Human Factors Comparison of a Procéedural
" and ‘a Nonprocedural Query Languageé.

Charles Welty
David W. Stemple

COINS Tech. Report 79-16

August 1979

Computer and Information Science Department
University of Massachusetts, Amherst 01003

This research was funded, in part, by NSF grant MCS78-07616.

ABSTRACT¥*

Experiments testing the ability of subjects to write queries
in two different query languages have been run. The two
languages, SQL and TABLET differ only in their procedurality --
both languages use the relational data model and their Halstead
levels are similar. Constructs 1in the languages that do not

affect their procedurality are identical. Subjects were taught
using manuals for the two languages that contained identical

examples and problems in identical order. The results of the _'

experiments show that subjects write difficult queries
significantly better using the procedural language than subjects
using the nonprocedural language. The results of the experiments
are . also used to compare corresponding constructs in the two
languages and to recommend improvements for these constructs.

Key Words and Phrases: human factors, database systems, query
languages, procedural and nonprocedural languages.

CR Categories: 4,33, 4.6, 3.72. "

* .This research was funded, in part, by NSF grant MCS78-07616.
The work was done in the Computer and Information Science
Dept., Univ. of Massachusetts, Amherst.

1. INTRODUCTION

More and more attention is being focused on the prime
element in computer systems, namely the human element. Although
in terms of cost, speed, reliability and most other "efficiency"
measures, the machine is far superior to the human,.humans remain
a crucial part of the system. Any efficiency 1in the wuse of
system resources is wasted if a system is not designed to match
the needs and abilities of its users. This fact has led to the
exploration of new research areas involving the human-oriented
aspects of computer systems.

In the field of computer lahguages, human factors testing
can be used‘to:

1. Test if a 1language is learnable. Failure of this test

may dictate a language's demise.
2. Eliminate minor difficulties in a language. This is
used in the planned evolution of the language.

Much human factors testing has been done on aspects of
general purpose programming languages. The study of languages
and language constructs [Gannon and Horning, 1975; Sime et al,
1973; Shneiderman, 1976al, errors in programming [Gould, 1975;
Gould and Boies, 197U; Gould and Drongowski, 1974; Youngs, 1974]
and supposed aids to programming [Shneiderman et . al, 1975; Love,
1977; Shneiderman, 1977; Weissman, 1974] have resulted in useful
insights into the programming process. In addition, directions
and methods for human factors testing of general purpose
programming languages are presented in ([Shneiderman, 1976;

Weissman, 1974; Weinberg and Schulman, 1974].

Some experimentation relating to general purpose programming
languages has been .done using non-programmers [Miller, 1974;
Miller and Becker, 1974]. These experiments bring out the
techniques wused by non-programmers to solve computer oriented
problems. It 1is hoped that understanding these techniques will
aid in understapding the problems inherent in programming. Human
factors studies have led to a rudimentary understanding of
programmer behavior [Shneiderman and Mayer, 1975].

Special purpose languages have also been studied [Miller and
Thomas, 1977; Seymour, 1978].

One type of special purpose language is the database query
language -- used to retrieve information from a database. Query
languages are designed for use by non-programmers. The querying
of a database is only an occasional part of the intended user's
job. Since the user lacks computer experience and uses the
language only intermittently, a successful query language should
be easy to learn, use and remember. Human factors testing of a
query language can determineiwhether it meets these criteria.

There have been several human factors‘ studies of query
languages. Gould and Ascher (Gould and Ascher, 1975]
egperimented with IQF [IBM, 1972]. Their experiment showed the
language to be difficult to 1learn. Zloof's Query by Example
(Zloof, 1975] was studied by Thomas and Gould [Thomas and Gould,
19751 and found easy to learn and use. Reisner, et al [Reisner,
Boyce and Chamberlin, 1975; Reisner, 19761] made a study of
SEQUEL (Chamberlin and Boyce, 1974] and SQUARE [(Boyce,

Chamberlin, King and Hammer, 1975] with the result that SEQUEL

was found relatively easy to 1learn. This experiment helped in
the evolution of SEQUEL 2 [Chamberlin, et al, 1970]. Lochovsky
[Lochovsky, 1978] studied various data models and their
associated data manipulation languages.

Most of the query language testing was done without actual
Ssystems. The languages were presented in qlassroom situations
and testing was through classroom exams. The reason for this was
twofold:

1. The purpose of the testing was to study the language

before implementation.

2. Use of an actual system would have introduced the
additional factors to terminal availability, system
response time, subjects' typing expertise, etc.

Human factors research is readily applicaple to query

languages forlseveral practical reasons:

1. There are no entrenched query languages which would be
either hard or impossible to replace with a language of
proven superiority.

2. Non-programming test subjects are in general supply.

3. Query languages are oriented toward individual use which
is easily tested.

4, A reaiistic query problem 1is quite simple, allowing a
large number of them to be done on an exam of reasonable
length.

5. Query languages have a small set of déta and statement
types. There are usually no control sturctures. Thus,

they are easy to learn.

Even with their simplicity and- restricted problem
domain, query languages have the potential to reach a

very large user community.

These reasons assume . added potency when compared to human
factors testing of general purpose languages. General purpose
languages have none of these attributes but their study has

yielded useful experimental results.

-

2. HYPOTHESIS

One of the major issues in database query languages concerns
the procedurality of query languages. Two experiments.héve been
run. Eaéh experiment tested the learnability of a nonprocedural
qhery language and a procedural query language using human
subjects.. The experiments tested the basic hypothesis: People
more often write difficult queries correctly usiﬁg a procedural
query language thqn they do using a nonprocequral‘quéry language.
The 1languages chosen for-this expériment were similar in all
aspects except ih the independent vafiable -- procedurality --
since the experiment . takes the reductionist approach
[Shneiderman, 19781]. |

SQL (formerly SEQUEL 2) [Denny, 1977] and TABLET [Stemple et
al, 19781 exhibit the required properties. The similarities
~between SQL and TABLET are:

1. They both use ﬁhe same data model, Codd's relational
model [Codd, 1970].

2. They are relationally complete [Codd, 1971b].

3. They have similar language levels [Halstead, 19?7].

4. Their syntactic differences are a. function of their
progeduraiity. Constructs that are independent of
procedurality are identical.

5. They both use the same terminal eqﬁipment.

These similarities are detailed in EWélty;'1979]. |

The difference, again, 1is in the procedurality of the

languages. Generally, a language is procedural if it specifies

a step-by-step method for achieving a result. Nohprocedural

languages describe thé desired result without specifying how it
is to be achieved. (The idea 1is comparable to the difference
between constructive and nonconstructive existence 'proofs in
mathematics.) SQL is similar to Codd's relational calculus
[Codd, 1971al] and TABLET (The Algebra Bésed Language for
Enquiring of Tables) is based §n Codd's relational algebra [Codd,
1971b].

Codd'S relational algebra consists of a set of operations
defined on relations. An -operation on a relation or reiations
always yields another relation. A relational algebraic query
specifies the ordered steps used 1in generating the result and,
thus, is procedural.

A relational calculus query 'describés the elements of the
desired relation. fhé query is purely descriptive, containing no
method for échieving the desired relation. This type of query is
nonprocedural. |

Further discussion of the procedurality of the algebra and
calculus is given by Codd [Codd, 1971al. |

The experiment was set up to test the authors beiief in the
superiority of nonprocedural over procedural query ianguages.
This belief 1in procedural methods can be explainéd through the
use of a cognipive model of‘programmer behavior.

Various human factors studies including those refefenced in
section 1 of this paper have resulted in a_cogﬁitivg. model of
programmer behavior [Shneiderman and Mayer, 1975]. Figure 1.

illustrates the components of memory presented in this model.

Input from
Perception

N

<+

Short-term |
Memory r

T

Working
Memory

fi

Long-term Memory

(Seméntic and Syntactic Knowledge)

Figure 1

‘Memory Modules Required for Programming

High-level Concepts

COBOL

FORTRAN

PL/1

Methods of Sorting, '
Pattern Matching, etc.

LISP

Semantic Knowledge

Figure 2

Long-term Memory

Syntactic Knowledge

Short-term memory has a limited size and is a buffer between the

outside world and working memory. The programmers permanent

knowledge is stored in long-term memory. Working memory performs

‘a synthesis of the short-term memory information with the
relévan; concepts from long-term memory.

