THE DEVELOPMENT AND EVALUATION
OF INSTRUCTIONAL STRATEGIES
FOR AN .
INTELLIGENT COMPUTER-ASSISTED INSTRUCTION SYSTEM
Elliot M. Soloway

COINS Technical Report 80-04

January 1980

This report contains the technical sections of a proposal to the U.S.
Army Research Institute for the Behavioral and Social Sciences.

This work was supported by the Army Research Institute for the Behavioral
and Social Sciences, under ARI Grant No.'DAHC19-77-G-0012.

EXECUTIVE SUMMARY

The‘promise-of "coﬁputers in education" 1is one-on-one, individualized
instruction in which the 6omputer system tailors the instructional dialogue to
meet the needs and abilities of each student. To meet this challenge, we must
go beyond the traditional Computer-Assisted Instruction (CAI) and programmed
instruction approaches, and make the computer system significantly more

Mintelligent.” To date.l the software technology .necessary to achieve this

objective has not been available. However, recent work in Artificial
" Intelligence, a branch of Computer Science, has resulted in the development of
nexpert systems." These systems exhibit pérformance comparablé to that of a
human expert in applications such as disease diagnosis, spectral analysis, and
mineral prospecting. We believe that the technology used to develop these types
of expert systems will allow us to construct a CAI system which exhibits expert
abilities, i. e., an Intelligent CAI (ICAI) system.

During the past three years, we have made steady progress towards achieving
this goal. A key aspect of this work has been the identification of the
essential roles, functions, and engineering requirements needed by such a
system. To this end, we have explored Instruction and Learning by (a) building
a computer system which learns, (b) developing a classification scheme for
problems which makes explicit the underlying structure, and (c) empirically
investigabing problem solving skills. Based on this experience, we have
outlined thé design of the "ideal" Student Environment, which can respond
intelligently to the needs of each student, and the "ideal" author Environment,
which can facilitate the transfer of the author's expertise into the system.
For example, The Student Environment needs to understand the subject matter,
possess a model of the siudent's understanding, and possess a data base of
alternative instructional strategies; these components can work together to

tailor the instructional dialogue for each student. Likewise, the compl imentary

function of the Author Environment is facilitated by a similar structure.
Finally, we have developed a rudimentary, prototype system, MENO-I, to examine
.the feasibility of this approach.

We propose to build directly on the work highlighted above and (1)
construct MENO-II, a complete Intelligent CAI Student Environment system; and
(2) evaluate and compare the effectiveness of two state-of-the-art instructional
strategies (Coaching and Socrafic Tutoring) as implemented in MENO-II. The"
first 18 months of this two year project will be devoted to completing the
detailed design, implementation, and formative evaluation of MENO-II. The
summative evaluaton will occur in year two; half the students in the progamming
language course, the subject domain of MENO-II, will be exposed to MENO-II
equipped with a Coaching strateg&, while the other half will be exposed to
MENO-II equipped with a éocratic Tuto}ing Strategy. A comparison of tﬁe
performange of the two .groups of students on various tests will be made; in

particular, the degree to which students are able to transfer what they learn

Will be assessed.

Based on our experience over the last three years, and on the'sophisticated
software technology being developed for expert systems, we feel that the goal of
an Intelligent CAI system is realizable now. The steps we have outlined provide
for both an orderly development.and an effective evaluation of such a system.

The projected cost of this two year project is $151,000.

IOl

Description of Current Research

I.1.1

I.1.2

I.l.3

10104
10115

I. TECHNICAL DISCUSSION

. . . .

Pursuing the Goals of Intelligent CAIL: The Promise of
Artificial Intelligence . . . « ¢« ¢ v o o« o o « o o

The Components of the IDEAL ICAI System

I.1.2.1 The IDEAL Competence Model-

I.1.2.2 The IDEAL Student Environment
I.1.2.3 The IDEAL Author Environment

A Description of MENO-I: An ICAI System for the
Programming Language LISP . . « & « + « ¢ o o « « « .

I.1.3.1 The Competence Model of MENO-I: The System's
Knowledge Base v ¢ v v ¢ ¢ o o o o &

I.1.3.2 The Student Environment of MENO-I
A Problem Solving Taxonomy . . + « o« « ¢ « o « o o « &

The Utility of Programming Languages for Enhanced
Problem Solving: Empirical Evidence

Proposed Research: Objectives and Description

I.2.1

IIZ.Z
1.2.3

I.2.4

Instructional Strategies for MENO-II . . . o . . o . .

