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ABSTRACT

An enhancement to program testing by evaluating both a specification
and an implementation i; described. This evaluation is used to partition
the set of input values into subdomains and to analyze the associated
computations. Three properties of consistency between a specification
and an implementation, which are based on this partition, are propoéed.
An approach to demonstrating each of the three consistency properties‘is
outlined, and the proposed method is illustrated. A testing strategy
based on both the implementation and the specification is presented. The
feasibility of automating this method is discussed. By demonstrating the
consistency between a specification and an implementation, and ascertain-
ing the consistency through actual execution, assurance in the reliability

of the implementation is established.



1. INTRODUCTION

To date, tools to assist in program testing have focused on structural
testing. These tools attempt to achieve some level of program coverage
based on the program's structure. Typical criteria for coverage are exe-
cuting all statements, executing all branches, and executing all paths.

Some of the structural testing tools that have been developed include
dynamic testing, symbolic execution, and program mutation systems. Dynamic
testing systems [BAL69, FAI75, HUA78, RAM75, GAN78, STU73] monitor Program
execution and provide an 9xecution history profile, which may assist the
user in selecting data to achieve the desired coverage. Symbolic execu-
tion systems [BIC79, BOY7S5, CLA76, HOW77, HUA7S, KIN76, MIL7S, RAM76, VOG78]
represent the domain and computation of a program path by algebraic con-
straints and expressions. These representations can be examined to assist
in the selection of test data that will cause execution of this path. Some
systems [BIC79, BOY75, CLA78, RAM76] automatically generate test data for
the selected paths and some [BIC79, CLA78] automatically select paths to
satisfy a specified program coverage criterion. Program mutation tocols
[HAM77, DEM78] systematically introduce errors into a program and then de~
termine if the execution of the mutated bProgram on user-provided test data
pProduces erroneous output. By seeding errors into each branch and statement,
these systems determine whether the statement and branch coverage criteria
are satisfied by the provided test data.

A major drawback to structural testing is that it ignores the program's
specification. By basing analysis solely on the program's structure, aépects
of the program's specification that were neglected in the implementation may
not be detected. Furthermore, the use of Program specifications as a guide

in the selection of test data is not exploited. Goodenough and Gerhart



[GOO76] havé demonstated the value of employing specifications in the test
data selection process. Howden [HOW?Q&] has studied the effectiveness of
several program validation techniques and proposed a functional testing
method [HOW79b), which requires that both the program specification and
implementation be examined. Weyuker and Ostrand [WEY80] have proposed a
method that partitions the set of input data into subdomains by analyzing
both the specification and the implementation. Error detection is then
ehhanced by wisely selecting test data from each subdomain.

We propose to explore methods for automatic evaluation'of both the
program specification.and implementation. This evaluation will be used
to partition the set of input values into subdomains, to analyze the
associated computations, and to astutely select data to test the program.
In this paper, we examine a method for dgterm@ning and analyzing these sub-
domains; we discuss several of the problems we.have encountered and the
feasibility of automating this approach. To facilitate the presentation,
we assume that the given specification is correct; thus we are considering
the correctness of an implementation with respect to this specification.
The next section describes the form of program specifications we will cén—
sider here. We present a common representation for program specifications
and implementations and define the subdomains into which the set of input
data is partitioned. The third section defines consistency properties
between the program specification and implementation, which are based on
this partition. The fourth section first outlines a technique for finding
the subdomains and then considers methods for demonstrating whether the
consistency properties hold. The fifth section proposes a testing strategy,
which selects test data from each subdomain. In the conclusion, several

areas of future research are discussed.
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2. PROBLEM REPRESENTATION

During the development of a program, the problem to be solved is
represented by successively more elaborate descriptions of the proposed
program. The initial representation of the problem is a requirements
document, an informal description of the desired program behavior. From
this document, a program specification is developed as a solution to the
problem. The specification is refined until finally resulting in an im-
plementation, a representation in a programming language. The program
séecification and program implementation are intended to be representations
of the same problem at different levels of abstraction. We intend to de-
velop an evaluation technique to éxploit the similarities between thé speci-
fication and implementation. To allow this evaluation, a common representa-
tion for the specification and implementation is desired.