Long-term memory is made up of two basié components (Figure

2.): .

1. Semantic Knowledge éoncernsv the. general knowledge
required for programming that is
independent =~ of any specifié
programming language.

2. Syntactic Knowledge is more precise, detailed and
arbitrary (hence ‘more easily

forgotten) than semantic knowledge.

The information in the component structure'of the cognitive
'modeli for an individual subject depends on thét subjects

background. The experimental: subjects wére divided into two
categories -- subjects- experienéed with programming languages
(FORTRAN, BASIC, ete) and subjecés with ‘no pbogramming
experience. The cognitive model for experienced subjects
contains the syntax of their programming language as well as
semantic structures necessary in programming.. These semantic
Structures ére‘ procedural in nature and aid in the learning of
other procedural 1language. The structures . will not‘necessarily

aid in the learning of a nonprocedural language.

Inexperienced subjects, our examples of the casual user,
know English and know how to produce reports (query output) from
the Simple tables of' the relational view. The query language
needs to bridge ﬁhe gap between knowing to do and knowing to
exprgss;- Since th; knowing to do is \procedural in nature it
seems worthwhile to try a procedural 1language. ﬁowevef the
procedures of the language should be as close to the procedures
of the person as ié feasible, i.e. the semantic componént of the
user's cognitive world should ' be used Qhere- possible as the
semantic component of the language. The syntax should not only
be English, 1in order to use a part of the .existing syntactic
componenﬁ, ‘but should also mesh with the appropriate semantic
model. (The results of the GROUP BY constructs in the two

languages verify this latter point.)

[1/a4

3. THE LANGUAGES

The SQL and TABLET query languages are both based on the

.relational model of data. SQL uses English keywords 1in a

template-like manner for the expression of queries against‘ a
database. TABLET specifies the operations that are performed on

a relation. Some sample queries follow. These queries all use

the COLLEGE database of Figure 3.

Q1. List the names of students from Ohio.
SQL: SELECT NAME
FROM STUDENT
WHERE HOMESTATE = 'OHIO'
TABLET: -FORM,OHIOANS FROM NAME, HOMESTATE OF STUDENT
KEEP ROWS WHERE HOMESTATE = '0HIO"
PRINT NAME
Thié SQL query is called .a "simple mapping" and returns a
value from the name column of a tuple in the STUDENT relation for
which the value in the'HOMESTATE column is 'OHIO'. The TABLET
query first forms a working table named OHIOANS cohsisting only
of the NAME and HOMESTATE cblumns_of the STUDENT table. The KEEP
ROWS command speéifies that the rows (tuples) of'OHIOANS for
which the HOMESTATE column contains 'OHIO' are retained. The
other rows are eliminated from the table. The values in the NAME

column are then printed. Both SQL and TABLET eliminate

duplicates from the tuples printed.

The calculus equivalent of the»SQL query is

{(STUDENT.NAME): STUDENT;HOMESTATE = 'OHIO'}

10

data base - COLLEGE

STUDENT , :
‘ID NAME SEX HOMESTATE MAJOR REPID
T JOHN JONES ™M M TTS HISTORY -2
2 JANE DOE F OHIO ECONOMICS 9
TAKING - _
ID COURSE SECTION:
1 HIST101 1
1 HIST102 2
1 POLSCI115 1
2 ECON105 3
2 ECON202 1
2 MATH101 1
FACULTY . - :
1D NAME SEX DEPT COMHEAD SALARY
312 BILL GRANT M ECONOMICS 216 20000
152 JOHN MILTON M HISTORY 312 14000
172 - ANNE HALL F POLSCI - 192 19000
DEPARTMENT - ~
DEPT BUILDING HEAD
POLSCI BILLINGS 172
HISTORY BILLINGS 295
ECONOMICS KEYNES - 312
ENGINEERING ENGINEERING 207
TEACHING ~
ID COURSE DEPT SECTION LIMIT SIZE
3712 ECON105 ECONOMICS 1 35 31
312 MATH101 MATH - . 2. 40 40
152 HIST101 HISTORY 1 28 28
152 HIST102 HISTORY 2 32 19
172 POLSCI115 POLSCI 1 32 30
COURSES .
COURSE DEPT TITLE CREDITS
ECON105 ECONOMICS INTRODUCTION TO ECONOMICS 3
MATH101 MATHEMATICS COLLEGE ALGEBRA 3
HIST101 HISTORY AMERICAN HISTORY 3
HIST102 Yy

HISTORY

EUROPEAN HISTORY

Figure 3

The COLLEGE Database

11

The SQL SELECT clause 1is identical ‘to the relational calculus
target list (i.et STUDENT.NAME), except that the attribute of.the
target list is fully specified using the relatipn name. The FROM
'elause of the SQL query specifies the relation. The predicate
of the calculus query is identical to the SQL WHERE clause except
for the relation specification.

The TABLET query specifies PROJECT and RESTRICT operations
}[Codd, 1971b]. The FORM command says to‘prqject on the NAME and
‘HOMESTATE attributes of the STUDENT. relation. The résult is
bound to the name OHIOANS. The KEEP ROWS restricts OHIOANS to
those tuples for which the HOMESTATE value is 'OHIO'. The PRINT
command may be thought of " as a project on the output file.
Written in its algebraic form tﬁe query is:’ |

- OHIOANS + STUDENT[NAME, HOMESTATE]
OHIOANS « OHIOA&S[HOMESTATE = 'OHIO']
OUTPUT « OHIOANS [NAME]. . |
Q2. List the average salary of economics faculty members.
SQL: SELECT AVG(SALARY)
FROM FACULTY
WHERE DéPT = 'ECONOMICS'
TABLET: FORM ECONSAL FROM SALARY, DEPT OF FACULTY
KEEP ROWS WHERE DEPT = 'ECONOMICS'
PRINT AVG(SALARY)
fBoth languages allow functions in a query. The functions are
MAX, MIN, AVG, SUM and COUNT. These functions apply to the given
‘column. Duplicates are not eliminated from the column on which
the function operates. There are no parallels in the calculus

and algebra because neither includes functions in its definition.

12

Q3. List fhe names of students taking ECON105.
SQL: SELECT NAME "
FROM STUDENT
WHERE ID =
SELECT ID
FROM TAKING
_WHERE COURSE = 'ECON105'
TABLET: FORM ECONSTUDENTS FROM NAME, ID OF STUDENT
’ADD COLUMN SOURCE OF TAKING BY ID = ID
KEEP'ROWS WHERE COURSE = 'ECON105' -
PRINT NAME
In the SQL duéry the lower mapping returns a set of ID's to the
upper mapping, this is called chaining. In TABLET, the ADD
COLUMN statement joins the COURSE column of the'TAKING table to
the ECONSTUDENTS table using equal ID valnés froh the two tables.
This operation results in .ECONSTUDENTS containing 3 .columns:
" NAME, ID and COURSE. |
The calculus équivalent of the SdL query is
{(STUDENT.NAME) : 3 x ¢ TAKING (STUDENT.ID=x.ID A:x.COURSE='ECON105') }
‘The similarity 1is not syntnctically expliéit,'.but a simple
transformation is all thét is necessary. Both queries can be
read as: 1list the names of all}studentsAwhose ID's are the same
as the ID in a tuple of the TAKING table for which the COURSE
value in that tuple is ECON105. | _
’ Only the ADD COLUMN command is new to us in the TABLET
queny. It 1is the equivalent of the algebraic‘ggig operator

[Codd, 1971b].

13

Q4. List the 1ID's of department heads who are also

committee heads.
SQL: SELECT HEAD.
FROM DEPARTMENT
INTERSECT
SELECT COMHEAD
FROM FACULTY
TABLET: FORM HEADID FROM HEAD OF DEPARTMENT
FORM COMHEADID FROM COMHEAD OF FACULTY
KEEP ROWS OF COMHEADID
WHERE COMHEAD IN HEAD OF HEAbID.
.PRINT COMHEAD
SQL uses the wusual set operators -- UNION, INTERSECT and MINUS.
TABLET forms ¢two tables and then . performs é' restriction (KEEP
ROWS) of the tuples in éne table using the contents of the other
table. TABLET uses NOT IN corresponding to SQL's MINUS. The ADD
ROWS command is_the TABLET analog of UNiON.

