do
not proceed to more detailed planning levels until all messages relating
to the current level have been received. Although such coordination is
not required, it does simplify the planning process. Corkill [1979a]
describes planning activity without such level synchronization.

. {3] Such DENY messages can be eliminated by having each processor infer

(plan) the changed world state from the high level subgoal specification
of the other processor. In this way, only (transparent) effects which
cannot be inferred need be communicated.

(4] P71 could alsc "recreate" the resource (CLEARTOP B) by re-achieving
the expression--in this case, a more costly approach in terms of both
planning and execution.

X e)

T

T .

(PUT A ON B), as shown in Figure 2e [5].

During execution, (SIGNAL:2a) causes P2 to transmit a proceed
message to P1. After transmitting the message, P2 continues execution.
The effect of (WAIT:2a) is to suspend P1's plan execution until a
proceed message is received from P2. If the message has already been
received when (WAIT:2a) is executed, plan execution resumes immediately.

In addition to (SIGNAL:2a), P2's Resolve Conflicts critic inserts a
second MODEL node, (PLAN:1b), into the net (Figure 3¢). This node
models those actions planned by P1 which will be executed following the

(WAIT:2a)/(SIGNAL:2a) synchronization, The denied expression
(CLEARTOP B) is copied from (PLAN:1a) into (PLAN:1b), indicating that it
will occur after the synchronization. Temporally wunrelated

(incomparable) MODEL nodes model actions to be executed by other
processors in relation to actions in parallel portions of the local
plan. Therefore, incomparable model nodes can overlap (even totally) in
the actions they model. .

. P1 inserts a similar MODEL node, (PLAN:2b) (Figure 2e), to model
those actions planned by P2 which will be executed prior to the
synchronization. There is an ambiguity on P1's part as to when the
denial of (CLEARTOP C) occurs in relation to the (WAIT:2a)/(SIGNAL:2a)
synchronization. (PLAN:2b) represents those actions (and their
associated add and delete 1ists) which must execute before the
synchronization. (PLAN:2a) also represents those actions, as well as
actions that are unsynchronized. Without additional information, P1
must leave (CLEARTOP C) on the delete list of (PLAN:2a), because that
MODEL node is the least temporally specified. The expression is tagged
to indicate the ambiguity.

P1 finds no additional criticism to perform at the third level, and
expands the plan as shown in Figure 2f. The MODEL nodes are copied into
level four in the same manner as PHANTOM nodes are copied. P1's Resolve
Conflict critic notices a (CLEARTOP C) conflict between (PLAN:2a) and
the endangered action (PUT C ON OBJECT:1a). Resolve Conflicts inserts
(SIGNAL:1a) into the plan, sends (WAIT:1a(DENY(CLEARTOP C))) to P2, and
places (CLEARTOP C) on the delete 1list of (PLAN:2¢c) (Figure 28).

From P2's viewpoint, its planning has been completed at -level
three. However, when it receives the message
(WAIT:1a(DENY(CLEARTOP C))) from P1, P2 must insert (WAIT:1a) before the
violating action (PUT B ON C). This is shown in Figure 3d.

At this point, both planners have completed all expansions and
criticism. The plan has been completely "linearized" (synchronized) as
the block movement actions:

[5] In these problems, certain node names are identified by processor
and an index (a, b, ¢, etc.). The same processor/index identification

is coincidental--except with WAIT and SIGNAL actions which are paired
using this identification.

A

4

i~ -! N

(PUT C ON OBJECT:1a)(PUT B ON C)(PUT A ON B).
The execution sequence of the completed plan is shown in Figure 4.

_ A look at the completed plans (Figures 2g and 3d) ‘"shows that
(PLAN:2a), (PLAN:2b), and (PLAN:2c) model P2's action (PUT B ON C).
(PLAN:1c) models P1's action (PUT C ON OBJECT:1a), and (PLAN:1b) models
(PUT A ON B). (PLAN:1a) models both (PUT C ON OBJECT: 1a) and
(PUT A ON B).

3.3 Distribution of NOAH's Global World Model

In the above problem, a complete and correct inital world model was
assumed at both processors P1 and P2. These initial world models
correspond to full copies of the global world model used in the
centralized NOAH system., In general, only partial initial world model
information may actually be needed. For example, although P1 does
require the complete initial world model in the problem, P2 could
successfully plan without the expression (ON C A). Use of partial
initial world models opens the possibility that most of the sensory data
needed to develop a local world model for each planner will be available
from 1local sensors. Additional world model expressions, if required,
would be acquired from other processors.