I.2.1.1 A New Language for Specifying Instructional
Strategies . . . ¢ ¢ 4 o 4 4 4 e e e e e e

Modeling the Student's Understanding: The Performance
mdel - L] . . * L] . . L]-

An Improved Dialogue Facilitator: A Sophisticated
Menu SysStem . . ¢ v v ¢ ¢ ¢ ¢ 4 b e 4 e e e e e e

Evaluation of the MENO-II ICAI System

I.2.4.1 Formative Evaluation: Feedback from Experiments

I.2.4.2 Summative Evaluation e e s e e o

O ~N &P

11

11

.12
. 18

23

. 27

. 32
. 33

40
42
46
49

49
51

Description of Current Research

L1
I.1.

1 Pursuing the Goals of Intelligent CAI: The Promise of
Artificial Intelligence

What are the goals of Computer-Assisted Instruction? From our
perspective, it 1is' the creation of an ENVIRONMENT in which a STUDENT can
explore a subject domain in a manner tailored to the needs and capabilities
of the individual student so as to facilitate the student's understanding of
that domain. We would also 1like that ;nvironment to facilitate thg
instruction of knowledge acqhisitioﬁ and problem solving skills. Clearly,
these goals transcend CAI; they are the goals of education ([Simon 1978].
One also needs to cfeate an ENVIRONMENT for the AUTHOR of a CAi course;
this environment should‘facilitate the transfer of an author's expertise
into the computer fof use ‘as a CAI course, A serious'problem in the
wide-spread utilization of CAI is the current reality of each new CAI course
requiring a major investmeﬁt of time on the part of authors; it should be
possible to help authors to evolve new courses based on previous courses.

What is Artificial Intelligence (AI) and how can it contribute to the
development of rich STUDENT and AUTHOR ENVIRONMENTS? AI is a branch of
computer science, one of whose goals is to dévelop techniques which imbue
computers with the ability to interact with humans in a flexible and robust
manner (Feigenbaum 1977]. The promise of the marriage between AI and CAI,
then, 15 precisely the creation of thé STUDENT and AUTHOR environments; AI
techniques promise to enéble a CAI system to respond to both the basic and
subtle needs of students and authors [Carbonell 1970, Peelle and Riseman
19751.

The creation of such environments does not rest solely‘on progress in
AI alone, Breakthroughs in education must occur before we can build truly

effegtive instructional systems. However, in order to develop techniques

powerful enough to provide the capabilities suggested above, AI must come to
grips with some of the basic questions of intelligence: what is the nature’
of . knowledge -- its organization, representation and content; and what are

the processes involved in understanding and learning. As workers in AI, we

are not so presumptious to think that.wg will unlock all the secrets of
intelligence. Yet, the metaphor of the computer, and the ébility to
quantify intelligence as '"computer programs", may be the tools needed to
enable researchers to push the understanding of these questions to a deeper

lével.

Whether or not we learn enough to build the ideal intelligent CAI

system, we éertainly feel that improvemeﬁts over traditional CAI can and
have been made {1}. 1In the next few chaﬁters we shall outline our efforts
towards. achieving' fundamental. advances in the state of computers in
education. While we shall fall short of the ideal,, the system which we have
* created, and the system which we propose to create, should provide

facilities necessary for the next generation of intelligent CAI systems.

In the next section we first briefly highlight the components of an

IDEAL ICAI system. A more detailed description of each major component will

be provided.

{1} See the collection of papers in the special issue of International
Journal of Man Machine Studies, 11, 1979.

I.1.2 The Components of the IDEAL ICAI System

There are three top~level components in the IDEAL ICAI system (Figure
A1).

- The Competence Model for the Subject Domain
-»The;Sthent Environment
- The Author Environment

The Competence Model is the sysﬁem's understanding of the subject
matter and as such is. the heart of the system. In the Student Environment,
it serves as the ideal against which the student's understanding is
compared; the difference between what the student knows and what he is
supposed to know can be utilized by the instructional strategy. Also, the
Competence Model dées not contain a parsimonious description of the sub ject
area; quite the contrary, the knowledée is rich in metaphors and analogies
in order to tap into. a whole range of different student knowledge states.
With respect to the Author Enviromment; the Competence Model serves as a
base from which an author in concert with the environment can evolve a new
course; for example, if a Competence Model for hiéh school algebra existed,
it should be wused in the construction of a new Competence Model for, say,
computer programming in BASIC.

