Praoblems, Plans, and Programs

Elliot M. Soloway
Beverly Wool#f

COINS Technical Report 79-18

Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

This work was supported by the Army Research Institute for the
Behavioral and Social Sciences, under ARI Grant No. DAHC19-77-G-0012.

Abstract

Being able to make abstractions is @ critical skill in today’s
fast changing world. We report herein on material developed which
emphasizes this skill‘in the context of teaching introductory LISP
problem solving and programming. This enterprise is based on a
taxonomy of problems we developed which groups ostensibly different
problemg into classes based on wunderlying similarities. Moreover.
similarities among programs in a8 class 1lead to the development of
plans, which are program templates with slots, and annotated with
explanatory comments. Exceptions and further generalizations to - the
plans are considered. Finally, we speculate on the utility of this
approach with respect to non-applicative programming languages (e.g..

FORTRAN, APL, PASCAL).

1. Introduction

Since the specific content of courses is changing so quickly, the
challenge to education is teaching students how to learn [Simon 781.
In this regard, an important skill is the ability ¢to develop
abstractions, i.e.. éo construct classification schemes which highlight
similaritieg and differences. In this paper we shall outline the
content of a course which attempts to teach this skill in the context
of teaching introductory LISP programming and problem solving. The key
to this enterprise has been the development of:

1. a taxonomy of problems, i.e., a classification scheme which

groups problems into classes based on specific criteria, and
2. a set of plans, each of which captures the essential features

of a class of problems, and corresponding solution programs.

In this paper, we begin by developing a scheme for classifying the
problems often found in introductory LISP courses. We then examine the
LISP programs which solve problems in the various classes and abstract
higher level structures called ‘plans.’ Here we view a plan as a
program template plus comments describing the goals and reasons for the
various expressions in the template. Next, we build on the set of
plans to include new problems. Finally, we speculate briefly on the
vtility of our taxonomy with respect to programming in languages such

as FORTRAN, APL, or PASCAL.

PAGE 2

2. PREDICATE Tuype Problems and Programs
In order to teach a "simple" type of recursion {1), one often uses
the following two problems:

Write a program which returns TRUE if and only iéf
all the elements in the input list are atoms.

The LISP code for this problem could be:

(IS-LIST-OF-ATOMS (LST)
(COND
((NULL LST) T)
((NOT (ATOM (CAR LST))) NIL)
(T (IS-LIST-OF-ATOMS (CDR LST))))})

Nex ¢,

Write a program which returns TRUE it and only if
the first argument (which is an atom) is a member of
the second argument (which is a list),

The code for this problem could be:

(MEMBER (ARG LST)
(COND ‘
((NULL LST) NIL)
((EQ. (CAR LSBT) ARG) T)
(T (MEMBER ARG (CDR LST)))))

I# we step back from the particulars of the problems and ¢the
programs, we notice first tﬂét both problems belong to the class of
PREDICATES., i.e.. problems which require True or False for an ansuwer.

Moreover, thg first problem is an AND-PREDICATE type, since it requires

{1) By "gimple” we mean that the answer to the problem is available "at
the bottom"™ of the recursion; students often skip over the fact that
the answer must still be ‘“passed back up." We feel ¢that this
misunderstanding is a fair price to pay for easing students into
recursion; when the next type of problems is introduced, the notion of
recursion becomes more rtefined. In Section 8, we explicitly contrast
these two "types" of recursion.

PAGE 3

that ALL the elements of the input list have the desired property, while
the second problem is an OR-PREDICATE type, since it requires only that
one of the elements have the desired property. Next, if care is taken
in writing the programs, similarity in function can be reflected in the
programs. Below we list a template which captures the commonalities and

differences in the above two programs. {1}

(predicate (LST ARG1 ARG2 ...)

(COND
¢ (NULL LST) <T, NIL>)
((test (CAR LST) ARGL ...) <NIL, T>)

(T (predicate (CDR LST) ARG1 ARG2 ...))))