One approach to obtaining additional world model expressions is for
each processor to announce (broadcast) relevant portions of the partial
world model generated from its local sensory data to processors which
are known to require this information during planning. Each processor
then integrates the information it receives from other processors into
its own partial world model. This integration may be as simple as
taking the union of the world model expressions or as involved as a
complete problem in distributed interpretation (such as described in
Lesser and Erman [1979]). This approach is appropriate when there is a
good chance the announced expressions will be used by the receiving
processor(s).

A second approach to obtaining additional initial world model
expressions is to transmit requests for them. If a planner is unable to
determine the value of an expression locally, it broadcasts to other
processors a request for the value. A processor receiving such a
request attempts to determine the expression's value, and, if
successful, transmits the value to the requesting processor. This
approach is appropriate when the expression is considered by the sensing
processor(s) as unlikely to be used by the requesting processor.

Spatial "awareness" (knowledge) of the sensory and planning areas
of the various processors is important to both approaches for a
processor to estimate the appropriateness of initial world model
expressions for the other processors. In the expression announcement
approach, this knowledge is used to direct expressions to processors
likely to need their values and to filter those expressions unlikely to
be needed by anyone. In the expression request approach, this knowledge
is used to direct requests to processors likely to have the expression's
value. These two uses of spatial knowledge during initial world model

b

?
Bl
'

acquisition are analogous to the concepts of task-centered and
knowledge-source-centered knowledge described by Smith [1978] for
indexing processing nodes and tasks in distributed systems.

3.4 Distribution of NOAH's "Distributed" World Model

Expressions whose values are changed during local planning are
removed from the local initial world model, with the add or delete list
of the action indicating the new values. Denied expressions, received
from other processors, are handled in a similar fashion: the expression
is deleted from the local initial world model and the new value
indicated on the delete list of the appropriate MODEL node.

Spatial awareness of the planning areas of the various processors
is also important in reducing the communication of expression changes
during planning. If a processor knows that the areas of direct and
indirect effects of its actions and those of another processor do not
interact, there is no need to communicate the effects of its actions.
In situations where the processors are mobile, this spatial information
may be highly dynamic, changing as the various processors plan their
future mobility. Determining a balance between the acquisition of
processors' spatial domains versus over-estimation of the importance of
world model expressions 1is an important design issue in these
applications.

Synchronization by Resolve Conflicts leads to expression ambiguity
in MODEL nodes and can require additional processor interaction in its
resolution. In the problem of Section 3.2, P1's Resolve Conflicts
critic inserted an additional MODEL node (PLAN:2b) into the net as a
result of the (WAIT:2a)/(SIGNAL:2a) synchronization. Planning then
proceeded with the denied expression (CLEARTOP C) assumed to be in only
(PLAN:2a). This was an incorrect assumption: the denying - of
(CLEARTOP C) actually precedes the (WAIT:2a)/(SIGNAL:2a) synchronization
in P2's plan and therefore also belongs in (PLAN:2b). Fortunately, the
incorrect assumption did not effect the need for a second
synchronization, (WAIT:1a)/(SIGNAL:1a), in the problem because the
action (PUT C ON OBJECT:1a) is temporally incomparable with both
(PLAN:2a) and (PLAN:2b).

However, if P1 had an interacting action following the
(WAIT:2a)/(SIGNAL:2a) synchronization, it would have been necessary to
determine if (PLAN:2b) should, in fact, contain (CLEARTOP C) on its
delete 1list. Without such a determination, P1 would generate an
incorrect synchronization which would lead to an unnecessary double
cross.

To handle these ambiguities, processors issue conditional requests
for synchronization. In the problem, P1 would send the message:
(IF(AFTER(DENY(CLEARTOP C))
(SIGNAL:2a))
(WAIT:1a(DENY(CLEARTOP C)))).
If (CLEARTOP C) is time-ordered after (SIGNAL:2a), then (WAIT:1a) is
inserted by P2. Otherwise, p2 returns the message

e { 4 ¢ . . - .
D)

10

(BEFORE(CLEARTOP C) (SIGNAL:2a)). Notice that the .choice between
conditional and wunconditional synchronization requests is made locally
by P1.

3.5 Distribution of Resolve Double Crosses

A second problem illustrates implementation of a distributed
Resolve Double Crosses critic. The initial state and goal state for

this problem are shown in Figure 5. This problem is the blocks world

equivalent of exchanging the contents of two registers.

Processor P1 is given the goal state and expands the plan to 1level
2 (Figures 6a-c) where (ACHIEVE(ABOVE C B)) is given to P2 (Figure Ta).

Both processors expand the plan to level 3 (Figures 6d and 7Tb).
P1's Resolve Conflicts critic requests synchronization to protect the
PHANTOM node (CLEARTOP D) (Figure 6e). P2 does 1likewise to protect
(CLEARTOP C) (Figure 7c).

