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SUMMARY

There is growing evidence that one function of synaptic biochemical
mechanisms may be to permit one set of conditions to determine whether a
pathway is able to undergo modulation and another set of conditions to
determine whether these changes actually occur. We describe a neuron-
like adaptive element which uses this principle to model the predictive
nature of behaviqral conditioning. An important feature of classical con-
ditidning is that the response which occurs after training (conditioned
response) usually occurs earlier than the reinforcing stimulus (uncondi-
tioned stimulus). The conditioned response therefore predicts, or anti-
cipates, the unconditioned stimulus. This aspect of classical condition-
ing has been largely neglected by hypotheses that neruons provide single
unit analogs of conditioning. The model is strongly supported by behav-
‘ioral data-on prediction as well as other properties of classical condi-
tioning such as interstimulus interval dependency, blocking, and condi-
tioned inhibition. We discuss the possibility that this model is imple-

mented at a cellular level by biochemical mechanisms.



The concept of single unit analogs of conditioning paradigms continues
to bé influential in the study of the neural basis of learning and memory.
Hebb's suggestion that repeated and persistent pairing of presynaptic and
postsynaptic discharges facilitates synapses is an example of attributing
to single units the associative learning propertiies observed behaviorally
in classical cdnditioning experimentslo. Manyrjheorétical models of plas-
ticity in the nervous system are based on this postulate (see the review
ref. 2). While a literal form of Hébb's hypothesis has not been vindicated
by physiological evidence, there is ample support that forms of nonassocia-
tive learning can téke Place via synaptic modification (e.g., refs. 14, 15),
and current research is directed toward a cellular explication of associa-
tive learning (e.g., refs. 1, 42, 43).

Thi; paper focuses on a property of classicai conditioning which might
also be presenﬁ at the cellular level: this is the Predictive aspect of
classical conditioniﬁq. Classical conditioning effectiveness depends on
the interstimulus interval (ISI) which is the time interval between the con-
ditioned stimulus (CS) onset and the unconditioned stimulus (UCS) onset.
Asymptotic associative strength between the CS and the conditioned response
(CR) is usually an inverted U-shap;d function of this interval, being zero
at simultaneous presentation, maximal at intermediate wvalues (that depend
on the particular response system), and then falling to zero at longer 1ISis.
Thus, since the CS must usually Precede the UCS for an association to be
formed, the CS is a predictive cue for the occurrence of the UCS. It is
consistent with behavioral data to view the learning which takes place during
classical conditioning as the learning of this predictive relationship (see,

for example, ref. 6). Equally well established behaviorally, but less often



noted than ISI dependency, is that the CR usuallyvprecedes the Uéé‘(Fig. l).22
Being a response to the predictive CS, the CR anticipates, or predicts, the
UCS and the unconditioned response (UCR). Sinqe a prediction must be avail-
able earlier than the event predicted in order to provide useful information,
the anticipatory nature of the CR may be crucial to the adaptive significance
of the behavior elicited in classical conditioning experiments.

Several neural theorists have suggested mechanisms for the ISI depen-~
dency of classical conditioning (e.g., refs. 4, 34), but in many cases these
mechanisms also prevent the CR from occurring before the UCS. For example,
in a Hebbian style model of conditioning, the UCS is a strongly exeitatory
input to a neuron that also has the CS as an initially ineffective input.
Before conditioning, the UCR is the neuron discharge produced by the UCS
pathway. Pairing of the CS and UCS eventually increases the efficacy of
the CS pathway until the CS also causes a discharge (the CR).

Many mathematical interpretations of this view require simultaneous
pairing of the UCS and CS signals at the neuron, thus implying an optimal
ISI of zero. A suitable delay in the CS pathway is often suggested to bring
this moael closer to the behavioral data on ISI dependency (e.g., refs 4, 34).
However, this delay also necessarily delays the CR until the time of the UCS
occurrence (Fig. 2). It prevents the CR latency from being shorter than the
ISI required for conditioning.