The SQL set operators -- UNION, INTERSECT and MINUS ==
correspond to v, A and - [Codd, 1971b]l. Obviously UNION,
INTERSECT and MINUS are algebraic in nature; they perform
operations on relations and yield new relations; SQL 1is being
shown as similar to the <calculus but it does. have algebraic
(procedural) components. In fact, the above éorrespondences are
shown ip the reduction of a calculus query into the algebra

[Codd, 1971b].

14

As mentioned' above, TABLET does not use the set operators
UNION, INTERSECT and MINUS that are part of the definition of the
relational algebra. The TABLET operators perform transformations

on relation so they are algebraic in nature.

Q5. List the average s;lary of faculfy members in each
~ department. |
SQL: SELECT DEPT, AVG(SALARY)
'FROM FACULTY
GﬁOUP BY DEPT
TABLET: FORM DEPTAVG FROM DEPT, SALARY OF FACULTY
GROUP BY DEPT
| PRINT DEPT, AVG(SALARY)
Both SQL and TABLET use GROUP BY to denote the partitioning of
the relation (table). 1In SQL, GROUP BY is a clause in'the SELECT
statement. GROUP BY in TABLET is a commarnd in i;sélf. Due to
the function in the'queries there are no calculus or algebraic
versions. . _
Q6. List the name of each student and the names of the
courses he is taking (eg. JOHN JONES HIST101).
SQL: SELECT NAME, COURSE
FROM STUDENT, TAKING
WHERE STUDENT.ID = TAKING.ID
TABLET: FORM NAMECOURSE FROM NAME, ID OF STUDENT
ADD COLUMN COURSE OF TAKING BY ID = ID
PRINT NAME, COURSE |
The join operation is required by both SQL and TABLET queries.
NAME and COURSE come from the STUDENT and TAKING relations,

15

respeétively. The ID ﬁolumns bin- the SQL»WHERE clause are
qualified to avoid ambiguity. The TABLET query uses the same
format as in Q3.
The calculus query is
{(STUDENT.NAME, TAKING.COURSE) : STUDENT.ID=TAKING.ID}
Again, the similarity is obvious. Here SQL fully specifies
the attributes that would otherwise be ambiguous.
| Q7. List the ID's of students taking all the art classes
offered. |
SQL: SELECT ID
FROM TAKING
GROUP BY ID
HAVING SET(COURSE) CONTAINS
SELECT COURSE
FROM TEACHING
WHERE DEPT = 'ART'
TABLET: FORM ARTCOURSES FROM COURSE, DEPT OF TEACHING
KEEP ROWS WHERE‘DEPT = 'ART"
FORM ARTSTUDENTS FROM ID, COURSE OF TAKING
GROUP BY ID
KEEP GROUPS
WHERE COURSE CONTAINS CbURSE OF ARTCOURSES
PRINT ID
In SQL, the HAVING clauée is only used to restrict é partitioned
relation, so HAVING is only used Qith GROUP BY; AThe SET function
has the value of all the COURSE names in a partition. The TABLET

query uses two tables. One (ARTCOURSES) contains the names of

16

all the art courses offered. The second table (ARTSTUDENTS)
contains the ID's and courses taken by all students, partitioned
on identical ID values. The KEEP GROUPS command (analogous to
the HAVING clause in SQL) retains those partitions in which the
COURSE column contains all the art courses offered.
The calculus equivalent uses universal quantification
ARTCOURSES = {(TEACHING.COURSE) : TEACHING.DEPT = 'ART'}
((TAKING.ID) :V't ¢ ARTCOURSESI s e TAKING
(TAKING.ID=s.ID A s.COURSE=t.COURSE)}.
Universal quantification is considered overly gomplex for most
nonmathematicians, especially the casual user [Thomas, 19761].
There is very little similarity between the SQL query and the
calculus query. _ GROUP BY specifies an operation (i.e.,
partitioning (Furtado and Kerschberg, 1977]) on a relation.
THus, GROUP BY is a algebraic or procédural element embedded in a
nonprocedural language. ‘Experimental results suggest that this
incongruity has a bad effect on the learnabiiity of this‘
construct.

The equivalent algebraic query uses relational division, an

opefator that is fairly complex.

Codd [Codd, 1971b] shows that wuniversal quantification
becomes relational division when a calculus query is transformed
into an algebraic query. So, SQL and TABLET use the identical
construct for "corresponding features of ° their underlying
'languages. This is illustrated by the diagram

GROUP BY

TABLET sQL
Codd

relational divisione———universal quantification

17

3.1 Procedurality metric, P.

The relational calculus is agreed to be a nonprocedural
language and the relational algebra a procedural language [Codd,
1971b; Date, 1977; Stonebraker and Rowe, 1977]. Thé calculus
is nonprocedural by definition -- the desired result 1is
described; no method for its achievement is produced. The
algebra gives the method; the result of the method is the
‘desired result.

TABLET is obviously procedural.

The nonprocedurality of SQL is open to question. The
designers of SQL describe it as nonprocedural (descriptive)
[Chamberlin and Boyce, 1974; Astrahan and Chamberlin, 19751].
Others [Stonebraker and Rowe, 1977] classify SQL as procedural.
The problem is that procedurality is a continuum. FORTRAN
programs may be nonprocedural when compared to ﬁhe equivalent
program in an assembly language but procedufal when compared to
an APL or SNOBOL implementation. SQL does have some procedural
properties but is, in the main, nonprocedural. The
nonprocedurality of SQL 1is emphasized when compared to the
procedural nature of TABLET.

Procedurality, then, is relative. Simply saying that a
}anguage is procedural or nonprocedural is usually not enough; a
reference must be given. A procedurality metric would aid by
defining the term and yielding values that could be compared.

In order to clarify our intuition about the much maligned
concept of procedurality we present three representations of the

same computation and disccuss hew they vary in procedurality.

18

The expre;sion to be computed is
| | (A*B)+(C*D)

In the simplified FORTRAN -dialedt GOTRAN [Andree, 1967]
which allows only one operator eipression on the right side of an
assignment statement, we could writé

A*B

E1 =
E2 = C¥*¥D
E = E1+E2

-This is ciearly' proccedural. Note thati the three bindings
(to E1, E2, and E)_and three operations are fully ordered.
In a language with a left-to-right evaluatioh rule .we could
Wwrite -
E1 = A*B

E .C*D+E1

whether this is more or 1less procedural than the preceding
example is not cléar but it ddes have one less variable binding.

"IN FORTRAN we would write

'E = A¥B4C*D

This seems to us less procedural than the GOTRAN example. There
are fewer steps,'(those involving the two inﬁgrmediate variable
bindings are missing), and less order of evaluation is spegified,
since- FORTRAN semantics allows either multiplication to be
performed first.

A metric which matches our intuition'about procedurality of
programs is proposed here. The metric is based on the following

properties of programs:

19

The number of variable bin

dings.

2. The number of operations.
3. the degree to which the bindings and operations ére
ordered by the language semantics.
The procedurality metric, P, is defined as
number of number of
variable bindings operations
P number of permissible ' " number of permissible
variable binding orderings operation orderings
In the GOTRAN example above there are three variable

bindings, with only one semantically permissible order specified,

and three operations, also strictly ordered by the language
semantics. Thﬁs
P= 3/1 + 3/1 = 6

In the left-;o—right precedence example there are two fully

ordered variable bindings and three operations with also only one

permissible order of application. Thus
P = 2/1 + 3/1 =5
The FORTRAN example has only one variable binding. The
three operations can however Dbe applied Ain two permissible
orders. Thus
P = 1/1 + 372 = 2.5
We Dbelieve this metric produces a rahking of program

procedurality which matches most people's intuition. It has the

advantage of being concrete and based on the primitive concepts
of variable binding, operation application, and their permissible

orderings.

20

In SQL any vafiable binding is done in the FROM clause. The
normal SQL operation is én entire' SéLECT specification (SELECT,
FROM, WHERE and, 6ptionally, GROUP and HAVING). Other operations
are.UNION,.INTERSECT, MINUS, INSERT, and <.

Each TABLET command perférms' an operation and binds the
result of that operation to a table‘name.