Once two temporally related (comparable) WAIT and SIGNAL actions
occur in a plan, it is necessary to insure that they are not part of a
double cross. Attempting to synchronize such a double cross leads to
deadlock during plan execution. In this problem, P1 will not arrive at

(SIGNAL:1a) because it is waiting at (WAIT:2a) (Figure 6f). P2 will not

arrive at (SIGNAL:2a) because it is waiting at (WAIT:1a) (Figure 7d).
To detect this deadlock situation during planning [6], P1 must determine
if (WAIT:1a) is time-ordered before (SIGNAL:2a) in P2's plan. P1
already "knows" that (SIGNAL:2a) is the last action in (PLAN:2¢), that
it cannot execute (WAIT:1a) because of (WAIT:2a), and that no other
processors can issue a (SIGNAL:1a) proceed message. If (WAIT:1a) is
also in (PLAN:2c) there will be an execution deadlock.

P2 needs the analogous information about (WAIT:2a).

This ordering information is obtained by announcing the location of
any wait actions that are time-ordered before a signal action. 1In this
problem, P1 sends the message (BEFORE(WAIT:2a)(SIGNAL:1a)) and P2 sends
the message (BEFORE(WAIT:1a)(SIGNAL:2a)). Once these messages are
received, both processors detect the double cross (deadlock) and take
steps to avoid it.

P1 can determine locally (because WAIT:2a synchronizes the use of
(CLEARTOP C)) that the denying of (CLEARTOP C) formed its contribution
to the double cross. As in the centralized NOAH system, an examination
of variable bindings shows that (ON C A) should not be true when
(PUT D ABOVE A) is executed. P1 inserts a new GOAL node,
(ACHIEVE(NOT(ON C A))), into the plan in an attempt to eliminate the

[{6] In the.general case, deadlock detection is undecidable [Holt, 1972].
However, the 1loop- and condition-free nature of these plans allows for
straightforward deadlock detection.

e R

double cross. The (WAIT:2a) synchronization requested by P2 to protect
the denying of (CLEARTOP C) is now inappropriate and is removed from the
plan. The MODEL node (PLAN:2c) is merged into (PLAN:2a), and P1 sends
the message (UNDENY(CLEARTOP Cc)) to P2. These actions are shown in
Figure 6g.

P2 proceeds similarly, as shown in Figure Te.

when the UNDENY messages are received, the superfluous signal

actions are removed (and the appropriate MODEL nodes are merged) by both
processors (Figures 6h and 7€), and the plans are expanded to completion
(Figures 6i and 78).

If more than two time-ordered synchronizations are required between
processors, double cross (deadlock) detection may involve following
chains of synchonization orderings. This may involve a combination of
synchronization orderings and local linearization orderings. Consider
the blocks world equivalent of a circular shifting of the contents of
three registers (illustrated in Figure 8). If three processors are each
assigned one of the conjunctive goals, the following synchronization
pattern develops:

P1: (WAIT:3a) ... (SIGNAL:1a)

P2: (WAIT:1a) ... (SIGNAL:2a)

P3: (WAIT:2a) ... (SIGNAL:3a).
Double cross detection by P1 requires the knowledge that (WAIT:1a) 1is
time-ordered pefore (SIGNAL:3a). P3 requires the knowledge that
(WAIT:2a) is time-ordered before (SIGNAL:1a). This problem can be
generalized to a circular shifting of the contents of N registers.

No attempt was made to modify the double cross resolution
mechanisms of the centralized NOAH system. Development of more
sophisticated distributed double cross resolution techniques remains an
important issue.

3.6 Distribution of Eliminate Redundant Preconditions

A third problem illustrates implementation of a distributed
Eliminate Redundant Preconditions eritic. The initial and goal states
for this problem are shown in Figure 9. Three processors are available
for this problem.

Processor P1 is given the goal state and expands the plan to level
2 (Figures 10a-c) where Decompose Plan assigns (ACHIEVE(ON B C)) to P2
(Figure 11a) and (ACHIEVE(ON C D)) to P3 (Figure 12a).

In order to detect redundant precondition achievement, it is
necessary for processors to know of assertions made by other processors
in a manner analogous to the use of denial information in conflict
detection. Figures 10d, 11b, and 12b show the transmission of
assertions made during level 3 expansion £71l. Notice that PHANTOM

{7] Additional messages, such as those needed for possible double cross
detection, are omitted from these figures for clarity.

11

LB B BB

‘ . ' .

. et ~dnos —~——- - e L tnom - apa =
e i~ " i <™ ™ o G

Smntactatnn, s ° nnetanhly

12

precondition assertions are not exchanged. Unless converted to GOAL
nodes, interprocessor redundancies between PHANTOM nodes are not
eliminated.