Note that the lowercase names represent variables or glots that are
filled in #for particular problems, e.g.. in MEMBER 'test’ would be
replaced by ‘EQ@’. The angle brackets and the comma, e.g.. <T, NIL> in
clause 1e, represent choices, one of which must be chbsen.

A naked template is not enough; in order to be able ¢to truly

understand the reiationships abstracted in the template, one needs to

add explanatory comments to the «clauses of the template. Thus, we
define a plan to be a template plus explanatory comments. The intuition

is that a plan represents actions to be performed and reasons and goals
for those actions. For example, a key goal in LISP programming is the
reduction of a problem into identical "smaller" problems; recursion 1is
at the heart of this process. Comments reflecting this point could be:
{1} The notation we will use to refer to clauses in the CONDitional
expression is:

(COND (1p, 1le)

(2p, 2e)
(3p, 3e))

PAGE 4

Tegplate Clause Explanatory Comment
2p ' Do it to the first; test the first
element.
3e Do it to the rest; continue processing.
ip Is the list empty? Are we done processing?

The goals of the different types of PREDICATES must also be
reflected in this template and in the comments. For example:, since
" I8-LIST-OF~-ATOMS is an AND-PREDICATE it must visit each member of the
list before it can respond True, hence only when the empty lis£ is
detected in 1p is IS-LIST-OF-ATOMS’s wovrk really done. On the other
hand, if MEMBER satisfies clause 1p, then it has not found the element
with the desired property, and since it 1is an OR-PREDICATE it must
return FALSE.. or in LISP, NIL. Comments explaining this aspect of the

template could be:

Template Clause Explanatory Comment
le Return a truth valve:
AND-P CATE -~ if this point is

reached then all the elements must
have passed ¢the ¢test in 2p, thus
return True.

OR-PREDICATE -~ if this point is
reached then a single element which
satisfies the test in 2p has not been
found, thus return False.

2e Return a truth value:
AND-PREDICATE - Aha, found an element
which does not meet the condition in
2p; thus AND could never be true, so
stop processing and return False.

OR-PREDICATE - Aha, found an element
that satisfies the desired condition
in 2p; quite processing early and
return True.

PAGE 5

Throughout the rest of this paper we shall be engaged in the

enterprise exemplified above, namely, looking for commonalities among

problems, among programs. &and abstracting plang based on these
observations. We have wused the material in this paper in teaching

introductory LISP three times. and have found the abstractions to be
powerful aids in teaching students problem solving and LISP programming.
In this process, we have also stressed the more important meta-lesson
that +finding abstractions is a good idea. Thus, we have no objections
when students argue‘ about our particular classification scheme, or
encoding of the programs or templates. In fact, we encourage them to do
50, since a discussion about alternative abstractions is precisely the
activity we try to foster.

Before proceeding, we need to make two further comments about the
use of plans and templates. First, we do not view a template as a type
of equation into which numbers or functions can be blindly plugged. We
are all aware of the misuse of equations in fields such as physics and
engineering [cf. Clement, Lochhead, and Soloway. 19791. We stress that
a template without explanatory comments explaining the why is not all

that useful; in fact, blind substitution can result in major errors.

A second issue is the level of abstraction of the plans described
here. One could imagine plans which do not have as strong a procedural
codponent as ours do, i.e., one could describe MEMBER without a
commitment to either recursion or iteration. The development of more
abstract plans is not inconsistent with our major teaching goals,
namely, teaching students about constructing abst;actions. The major
danger we see, however, is that without an explicit procedural

component, plans will tend to look more like algebraic equations. Since

PAGE 6

a discussion of the merits of this issue are beyond the scope of this
paper (céf. Papert [1971]), we only point out that recent empirical
studies have indicated that programming can enhance problem solving
ability, when compared with using algebraic equations as a solution
langugge [Clement, et al., 19791 With this caveat in mind, we
encourage the enterprise of finding even more general abstractions. (We

return to this point in section 9.)