For example, the SQL query Q3 in Section 3 has no variable
bindiﬁgs but has 2 SELECT commands Qith an implied ordering so

P=04+2/71 = 2.
The corresponding TABLET query has 3 variable bindinés (one for
- every command exéept the PRINT command) and 4 operations. There
is only one .permissible order for the bindings and only one for
the operations, therefore.

P=3/1 +U4/1 =1

Using this measure on 60 queries pf varying difficulty from
the human factors experiments, the average P-for SQL was 1.8 and
7.3 for TABLET. The means were‘significantly different at the
-0001 1level as measured by a paired t-test. This measure
confirms the relative classifications of.SQL.as.nonprocedural and

TABLET as procedural.

21

4. THE FIRST EXPERIMENT

This experiment was run in the Spring Semseter, 1978. The
subjects were 72 undergraduate students taking a 1 credit
accounting course} Most subjects were business majors. The
sub jects were divided into two groups -- 35 subjects learned SQL
and 37 subjects learned .TABLET. |

Subjects were also classified as WineXperienced" and
Y"exAper'ienced.". ihexperienced subjects had no’previqus experiénce
with computers. Experienced subjects had a course in either
BASIC or FORTRAN. A queétiohnaire showed'thaﬂ tﬁe sub jects were
familiar with the operators. >, <, =, etc as well as» the set
operators union and interséciion.

Subjects were motivated to take the course by the credit and
a desire to learn about computers.

The languages were taught using manuals read outside class.
These manuals, one presenting SQL and the other presenting
TABLET, contained identical examples and_prbblems presented in
the same sequence. Each manual contained 12 1lessons. Concepts
ﬁhat were idéntical in the two 1anguages were presented
identically. .

There were fourteen class meetings. These meeﬁings were
devoted to answgring questions on the lessons and to quizzes
covering the material presented in the lessons. No 'lecturing was
done in the class meetings. Since'no material was preseﬁted in

class, subjects learned the languages entirely from the manuals.

22

A final exam was given 'iMmediately after the course. the
final consisted of 30 English questions (e.g. How many suppliers
supbly item i9?) and the subjects were required to write the
corresponding query in,thei} query language. The final was an
open book exam and theé students grades were baéed soiely'on their.
final exéms.

A'fetention test was given 3 weeks after the final. This
ﬁest was of identical format to the final. 1In fact, although the
questions were different on the final and the retention test, the
correct requnse»to each questioh on the final was identical in
structure to the éorreaponding query on the retention test. The
.reﬁention.test was a closed book test. 1In addition, the subjects
were discouraged fromA studying for the retention test. The
retention test did not affect student grédes, but * it was a
reqhired parﬁlof the course. Students had to take the test but
had no motivation-for,studying. This delay and iack of studying
.was used to model;the inpermittent use.of query‘languages.

The grading method for queries in all the tests was similar
"to Reisner's [Reisner, 1976]. Each soiution‘was classified as
one of the following:

_correct - the solution was completely correct.

minor language error (ML) - the solution wé; basically

~correct but had a small error that would be found by a
reasonably good translator.

minor operand error (MO) - the solution has a minor efror in

its data specification, perhaps a mis-spelled column

name.

23

winor substance error (MS) - the solution yields a result
that is not quite correct but its incorrectness is due

to thé statement of the problem.

correctable (CO) - the solution is wrong but correctable by
a good compiler.

major substance error (XS) - the query is syntacﬁically
correct but answers a different question than the one
specified;

‘major langﬁage error (XF) - a major error in the syntax
(form) of the language has been made.

incomplete (IN) - incomplete query.

unattempted (UN) - hq solution was attempted.

Thee first four categofies -- correct, ML, MO, MS -- were called

essentially correct responses. The other five categories were

classified as incorrect. The correctable solutions used
knowledge Speqific to the daﬁabase being used and wquld not be
correctable in the general case. -If_several errors were found in
a query, the error is categorized as the lowest one found in the

above list.

4.1 Results of the First Experiment

The mean number of essentially correct solutions as well as

‘mean times to take the final and retention tests and mean study

time for the lessons are found in Table 1. The test results are

subdivided into various éategories. These are:-
easy 10 problems - from Lessons 1-5.of the manuals
covering (in SQL terms) simple ﬁapping,

simple mapping with arithmetic oerations,

24

g2

final score

" final time (minutes)

rcientlon score
retention time (minutas)
easy flpnl

eaa} retention
hard final

hard retention
group final

group retgntlon
join fimal

join retention
chaining final
chaining l;etention
set final

set retention
combination final

combination retention

- average setudy time

(ainutes, Lesson 1-12)

No. of

SQL mean
problems (all 35 subjects)
30 18.3711
116.71
30 13.600
66.514
10 8.4286
10 7.8286
20 9.9429
20 5.7714
6 2.8000
6 1.0571
3 1.3714
-3 0.5429
3 2.000.
k) 2.0571
3 2.6000
3 2.1143
4 2.0000
4 1.3143
29.324

TABLET mean SQL mean

. TABLET mean SQL mean
(all 37 subjects) (17 inexperienced = (20 inexperienced (18 experienced
subjects) subjects) .subjects)
18.541 16.824 17.050 19.833
120,35 124.53 124.10 110.28
14.784 12.412 12.850 14.722
76.351 69.412 .~ 78.050 63.778
8.1351 7.9412 7.5500 _ 8.8889
7.4054 7.2353 6.7500 8.3889
10.4054 8.8824 9.5000 © 10.944 -
7.4054 5.1765 6.1000 6.3333
2.7027 2.5882 2.2000 3.0000
1.9459 0.8824 1.3500 1.2222
1.8108 1.1765 1.7500 1.5556
1.4865 0.5294 1.4000 0.5556
2.0811 2.0588 1.9500 2.3333
1.7027 1.7059 1.5500 2.3889
1.7027 2.5294 ' 1.9000 " 2.6667
0.9430 1.9412 1.0500 2.27778
2.6757 1.8235 2.4500 2.1667
. 1.7838 1.3529 1.4000 1.2778
36.214 33.378 . 39.138 25.496
Table 1

Mean Number of Essentially Correct Responses and Other Results
According to Subject Experience and Query Category

TABLET mean
(17 experieuced
subjects)
20:294
115.94
17.118
74.353
8.8235
8.1765
11.471
8.9412
3.2941
2.6471
1.8824
1.5882
2.2353
1.8824
1.4706
0.8824
- 2.9412
2.2353
32.775

hard

group

join

chaining (or

composition)

set

combinations

simple mépping with built-in functions, and

composition (chaining)} ‘The easy problems

‘are problems 1-10 on both the final and

retention test.
20 problems for Lessons 6-12 of the manuals.

These cover GROUP BY, set functions, join and

' combinations of constructs. The hard

problems are problems 11-30 on both the final

and the retention test.

.6 problems that require the GROUP BY

construct. These are problems 17-22 on both
the final and the retention test.

3 problems requiring joining in both SQL and
TABLET. These are pfob;ems 23-25 on both the -
final and the retention test.

3 problems that - require printing from one
table using another table f&r the predicate.
These are problems 9-11, on both the final
and the retention test. '

3 problems using UNION, INTERSECT .and MINUS
(SQL terms). These are problems 14-16 on
both the final and the retention test.

y problems combining | various language
constructs. These are probléms 13, 26, 27,
and 30 on both the final and the retention

test.

26

The problem numbers listed above correspond to the numberings in
the Appendix. There were. five - randomizatiéns of the exam in the
actual experiment. The easy/hard ‘dichotomy was based on
Reisnér}s classificatiqh of SQL as a "layered language" [Reisﬁer;
19761]. Reisner sadys that SQL queries come in two 1layers. .The
first 1ayef .is for . novices, the4 second for more sophisticated
users. The easy problems in the SQL/TABLET .study_correSpond to

layer 1. The hard problems correspond to the queries of layer 2.