Planning continues at all three processors (Figures 10e, 11c¢c-d,
12¢) . During this time, both P1 and P2 know from ASSERT messages that
they both are planning to achieve the expression (CLEARTOP B). However,
in the absence of additional information, neither can make a decision as
to which processor is the globally best suited to actually achieve the
expression.

After Resolve Conflicts has completed its criticism, P2 can
determine that it must achieve (CLEARTOP B) before it can proceed with
(PUT B ON C). No matter which MODEL node, (PLAN:1a) or (PLAN:1b),
models P1's achievement of (CLEARTOP B), neither node is time-ordered
prior to achievement by P2. P2 sends P1 the message
(PHANTOMIZE(CLEARTOP B)) (Figure 11le), informing P1 that P2 is achieving
the expression (Figure 10f).

Planning continues (Figures 10g-h, 11f-h, 12d) with a number of
conflict synchronizations performed by Resolve Conflicts. It should be
noted that none of the denied expression ambiguities with respect to

- MODEL nodes 1is important in determining the need for synchronization.

Therefore, in this problem there is no need to 1issue conditional
synchronization requests for conflict resolution.

There is an important ambiguity, however, in the 1location of the
asserted expression (CLEARTOP B) in P2's MODEL nodes. In Figure 1le, if
the assertion is contained in (Planib), the PHANTOMIZE request by P2 1is
correct, This is indeed the case in this problem. If, on the other
hand, the assertion should only be contained in (PLAN:1a), an additional
synchronization point must be established between P1 and P2 to insure
P2's completion of (CLEARTOP B) achievement. Due to this ambiguity, P2
should issue the conditional request for synchronization:

(IF(BEFORE(PHANTOMIZE(CLEARTOP B))
(SIGNAL:2a))
(WAIT:2b(PHANTOMIZE(CLEARTOP B)))).
If (CLEARTOP B) is time-ordered before (SIGNAL:2a), then (WAIT:2b) is
inserted prior to (PUT A ON B), the action requiring (CLEARTOP B) as a
precondition. Otherwise, P1 returns the message: ‘
(AFTER(PHANTOMIZE(CLEARTOP B))
(SIGNAL:2a)).

3.7 Distribution of Use Existing Objects

Implementation of a distributed Use Existing Objects critic is
analogous to the implementation of the distributed Eliminate Redundant

Preconditions critic. Both critics attempt to eliminate redundant GOAL
nodes from distributed portions of the plan.

The distributed Use Existing Objects critic analyzes all
uninstantiated formal objects contained in the local portion of the
plan, based on incoming assertional/denial information, If a formal

object can be instantiated to achieve the same effects sent by another
processor--and if the action involving the formal object can be
time-ordered no later than the non-local action that achieves these
effects--Use Existing Objects performs the instantiation and transmits a
PHANTOMIZE request to the other processor.

As with Eliminate Redundant Preconditions, additional
synchronization may be required to insure that subsequent actions by the

other processor do not proceed until the instantiated action has been .

executed.

3.8 Additional Issues in Distributing NOAH

Integrating a distributed NOAH system into a complete distributed
problem solver involves a number of additional issues: '

1. Plan to processor allocation.

2. Planning versus execution-time criticism and synchronization.

3. Distributed detection of plan completion followed by plan
execution versus integrated planning and plan execution.

4, Distributed monitoring and plan modification.

These issues are addressed in a more detailed presentation of the
Distributed NOAH system [Corkill, 1979al.

4,0 A FUNCTIONALLY ACCURATE COOPERATIVE PLANNING SYSTEM

The major weakness of the distributed NOAH system, as described in
Section 3, is that planning activity is basically completely accurate,
nearly-autonomous (CA/NA) in nature [Lesser and Corkill, 1979]. This
type of organizational structure requires both correct and complete
interactions between processors. Although the distributed NOAH system
does permit some filtering of interprocessor interactions, those
messages that are interchanged must be correctly received.

em—

The Distributed NOAH system was developed by decomposing the
centralized NOAH system: distributing NOAH's critics and world model.
Such an approach to distributed system design often leads to the
development of CA/NA distributed systems. Centralized procedures are
generally designed to use complete and consistent (correct) data. In
order to compensate for data incompleteness and inconsistency introduced
by distribution, completeness and consistency in interprocessor
interactions must be either assured or restored by additional
processing.

However, by approaching the design process as one of organizing a
network of individual, autonomous, processing systems into a cooperative

13

-e mwmam wwETEEEWENE

wENNE

- — et pregert b
e [SUUUVES pand w

14

Society, it is possible to design an organization which does not require
fully complete and consistent data. Such an organizational structure is
called a functionally accurate, cooperative (FA/C) distributed system
(Lesser and Corkill, 1979].