A program specification identifies the procedures and their inter-
actions. A procedure specification describes a procedure's intended behav-
ior. To enable meaningful analysis, the function of the procedure must be
described in a formal specification language, one whose syntax and semantics
are precisely defined. There are basically two techniques for formal speci-
fication - input-output specifieation and operational epecification [LIST9].
By either technique, the specification‘must be complete and unambiguous in
order to correctly describe the intended function as a mapping from the in-
puts to the outputs. Thus, one and only one output value is specified for
each input value.

By the technique of input-output specification, the relationships
between the input values and the output values are described by pairs of
assertions. Whenever the input values satisfy an initial assertion, a

correct implementation of the procedure will compute output values satisfying



the corresponding final assertion. The technique of input-output speci-
fication has been used extensively in the inductive assertion method of
program verification [LON75].

An operational specification differs from an input-output specification
in that transformations on the input valueé are described explicitly.
Operational specifications may take on several forms such as input domains
with corresponding output computations, decision tables, procedure designs,
and correct implementations. For the analysis method presented here, the
Qperatiénal type of specification is considered because it provides more
information. Many of the ideas, however, are applicable to input-output
specifications as well. The applicability of this method to decision
tables, which are a well-defined and restricted form of operational speci-
fication, has been examined [RIC79].

An example of an operational specification is given in figure 1. This
specification describes the procedure TRAP, which computes the area between
a curve and the x-axis by the trapezoidal method. A procedure implementa-
tion of TRAP appears in figure 2. This procedure will be used throughout
this paper to demonstrate the analysis method.

An operational specification defines the intended function of a pro-
cedure. This function is usually composed of partial functions, where.
each partial function is defined over a subset of the problem domain. An
operational specification S, therefore, can be‘represented as a set of

subepecifications {sl. Sy eeer Sy | 1sM<w}.* For each subspgcigiéﬁtion

*The general form of an operational specification must allow an infinite
number of subspecifications since some specification languages allow a
notation for indefinite repetition. In addition, any subspecification
may define a class of related partial functions that differ only by the
number of repetitions of some transformations.
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Description .
TRAP computes the AREA between a curve F and the x-axis from x = A~

to x = B by the trapezoidal rule using N intervals of size (B-3)/N.

Interface
TRAP (function F(X: real): real;
A: real; B: real; N: integer;
AREA: real)
input F, A, B, N
output AREA

Operation
TRAP(F, A, B, N, AREA)

if N<1 then
AREA = -1.0
error("invalid input")
else
AREA = 2 ((F(A+(i-1)*H) + F(A+i*H)) / 2) * abs(H)
. i=1
endif

Abbreviations

H: real = (B-a) / N

Figure 1.

Operational Specification of TRAP



prbcedure TRAP (function F(X: real): real;
A: real; B: real; N: integer;
var AREA: real);

(*TRAP computes the AREA between a curve F .and the x-axis from x = A

to x = B by the trapezoidal rule using N intervals

var H, X: real;

begin

if N<1 then
begin
AREA := -1.0;
write("invalid input");

‘end
else
if A=B then
AREA := 0.0
else
begin
H := (B-a) / N;
X = A;

AREA := F(X) / 2;
while X<B do

begin
X := X + H;
AREA := AREA + F(X);
. end;
AREA := (AREA - F(X) / 2) * H;
if A>B then
AREA := — AREA;
end;

end;

Figure 2.

Procedure TRAP

of size (B‘A)/N *)
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Sy, the subspecification domain D[S;] is the set of input data for which
the subspecification is applicable and the subspecification computation
CIsy] is the computation specified for those input values. The speci-
fication domain D[S] is the union of the subspecification domains,
DISI= 4. DIs,]1.
I=1"""I

| Similarly, the implementation of a procedure defines a function, which
again may be composed of partial functions. Each partial function corres-
ponds to a path through the procedure. Thus, a procedure implementation
P defines a set of paths {Pl, Por «eer By | 1<nNs<w}.* Associated with each
path Py is the path domain D[P;], which is the set of input data that causes
execution of the path, and the patn computation C[P;], which is the function
that is computed by the sequence of executable statements along the path.
The implementation domain D[P] is the union of the path domains,
DIP] = _U.DIP,].