We describe here a model of prediction in classical conditioning in
the form of a neuron-like adaptive element which learns to increase its rate
‘of response in anticipation of increased stimulation by becoming sensitive
to predictive cues. The model alsc accounts for stimulus context effects,
including blocking and conditioned inhibition, and produces several forms of

higher order learning suggestive of secondary reinforcement phenomena. Fur-



ther, it solves many stability and saturation problems which have beset
other models of neural plasticity. The model was first introduced by the

16,17,18 and Sutton30

authors in ref. 31 and originated in the work of Klopf
on modelling both classical and instrumental conditioning. We briefly dis-
cuss some cellular possibilities suggested by the model which are especially
relevant due to recent advances in understanding the complexity of synaptic

biochemistry.

The model is a combination of two sets of ideas. First, it is closely

16,17,18

related to the neural hypothesis by Klopf that the temporal charac-

teristics of conditioning, both classical and instrumental, can be produced
if one set of conditions makes synapses eligible for modification of their

transmission efficacies, but actual modifications occur due to other influ-

ences dutihg periods of eligibility. This differs from related theories in
that eligibility is seen as being indicated in.scme_way completely separate
from electrical activity. That is, instead of being marked as eligible for
modification by a transient increase in efficacy, or by prolonged presynaptic
activation, a pathway would be marked by some mechanism which does not par-
ticipate directly in the electrical signalling of the cell such as a transient
increase in the concentration of a particular chemical. While there is as

yet no direct physiological support for this hypothesis, it does rest on an
idea for which there is a growing body of evidence; namely, that one set of
conditions may determine whether a pathway is able to undergo modulation,

while another set of conditions determines whether these changes actually
20
occur.
The other set of ideas incorporated in the model presented here are

due to Rescorla and Wagner. Their descriptive model of the effects of stimu-

lus context in classical conditioninq26 is based on the view that learning



occurs only when expectations are violated. Our model can be thought of
in this way but differs from the Rescorla-Wagner model by being able to de-
scribe some of the fine temporal structure of conditioning, such as ité pPre-~

dictive nature, which is outside the scope of the Rescorla-Wagner model.

THE MODEL

Fig. 3 shows an adaptive element with an input pathway for the UCS and
an input pathway for each stimulus capable of being associated with the UCS.
These latter stimuli are the conditioned stimuli which we denote by CSi,
i=1,..., n. The associative strength of each Cs; is denoted by VCS. and
characterizes the efficacy of the corresponding pathway. . The efficac; of
the UCS pathway is fixed at some value which we denote by 'A. The element
output indicates the occﬁrrence¢of the UCR and the occurrence of the CR.

For each csi' i=1l,.0., n, let Xy be a time function representing the
‘presence or absence of that stimulus. That is, for each time t, xi(t) =1
if csi is present at time t, and xi(t) = 0 otherwise. Similarly, let xo(t)
indicate the presence or ahsence of the UCS at time t and let the associa-
tive strength at time t of CS; be denoted by Vcsi(t). In addition, let s(t)
denote the weighted sum of all the inputs to the element in which each sig-

nal is weighted by the efficacy if its pathway (cf. neuron membrane poten-

tial). That is, let

n
s(t) = A x(t) + I Vcs.(t)xi(t). (1)
i=1 i .

The manner in which the output of the element is computed is not critical
for the present discussion and, for simplicity, we assume that the output

at time t is just s(t).

Several other variables are required in order to define the model.



First, for each stimulus signal xi, i=1l,..., n, we require a separate

stimulus trace which we denote by §i° By this we mean that the occurrence

of CSi at.time t, indicated by xi(t) = 1, initiates a prolonged trace given
by non-zero values of a separate variable Ei for some period of time after

t. This is accomplished by letting ii(t) be a weighted average of the values
of X, for some time period preceding t. Similarly, we require a trace of the
output s. Let'g(t) denote a weighted average of the values of the variable

s over some time interval preceding t. ?ig. 4 shows examples of these traces
produced by exponentially weighted averages.t ’

The behavior of the adaptive element is therefore described by the-values
over time of the two variables s and E, and the values of the three variables
xi, ii' and VCS. for each input pathway i = 1,..., n. In terms of these var-
iables, the modzl takes the form of a set of difference equations for succes-

sively generating the values of the associative Strenghts: for each i,

is= l,...,.n,

v t+1) =
R ) Ve

cs, (&) + cls(t) - E(t)]:‘:i(t) (2)

S
i

where c is a positive constant determining the rate of learning.
We can describe the process given by Eqs. 1 and 2 as follows: Activity

on any input pathway i, i = 1,..., n, possibly causes an immediate change in

tIn the computer simulations which produced the data shown below we gener-
ated these traces using the first-order linear difference equations

xi(t + 1) = axi(t) + Bxi(t)