27

experience
language
experience

experience
language.
experience

experience
language
experience

experience
language
experience

experience
language
experience

experience
language

“experience’

experience
language
experience

Summary of Ana1y51s of Variance for Study Time, and Retention Scores

degrees of freedom F ratio significance

1,68 4.76 (<.05)
1,68 1.99 (<.05)
language 1,68 .05 -

a Mean study time of Lessons 1-12.

degrees of freedom F ratio significance
1,68 1.44 -
1,68 6.10 (<.01)
language 1,68 .06 . -
Time to take retention test.
degrees of freedom F‘ratio significance
1,68 6.51 (<.05)
1,68 8.71 <.005
language 1,68 2.22 -
¢ Retention, group problems.
degrees of freedom F ratio significance
1,68 .33 -
1,68 26.53 <.001
language 1,68 .19 -

d 'Retentidn, join problems.

degrees of freedom

F ratio significance
1,68 5.76 - (£.05)
1,68 .25 -
language 1,68 .01 _ -
e Retention, chaining problems.
degrees of freedom F ratio significance
1,68 .23 -
1,68 42,74 <.001
language 1,68 2.08 -
f .Retention, set problems. ‘
degrees of freedom F ratio significance
1,68 3.82 (<.05)
1,68 11.12 . <.005
language 1,68 h,12 (<.05)

g Retention, combination problems.
Table 2.

(See Tab%%1 for means.)

4.2 Statistical Analysis

Sub ject scores- on the hard problems of'boph the finéi and
retention tests~were analyzed wusing a fully crossed, ‘twb-way
anaiysis of variance. " The two independent variables were the
languageg (SQL and TABLET) and the experience' levels of the
sub jects (iﬁexperienced and:experienced). -The final .showed no
significant difference. in subjeet performance on hard problems
due to 1language at the .05 significance~1§vel. " The experience
- effect was siénificant at the iOS level. Our.main concern is the
language effect so éhe results of the final are not investigated
further. Subjéct performance on the hard problems' of the
retention test showed significance at the .05 1evel (actually
significance was at the .01 1level) due‘ to language. The
experience-effect was also signifiéant~ at the .05 level (in this
case the actual significance was at the .005 level).

The'significance of the difference in subject performance on
the hard‘préblems of the retention test leads us £o investigate
the problem éapegories presented earlier. In addition, we aré
interested in the average amount of time‘subjects spent studying
the lessons and the amount of time required tb take the retention
test. Since we are running many statistica} tests.oﬁ the same
data we may find significance due only to the nuﬁber :of ﬁests
being run. For this,réason we reduce 'the~réquired significance
level from_'.OS to .007 (.05 divided by the number of variables
being tested, i.e. 7). The results are given in Table 2.
Effects that are of marginal significance ére enciosed in

parentheses.

29

*D

Table 3 presents the group contrasts resulting from the
one-way analysisi of variancé. Agaih,' the requifed significance
level is .007.

An interesting result is’ exhibited in Table 3. The
difference in performance between inexperienced SQL subjects and
experienced SQL subjects 1is miﬁorm On the other hand_thére is a
great deal of difference between the TABLET sﬁbjects. This shows
‘that even minimal experience in- procedural languages (i.e.
FORTRAN or BASIC) aids the TABLET subjects but not the SQL
subjects. This result empirically buttresses the classification

of TABLET as procedural and SQL as nonprocedural.

Table 1 and Table 2 show that the performance of the SQL and
TABLET subjects'were significantly differént in the .follpwing
categofiés: - |

1. Mean study time for lessons 1-12, marginally significant

(SQL subjects.kequired less time).

2. Time required to take the retention test, marginally

significant (SQL subjects required less time).

3.> Hard problems on the retention test (TABLET subjects

outpefformed SQL subjects).

L, Join prdblems on the retention test (TABLET subjects

outperformed TABLET subjects).

5. Set -prpbleﬁs' on the retention test (SQL éubjects

outperformed TABLET 'subjects).

6. Group problems on the retention test (TABLET subjects.

outperformedASQL Subjects). | A
7. Combination prdblems on the final test (TABLET subjects

outperfprﬁed SQL subjects).

30

L€

Mean study time
(Lessons 1-12)

Time to take
retention test

Retention, group

Retention, join

Retention, chaining

Retention, set

. Retention, combination

Significance of

experienced

SQL subjects
vs.

experienced

TABLET subjects

Significance of’

inexperienced
SQL subjects
vS.
inexperienced
TABLET subjects

Significance of
inexperienced
SQL subjects
vs.
experienced -
SQL subjects

<.005

<.0005

<.0001

<.0005

<.005

<.0005

Table 3.

Significance of
inexperienced
TABLET subjects
vs.
experienced

- TABLET subjects

<.005

<.005

Summary of Group Contrasts for Study Time, Lesson Difficulties and Retention Scores
(See Table 1 for means.)

IABLET subjects required more study time and more time tb
take the retention test than SQL subjects did. TABLET has more
complex syntax and semantics than SQL has. It takes extra time
to learn and write TABLET. TABLET sﬁbjects are required to learn
how to manipulate tables, SQL subjects are directed mainly by
SQL's .syntax.

_TABLET's procedurality yields rewards in the writing gf hard
‘queries. In these queries the skill acquired in table
manipulations is pup to use. The skill is analogous to the skill
of fiding a bicycle, oncé'learned it is easily retained. SQL
does noﬁ require this sort of skill of its users.

TABLET dses the join construct (ADD ROWS)'where SQL uses two
constructs, chaining and joining. ‘While SQL subjects used
chaining, TABLET subjécts acquired eiperience with joining.

On the problems in which both 1languages used joining, IABLET
subjects had an advantage and performed signifiqantly better than
. SQL subjects.

SQL subjects outperformed TABLET subjects on set problems.
Set concepts as wgll as. set operators, UNION - ahd INTEBSECTION,
were familiar to allrthe‘subjects due to the new math; ~SQL uses
these familiar concepts. TABLET dées concepts novel to the
sSubjects. |

TABLET subjects. outperformed SQL spbjects. on the .group
problems. This is.an interesting result becauée both iaﬁguages
use the same construct - | |

GROUP BY column name.

32

TABLET has many commands 'that'perform operations on relations,
but SQL queries are more ‘tuple-oriented. The GROUP BY specifies
an operation on a relation, so it is more table-oriented. Also,
GROUP BY is an ‘imperative cﬁnstruct, but appears as a subordinate
clause within SQL's SELECT. 1In TABLET the GROUP BY ié'a separate
(imperative) command. Finally, two SQL‘subjeéts said that the
GROUP BY was in the wrdng position in the Eommand; suggesting it
occur before the SELECT because thé output . spec@fied in - the
SELECT is dépendent on the.GROUP'BY ciéuse..'Thé SELECT clause is
analogous to the PRINT in TABLET and GROUP'BY does occur before
the PRINT in TABLET. o |

TABLET subjects héd'more facility with novel queries than
SQL subjects as exhibited by their performance.on phe combinaﬁion
problems. The'stepfby¥stép nature .of TABLET allows the linear
solution of problems. In SQL the user has to be aﬁare of the
total solution to a problem before Starting'_writing. TABLET
allows a piecemeal approach. | |

Tables é and 3 show more significant results for the
retention test than for the final, especially for experienced
subjects. At the final both SQL and TABLET subjecfs had attained
~about the same level of performance. As .time .went'on, sub jects
experienced .with BASIC. or FORTRAN (both proéedunal languages)
retained TABLET because TABLET's procedural nature matched their
procedural experience. TABLET retention was reinforced by this -
experience. SQL did not- match their experience and SQL

performance deteriorated.

33

5. THE SECOND EXPERIMENT

A second experiﬁent was run in the Spring semester, 1979.
The results of the first experiment are not very-conélusive with
respect to inexperienced subjects. The. only significant
difference in this group afe in the use of the set and join
constructs. |

It ~ was decided to run the experiment again _with an
‘increasegd sample of inexperienced subjects; The second
experiment was primarily the same as the first but did have
several'differences. |

TABLET.wés changed to wuse the UNION, INTERSECT and MINUS
operators. Thus, Q4 in section 3 would be

FORM HEADID FROM HEAD OF DEPARTMENT

FORM COMHEADID FROM COMHEAD OF FACULTY

FORM BOTH FROM HEAD OF HEADID

INTERSECT HEAD OF COMHEADIDV

PRINT HEAD. - .

In order to insure a sufficiehtly large supply of subjects
we offered $50 to each studentfin addition to the 1 éredit. In

the first experiment the subjects were unpaidﬂ

The other différence was that . the classes had a'differentA

:instructor than in thg first experiment.

Other aspects of the experiments were identical.