Jg=1""dJd
The specification is a more abstract representation of the procedure

than the implementation, hence the subspecification domains and the path
domains may partition the set of input data differently. In fact, the speci-
fication domain and implementation domain may not even be the same, but this
implies an error in either the specification or implementation domain or
both. Since we assume the specification correctly represents the procedure,
the specification domain must be correct. 1In this'papér) we parfitibﬁ the
set of input data into subdomains so that a single subspecification and a
single path are applicable to all input data in each subdomain. A procedure

subdomain Dy; is the set of input data for which the subspecification Sy and

*Likewise, there may be an infinite number of paths due to program loops
and any path may in fact define a class of related paths through the im-
Plementation that differ only by the number of iterations of some loops.

the



path Py are applicable - that is, Drg = D[Syl n D[P5]. In addition, for each
subspecification Sy there may be input data in its domain D[SI] that are
N

not treated by any path; this set, Di4 = Disq] - JngIJ, is a procedure sub-
domain. Also, for each path Pj, there may be input data in its domain D[rs]

s _ M
that are not treated by any supspeciflcatlon; this set,ADoJ = D[PJ] - IngIJ'
is a procedure subdomain as well. Figure 3 shows an example of the proce-
dure subdomains that result from the partitions of the specification and
implementation domains. The procedure subdomains will be used in determin-
ing consistency between the specification and implementatian and in select-

ing data to test the implementation.

3. CONSISTENCY BETWEEN PROCEDURE SPECIFICATIONS AND IMPLEMENTATIONS

A procedure specification and implementation can be compared to deter-
mine if the implementation conforms to the specification. With this com-
parison in mind, three consistency properties are introduced - compatibility,
equivalence, and isomorphism - which differ in the manner in which the imple-
mentation conforms to the specification. An approach to demonstrating whether
these consistency properties hold between a specification and an implementa-
tion is outlined in the néxt»section. |

2 fundamental form of consistency is the compatibility of a specifica-
tion and an implementation. Compatibility states that the.implementation
and the specification have the same interface - that is, they have the same
number and type of iﬂputs and outputs - and the inputs are restricted to
values from the same domain.

Definition: An implementation P is compatible with a specification

S if P and S have the same input vector x, the same output vector z,

and are defined for the same domain, D[S] = D[P].

te
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subspecification domains path domains

partition into
procedure subdomains

Figure 3.

Development of Procdure Subdomains
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In the trivial case, the domain for a particular input.is the entire set
of values for the type of the input, but some specification and program-
ming languages allow éssumppions that further restrict the domain of in-
.put values. Assuming that all inputs and outputs are logically indepen-
dent, compatibility must hold for the implementation to be a correct
representation of the specification. Note that D[S] = D[P] implies that
all input data in each subspecification domain are treated by some path
and all input data in each path domain are treated by some subspecifica-
tion. Hence, all DIe and DoJ procedure subdomains are empty. The other
properties of consistency are defined under the assumption that compati-
bility holds.

The prevalence of compatibility does not imply that the implementa-
tion is correct with respect to the specification; To realize the func-
tion described by the specificatiofi, ‘the implementation must ﬁot"éﬁly'have
the same‘interface, it must compute the output values specified fbr each
input vector in the domain. An implementation P is equivalent to a
specification S if for all xeD[S], P(x) = S(x), where P(x) is thé output
vector resulting from execution of P on x, and S(x) is the output vector
specified by S for . Equivalence between a procedure implementation and
a specification implies the implementation is correct with respect to the
specification.