S(t + 1) = ys(t) + 8s(t)

where a, B, v and § are positive constants with 0 < a, vy < 1.



the element output s but also causes the connection from that pathway to be-
come "tagged" by the stimulus trace §i as being eligible for modification
for a certain period of time (the duration of the trace §i). A connection
is modified only if it is eligible and the current value of s differs from

the value of the trace s of s. Thus, the traces x. mark their correspohd-

i
ing pathways as Being eligible for modification. In order to account for

the temporal relationships observed in classical conditioning experiments,

.the eligibility traces must last for a time period on the order of several
secoﬁds in length.

The effectiveness of the rginforcement for the conditioning process
depends on the difference s(t) - s(t) which determines how the eligible con-
nections actually change. The simplest.case, and the one used in our simula-
tions, results from letting S(t) = s(t - 1). Then s(t) - s(t) = s(t) - s(t - 1)
which is a discrete form of the rate-of-change of the variable s. The most
iﬁportant property of this difference is that it is zero while s is constant
irrespective of the magnitude of s. This contributes to'the stability of our
model. Prolonged traces s like that shown in Fig. 4 can produce the same
kind of effect and also filter out fast transienf fluctuations of s so that
associative strengths are not strongly influenced by the noise components of
signals.

An adaptive element operating according to the learning rule given by
Egqs. 1 and 2 is able to incéease its response in anticipation of increased
stimulation because it uses stimulus trace variables ;i which are difﬁerent
from the stimulus-signalling variables X, . That is, in neural terms, in-
stead of a previous occurrence of a CS being recorded by prolonged :everber-
atory electrical activity, it is recorded by a synaptically local and eiec—

trically non-stimulating trace. The CR is produced by the electrical CS



signal, but learning is governed by the interaction of the nonfelectrical

trace with later cellular activity.

’CLASSICAL CONDITiONING WITH A éiNGLE Cs

In order to understand the behavior of this model it is useful to con-
sider the simplest special case of a single rectanguler signal representing
the CS. Fig. 5a shows an adaptive element analog of this situation. We
assume that VCS is initially zero and that the trace s takes the simplest
form Ekt) = s(t ~ 1). The eligibility trace x is taken to have an exponen-
tial form as shown in Fig. 4.

The rectangular CS signal causes an increase in the eligibility x of
the CS pathway which persists for some time after the CS offset. The rec-

tangular UCS signal causes a positive change in s at its onset and an equal

but negative change at its offset. Since eligibility is greater at the

time of the UCS onse£ fhan at lts offset the assoc1at1ve strength of th"
CS is caused to have a net increase: It increases a certain amount at the
UCS onset and decreases by e lesser amount at the UCS offset. Fig. 5b shows
the time courses of the signals involved.

After the start of conditioning the CS, because its associative strength
is no longer zero, causes an increase in the output level s. Hence, CS onset
causes a transient increase in the reinforcemenﬁ signal s - §, and its off-
set causes a transient decrease. ‘With additional trials the associative
strength of the CS increases until the positive reinforcement of the UCS
onset is counterbalanced by the negative reinforcement of the CS offset (Fig. S5c¢).
We are assuming here, for simplicity, that the intertrial interval is long
enough for the eligibility of the CS pathway to decay to zero between trials
so that CS onset has no effect. Similarly, we are assuming that the UCS is

long enough so that its offset has no effect on the associative strength.



The equilibrium associative strength Vcs attained by this process is a
dynamic equilibrium. Except in the special case in wbich the CS offset and
UCS onset occur at exactly the same time, VCS continues to change during
each trial, but eventually undergoes no net change per trial. By the asympto-
tic associative strength of a CS we therefore mean that value which eventually
holds both before and after a trial. This value in general depends on the
durations and amplitudes of the CS and UCS, the ISI, and the character of the
tracesiivand S. A mathematical analysis of a speciél case‘is given in ref. 31.
Fig. 6, trials O - 10, shows a typical acquisition curve plotting the associa-
tive strength value after each trial.