Problem solving in a FA/C organizational structure takes the form
of an asynchronous, incremental Ssearch process in which partial
solutions are integrated to form an overall solution, Errors stemming
from the use of incomplete or inconsistent information can be implicitl
resolved during this integration process. Such an ability to function
with incomplete and inconsistent data reduces the need for
synchronization and information exchange in FA/C distributed systems and
potentially increases their tolerance of component failure.

Conventional planning systems require that plans be developed in a
systematic fashion. These Systems are basically CA/NA: the planner has
complete and consistent information about the current state of the
planning process (although not necessarily about the: state of the
world). To develop a FA/C planner, planning techniques which can
generate plans through the asynchronous, incremental aggregation of
incomplete and possibly inconsistent partial plans are needed.

The Hayes-Roths! cognitive model for planning [Hayes-Roth and
Hayes-Roth, 1978] takes such an approach to planning. Based on a
Hearsay-II architecture, their model is hierarchical, but not strictly
limited to a top-down planning sequence. Instead, planning proceeds
"opportunistically". with each new decision integrated into a subset - of
previously ‘'made decisions. New decisions also may produce independent,
competing subplans at varying abstraction levels. As planning
continues, some of these subplans die-out and others are merged together

into larger plans. Planning terminates when an acceptable overall plan
is developed.

The success of distributing the Hearsay-II speech understanding
system [Lesser and Erman, 1979] suggests that the Hayes-Roth planning
model can serve as a basis for the development of g FA/C distributed
Planning system. However, a number of issues relating to the use of
partial, inconsistent pPlans in such a framework need to be resolved.

‘These issues are detailed in Corkill (1979b].

5.0 CONCLUSION

NOAH is suitable for 8eneralization to a distributed planning
system. The generalization requires introducing mechanisms for
criticism and world model distribution.

The major weakness of the distributed NOAH system is its 1lack of
robustness to communication loss or error. The ability to plan without
complete and consistent planning data is the motivation for current work
on a functionally—accurate. cooperative distributed planner,

e e e — e o f———

ACKNOWLEDGMENTS

This paper is built on Earl Sacerdoti's milestone in planning: NOAH.
The structure of NOAH greatly simplified the development of a
distributed planning system. The use of NOAH as a basis for distributed
planning evolved during discussions with Victor Lesser and Nils Nilsson.
Victor Lesser has also provided a stimulating environment for research
in functionally-accurate, cooperative distributed processing. His
comments on earlier drafts and during numerous discussions have been
both useful and appreciated. John Lowrance, Scott Reed, and Jack
Wileden also made helpful suggestions for this paper.

REFERENCES

Corkill, D.D. (1979a). "Hierarchical Distributed Planning," technical

report, COINS, University of Massachusetts, Amherst,

Massachusetts (in preparation).

Corkill, D.D. (1979b). "Cooperative Planning," Ph.D. thesis proposal,
COINS, University of Massachusetts, Amherst, Massachusetts (in
preparation).

Feldman, J.A., J. Low, R. Taylor, and D. Swinehart (1972). "Recent
Developments in SAIL", Proceedings of the Fall Joint Computer
Conference, p. 1193-1202. '

Hayes-Roth, B., and F. Hayes-Roth (1978). "Cognitive Processes 1in
Planning," technical report RAND/WN-10268-ONR, Rand Corporation,
Santa Monica, California.

Holt, R.C. (1972). "Some Deadlock Properties of Computer Systems,"
Computing Surveys, Vol. 4, p. 179-196.

Lesser, V.R., and D.D. Corkill (1978). "Cooperative Distributed Problem
Solving: a new approach for structuring distributed systems,"
technical report 78-7, COINS, University of Massachusetts,
Amherst.

Lesser, V.R., and D.D. Corkill (1979). "The Application of Artificial
Intelligence Techniques to Cooperative Distributed Processing,"
technical report, COINS, University of Massachusetts, Amherst,
Massachusetts (a shortened version to appear in Proceedings of
the Sixth International Joint Conference on Artificial
Intelligence, Tokyo).

Lesser, V.R., and L.D. Erman (1979). "An Experiment in Distributed
Interpretation,® Technical Report CMU-CS-79-120, Computer
Science Departnemt, Carnegie-Mellon University, Pittsburgh,
Pennsylvania.

15

PS>)

16

Sacerdoti, E.D. (1977). A Structure for Plans and Behavior, American
Elsevier, New York.

Smith, R.G. (1978). "A Framework for Problem Solving in a Distributed
Processing Environment," Ph.D. thesis, technical report no.
STAN-CS-78-700, Computer Science Department, Stanford
University, Stanford, California.