This property of equivalence can be stated in terms of the relation-
ships between the subspecifications and paths over the procedure subdomains.
For any input vector &, a particular path, say P;, is executed; thus xeD(Pg],
and P(x) = C[P;](x). Similarly, a particular subspecification, say Sys is
applicable; thus xzeD[S;], and S(x) = C[Sz]l(x). For this input ve_ctbr, the

specification and the implementation produce the same output values,

(]
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S(xz) = P(x), if and only if the appropriate subspecification and path
computations agree, C[SI]cx) = C[PJ](x). If a subspecification and a
path compute equal output values for all input data to which they both
apply, their computations are‘equgl over that set of input data, which
is the associated procedure subdomain.

Definition: A subspecification computation C[SI] and a path compu-

tation C[P3] are equal over the associated procedure subdomain,

Dyy = DIS;] n DIP;], if for all weDyy, 'CIS;](x) = C[Py](x). This

is denoted by C[Sq] D;J Clpyl.

This definition gives rise to a definition of the equivalence of an imple-
mentation and a specification, which is in terms of the equality of the
computations over procedure subdomains.

Definition: An implementation P is equivalent to a specification

if for all procedure subdcmainsg DIJ' l1<I<Mandl <J <N,

G[SI] D;J C[PJ].

Equivalence is sometimes very difficult, if not impossible, to deter-
mine. A restricted form of equivalence between a specification and an im-
plementation is isomorphism, which is often an easier property to determine.
When isomorphism holds each subspecification is associated with an equiva-
lent path, which is unique. A subspecification and a path are equivalent
if their domains are equal and their computations are equal over that domain.

Definition: A subspecification S; and a path Py are equivalent if

D[SI]

D[P;] and for all xeD[S;], C[S;] (x) = CIPg]l (). This is denoted

PJ.

Note that sy = Py implies C[SI]vD;J CI[Pz] since Dry = DISg] = D[PJ]. This
relationship between subspecifiéations and paths gives rise to a definition

of an isomorphism between a specification and an implementation of a procedure.
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Definition: An implementation P is Zgomorphic to a specification

S if there exists a bijective mapping B: S+P such that B(Sy) = Py

if and only if §; = P

g
If the specification correctly describes the desired procedure, isomorphism'
is sufficient, but not necessary, for the implementation to be correct. 1In
 addition, isomorphism gives evidence that the internal structure of an im-
plementation and a specification are similar.

Equivaienéé_is certainly the most important of the proposed consisten-
cy properties. Under the assumptions that compatibility holds and the speci~
fication is correct, the implementation is correct if and only if it is
equivalent to the associated specification. Isomorphism might be required,
however, when a specification is a detailed design that is to be used as
a guideline for implementation of the procedure. On the other hand, isomor-
phism might not be desired when a specification is written for simplicity,
but an implementation ought to be coded for efficiency.

The three properties of consistency allow the attachment of differing
requisites on the conformity of an implementation to a specification. Com-
patibility implies that the implementation conforms to the specified inter-
face. The prevalence of either isomorphism or equivalence implies that the
implementation is correct, provided the specification precisely describes
the intended function. Moreover, isomorphism implies that the implementa-

tion realizes the function in much the same manner as the specification

describes that function.
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4. DEMONSTRATION OF CONSISTENCY

The definitions of consistency between a specification and an imple-
mentation suggest methods for determining whether these properties prevail.
Demonstration of compatibility is only briefly considered since it is a
better understood process. One approach for demonstrating equivalence and
isomorphism between a specification and an implementation, which employs
symbolic evaluation to represent the domains and computations, is outlined
in this section. A more detailed explanatioh of this approach is given in
[RIC78b]. Demonstration of consistency is illustrated for the specifica-
tion and implementation of procedure TRAP. Several problems with this
approach are described and some solutions and areas of future investigation
are proposed.