Notice from Fig. S5c that the value of s, the output of the element, shows

a response to the CS and the UCS. The latter response corresponds to the UCR

while the former represents the CR. Note that the CR occurs earlier than the

ﬁcs indicatihg'that the model-préseévéé.ﬁhe pfedictive ﬁatﬁrénbf.éiggéiéél
conditioning. 1In this case the CR latency is zero since we have assumed
zero latency for the adaptive element response.

Another fact about the behévior of our model is that it produces an
ISTI dependency similar to that found experimentally in animals. The asymp-
totic associative strength versus ISI curve is an inverted U with a maximum
at the ISI equal to the duration of the CS (see ref. 31). Although in animal
experiments the optimal ISI is roughly independent of overt CS duration (but
see ref. 29), our model is consistent with experimental data if it is assumed

that "effective" or "internal” CS duration is not the same as overt, external

CS duration.

STIMULUS CONTEXT BEHAVIOR

In behavioral experiments the associative strengths of the stimuli that

act as context for a CS on a trial can nullify or even reverse the effect of



the occurrence of the UCS on that trial. This can be seen in numerous experi-
mental paradigms, of which the simplest is blocking. In part I of a typical

blocking experiment one stimulus, CS_., is paired with a UCS at an appropriate

1

ISI until the associative strength between CSl and the CR reaches its asymp-

totic value. In part II, CSl continues to be paired with the UCS, but another

stimulus, CSZ' co-occurs with CS Although cs2 is appropriately paired with

ll
the UCS in part II, it conditions very poorly, if at all, compared to a con-

1 Effects of the associa-

tive strengths of context stimuli on conditioning occur in a variety of ex-

trol group without prior part I conditioning to CS

perimental paradigms, of which blocking, overshadowing, and conditioned in-

hibitions are some of the prominent examplesl}

The results of a 51mu1atlon of blocklng are illustrated in trials 0 - 20

of Flg 6. For the flrst 10 trlals CSl was presented alone and followed

by the UCS. The asymptotic associative strength V quickly rose to the

Cs
1
UCS level X = .,6. For trials 11 - 20, CSl was presented identically paired

with CSZ' and both were followed by the UCS. During these trials V and

CS1

Vés did not change (Fig. 6). Changes in Vés were blocked since the signal
2 2

s did not change while the C82 pathway was eligible.

The adaptive element we have described is also able to extract from its
input signals those which most reliably predict the UCS. For example, if
CSl is paired with 100% of the UCSs while CS2 is paired with a lesser per-

centage, then eventually CSl becomes completely dominant (VCS = A, Vcs = 0)
1 2

even if CS2 had been dominant initially (see ref. 31 for other details).

In a related experimental arrangement our model produces conditioned in-
hibition. If the occurrence of'CS+ alone is always followed by the UCS, but
the co-occurrence of CS+ and CS is never followed by the UCS, then CS  be-

comes an inhibitor of the CR. The associative strength VCS+ increases so
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+ .
that CS produces a CR, but VCS- becomes negative so that a CR does not fol-

low cs® + ¢s” (Fig. 17).

HIGHER ORDER CONDITIONING

One reason the Hebbian postulate has remained influential among theor-
ists is that adaptive elements based on this postulate do not require special-
i;ed "teacher" inputs. It is not necessary to fix from the start the source
of a special signal éapable of causing changes in connection weights. Any
correlations among the input signals to the element will tend to be reflected
in the connection wéight values. In particular, since the activity of any
input'pathway can cause changes in other pathways, pathways whose efficacies
have become strengthened thrﬁugh pPrevious training can further affect other
pathways. A model with this pProperty can produce behavior similar to higher
order conditioning in animal learning: a previouély conditioned CS can act
as a UCS for a second CS. Since the reinforcement signal s - s of our model
can ‘be influenced by activity on any input pathway, our model also exhibits
this property. Whep coupled to the predictive capabilities of ouf model;

several novel consequences appear.

e~ — — e

First, the adaptive element tends to find the earliest predictors of
the UCS arrival. For example, assume Cs, and CS, both end at the same time
and are both élways followed by reinforcement, but let C32 start earlier

ti . , . . . c e - -
han CSl Then, even if CSl 1s dominant initially (V‘CSl A, VCs2 0),

eventually the earlier predictor C82 will completely dominate CSl (eventually
v = 0, Vcs = A). See trials 21 -~ 35 of Fig. 6. Although both stimuli

1 2 :
weére presented in trials 11 - 20 and in trials 21 - 35, in the former case

C82 was blocked by CSl, while in the latter the associative strength of Cs2

increased quickly as the associative strength of CSl decreased. In the earlier
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trials CS2 was redundant to Csl’ which had already been conditioned, but in
the later trials C82 provided important new information: It was the earliest
indicator that the UCS would occur. This advantage, combined with the fact

that CSl was totally redundant to CSZ' produced complete conditioning to C52

and the elimination of conditioning to CSl.