T-tests were used- for the statistical analysis of the
results since the subjeéts were ih_two homogeneous groups. --

.inexperienced SQL subjects and inexperienced TABLET subjects.

34

| =<X8

5.1 Results of the Second Experiment

On the second experiment we use a t-test to check the main
hypothesis. TABLET subjects outperformed SQL subjects on hard
final problems at the required significance 1level, .05 (the
actual significénce level was .01, means were 8.1 and 10.5
essentially correct responses out of 20 for SQL and TABLET
respectively). The results of the retention test were not
significant. For this reason the final is examined further but
not the retention. As in the first example, the acceptance level
for the additional variables is .007. The results of the t-tests
~for the second experiment are presented in Table 4. |

The results show the same basic pattern és thg results of
the first experiment. TABLET subjects did"better on the hard
problems as a whole, specifically on the Join and combination
problems. An interesting result of this experiment is that the
~differences were more significant on the final than in the
~retention test. The reverse was true in the first experiment.

SQL'subjects again required less time to take the final test
and less study time. |

The use of UNION INTERSECT and MINUS in TABLET helped. The
difference in performance between SQL and TABLET subjects on the
final test was no£ significant. The TABLET changes seemed to
help.

To explain the performance on the final we again consider
the cognitive modei presented earlier. Experienced subjects in
the first experiment could do well on the final independently of

‘the language for the most part. As time passed, their

Time studying for
final

Time to take
final

final group
final join
final chaining
final set

final combinations

SQL
mean

135.0

112.3
2.3
1.3
2.1
1.8

1.7

TABLET
mean Value Significance
107.7 1.09 (<.05)
119.3 ~-.95 (<.05)
2.2 .33 -
2.1 -4.06 <.001
2.2 -.65 -
1.7 .65 -
2.3 2.62 (<.01)
Table

Results of the Second Experiment.

Means for the SQL and TABLET subjects and
significance levels of the t-tests.

36

perfonmance on the nonprocedural langauge (SQL) deteriorated more
than for the procedural 1language because the procedural language
conformed to their pre-ex1st1ng semantic component of memory.
| The 1nexper1enced subJects of the second experlment did not
have any. procedural.tralnlng with computers.' It would seem that
either TABLET was mone "natural”", i.e. TABLET fit the sub jects
pre-existing non-computer exper1ence better than SQL or that the
procedural experlence gained by TABLET subJeots ‘in learning the
language resulted in :performance superior to that of the SQL
sub jects. | ‘ - -
In general, the second éxperiment confinned the results of
the first but with a group of inexperienced subjects. The second
experiment also shows this experlment to be repllcable -- a prlme.

element of a good experiment.

37

6. RECOMMENDATIONS FOR LANGUAGE CHANGES

The results of this experiment show that there are problems
with the following language elements: |

1. Join in SQL. |

2. Sets in TABLET.

3. Grouping in SQL. _

vTHe queries used in this secpidn refer to the MAILORDER
database used on the final and'rétention tests, sée the Appendix.
Recommendatioﬁs concerning join problems in SQL

The differeﬁce between SQL and TABLET for join problems is
primarily due to the experience TABLET subjects'recei?ed in using
.the ADD COLUMNS command while SQL useﬁ chaining.' " TABLET
continues using ADD ROWS,;for joining but SQL uses a cohstruct
different than chaining. . _

Lochovsky [Locﬁovsky, 1978 .stﬁdied a 1language directly
based on the relational calculus and recommendéd eliminating the
joiﬁ from the bredicate 'and adding an exblicit' join
specification. At present; thev correct respénse to the query,
" "List the names.of people who.have exceeded their credit limit
and the item numberS‘of items they have charged," is

SELECT NAME, ITEMNO

FROM CHARGEACCTS, CHARGED

WHERE CHARGEACCTS.ACCTNO = CHARGED.ACCTNO

AND TOTALBILL > LIMIT. -

The joining is done.by the |

CHARGEACCTS.ACCTNOiz CHARGE.ACCTNO

in the where clause.. A possible substitute query wogid be

38

SELECT NAME, ITEMNO.
FROM CHARGEACCTS, CHARGED
JOINED BY CHARGEACCTS.ACCTNO = CHARGED.ACCTNO
WHERE TOTALBILL > LIMIT. '
The JOINED BY could be simplified to
JOINED BY ACCTNO
Since tﬁis is unambiéuous. - This syntax makes SQL é?en, less
calculus-oriented and more algebraic.
Recdmmendationsvconcerning set problemé'in TABLET:
~TABLET should make'use of the set theory background that is
50 common today. Explicit use of thé'UNION, iNTERSECT and MINUS
operators is-rgcommended. For example, the dJorrect response to
the query, "List the acqount hbmbers of accounts with credit -
ratings of 10 who have charged item 19," was
FORM RATING10 |
FROM ACCTNO, RATING OF CHARGEACTTS
KEEP ROWS WHERE RATING = iQ
FORM ITEM19 ‘
F ROM ACCTNO, ITEMNO-OF CHARGED
KEEP ROWS WHERE ITEMNO = 19 -
KEEP ROWS OE'RATING10 WHERE ACCTNO
IN ACCTNQ OF ITEM19 |
PRINT ACCTNO
The last KEEP ROWS command,‘above,-would be replaced by
FORM BOTH. | B
FROM ACCTNO OF RATING10
INTERSECT ACCTNO OF ITEM19.

39

The query is still not as succinct es the SQL-equivalent but is
based on the same concepts.
The second experiment nsed UNION, JINTERSECT and MINUS in
- TABLET. - While inexperienced SQL subjects significantly
outperformed inexperienced TABLET subjects on the first
experiment (at the‘.OOOS level), the difference on the second
.experiment was net significant. 1In fact, the means were nearly
“identical. This suggests an - improvement. due to the set

constructs in TABLET.

Recommendations concerning gfoup problems in SQL

It is tempting to use the student comments refenned to in
section 4.2 and put the GROUP BY ciause earlier‘in the SELECT.
The place it should really go is before @he‘SELECT. itself.
Making this change has famificatiens that result in a very
-procedural, TABLET-like language.

;Thevsimblest chenge‘is to make the GROUP BY seem more Iike;a‘
subordinate cléuse and not an imnerative. Using ehe»participle,
GROUPED or GROUPING would: haye this effect. For example, the
correct response te the query, "For each supplien .list the
supplier name and the everage wholesale price of ‘the items he
supplies.”, is | |

| SELECT SUPPNAME, AVG(WHOLESALE)
FROM SUPPLIES
GROUP BY SUPPNAME.
The SQL query wouid,become
SELECT SUPPNAME, AVG(WHOLESALE)
FROM SUPPLIES

GROUPED BY SUPPNAME -

o

or

SELECT SUPPNAME, AVG (WHOLESALE)

FROM SUPPLIES
GROUPING BY SUPPNAME.

Since the group restrictionvclause uses the keyword HAVING, it
would seem to be a matter of taste as to which GROUP participle
is used. The participle reduces the imperative nature shown in
GROUP BY. This also has a nice correspondence to English
sentence structure and reads well. The GROUPED BY seems to read

better than GROUPING BY, especially if a HAVING clause were to
follow. |

41

7. DISCUSSION AND éONCLUSIONS

Thse experiments can. be seen as testing 1languages at three
levels of abstraction:

1. SQL vs TABLET. The testing of the actual 1languages

involved, an engineering experiment. |

2. Calculus-like vs algebraic relational query'languages.
Testing the two types of relational query languages.

3. Nonprocedural vs procedural query languages. Extending
the results of the experiment to make statements about
query languages in general.

At level 1 we found TABLET to be superior to SQL 1in
difficult queries' in general, in several of its language
constructs and in the combination of constructs. SQL was
superior in one construct (set operations) and in 1learning and
writing time. There was little difference in the easy problems.
Thus, TABLET would be recommended when difficuit queries are the
norm. SQL has the advantage in shorter learning and writing
times and should be used if these are basic to the application,
especially if most queries will be easy. |

At this 1level of.abstraction we also make suggestions for
language changes. The experiment has éided in the evolution of
these languages.

At the next level, lével 2 our results show a superiority of
the algebraic over the c¢alculus-like language. Obviously, the
data structures used in the aigebraic langhage and the allowable
algebraic operators must be on the right 1level and be

understandable to the user population.