The process of determining compatibility is similar to determining the
uniformity of procedure interfaces in an implementation [GAN78, RAM75, 0OST76].
The compatibility between levels of design has also been explored [CAI75, ROB77,
TEI77]. Determining compatibility between an implementation and a specification
is facilitated if the specification and the programming languages have similar
constructs for declaring parameters and global variables. By comparing such
declarations, it is possible to determine if the implementation and the
specification have the same number and type of parameters and global vari-
ables. If the languages do not support explicit declarations on how these
variables are used, then data flow analysis méthods [0ST76] may be utilized
to determine whether each such variable has the same input and output class
in the implementation as its class in the specification. In addition, the
specification and programming languages might allow explicit assumptions on
the inputs or implicit assumptions in the input statements [ABR79] constrain-

ing the values the inputs may assume. These assumptions must also be compared
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to determine the equivalence of the domain of input values. If the input
vector, output vector, and the domain of the implementation agree with
those of the specification, then the implémentation is compatible to the
specification.

Once compatibility is established, the demonstration of additional
consistency can continue with a comparison of the subspecification domains
with the path domains and the subspecification computations with the path
computations. Symbolic evaluation can be used to create symbolic repre-
senfations of these domains and computations.

Symbolic evaluation [CLA76, DAR78] of an iﬁplementation assigns sym-
bolic names to the input values and "executes" a path. A path domain is
reprgsented by a system of constraints on the symbolic names for the input
values. The condition formed by these constraints defines the subset of
the domain fo; which the path is executed. This system of constraints can
be translated into some canonical form, such as a simplified, conjunctive
normal form [DEU73]. A path computation is represented by a vector of
symbolic formulas for the output values. Each formula is a symbolic ex-
pression in terms ofAthé symbolic names assigned to the input values. These
expressions may be converted to a canonical form, such as a simplified,
ordered expression [RIC78al. A similar procedure can be used to "apply" a
subspecification to symbolic inputs, and thus construct represenﬁations of
the subspecification domain and the subspecification computation. Symboli§
evaluation of an implementation can be extended [CHE79, CLA80] to a class
of paths that differ only by the number of iterations of loops on the paths
by a technique that tries to represent each loop by a closed form expression.
Figure 4 shows a closed form representation for the WHILE loop in the implg;

mentation of procedure TRAP. Likewise, symbolic evaluation of a specification

"
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ke = minimum {k| (k21) A (X +(k~1)*m2B)}
X = X1 + (kg~1)*H

= kez1 .
AREA = AREA; + SLF (Xy+i*H)

Note: X, and AREA; are the values of X and RREA, respectively, at entry
to the first iteration of the loop. The loop is iterated k-1 times.

Figure 4.

‘Closed Form Representation
of WHILE Loop in
the Implementation of Procedure TRAP
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can bé extended. On the other hand, a subspecification may represent the
repetition of a transformation by a closed form expression, using, among.
other things, summation or product notation or a set of recurrence rela~
tions. The subspecification domains and computations, which were derived
by symbolic evaluation of the specification of procedure TRAP, are given
in figure 5. Figure 6 provides the path domains and computations derived
by symbolic evaluation of the implementation of procedure TRAP.

Since both the specification and the implementation are unambiguous,
the subspecification domains are mutually disjoint as are the path domains.
No such restriction, however, has been made on the computations; neither
the subspecification computations nor the path computations must be dis-
tinct. For example, two paths might perform the same computation for their
respecéive domain. With this in mind, the comparison of a specification
and an implementation is driven by the relationships between the subspeci-
fication domains and the path domains. After the correspondence between
a subspecification domain and path domain has been determined, their asso-
ciated computations are compared. There are three problems inherent in
demonstrating either equivalence or isomorphism: showing that two domains
are equal, showing that the intersection of two domains is empty, and show-
ing that two computations are equal over a domain. These problems are treated
after the approach to demonstrating isomorphism and equivalence is éresented.

The property of isomorphism holds between a specification and an imple-
mentation if there is a one-to-one correspondence between the subspecifica-
tions and paths, such that each subspecification corresponds to an equivalent
path. A correspondence between a subspecification S; and a path Py is made
if the subspecification domain D[S;] and the path domain D[Pj] are equal.