2.1 Attacking a Problem: Using Plans o Ask Questions

Another way to look at the knowledge Qurrounding a plan is in terms
of gquestions which need to be answered in order to develop a corrgct
program solution. For example, if the student can determine that ¢the
problem is in the PREDICATE class, then he/shg can ask:

1. Is the problem an OR-PREDICATE or an AND-PREDICATE?

2. Which of éhe arguments will be examined, i.e., what is ¢the

CDRing variable?
3. What property or test must be applied to the head (typical)

element?

Answers to these questions determine which components of the PREDICATE
template are selected for the desired final program and determine houw
the slots are to be filled. For example, an answer to question 3 will
determine how the slot in <clause 2p will be instantiated. {1} Of
course, in order to answer the questions, the student needs to have a
1) In order to test the completeness of these questions, we have
written a computer program which first queries a user with the above
questions (plus two other bookkeeping questions) and generates a program

based on the questions. Success with this program suggests that we have
isolated the key components of certain types of problems.

PAGE 7

grasp of the reasons why these questions are in fact critical. In
effect, the questions serve as a systematic strategy for attacking

problems.

3. BUILDER Type Problems and Programs

In order to develop a more complete and sophisticated understanding
of recursion, problems and programs of the following sort might be
presented.

Write a program which deletes an atom equal to ARG
from the input list

The code for this program, REMOVE-MEMBER, might be:

(REMOVE-MEMBER (LST ARG)
(COND
((NULL LST) ())
((EG (CAR LST) ARG) (CDR LST))
(T (CONS (CAR LST) (REMOVE-MEMBER (CDR LST) ARG)))))

We call problems and programs of this sort BUILDERS:; the defining
.characteristic of the BUILDER problem class is that a list is returned
which contains all the elements which did not satisfy the test criteria,
plus the result of some action (remove, insert, etc.) on the elements

which did. Another example of a BUILDER type problem would be:

Write a program which deletes all the atoms equal to
ARG from the input list.

And the code for this problem might be:

(REMOVE-ALL-MEMBERS (LST ARG)
(COND
((NULL LSBT) ())
((EQ (CAR LST) ARG) (REMOVE-ALL-MEMBERS (CDR LST) ARG))
(T (CONS (CAR LST) (REMOVE-ALL-MEMBERS (CDR LST) ARG)))))

PAGE 8

A number of abstractions can now be made. First, we see that
BUILDERS bhave OR-like and ANb—like functions just as PREDICATES do;
REMOVE-MEMBER is an OR-BUILDER since it is satisfied when the first
occurrence of the desired element is found, while REMOVE-ALL-MEMBERS is
an AND-BUILDER, since it must wvisit all the elements of the list.
Second, if we compare the code in the above two programs, we see that
they are the same except for clause 2e. Also, we can abstract from the
particular test in clause 2p to generate the following first pass at a

template for BUILDERS.

(builder (LST ARG1 ARG2 ...)

(COND
¢ (NULL LST) ())
((test (CAR LST) ARG1 ...) < (CDR LS8T).

(builder (CDR LST) ARG1 ...) >)
(T (CONS (CAR LST) (builder (CDR LST) ARG1 ARG2 ...)))))
For an OR-BUILDER. such as REMOVE-MEMBER, the #first alternative in
clause 2e is selected, since the list need not be further traversed.
However., for an AND-BUILDER, such as REMOVE-ALL-MEMBERS, the second
alternative is required in order to continue down the list.
Now:, clause 2e in the above BUILDER template is not quite general
enough to handle other BUILDER problems. For example,
Write a program SUBSTITUTE which replaces the #first
occurrence of the atom OLD with the atom NEW in the
list LST.
The LISP code for this problem is:
(SUBSTITUTE (OLD NEW LST)
(COND
{ (NULL LST) ())

((EQ (CAR LST) OLD) (CONS NEW (CDR LST)))
(T (CONS (CAR LST) (SUBSTITUTE OLD NEW (CDR L8T))))))

The key issue is that now some action must be performed on the desired

PAGE 9

element. Taking into consideration the AND-BUILDERS a revised BUILDER
template would be {1):
{ builder (LST ARG1 ARG2 ...)