17 l]:
4]
¢ . l'
nilo :
Initial State: Goal State:)
ONCA (Annion A'S .
CLEARTOP B 0K B C))
CLEARTOP €
Figure 1 S
Three Blocks Problem
LEVEL 1
Achieve (AND(ON A B){0H B C)) (a)
LEVEL 2

(Before Criticism)

Achfeve (ON A B)

Achfeve (ON 8 C) F

LEVEL 2
(After Criticism by
Decompose Plan)

Achieve (ON A B)

s ‘:E] (c)

Plan:2a

Send: (AND’PLAN(ON 8 C);
PI(ON A B))

Figure 2

Three Blocks Problem: Processor Pl

o T i e~ G s el T

.
. »
ki M agams MY Ciiaiast T wkhen

il

18
LEVEL 3
(Before Criticism)
Clear A
s J Put A On B
Clear 8
s J (d)
{Plan:2a |
Send: {DENY(CLEARTOP B))
LEVEL 3
(After Criticism b |
Resolve Conflicts Receive: gy;gg:gggg;’cgggm, "~
Clear A
s (e)
‘l Plan:2a !1
LEVEL 4
(Before Criticism)
(f)
LEVEL 4
(After Criticism b
Resolve Conf11cts{ ggmlng}—-PNndc
Clear cH Put € on owscm.H s 3 -
S —J‘ Clear B " Z}— Put Aon 8 l()
‘g
) Pran:2b f—{Wait:2a L
Jl Plan:2a l!

Send: (MAIT:1a(DENY(CLEARTOP C)))

Figure 2 (cont.)

Three Blocks Problem: Processor Pl

19

LEVEL 2
(After Criticism by
Decompose Plan)

Receive: (Ami:g‘.ﬂ(lm(‘(): g)():_) .

‘) Plan:la ’ I
Ej<—‘ J (a) !
Achieve (ON B C)

LEVEL 3
(Before Criticism)
g Phn:hl
s J (b)
Clear B
S J Put B on C
Clear C

Send: (BENV(CLEARTOP C))

LEVEL 3
(After First Criticism
b_Y Resolve Conf] 'iCtS) Receive: (DENY{CLEARTOP B))
!! Plansla 131
J (c)
Put B on C Signﬂ:!a}—— Plan:1db
Send: (WAIY:2a{DENY{CLEARTOP 8)))
LEVEL 3
(After Second Criticism Receive: (WAIT:)a(DENY(CLEARTOP C)))
by Resolve Conflicts) 1
—‘l lan: {
[Plan:la (
s Clear 8 J l (d) .-
H Clear C J Put B On C Signal:2a Plan:1d
Plan:Hitxh
Figure 3

Three Blocks Problem: Processor P2

s af...‘,:w'h’ (oo u‘w‘u::‘. "“"p W'W.‘WT

20

4] p2
Wait:2a 8 Put C on OBJECT:1a Wait:la
Stgralila—— —
Put B on C
T T T T T e Signal:2a
Put AonB

Figure 4
Three Blocks Problem: Completed Plan

c 0 D c

A B A B
Initial State:) Goal State:

o C A; (AND(ABOVE D A;

oND B ABOVE C 8))

CLEARTOP C

CLEARTO? O

Figure 5

Swapping Blocks Problem

@ mED~ - ot

LEVEL 1

Achieve (AND(ABOVE D A)(ASOVE C B))

LEVEL 2
(Before Criticism)

Amun(MWEDA)AL\
s 3

Achieve (ABOVE C B)

LEVEL 2
(After Criticism by
Decompose Plan)

Achteve (ABOVE D A)

1
Plan:2a

Send: (AND{PLAN(ABOVE C B))
{P1(ABOVE 0 A)))

Clear DHE\: 0 above A
o S
 Pan:2a|

Send: (DENY{CLEARTOP C))

LEVEL 3
(Before Criticism)

LEVEL 3
(After Criticism b
Resolve Conflicts

Claar 0)—‘7»:1 D above A H Signal :EHT\M:ZI)
pEl

Plan:2s

Receive: (DENY(CLEARTOP D))

send: (WAIT:1a(DENY(CLEARTOP 0)))

Figure 6

Swapping Blocks Problem: Processor Pl

(a)

(b)

(c)

(d)

(e)

21

.

22
LEVEL 3
(After Second Criticism
by Resolve Conflicts) Receive: (WAIT:28{DENY(CLEARTOP C)))
Clear D
) J Put D above A Signal:la Plan:2b
Plan:2c Wait:2a
s —— (f)
—1 P‘lan:Za!
Send: (BEFORE(WAIT:2a)(SIGNAL:1a))
LEVEL 3 «
(After First Criticism by :
Resolve Couble Crosses) Recaive: (BEFORE(WAIT:1a)(SIGNAL:22)) %
Achieve (NOT(ON C A))
S J Put D above A H51gnul:la]—)Lun:n
Clear D ()
s 9
. Yorareon L
j Plan:2a !
Send: (UNDENY(CLEARTOP C))
LEVEL 3
(After Second Criticism by
Resolve Double Crosses) Recave: (INDENY(CLEARTOP D))
Achieve (NOT(ON C A))
’ (h)
Yoran o0 1
lPlan.Za !
LEVEL 4
Clear C H Put C on OBJECT:)a t
s 3 HPut 0 above A ;
Clear D . G
- ol ()
] Plan:‘a! - '

Figure 6 (cont.)