Demonstration of this equality can sometimes be achieved by a term-by-term

ts



D[Sl] = {(albln)l (l’l<])}

C[Sq] = AREA: ~1.0 "invalid input"

DSy = {(a,b,m)| - (n21) A (asp)}

C[Sz] = AREA: (-a*F(a) - a*F(b) + b*F(a) + b*F(b) -
2*a* TIF (((n-1)*atith) / n) +
2%b*;T F(((n-1) ¥a+i*b) / n)) / 2%n

D[S3] = {(a'bln)l (n21) A (a>b)]'

Cls3] = AREA: (a*F(a) + a*F(b) - b*F(a) ~ b*F(b) +

2% g%, Z F(((n-i)*a+i*b) / n) -
2*b*i§lF(((n-l)*a+l*b) / n)) / 2*n

Figure 5.

Subspecification Domains and Computations
for the Specification of Procedure TRAP

D[Pl] = {(albln)] (n<1)}

c[P;] = AREA: -1.0 "invalid input"

D[Pyl = {(a,b,n)| (n21) A (a=b)}

c[P,] = AREA: 0.0

DIP3] = {(a,b,n)| (n21) A (a>b)}

C[P3] = AREA: (a*F(a) + a*F(b) - b*F(a) - b*F(b) +
z*a*iglF(((n—l)*a+1*b) / n) =
2#b* L F(((n-i)*a+i*b) / n)) / 2*n

p[P,] = {(a,b,n)| (nZl) A (a<b)}

C[P4] = AREA: (-a*F(a) - a*F(b) + b*F (a) + b*F(b) -

2% g zlpcttn—l)*a+1*b) 7/ n) +
2*b* (({n—1)*a+1*b) / n)) / 2*n

Figure 6.

Path Domains and'Computations
for the Implementation of Procedure TRAP

Note: 'a, b, and n are the symbolic names assigned to parameters A, E, and N.
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comparison of the constraints in the symbolic representations of the two
domaing. After determining domain equality, the equality of the subspeci-
fication computation C([S;] and the path computation C[P5] over this domain
must be determined. Again a term-by-~term comparison of the symbolic repre-
sentations of the two computations may sometimes determine their equality.
If the equality of computations is determined, then St = Pj. If a one-to-

one correspondence can be constructed in this way, then the implementation

H
!

is isomorphic to the specification.

An implementation is equivalent to a specification if for each proce-
dure subdomain, the associated subspecification computation and path compu-

" tation are equal over that subset of input data. For each subspecification Sp
and path Py, the procedure subdomain DIJ = D[SI]nD[PJ] can be constructed

by conjoining the representations of the subspecification domain and path
domain. If this subdomain is empty, then.no input data exists that causes
execution of the path and for which the Subspecifiqaticn is applicable, thus,
the computations are trivially equivalent. For a non-empty procedure sub-
domain, the corresponding subspecification and path computations must be
compared for equality over this subdomain, C[Sy] D§J ClPzl. I1If the compu-
tations are equal over each procedure subdomain, then the implementation is
equivalent to the specification.

The methods for determining equivalence and isomorphism can easily be
combined. Even when isomorphism dces not hold, it is beneficial to first
determine the equivalent subspecifications and paths since these need not be
considered further. The computations for the remaining subspecifications
and paths can then be considered for equality over their associated pro-
cedure subdomains. Thus, the method for determining isomorphism is applied,

and then the method for determining equivalence is applied for the remaining
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subspecifications and paths. Figure 7 illustrates the comparison of the
specification and implementation for procedure TRAP. Note that S3 is equiva-
lent to P; and S3 is equivalent to P,. The remaining subspecifications and
path computations are equal over their associated preccedure subdomains.
Hence, the implementation of the procedure TRAP is equivalent to the speci-
fication, although not isomorphic. For subdomain Dy5, the equality of the
computations requires more than a symbolic comparison, methods for handling

this are discussed below.