This steady state is approached quickly and orderly. Very briefly, on

each trial the associative strength VCs increases and then decreases by a
2

always decreases: V increases
1 s,

. . .
S excitation, and both Vbsl and VC52
decrease at the offsets of CSl and CSZ' It is thus the facilitating effect

of the onset of CS1 which causes conditioning to CS

lesser amount for a net gain, while Vcs

because C82 predicts'the onset of CSl

20
A ciosely related behavior is the ability to chain associations. Fig. 8
shows an experimental'arrangement in which four CSs with a particular temporal
ordering were paired with a UCS. Also shown in Fig. 8 are the acquisition

curves produced by computer simulation. The associative strength of Csl'

the CS immediately preceding the UCS, increased first. Then CSl onset acted

as reinforcement for C82 which, in turn, came to reinforce CS which then

3
was able to reipforce Cs4. This caused the onset of the CR to move earlier
in time as conditioning proceeded. For the temporal arrangement of the CSs
shown in Fig. 8, the steady state was achieved in which all four associative
strengths had the same value. For other temporal arrangements, variants of
this basic behavior are produced. Notice that unlike the experiment described
immediately above, the later predictors did not lose their associative strengths.
This was due to the fact that here the CS offsets did not coincide.

Chaining of associations in this manner permits conditioning to occur

for ISIs much longer than those which can be spanned by a single stimulus

trace as long as there are regularly occurring intervening events. This capa-
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bility oonur model is not“in égfeement with all animal behavio; data, and we
have not yet thoroughly explored this aspect of our model's descriptive valid-
ity. We feel. that it is significant, hoWéver,‘fhatlﬁhié‘type of higher order
learning behavior can be achieved with a single simple mathematical model
using the same mechanisms required to model other aspeéts of classical condi-

tioning.

RELATIONSHIP TO OTHER MODELS

As we have indicated, our model is a-vériant of Klopf's hypothesis which
emphasizes the temporal relationships involved in classical and instrumental
conditioning. In the present model we have departed from Klopf's hypothesis
in two ways. First, in our model an input pathway becomes eligible for modi-
fication whenever a signal arrives via that pathway. In Klopf's model, on

the other hand, eligibility is triggered only if an input signal actually

causes a suprathreshold responéé-by the_éiemeﬁgl éecond, in Klopf's model
it is the value of s, which would correspond to neuronal membrane potential,
which provides the reinforcement signal. The model presented here uses
what amounts to the change in s to provide reinforcement. We have found
that this modification of Klopf's theory not only provides for stability
but also produces the stimulus context effects.

Our model also has stronQ connectionsiﬁo the Rescorla-Wagner model which
was proposed to describe stimulus context effectszs. The Rescorla-Wagner
model is based on the often proposed view that learning occurs only when
expectations are violated. According to this view, for example, blocking
occurs since part I training creates an expectation of the UCS that is not
disrupted in part II.

We can similarly interpret the activity trace s as providing the ex-

pected value of the actual activity s as pointed out by_Sutton30. Then our
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model can be interpreted as causing eligible pathways to be modified when-
ever the actual value of s differs from the expected value s. The reinforce-
ment signal s - S is a measure of how strongly the current activity confirms
or contradicts the previously formed expectation or prediction. Thus, our
model can be viewed as producing stimulus context effects for essentially
the same reason they are Produced by the Rescorla-Wagner model. Prediction
and ISI dependency, however, are not addressed By the Rescorla-Wagner model
since it does not distinguish between times within each trial. In addition,
the more complex temporal structure of our model opens the possibility that
it may not suffer from all of the shortcomings of the Rescorla-Wagner model
(see fefs. 8, 24, 44).