Swapping Blocks Problem: Processor Pl

LEVEL 2
(After Criticism by 23

Receive: (AND(PLAN(ABOVE C B
Decompose Plan) eceive ‘ in(aéov: DA)));

T

a
Achieve (ABOVE C B) |~ ()

LEVEL 3
(Before Criticism)

Plan:1a

s J b
Clesr CH Put C above B ()

Send: (DENY(CLEARTOP D))

LEVEL 3
(After First Criticism
by Resolve Conflicts)

J Plan:1a I
: == ()Z] (c)

Clesr C Put C above B HSiqml:hHPhn:lb

Receive: DENY(CLEARTOP C))

Send: (MAIT:2a(DENY(CLEARTOP C)))

LEVEL 3
(gftgr Sg-.'cong C;}'@iii:;,m Receve: (WAIT:1a(DENY(CLEARTOP D)))
y Resolve Conflicts
‘Phn:h !
s (d)
mn:uH vait:la
s 3 Put C sbove B stm:z- Plan:1b
Clear C
Sand: (BEFORE(WAIT:1a)(SIGNAL:2a))
LEVEL 3
(ﬁ:ts:sfl‘vgl BZ tbcl:? E;g;:‘:sl)’y Receive: (BEFORE(WAIT:2a(SIGNAL:la))
‘__l!Plnn-'u !
s . N J (e)
Clear C

s 3 | rut c avove 8 Fstgnar:aa f—pranie (/

Achieve (NOT(ON D B))

Send: (UNDENY(CLEARTOP C))

Figure 7

Swapping Blocks Problem: Processor P2

M E R EEREREREERE®a®EMNJ;|E I

£
2
o
.
>

LEVEL 3
(After Second Criticism by
Resolve Double Crosses) Rocutvas: (VKDENVIELEARIOR 0J)
1[P1|n:l| il—
Achieve (NOT(OH D B))
LEVEL 4

j PIAn:Iag

Clear n_}__{_Put D on OBJECT:2a

Put C above B

Figure 7 (cont.)

Swapping Blocks Problem: Processor P2

HHH HEE

Inftial State: Goal State:

(ON D A) (AND(ABOVE F A)
ON E B; ABOYE D B}
ONFC ABOVE £ C))
CLEARTOP 02
CLEARTOP E)

(CLEARTOP F)
Figure 8

Shifting Blocks Problem

ala

Initial State: Goal State:
(0N C A) (Aungou A B)
ON D B) BC
;CLEARTOP C) NC n;)
CLEARTOP D)

Figure 9

Four Blocks Problem

24

(g)

LEVEL 1

Achteve (AND(ON A B)(0N 8 C)(CN C D))

LEVEL 2
(Before Criticism)

l Achieve (ON A 8)

S Achieve (OR 8 C) J

\{7Achhve (oN C D)
LEVEL 2

(After Criticism by
Decompose Plan)

Achieve (ON A B)

Send to P2: (AND&;\].AN(ON B C))
P3(ON C DB)
Send to P3: (AND PLAN(ON ¢ D))
P2 ON 8 C;;)

LEVEL 3
(Before Criticism)

Clear A
S J Put Aon B

Clear 8

S E’ Plan:2s iF 3
[! Plan:3a sl

send: (DENY{CLEARTOP B))
ASSERT(CLEARTOP A))
(ASSERT(CLEARTOP B))

Figure 10

Four Blocks Problem: Processor Pl

.
25 .
_
(a) !l'
R
() K
_
B
(c) g
K
B
(d)

TE O ‘mE ‘e ‘TR IR

(R 'l

4]

. . N re P J

\“ = “., .nuhbm

Recetve from P2: (DENY(CLEARTOP ¢)) -
LEVEL 3 gﬁi?E“E‘fkﬁﬁ'v‘I‘c’fsﬁsl}op B)
a
(After Criticism by) Recetve from P3: (DENY(CLEARTOP D))

Resolve Conflicts)

Plan:Htt:Zﬁ

l‘Pun 22 ll

ji Plan:3a !]