42

The results of this experiment contradict the intuition of
some database experts [Codd, 1971a; Date, 19771]. This
illustrates the need for testing intuition.

Level 3 is the 1level of our original hypothesis about
procedural and nonprocedural query languages. While we have not
tested all possible procedural and nonprocedural query languages,
we have tested 1languages that exemplify the two approaches. At
this level the original hypothesis has been supported: Subjects
more often wrote difficult queries correctly using the procedural
query language (TABLET) than they did wusing nonprocedural query
language (SQL). We are not arguing that the.ﬁofe procedural a
langauge is the easier it is to 1learn. A study of SQL against
any Von Neumann assembly langauge would be a rout. An assembly
language is definitely more procedural than SQL but is not at
the proper syntactic 1level. For an analysis of the comparative
syntactic levels of SQL and TABLET see [Welty, 19791].

Referring again to the cognitive model presented earlier,
the results of the experiments suggest that even people -with no
computer experience are procedurally oriented. The semantic
component may not contain elements applicable to programming
languages, but contains methods and models used in daily life.
The procedural nature of TABLET corresponds well to these
procedural methods and models.

Why, then, do many database researchers support
nonprocedural languages? While the experiments do not directly
test this question, a look at the cognitive model may help. Most

researchers tend to know many languages. They have syntactic and

u3

semantic models of many languages, database models, programming
method, etec. This strong base allows them to abstract problems
away from the procedural solutions (necessary to novices) into
nonprocedural solutions. Nonprocedural solutions have an
appealing elegance. The problem then, is that the researchers
design languages based on their powers of abstraction, forgetting

the required procedural foundations.

Y4

8. SUMMARY

Two experiments have been described testing the performance
‘of subjects in writing queries of a relationél détabase; Ip both
. eXperiments, one group of subjects learned .SQL - a
nonprocedural, reiational calculus-like query language -- and the
other group learned TABLEf -- é procedural langguge based on the.
relational algebra. The experimeﬁts tested the hypothesis that °
people more §ften writé difficult queries correctly using' a
procedurél query language than they do wusing a nqnproceduralv
query language. ‘In addition, the experiments were -uéed to
compare specific constructs in the languages in order to improve
these constructs.

The first éxperiment used 72 subjects. 7Abproximately half
the‘subjects had no computer experience and the.othek. half had
one course in -FORTRAN'or BASIC. The subjects ‘were divided into
two groups - ohe learning SQL, the other léarning TABLET. The
subjects learned thé' languages from manuals augmented with
question-answering 'sessions and ~short quizzeé. Subjects were
then tested with a final test and, three-weeks.later; a retention
test. | '

The reéults of the tests supported the hypothesis. In
addition, problems were found with several 1language constructs.
These résults “were found for the two groups as a whole and for
the experiencedisubjects. The results for the 'ihexperienced

sub jects were inconclusive.

45

A second experiment - was run testing a large number (78) of

inexperienced subjects. The subjects were divided in two groups

and the experiment was basically .identical to the
experiment. ~ The results confirmed those of the

experiment.

. Recommendations - for language changes based on

experiments have been made.

46

first

first

theée_

APPENDIX

data base - MAILORDER

u7

DEPARTMENT
~ DEPT " FLOOR
CLOTHES 3
CAMPING - 2
SHOES 3
ITEM : . '
ITEMNO DESCRIPTION . RETAIL ONHAND- REORDER ALTERNATE
7 SHEEPSKIN SLIPPER 23.00 933 7060 2
2 ACRYLIC SLIPPER 19.00 2079 2000 8
3 WOOL BLANKET 27.50 1957 2000 4
Y THERMAL BLANKET 19.50 3056 2000 19
SELLS
. DEPT ITEMNO. QUOTA
CLOTHES T 500
CLOTHES 2 . 500
CAMPING - 3 400
CAMPING . 600
SUPPLIER .
SUPPNAME ~ .LOCATION
JIM'S SPORTS BOSTON
WARMTH, INC ANCHORAGE
SUPPLIES ' . :
SUPPNAME ITEMNO WHOLESALE ONORDER
JIM™S SPORTS 7 15.00 500
JIM'S SPORTS 2 10.00 0
JIM'S SPORTS 3 16.50 500
WARMTH, INC 3 17.00 250
WARMTH, INC y 10.50 0
CHARGEACCTS .
ACCTNO NAME SEX TOTALBILL LIMIT RATING REFERREDBY
T01 JAMES LEE M 1503.97 1500 9 708
102~ SUE JONES F 296.95 - 1000 7 101
CHARGED : .
_ACCTNO -ITEMNO QUANTITY PERITEM -
701 1 g 26.00
101 3 2 27.50
102 1 1 23.00
102 2 1 15.00

Ta

12.

13.

14,

15.

16.

17.

18.

19.

FINAL
List the names of suppliers who supply item 19.

Which accounts have exceeded their credit limit? ‘List the
account numbers. ' '

Which customers with a credit rating higher than 8 were
referred by account 108? (List the customer names.)

For the Christmas season each charge account will have its
credit limit doubled. Print the account numbers and new
limits.

List the item numbers of items for which the quantity on
hand is more than twice the reorder quantity.. '

How many suppliers supply item 197

Which item or items have the highest wholesale prlce° (List
the item number.)

List the locations.of suppliers that supply item 19.
List the names of people'who have charged hiking boots.

List the descriptions of items whose alternaﬁes :cosﬁ more
than $100.

-List the names of people whose bills are more than twice the

average bill.

What .is the average credit limit of people. who have bought
item 197 ' :

List the names of suppliers located in Boston as well as the
names of suppliers who supply item 19,

List the item numbers of items supplled by Warmth, Inc that
were charged by account 107. :

List the account numbers of accounts with - credit rating of
10 that have not charged item 19, '

List the departments in which the average quota is more than
750 items.,

For each department llst the department name and the average
quota for that department. . :

List the suppliefs ,and the total number of items on order
for suppliers whose largest order is over 100 items.

48

20.
21.
22.
23.
24,
2.
?6.
27.

28.
- 29.

30.

.

List the names of suppliers that have orders for over 1000
items each of which costs $10.00 or more.

List the suppliers that. supply all the 1items sold by the
camping department.

List the departments 'that: sell only items supplied by

Warmth, Inc.

List the names of people and the item numbérs of items théy

have charged.

List the descriptions of items that need to be reordered and

.the names of suppliers that supply them.

List each item description and the description of its
alternate for items that cost more than their alternates.

List the departments located on the third floor that sell
more than 100 different items.

List the names of suppliers and the average retail price of
items they supply. '

Due to inflation the retail price of all items that need to
be reordered will be doubled. Create a table containing the
item description and new retail price.

List the account numbers with the highest total bill in each
credit rating category. (List the account: numbers ‘and the
ratings.) - .

Find the item numbers of items with a retail price over

$1000 that are.sold by the camping department and charged by
account number 109. - '

49

11.

12.

13,

13.

14,

15.

16.

17.

RETENTION

List the names of charge account customers witb a credit
rating of 10.

Which items need to be reordered? List the item numbers.

Which items with more than 3000 on hand have item 8 as their
alternate? (List the item numbers.)

List the account numbers with credit rating less than 3 that
have exceeded their credit 1limit and were referred by
account 108. ' : -

Due to inflation the retail price of each item will be
doubled. List the item number and the new price.

List the account. numbers of people who would Still be over
their credit limit if their limit were doubled. :

How many items have a retail price less than $5.007

Which account of accouhts have the 1largest total bill?
(List the account number.)

List the names of people who have'charged item'19;

On which floor is the department that sells hiking boots

.located?

List the names of people who were referred by accounts with
credit ratings of 8 or higher.

List the descriptions of items whose retail brice: is more ;
than twice the average retail price.

What is the average retail price of items whose retail price
is more than twice the average retail price. :

What is the average retail price of items sold by the

camping department?

List the item numbers of items charged by account 107 as
well as the item numbers of items supplied by Warmth, Inc.

" List the account numbers of accounts with credit rating of
10 who have charged item 19.

List the names of suppliers 1located in Boston that 'do not
supply item 19. - ' : :

List the suppliers whose average wholesale price 1is bvef '
$500.

50

18.

19.

20,

21.‘

22.
23.
24,

25.

26.
27.

- 28.