Another adaptive element that is closely related to. the Rescorla-~Wagner
model is Uttley's Informon32'33'34'35'36. While this adaptive element does
produce stimulus context effects and AOes distinguish between times within
trials, it is not a valia‘model of the intratrial temporal structure of clas-
sical conditioning. In particular, it does not produce predictive conditioned -
responses or thg appropriate ISI dependency. Clearly it was not Uttley's
intention to produce such a detailed model of classical conditioning, and
these deficiencies should not detract from his contribution. Nevertheless,
we reiterate our position.that the predictive nature of classical conditioning
is an essential aspect of animal learning.

It is not' generally recognized that the Rescorla-Wagner model is essen-
tially identical to a computational method for approximating the solution
of a set of linear equations. This method, an example of a gradient descent .
minimization method, has a long history in applied mathematics and was pro-
posed twé decades ago as an adaptive mechanism by Widrow and Hoff4o. It is

also closely related to Rosenblatt's Perceptron28 as is Uttley's Informon.
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Duda and Hart7provide a good discussion of the details'of this learning

rule. It is remarkable, in our opinion, that the Rescorla-Wagner theory,
which was proposed to compactly describe a wide variety o: effects observed
in animal learning experiments, also provides an important algorithm with
strong connections to useful areas of applied mathematics. One type of
problem to which these mathematical methods are applied is that of construct-
ing causal modeis of observed dynamic processes (e.g., ref. 3). This sug-
gests that the mathematical theory may have relevance for understanding the
adaptive significance of animal conditioning behavior. Our model is also
related to this theory but produces predictive responses and higher order

effects. The mathematical aspects of our model are more fully discussed

in ref, 31.

CELLULAR MECHANISMS

Despite recent advances, it is still premature to propose a testable
cellular model of associative gonditidning. However, even though we have
emphasized the behaviorai validity of our model and have purposefully re-
ferred to it as an adaptive element rather than a neural model, we briefly
speculate about how cellular mechanisms could provide similar computational
machinery{

There is ample evidence that mechanisms can exist within a single neuron.
for short term stimulus traces as well as longer term memory. Recent studies
show that in many Preparations, both vertebrate and invertebrate, synaptic
modulation can depend on relatively compiex temporal factors and that rever-
beratory activity is not necessary for some forms of short term memory14'2l'37f38'39.
Many of these phenomena involve very complex interactions between neurotrans-

mitters, cyclic nculeotides, calcium ions, and ionic conductances. For ex-
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ample, there is good evidence in a variety of systems that cyclic AMP,
cyclic GMP, and calcium ions act as intracellular second messengers which
mediate cell activation by extracellular first messengers (for reviews see
refs. 23 and 25). Although it is hypothesized that in neurons these second
messengers mediate the generation of slow postsynaptic potentials, this hy-
pothesis cannot account for a variety of datas'zs. It has been suggested
that in addition to the role cyclic nucleotides and calcium ions may play
in simple neurotransmission, they might also carry more indirect messages:
which might, for example, be involved in learning and memory9’4l.

A biochemically natural wa? for detecting changes in postysnaptic mem-
brane potential, that is for computing the term s - s in Eq. 2, is to assume
that s - s represents the level of a substance X which is.formed at a rate
Vf and decomposed at a rate Vd. If membrane depolarization causes a fast
increase in Vf and a slower increase in Vd‘ then the concentration of X will
show a transient increase to any increase in depolarization. Similarly, if
hyperpolarization causes a fast decrease in Vf and a slower decrease in Vd,
then the level of X will show a transient decrease to any downward change in
depolarization (Fig. 9). This is similar to the mechanism proposed for the
generation of bacterial chemotaxis by which bacteria climb nutrient gradientslg.

This manner of regulating a hypothetical substance X is similar to that
proposed for the regulation of intracellular cyclic AMPlz. According to this
view, neurotransmitter-receptor binding activates adenylate cyclase which in-
Creases cyclic AMP concentration and also mobilizes calcium. Increased Ca2+
concentration within the cell activates cyclic nucleotide phosphodiesterase
which brings about a rapid decrease in cyclic AMP concentration to basal levels.

If this view is correct, then both V_ and V. for cyclic AMP are linked to mem-

£ a

brane potential. There is also evidence that cyclic AMP concentration can be
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increased by depolarizing agents such as electrical stimulation in the ab-
sence of neurotransmitter actionl3.