(COND

((NULL LST) O)

((test (CAR LST) ARG1) < (action LST).

(CONS (action (CAR 1lst)
(builder (CDR LST) ARG1 ..))>)

(T (CONS (CAR LST) (builder (CDR LST) ARG1 ARG2 ...)))))
Thus, in the REMOVE-MEMBER case, the ‘action’ slot would be filled by
‘CDR’, while in the SUBSTITUTE case it would be filled in by ‘(CONS NEW
(CDR LST))". |

Comparisons between PREDICATES and BUILDERS can also be made. For
example, we see that in clause Je the BUILDER template includes the list
building function CONStruct, whereas the PREDICATES do not. Also, while
NIL and () represent the same object in LISP, they can have different
interpretations in different contexts. Thus, though NIL is returned in
clause 1e in both templates, the NIL in each case means something
different. The plan comments must explain that the NIL in the PREDICATE
case stands for False, while the NIL in the BUILDER case stands for the
empty list, onto which elements of the list will be CONSed. Finally,
exactly the same set of questions which were used in the PREDICATE case
can be used in the BUILDER case. Again, comments must point out that
the i ijon of OR and AND in either case is different, which
results in different code.
I# we move one more step back, we can see that underlying BUILbER

problems and programs is the notion of copuing. In particular, consider

{1> Counterexamples can readily be found to this template, e.g.. UNION.
We will address this issve shortly.

PAGE 10

the program COPY which returns a copy of the input 1list by actually
tearing it apart and putting it back together:
(COPY (LST)

(COND

¢ (NULL LST) ())

(T (CONS (CAR LST) (COPY (CDR LST))))))

The blank line in the COND expression is there on purpose. It indicates
that BUILDERS have a basic shell, and that all that changes is the
particular test for the desired elements, and the action required on

them.

PAGE 11

4. SELECTOR JType Problems and Programs

The third class of problems and programs which we shall consider
here can be called SELECTORS; e.g..» assuming we have a built-in
predicate, LGT, which is Lexicographically Greater Than. the following

problem would be a SELECTOR:

Write @ program which returns the first atom in the
input 1list which 1is Lexicograhically Greater Than
the given atom.

The code for this function might be:

(SELECT-LGT (LST ARG)
(COND
((NULL LST) ())
((LGT (CAR LST) ARG) (CAR LST))
(T (SELECT-LGT (CDR LST) ARG))))

By this time, one can predict that in this class also there will be
OR-SELECTORS and AND-SELECTORS. The above problem is an OR-SELECTOR;
replacing "first" with "all" will make it an AND-SELECTOR.

The template for this type of problem is: {12}

(selector (LST ARG1 ARG2 ...)
(COND
((NULL LST) ())
((test (CAR LST) ARG1 ...) <(CAR LST),
(CONS (CAR LST)
(selector (CDR LST) ARG1 ...) >}
(T (selector (CDR LST) ARG1 ARGZ2 ...))))

As evidenced by a comparison of the BUILDER plan and the SELECTOR plan,
the key difference between these two types of problems is that SELECTORS
do NOT return elements which do not meet the test requirements, while
£1) Consistent with clause 2e in the BUILDER template, note that clause
2¢ in the SELECTOR template will probably need to be generalized as

follows:
Claction (CAR LST)), (CONS (action (CAR LST)) (selector (CDR LST)...))>

PAGE 12

BUILDERS do, i.e., compare clauses 3e and 2e in each template. Clearly,

comparisons to the PREDICATE plan can also be made.

5. A YTaxonomy of Praoblems

The taxonomy described in the preceeding sections can be neatly
depicted in a tree structure (see Figure 1); there are three classes of
problems, each class having a similar structure. The basis for this
grouping can Pe traced to the work of McCarthy [1965]1, in developing
LISP, to Friedman [1965], who has written an excellent text for LISP,
and to Hardy [19751, who uses the template idea in a program synthesis
system.