Although isomorphism and equivalence can often be demonstrated simply
by comparing the symbolic representation of the domains and computations,
this is not always the case. Here we present some additional techniques
that can sometimes be applied. When a subspecification domain D[SK] and a
path domain D[PL] cannot be shown equal by a symbolic comparison, this
equality can be demonstrated by showing that D[SK]nND[PL] is empty (where
~D[Py] is the complement of D[Py]). There is a problem, however, in showing
that the intersection of two domains is empty. This occurs not only in
this case, but also when determining that the intersection of a subspeci-
fication domain D[S;] and a path domain D[P5] is empty - that is, whether
the procedure subdomain Dy; is empty. (Note that if a subspecification
domain and a path domain are not equal, then the intersection of these
domains must be determined; if this intersection is empty the associated
computations need not be compared.) An approach to this problem, deter-
minipg the emptiness of the intersection of two damains, is the axiomatic
approach, which uses first order predicate calculus to prove whether or
not the conjunction defining the intersection is satisfiable. This method
is subject to the limitations of automatic theorem proving [ELS72]. Another

approach is the algebraic approach, which attempts to find a solution to the
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constraints defining the intersection. If the set of constraints is unsat-
isfiable, the intersection is empty. Several algebraic techniques, such as a
linear programming or a gradient hill climbing algorithm, can be used to
solve the system of corztraints. No method, however, can solve any arbi-
trary system of constraints [DAV73], and, therefore, determining if the
intersection is empty is undecidable.

Another problem that must be addressed is the determination of compu-
tation equality over a procedure subdomain. Often, a term-by~term compari-
son of the symbolic representations of the subspecification computation C[Sg]
and the path computation ClP;] reveals that the two computations are symboli-
cally identical, thus, they are equal over any domain. Otherwise, the two
computations are equal over the associated procedure subdomain Dyg if the sym-
bolic difference between their symbolic representations, Cls;] - CIP;], equals
zerb for all elements of that domain. The most straight-forward method for
detexrmining whether this holds is by finding the solution set of the equation
Clsy]l - ClPz] = 0. This set can be represented symbolically by a disjunct
of the factors of this equation, as was done for procedure subdomain D22 in
figqure 7, or when the solution set is discrete, by using a mathematical pack-
age for finding the zeroces of a function. If the conditionvdefining the
procedure subdomain restricts the inputs to values in this solution set,
then the symbolic difference equals zero over that domain. Several other
approaches to deciding computation equality are proposed in [RIC78b], al-
though, in general, this is undecidable. When the equality of the subspeci-
fication and path computations over the associated procedure subdomain can-

not be decided, testing can provide some assurance of their equality. A

testing strategy is discussed in the next section.
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5. A TESTING STRATEGY

Demonstrating equivalence of an implementation to the associated speci-
fication verifies that the implementation performs the intended task. This
method of attesting to program reliability, howe#er, divorces itself from
the run—timé‘surroundings by showing consistency in a postulated environment,

just as proof of correctness is done in an artificial environment. To remedy

3

this, the demonstration of consistency must be complemented by the actual

w

execution of the implementation. In addition, when consistency cannot be
shown, testing can often demonstrate the equality of computations or provide
counter examples. The method of determining equivalence can be extended to
support a testing strategy.

In demonstrating equivalence, the set of input data is partitioned into
subsets of input data that are treated by a single subspecification S; and
by a single path P5; this subset is the procedure subdomain Dyge. Thus, each
element of a procedure subdomain should be treated consispently'by the speci?
fication and the implementation. Wisely selecting test‘data from each su-
domain can check the consistent operation of the specification and implementa-
tion.

A test data set can be constructed by selecting one or more input
values from each procedure subdomain. The appropriate selection of input
values from each subdomain can increase the probability of detecting errors.
White and Cohen [WHI80] have proposed a strategy for selectingAtest data to
verify the boundaries of a path domain. This same technique can be carried
over to procedure subdomains. Computations tend to be sensitive to various
data points. By examining the representations of the subspecifidation and
path computations provided by symbolic evaluation, computationally sensitive

data that lies within the procedure subdomain can be selected. In addition,



typical data to exercise the subdomain should be chosen. Some work has been
done on determining the appropriate number of data points that should be
selected for polynomial computaticns [DEM77, HOW76b]. Taking these testing
strategies into accouri, the set of test data that might be generated for
procedure TRAP is shown in figure 8.