There are also numerous plausible mechanisms for providing the electri-
cally non-stimulating stimulus traces which we have used in our model. For
example, the phenomena of post-tetanic facilitation and habituation involve
time scales much longer than that of electrical activity14. We might postu-
late that mechanisms which produce post-tetanic facilitation or habituation
for some stimulus patterns might provide important record keeping facilities
which operate whatever the stimulus characteristics are. This would imply
a presynaptic stimulus trace mechanism. A presynaptic site for synaptic
modulation is not only in accord with much data on synaptic plasticity but
also provides for the locality of the trace required by our model. 1In a pre-
vious paperBl we suggested that interaction between presynaptic stimulus
traces and the reinforcement signal could take place via extracellular feed-
back involving interneurons and synapto-synaptic contacts.

There is also no shortage of possibilities for postsynaptic stimulus
trace mechanisms. The necessity for such traces to remain local to their
corresponding synaptic sites suggests that various intracellular ionic pools
could be involved. For example, there is evidence indicating that calcium
within a cell is not uniformly distributed throughout the cytosol but remains
largely confined to mitochondria25'27. We might therefore postulate that
the synaptically local traces ii required by our model involve subsynaptic
mitochondrial calcium concentration.

If we can invoke some of the cellular data to suggest a possible basis
for our model, then the required computations could be performed at a cellu-~

lar level by steps of the following character: 1) Postsynaptic cyclic aMp
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concentration reflects chanées in postsynapitc potential due to changes in
both its rate of formation and its rate of decomposition following synaptic
activation. 2) Synaptic activity causes influx of Ca2+ which is rapidly
taken up by mitochondria to pProvide a long lasting trace of synaptic acti-
vation. 3) Cyclic aMmp regulates Ca2+ release from mitochondrial pools making
Ca2+ available in the cytosol. 4) Ionic conductances are modified through
membrane protein phosphorylation via the joint action of cyclic AMP dependent

protein kinases and a subsequent Ca2+-dependent pfoéess;

CONCLUSION

We have clearly gone beyond the available data in suggesting cellular
mechanisms for our model of classical conditioning: Associative conditioning
has not been 6$served in a robust form at the cellular level, and the bio-
chemical mechanisms we have enlisted have not all been observed to occur to-
gether withiﬂ any single preparation. However, once these limitations of
the above discussion are clearly recognized, there remain several significant
observations.

First, the model we have  presented is strongly supported by behavioral
data as a model of classical conditioning. Although it is not a fully ade-
quate model of classical conditioning, it does account in a simple way for
a variety of phenomena, the one most strongly emphasized here being the pre-
dictive nature of the CR. Our model clearly does not address higher order mod-
ulatory influences such as those produced by attentional or stimulus salience
factors. We have also not attempted to relate all of the properties of our
model to behavioral data. For example, although our model is closely related
to the Reécorla—Wagner model, it has a number of differing implicétions which

have not been fully explored. While there is no direct evidence that the
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learning pheriomena that are accounted for by our model occur at a cellular
level, that possibility exists and we have briefly explored it. We empha-
size again, however, that what we have called an adaptive element may not
correspond to a single cell. |

Second, we have illustrated some of the consequences of a mechanism
in which one set of conditions determines whether or not a pathway is modi-
fied while another set of conditions actually causes the modification. By
separating the functions of stimulus signalling from the storage of stimulus
traces, a simple mechanism can extract causal information from the environ-
ment and make that information available early enough to provide a basis for
decision making.

Third, we have discussed a form of heterosynaptic facilitation mediated
not by postsynaptic discharge buﬁ’faihér'b§féﬂéhgé§-ih postaynaptic membrane
potentiai. This can be interpreted as providing a mechanism by which learn-
ing takes place only when "expectations" are violated and could be mediated
by the intracellular diffusion of a postsynaptic cﬁemical. The use of activ-
ity changes rather than absolute levels provides for complex temporal rela-
tionships and also solves many of the stability and saturation problems which
have beset other theoretical models of synaptic Plasticity.

Finally, we have suggested that prolonged cﬂanges in synaptic efficacy
may depend on the relatively long—term history of synaptic activity and on
complex regulatory machinery. If this view is correct, then one would not
expect to observe details of cellular associative learning without experi-
mental conditions very precisely defined to control the internal state of

the cell and the cellular context of the stimulation.
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Fig. 1. Time relationships involved in classical conditioning. The
interstimulus interval (ISI) is the time between CS onset and UCS onset.
The CR latency is the time between CS onset and CR onset. Usually the CR
lateggy is much shorter than the ISI so that the CR occurs earlier than the
ucs.