LEVEL 3
(After Criticism by Receive from P2: (PHANTOMIZE
Eliminate Redundant Preconditions) (CLeARTOP 8))

f Cleara —

—]
Phn:Mit:Z?Hilnr B

S 7 iPlnn:l’m !I— J

ji Plan:da !L

LCVEL 4
(Before Criticism)

Clur [4 Put C on OBJECT:1a

J H:ut AonB
Plan;(—'lﬂt 22 Hﬂiar B

Plln 20 J

Phn :u

LEVEL 4
(After Criticism b
Resolve Conflicts

stqnalTl—ﬂm 2c

Put Acn 8

Clear C Put C on OBJECT:la

Plan:2b —hlait:hHEleer 8

ﬁ‘ﬁl!
j; Plan:3a L!

Send to P2: (WAIT:1a{DENY(CLEARTOP C)))

Figure 10 (cont.)

Four Blocks Problem: Processor P]

26

(e)

(9)

(h)

LEVEL 2 : ‘
(After Criticism by Recetve from P ‘“"°§$%;2&°: Zﬁ” 27
Decompose Plan) P3(oN € D)))
—1
s Achieve (ON B c)J—: 3 (a)

LEVEL 3
(Before Criticism)

Clear 8
H S J put B on C

\ Clear C
iPlan:la}

Send: i

(b)

DENY (CLEARTGP C))
ASSERT(CLEARTOP B8))

Receive from P1: (DENY(CLEARTOP 8))
LEveL 3 BT
(After First Criticism Receive from P3: (DENY(CLEARTCP D))

by Resolve Conflicts)
—‘ Plan:la l

L — .\\

Put B o ﬂ—-rsmn 128 j—] Planzib [—] 9 (c)

“! Plan:da IS —/

W W EEEEEEREY

Send to P1: (WAIT:2a(DENY(CLEARTOP 8)))

LEVEL 3

(After Second Criticism
by Reso] ve COnf] icts) Receive from P3: (MAIT:3a(DENY(CLEARTOP c)))
Yo L

] Plan:la {
/-—J Clear 8 \

S s Clear C J put 8 on € Signal:2a Plan:1b fi J (d)

PIan:!bH;alt:u

i! Plan:3a [

| 2

Figure 11

Four Blocks Problem: Processor P2

. I — e, i e == T s i Tl SES

LEVEL 3
(After Criticism by
Eliminate Redundant Preconditions)

i! Plan:ls i!

Put B on CHggml:Zn HPhn:lb

LEVEL 4
(Before Criticism)

Plan:3a
| Mitaithadl
Send to P1: (PHANTOMIZE(CLCARTOP B))

28

LEVEL 4
(After First Criticism by
Resolve Conflicts)

ile:h I

L\

Clear n)—rim D on OBJECT:2a H s

Signal:2b HPlnmsc

K Put B on C l—rsigm:zaHman:lb

LCVEL 4
(After Second Criticism by
Resolve Conflicts)

E Plan:la S_l

Send to P3: (WAIT:2b(BENY(CLEARTCP D)))

Receive from P1: (WAIT:1a{DENY(CLEARTOP C)))

Clenmt D on OBJECT:2a

! Mn:lo! :

Figure 11 (cont.)

Four Blocks Pfob]em: Processor P2

(f)

(g)

LEVEL 2
(After Criticism by

Receive from P1: (ANDEPLAN(ON ¢ 0))
PI1(ON A B
Decompose Plan)

P2(ON B C}))

S i! Plan:22]!

Achteve (ON C D)

LEVEL 3

(Before Criticism)
S! Plan:la !l
) PIm:Zai

[liahe |

Send: (DENY(CLEARTOP D))

Receive from P1: (DENY(CLEARTOP B))
ASSERT (CLEARTOP A;)
LEVEL 3 ASSERT(CLEARTOP B))

(After First Criticism Recetve from P2: (e (CLEARTOP)
by Resolve Conflicts)

X!Plan:h :

]Phn:Za rl E

Send to P2: (WAIT:3a(DENY(CLEARTOP C)))

LEVEL 3
(ﬁ§t§£ Sg?ggng og;:: f;i;?m Receive from P2: (WAIT:2a(DENY(CLEARTOP D))
s Plan:2a |
mn:chum:zb
s f@ 3 {putcono |—F1gnn:3a' Plan:2b
Clear 0
Figure 12

Four Blocks Problem: Processor P3

29

(a)

(b)

(c).

(d)

QU e e B CEE - B B B

R S

o

30

4] P2 P3
Wait:2a & Put C on OBJECT:1a Wait:la & Wait:3a & Put D on GBJECT:2a Hait:2b

SIgnal:1ae e e — e Signal :2b~— == o e e

Put Con D
__________ ~=Signal:3a
Put !ion [
P e — e Signal:2s
Put Aong
Figure 13

Four Blocks Problem:

Completed Plan

- e

[N Y

Y}