29.

30.

For each supplier list the supplier name and the average
wholesale price of the items he supplied.

List the departments and their total quotas for departments
whose highest quota is over 1000 items.

List the ratings for which the average bill for women
having that rating is over $3000.

List the departments that sell all the items supplied by
Warmth, Inc.

List the accounts that have charged only those items that
the camping department sells.

List the supplier names and the descriptions of the items
they supply.

List the names of people who have exceeded their credit
limit and the item numbers of items they have charged.

List the name of each account holder and the name of the
person who referred him for account holders with higher
credit ratings than the account they were referred by.

List the customers with credit rating of 7 who have charged
more than 100 different items. (List the names.)

List the names of customers and the average price per item
of items they charged.

For Christmas the credit limit of people who have exceeded
their 1limit will be doubled. Create a table containing
their names and new credit limits.

List the item numbers of items with the highest wholesale
price supplied by each supplier. (List the item numbers and
the supplier names.)

List the departments located on the third floor that sell
items that need to be reordered.

51

REFERENCES

Andree, R.V. (1967). Computer Programming and Related
Mathematics, John Wiley and Sons, Inc., New York.

Astrahan, M.M., and Chamberlin, D.D. (1975). Implementation of a
structured English query 1language, CACM Vol. 18, No. 10,
October, pp. 580-588.

Boyce, R.F., Chamberlin, D.D., King, W.F., and Hammer, M.M,
(1975). Specifying queries as relational expressions: The
SQUARE data sublanguage, CACM, November, pp. 621-628.

Chamberlin, D.D., Astrahan, M.M., Eswaran, K.P., Griffiths, P.P.,
Lorie, R.A., Mehl, J.W., Reisner, P., and Wade, B.W. (1976).
SEQUEL 2: A unified approach to data definition,
manipulation, and control, 1IBM Journal of Research and
Development, Vol. 20, No. 6, November, pp. 560-575.

Chamberlin, D.D., and Boyce, R.F. (1974). SEQUEL: A structured:
English query 1language, Proc. 1974 ACM SIGFIDET Workshop,
Ann Arbor, Michigan, April, pp. 2U49-26H4.

Codd, E.F. (1970). A relational model of data for large, shared
: data banks, CACM, Vol. 13, June, pp. 377-397.

Codd, E.F. (1971a). A database sublanguage founded on the
relational calculus, Proc. 1971 ACM SIGFIDET Workshop on
Data Description, Access and Control, San Diego, California,
pp. 35-68.

Codd, E.F. (1971b). Relational completeness ‘of database
sublanguages, Courant Computer Science Symposia, Vol. 6:
Data Base Systems, Prentice-Hall, New York, pp. 65-98.

Date, C.J. (1977). An Introduction to Database Systems, Second
edition, Addison-Wesley. ' ’

Denny, G.H. (1977). An introduction to SQL, a structured query
language, RA 93, May, IBM Research, San Jose, California.

Furtado, A.L., and Kerschberg, L. (1977). An algebra of quotient
relations, IFSM T.R. No. 14, February, Department of
Information Systems Management, University of Maryland,
College Park, Maryland.

Gannon, J.D., and Horning, J.J. (1975), The impact of language
design on the production of reliable software, IEEE Trans.
on Reliable Software, Vol. 1, No. 2, pp. 10-22.

Gould, J.D. (1975). Some psychological evidence on how people

debug computer programs, International Journal of
Man-Machine Studies, Vol. 7., pp. 151-182.

52

>
T e

Gould, J.D., and Ascher, R. (1975). Use of a IQF-like query
language by non-programmers, RC 5279, IBM Watson Research
Center, Yorktown Heights, New York.

Gould, J.D., and Boies, S.J..(1974). Syntactic errors in
computer programming, Human Factors, 16(3), pp. 253-257.

Gould, J.D., and Drongowski, P. (1974). An exploratory study of
computer program debugging, Human Factors, 16(30), pp.
258-217T7. _ _

Halstead, M.H. (1977). Elements of Software Science, Elsevier
North-Holland, Inc., New York.

IBM (1972). Interactive query facility user's guide, GH-1223.

Lochovsky, F.H. (1978). Data base management system user
performance, Technical Report CSRG-90, April, Computer
Systems Research Group, University of Toronto.

Love, T. (1977). An experimental investigation of the effect of
program sturcture on program understanding, Proc. ACM
Conference on Language Design and Reliable Software, SIGPLAN
notices, Vol, 12, No. 3, March.

Miller, L.A. (1974). Programming by non-programmers,
International Journal of Man-Machine Studies, Vol. 6, pp.
237-260.

Miller, L.A., and Becker, C.A. (1974). Programming- in natural
English, RC 5137, November, Watson Research Center, Yorktown
Heights, New York. ‘

‘ Miller, L.A., and Thomas, J.C. (1977). Behavioral issues in the

use of interactive systems, International. Journal of
Man-Machine Studies, Vol. 9, pp. 509-536.

Reisner, P. (1976). Use of psychological experimentaiton as an
aid to development of a query language, IEEE, Trans. on
Software Engineering SE-3, 3(1977), pp. 218-229.

Reisner, P., Boyce, R.F., and Chamberlin, D.D. (1975). Human
factors evaluation of two data base query languages -~
SQUARE and SEQUEL, Proc. AFIPS 1975 NCC, Vol. by, AFIPS
Press, Montvale, New Jersey, pp. 447-452.

Seymour, W. (1978). Diary of a human factors experiment, TR
T7-14, January, Computer and Information Science
Department, University of Massachusetts, Amherst,
Massachusetts.

Shneiderman, B. (1976a). Exploratory experiments in programmer

behavior, International Journal of Computer and Information
Science, Vol. 5, pp. 123-143.

53

Shneiderman, B. (1976b). Human factors experiments in
programming: Motivation, methodology and research
directions, ISM . TR No. 9, September, Department of
Information Systems Management, University of Maryland,
College Park, Maryland. '

Shneiderman, B. (1977). ‘Measuring computer program quality and
comprehension, International Journal of Man-Machine Studies,
VO].. 9’ ppo 1-13.

Shneiderman, B. (1978). Improving the human factors aspect of
data-base interactions, ACM TODS, Vol. 3, No.. 4, December,

pp. 417-439.

 Shneiderman, B., and Mayer, R. (1975). Towards a cognitive model
of programmer behavior, TR No, 37, August, Computer Science
Department, Indiana University, Bloomington, Indiana.

Shneiderman, B., Mayer, R., Mckay, D., and Heller, P. (1975).
Experimental investigations of the utility of detailed flow
charts in programming, CACM Vol. 20, No. 6, June, 1977, pP.
373-381.

Sime, M.E., Green, R.R.G., and Guest, D.J. (1973). Psychological
evaluation of two conditional constructions used in computer
languages, International Journal of Man-Machine Studies,
Vol. 5, pp. 105-113.

Stemple, D.W., Becker, M., Welty, C., and Mayfield, W. (1978).
TABLET: The algebra based language for enquiring of tables,
TR 78-19, November, Computer and Information Science
Department, University of Massachusetts, ~Amherst,
Massachusetts.

Stonebraker, M., and Rowe, L.A. (1977). Observations on data
manipulations languages and their embedding in general
purpose programming languages, Memo No. UCB/ERL MT7/53,
July, Electronic Research Lab, University of California,
Berkeley, California.

Thomas, J.C., and Gould, J.D. (1975). A psychological study of
query by example, AFIPS, Vol. 44, ~ .National Computer
Conference, pp. U439-445. .

Weinberg, G.M., and Schulman, E.L. (1974). Goals and performance
in computer programming, Human Factors, 16(1), pp. 70-717.

Weissman, L. (1974). Psychological complexity of computer
programs: An experimental methodology, SIGPLAN notices,
June, pp. 25-35.

Welty, C. (1979). A comparison of a procedural and a
nonprocedural query language: Syntactic metriecs and human

factors. - COINS TR 79-9, University of Massachusetts, -

Amherst, Massachusetts.

54

s

[

Youngs, E.A. (1974). Human errors in programming, International
Journal of Man-Machine Studies, Vol. 6, pp. 361-376.

Zloof, M.M. (1975). Query by example, Proc. 1975 NCC AFIPS, Vol.
4y, pp. 431-438. :

55