UCS

CS —bidelay UCR and CR

CS

delayed CS

ucCs

UCR

CR

Fig. 2. Hebbian style analog of classical conditioning. If condi-
tioning requires simultaneous apiring of the CS and UCS signals at the neu-
ron, then a delay in the CS pathway can cause conditioning to occur only if
the CS precedes the UCS but also prevents the CR from occurring before the UCS.
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Xo='U(:S

X1==(3Eh

XQ==(382
UCR and CR

xn=CS§,

Fig. 3. A neuron-like adaptive element as an analog of classical con-~
ditioning. Each input pathway Xj has transmission efficacy Vgs; correspond-
ing to the associative strength of CS;. The UCS is signalled via a pathway
of fixed efficacy A. Before conditioning, the element output corresponds
to the UCR, and after conditioning it corresponds to both the UCR and the
CR. See text for a discussion of rules for computing the element output
and for updating the associative strengths.

|

Fig. 4. Traces of the signals xj and s (the temporal relationship of
the signals shown is not intended to have a particular significance). The
value of ii at time t is a weighted average of the values of x; over some
preceding time interval, and similarly for s. Illustrated here are expon-
ential weightings. This causes the values for x; and s to remain elevated
for a time after the offsets of the corresponding signals.
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Fig. 5. Classical conditioning for a single CS.

(a) The adaptive element analog. The single CS x has variable associ-
ative strength Veg, and the UCS has fixed strength A. For simplicity, the
output is simply the weighted sum of the input signals.

(b) Time courses of the signals during the first trial. The associ-
ative strength Vog increases due to the non-zero trace X coinciding with
the positive difference s - S caused by the UCS onset.

(c) Time courses of the signals after complete training. Since Vg
is now positive, CS occurrence causes changes in s. Then CS offset, coin-
ciding with positive eligibility Xi, causes a decrease in Vog. At equili-
brium, this decrease is exactly counterbalanced by the increase caused by
UCS onset. Thus, after complete training, Vcs continues to change within
each trial but undergoes no net change.
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Fig. 6. Results of a computer simulation experiment. The associa-
tive strengths at the end of each trial are plotted. Changes in the asso-
ciative strengths which occur within trials are not shown.

-Trials 0 - 10: Presentation of CsS; alone followed by the UCS resulted in
the rise of the associative strength of CS; to the asymptotic level.

Trials 11 - 20: CS; and CS; presented together followed by the UCS pro-
duced no change since CS; was redundant. This is the blocking paradigm.

Trials 21 - 35: CS,y began earlier than CS;. The element became sensitive
to the earlier predictor and lost sensitivity to the later.

13
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UCsS
CS+

Reinforced trials

UCS

Unreinforced trials CS*

CS~

Ves* +Ves-

Associative strengths
o

Trials

Fig. 7. Conditioned inhibition. cs* occurring alone predicted UCS
occurrence, but CS* and CS™ occurring together predicted its absence. Al-
ternating reinforced and unreinforced trials produced the learning curves
shown (plotted points are in groups of four trials). Intratrial changes
in associative strengths are not shown. Associative strengths were at-
tained which sum to zero so that a response was produced to Cs*, but no
response followed the occurrence of CS*t and Cs~ together. CS™ became a
conditioned inhibitor.
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Fig. 8. Chaining of associations. Four CSs were presented to the
adaptive element in trials having the temporal arrangement shown at the
top of the figure. Conditioning occurred for each CS, with later CSs at-
taining asymptotic associative strength before the earlier CSs. The onset
of a later CS comes to provide reinforcement for an earlier CS. Associa-
tions can therefore be formed for time intervals longer than the stimulus
traces if intervening events reliably .occur.
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Membrane potential

Formation rate V,
Decomposition rate 27

[X]=s—5

Fig. 9. A hypothetical biochemical mechanism for detecting changes
in membrane potential (cf. ref. 19). If the formation rate V¢ of substance
X increases with depolarization and the decomposition rate V4q increases at
a slower rate, then the concentration of X will show a transient increase
to a sustained increase in depolarization. In a similar manner the concen-
tration of X will signal the onset of sustained hyperpolarization.