We do not claim uniqueness for this scheme. As we note in the
concluding rtemarks, we feel that other problems and other languages
might require other classification characteristics. Nonetheless, ¢he
key point is that looking for abstractions is a powerful idea, and the
tree in Figure 1 is presented to the students as one concrete example of
this enterprise to follow. Moreover, finding exceptions (see next
section) and developing new structures to accomodate the inconsistencies

is a powerful learning technique (cf. [Piaget, 19691).

b. neralizi the Plans to Handle an Exception

a—

The problemv
Write a program which takes the union of two lists.
is an AND-SELECTOR:; each element of the first list is visited to see if
they are members of the second 1list, and if so, such elements are

discarded. However, the code

OR AND

PREDICATES ///fg}LQEfi\\ SELECTORS
AND Or AND

MEMBER ISLAT REMOVE- REMOVE-ALL~- SELECT-LGT SELECT-ALL
MEMBER MEMBERS LGT
Figure 1.

A taxonomy of problems.

PAGE 13

(UNION (LST1 LST2)
(COND

((NULL LST1) LST2)

((NOT (MEMBER (CAR LST1) LST2))

(CONS (CAR LST1) (UNION (CDR LST1) LST2))

(T (UNION (CDR LST1) LST2))))
does not completely follow the template for AND-SELECTORS. That is, in
clause {e UNION returns the second list. while the template suggests
that NIL, the empty list, be returned.

Clearly, what needs to be done is to generalize the SELECTOR plan.
However, what is most interesting about this apparent inconsistency is
not the specific change to the plan, but rather, +the process of
recognizing a conflict between an example and an abstraction. Becoming

aware that abstractions often admit of exceptions is precisely the kind

of problem solving skill that one wants to encourage.

7. . Generalizing the Plans to Handle Stvuctured Lists

In the preceding discussion we have assumed that the input 1lists
would be simple lists of atoms, e.g., (A B C). However, if we want to
input structured lists, e.g., (A B (C D) E B), some additional machinery
must be developed. Simply put, a new line of code needs to be added to
“catch" the possible list element before EQ {1} is encountered, and the
program must call itself again on this portion of the list, as well as
on the rest of the list. {2} Thus, if we wanted to‘write REMdVE—MEMBER
to handle this type of 1list, the code for this new program
REMOVE-MEMBER~-# {3}, might be:
{1} We assume here that EQ is undefined if its arguments are not atoms.
E?;PThis observation was pointed out by John Lowrance in a course on

{3} The naming convention of # for procedures which require double
recursion is taken from FriedmanL19741].

‘

PAGE 14

(REMOVE-MEMBER~# (LST ARG)
(COND

¢ (NULL LST) NIL)
((LISTP (CAR LST)) (CONS (REMOVE-MEMBER-#

) (CAR LST) ARG)

(REMOVE-MEMBER -
(CDR LST) ARG)))

((E@ (CAR LST) ARG) (REMOVE-MEMBER-# (CDR LST) ARG))
(T. (CONS (CAR LST) (REMOVE-MEMBER-%* (CDR LST) ARG)))))

- Two obserQétions can now be made. 'first. students notice that the
above OR-BUILDER does not work exactly like the old REMOVE-MEMBER, i.e..
REMOVE-MEMBER-# will delete the first occurrence of the desired atom
from each o#u the sublisﬁs; while REMOVE-MEMBER will delete only the
first occurrence of the desired atom from the simple, non—embedded list.
While this generalization is consistent with what an OR-BUILDER does, it
is nonetheless extending is scope. Based on this observation, students
quickly examine the AND-BUILDER case to see if it too will be extended.

Second, in trying to see how to make AND-PREDICATES and
OR-PREDICATES work on structured 1lists, students encounter a snag:
BUILDERS have a CONS in clause 2e¢ in order to bind together the resuits.
but PREDICATES can’t use a CONS. To deal with this problem they invent
the analogue to the list builder CONS, namely, the logical builders AND
and OR. €1} Thus, the code for the OR-PREDICATE. MEMBER-#, would be
(MEMBER-# (LST ARG)

(COND

((NULL LST) NIL)

((LISTP (CAR LST)) (OR (MEMBER-4# (CAR LST) ARG)

(MEMBER—-# (CDR LST) ARG)))

((EQ (CAR LST) ARG) T)
(T (MEMBER-# (CDR LST) ARG))))

{1} Do not confuse the LISP functions AND and OR with the abstract
notion of AND and OR with respect to PREDICATES, BUILDERS, etc.