This test data selection strategy is similar to that used in path analy-
sis approaches [CLA76, CLA78, HOW76£], in which a test set is constructed by
choosing an element from each path domain. Path analysis testing strategies,
however, are based solely on the structure of the implementation., The test
data selection approach presented here is based on both the implementation
and the specification, and thus takes into consideration what the implementa-
tion is supposed to do in addition to what it actually does. Wéyuker and
Ostrand [WEY80] have also suggested that procedure subdomains be determined
and carefully tested. Testing methods that integrate information from the
implementation and the specification have been shown to be more effective

than methods based on a single source of information [HOW79a].

6. CONCLUSION

The evaluation of specifications to analyze implementations and to
assist in the program testing process can greatly enhance the reliability
of software. When a specification is available, an implementation can be
compared to the specification for consistency. This comparison can be used
to prove that the implementation confomms to the specification. We have
proposed consistency properties that differ in how closely the implementa-
tion conforms to the specification. We have investigated a method, which
utilizes symbolic evaluation, to determine whether these properties hold.

This method relies on the development of procedure subdomains, which partition



Dll (a: 0.0, B: 0.0, N: - 1)

D33 (a: 0.00001, B: 0.0, N: 1)
(A: 0.0, B: -0.00001, N: 2)
(a: 10.0, B: 1.0, N: 100)
(a: 1.0, B: -10.0, N: 1000)

D22 (A: 0.0' B: 0.0' N: 1)
(A: 10.0, B: 10.0, N: 10)

Dyy (A: 0.0, B: 0.00001, N: 1)
(A: -0.00001, B: 0.0, N: 2)
(a: 1.0, B: 10.0, N: 100)
(a: -10.0, B: 1.0, N: 1000)

Figure 8.
Test Data Selected for Procedure TRAP
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the set of input data based on the implementation and the specification.
By examining these subdomains, a more comprehensive set of test data can
be generated than one obtained by analyzing the implementation or the
specification alone. In light of the work on symbolic evaluation, we be-
lieve the method we have proposed could be at least partially automated.

There are several problems that require additional investigation.
Strategies for generating test data from the representation of the proce-
dure subdomains have been proposed in this paper, but need to be evaluated
further. This paper discussed approaches for dealing with the problems that
arise in determining consistency - equality of two domains, emptiness of the
intersection of two domains, and equality of two computations over a domain.
Additional approaches to these problems must be developed. The proposed
evaluation method assumes that loops can be represented in a closed@ form.
While this is often the case, methods for analyzing loops must be further
refined. Although symbolic evaluation of programs has been extensively re-
searched, symbolic evaluation of specifications has yet to be seriously
considered.

There are several established programming languages, but the design of
specification languages is still in its infancy. If program specifications
are to contribute effectively to the analysis of programs, more applicable
specification languages must be designed. Formal techniques for specifying
the intended function of a program can provide a concise and well-understood
description, which should reduce the difficulty of symbolically evaluating
specifications. The evaluation method presented in this paper assumes that
-a procedure specification is complete. The evaluation of higher level speci-
fications, which might be incomplete, should also be considered. While strong

.consistency, such as equivalence, could not be proven with an incomplete
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specification, weaker forms of consistency could be demoﬁstrated'or in-
consistencies could be detected. As progress in the design of formal
specification languages is made, the feasibility of a mechanical means of
using new types of specification in Program analysis must be evaluated.
Thé approach presented in this paper is concerned with the analysis
of an implementation in relation to a specification for the intended pro-

cedure. The specifications considered are detailed and might  correspond

to procedure descriptions developed late in‘the design of a program. If -

analyéis is not performed throughout the development process, there is no
assurance that the specifications indeed capture the desired behavior of
the érocedures. This problem is addressed by current work [SRS79] in the
development of tools that support the design and analysis of program des-
criptions during the early stages of development. To achieve the Qoal of
producing more reliable software, a complimentary set of software tools
for program specification, program design, program verification, and pro-

gram testing must be integrated.
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