PAGE 15

In both of the above cases, key program examples are used to make
analogies and adjustments to the ans. Since the plans serve as a
basis for generating programs, this "little effact" can actually have
far-reaching effects! Here is another case in which the utility of

thinking in terms of abstractions is demonstrated.

8. Tuwo Issyes: Analogies Between Lists and ers, and Types of
Recursion

We have developed a great deal of machinery in order to cope with
problems about lists. It would be quite useful if, in looking at a new
data type, e.g., numbers, some of that machinery might carry over to the
new domain. While we have not as yet worked out this aspect in detail.
some prelimenary observétions might be thought-provoking.

Consider the following program PLUS, which adds ¢two numbers
together:

(PLUS (N1 N2)
(COND

((ZEROP Ni) N2)

(T (ADD1 (PLUS (SUB1 N1) N2)))))

Now recall the COPY program. An analogy can be made between the two
programs by ~noting that if PLUS were given two numbers, n and zero, to
add, PLUS would eFFectivélg return a copy of the or;ginal argument, n.
Thus, one can point out that in the number domain, ADDi (and PLUS) can
serve as a "NUMBER-BUILDER" just as CONS served as a LIST-BUILDER and
AND/OR served as LOGICAL-BUILDERS. {1}

{1) Also. note that ZEROP and NULL serve analogous functions. {Friedman
19741

PAGE 16

Now, consider the following code for PLUS

(PLUS (N1 N2)
(COND
((ZEROP N1) N2)
(T (PLUS (SUB1 Ni) (ADD1 N2)))))
After some consternation, students come to realize that ¢this PLUS is
adding "on the way down" while the previous PLUS is adding "on the way
back up." Two observations quickly follow. First, students realize that
this latter PLUS "looks like" a PREDICATE program, since the answer is
actually available "at the bottom" in both cases. i.e., there is nothing
to do but pass the answer back up. Next, students typically ask “"well,
can‘t we make COPY build on the way down too, i.e., can’t we move CONS
inside?" The students go on to modify COPY to include a second argument
which is used to hold the list being built "on the way douwn, " e.g..
(COPY (LST1 LST2)
(COND
((NULL LST1) LST2)
(T (COPY (CDR LST1) (CONS (CAR LST1) LST2)))))
The students also quickly see how to modify the BUILDER and SELECTOR

plans to incorporate this type of list construction. This exericse

makes explicit the different types of recursion actually being used.

?. Concluding Remarks

Once the enterprise of finding abstractions becomes ingrained,
generalizations start to pop up all over. For example, the utility of
MAPping functions is readily recognized; .MAPping functions are, in
effect, built-in templates. After the BUILDER ‘MAPCAR’ is introduced.

then PREDICATE MAPping functions such as MAPOR and MAPAND follow quite

PAGE 17

naturally. Or, when the problem of REVERSing a list is solved, the
students come to see that working from the left is not sacred. Thus
Aperators such as .RAC, RDC, and SNOC, which are counterparts to CAR,
CDR, and CONS, but which work from the +right. come into being <{1).
Moreover., one can see how these new functions can systematically replace
CAR, CDR, and CONS in the templates and plans.

As more and more examples of problems and programs are examined,
the 1level of the plans grows further and further away from actual LISP
code. Consider this problem:

Write a program wich returns True if and only if
every other element in the input list is an atom.

In order to accﬁmodate this AND-PREDICATE. we need to generalize clause
3e to permit "bigger chunks" of the list to be consumed in the recursion
step, i.e..

(predicate (CDR (CDR LST)))

Problems which require that clauses 2p and 2e also be generalized can be

readily generated. The result is that the plans ——— the templates and
the comments ——— become more abstract. For example,
(predicate (argument list)

(COND

((NULL list) < T, NIL >)

((test element of CDRing variable) < NIL, T 2>)

(T (predicate (reduce CDRing variable)))))
More thought is required to use such plans; students can not count on
making simple substitutions in order to produce correct solutions.
Nonetheless, these abstractions provide a context in which to think

about a particular problem or program.

{1} The names RAC, RDC, and SNOC are also taken from Friedman [19743:

PAGE 18

At this point, a valid question to ask is: what do the particular
generalizations discussed in this paper have to do with programming in
BASIC, FDRTRAN} APL, or PASCAL? Clearly, one could wuse function
subprograms to mimic the functional decomposition used in LISP, but the
particular taxonomy of PREDICATES, BUILDERS, and SELECTORS may not be
valid. The major types of problems addressed by LISP are those which
deal with non—numeric entities structured into lists. FORTRAN, APL,
etc. have arrays and numbers as key data types, e.g.. a BUILDER might
not have @ clean analogue in the context of arrays. Nonetheless, the
search for problem—-program abstractions may prove worthwhile. For
example, in teaching introductory BASIC, we emphasized a class of
problems based on the theorem in mathematics which states that all
functions can be approximated by a series expansiqn. We dubbed the
program structure which captures this set of problems the “running-total
template', e.g..

FOR I =1 TOn
TOTAL = TOTAL {+, #} new term
NEXT I .
This generalization was quite well received by the students.

Our classroom experience with the LISP material has been exciting
and rewarding. We felt that, generally speaking, the students developed
a keen understanding of problem solving and programming in LISP and an
appreciation for the enterprise of finding abstractions, as demonstrated
by their participation in class discussions and by their homework. It
would be very interesting to follow them to see if this approach has any
lasting effect. Currently, we are encoding the knowledge described in

this paper about problems and programs into the knowledge base of a

PAGE 19

computer—-assisted instruction system, MEND-II [Soloway, et al., 19791.
Possibly in this context, more controlled experiments can be performed

to ascertain the effect of our approach.

PAGE 20

owled nts
We have had the good fortune to discuss this work with a number of
different individuals; we greatly appreciate their efforts. Thank you
Jef# Bonar, Dan Corkill, Allan Collins, Dan Friedman, Steve Levitan,
John Lowrance, Edwina Rissland, and Piet Vermeer. We would also like to
thank Janet Turnbull whose quite competence facilitated our getting this

paper “in shape and out the door on time. "

PAGE 21

Bibliography

Clement, J., Lochhead, J.. and Soloway. E. (1979) "Translating Between
Symbol Systems: Isolating A Common Difficulty in Solving Algebra
Word Problems," COINS Technical Report 79-19, Computer and
Information Science Department, University of Massachusetts,
Amherst.

Friedman. D. (1974) The Little LISPer, Science Research Associates.

Hardy, 8. (1975) "Synthesis of LISP Functions #rom Examples," Fouz tu
International Joint Conference on Artificial Intelligence, TlLi.. ...
U.S. S R.

McCarthy, J., et al. (1965) LISP 1.5 Programmer‘s Manual, MIT Press,

Cambridge, MA.

Papert, S. (1971) “Teaching Children to be Mathematicians versus
Teaching about Mathematics," MIT A.I. Lab Memo 249, Cambridge. MA.

Piaget, J. and Inhelder., B. (1969) Psuchology of the Child, Basic
Books., NY. -

Simon, H. (1978) ‘“Problem Solving and Education," abstract o+ o
presentation at the Conference on Problem—Solving and Educatiun:
Issues in Teaching and Research, Carnegie~Mellon University,
Pittsburgh.

Soloway, E., Rissland, E., Bonar, J., Vermeer, P. and Woolf, B. (1979)
“A Description of the ICAI System MENO-II, " Department of Computer
and Information Science, University of Massachusetts, Amherst, in
preparation.