The Student Enviromment, as depicted in Figure 1, is composed of four
majcr components: the Dialogue Facilitator, the Instruction Monitor, the
data base of alternative Instructional Strategies, and the Performance Model
of the student's evolving ‘understanding. The Dialogue Facilitator
facilitates the interactions between a student and the‘ systém; if, for
example, natural language were used as the medium of communication, then the
Dialogue Facilitator would parse student responses and generate the system's

comments. What the system will say is determined by the Instruction

STUDENTS ' ENVIRONMENT ’ : AUTHORS ' ENVIRONMENT
GOALS: ’ GOAL:
TRANSFERENCE OF COMPETENCE ' ACQUISITION OF A NEW COMPETENCE
MODEL MODEL

TRANSFERENCE OF PROBLEM
SOLVING SKILLS

trategies fo

Strategies for- tracting Auchors
Ingtruction Knowledge
+ ' 4
* Dialogue Ingtruction - Compatence Author " Dialogue
Faeil.i:ator Monitor Model Monitor Facilitacor

J

Parformance
Mod

Performance
Model

Figure 1

Components of an IDEAL ICAI System

Monitor; this process compares what the system believes the student knows,
stored 1in the Performance Model, with what the student is supposed to know,
stored in the Competence Model, and then chooées 'a specific ihstructional'
Stfaﬁeg&.. from a data base of alternative ones, to use in tutoring the
student.
| We view the role of the Author Environment as analogous to that of the
Student Environment; instead of facilitating the transfer of knowledge from
the system to the student, the Author Environment must facilitate the
transfer of knowledge from an author into the system. Thus, the composition
of this environment is symmetric to that of the Student Environment. The
Dialogue Facilitator again manages the communicatién medium, The Author
Monitor constructs a model of what it understands the author to be saying
about a subject area; this Performance Model of the author will become a
new Competence Model. .The current Competence Model can be utilized by the
Author Monitor in conjunction' with a data base of strategies used for
ferreting out what the author knows, to more precisely evolve the new CAI
course, e.g., analogies to other courses can be made through the Competence
Model and ﬁsed in this enterprise. |
The diagram in Figure 1 illustrates the interconnection of the
components of the IDEAL ICAI system. In the following sections we shéll

describe in more detail the rationale for and capabilities of each of these

components.,

I.1.2.1 The IDEAL Competence Model

The main functions of the Competence Model are:

1. To provide a description of the subject matter
under consideration.

2. To provide relatlonships to other, analogous
subject matters.

The knowledge represented in this data base is a map of the subject area;
quite literally, this knowledge base provides the system with "Eompetence"
in the subject area. Also, the analogies and metaphors contained in the
Competence Model add richness and robustness to the instructional process by

providing reference to concepts and relationships outside the given subject

area; this will be useful in dealing with students from differing

backgrounds,
Content alone is not enough; the knowledge mﬁst be structured and
organized to facilitate "effective and efficient access. Two design
principles are relevant here. First, the knowledge should be\ structured

axiomatically; that .is, a hierarchical, tree structure, starting with

primitive concepts at the bottom and building defined concepts strictly in
terms of primitives and other defined concepts [Suppes 1957, Stelzer and
Kingsley 19751].

There are four major advantages to an axiomatically structured
knowledge base. First, the system know§ what it knows -- the defined
concepts -- and, it knows what it does not know -~ the primitive concepts,
Thus, the system can give explanations only for the defined concepts.
Second, the primitive concepts serve as the PRESUMED knowledge base of the
student. That is, the author assumes that a student taking his course will
already understand the primitive concepts. If it turns out empirically that

the author's guess as to the primitives is incorrect, then the author

can simply define concepts previously considered primitive. {1} Third, 1in
developing a Competence Model, the author must actively confront what he
believes to be the tacit (presumed) knowledge of a student in order to
effectively decide which concepts should be primitive and which defined
[Collins 1978]. Fourth, the precision of the axiomatization will aid the
system in its task of building the Perform;nce Model.

The second organizing principle is that the concepts should be grouped
according to the'role which they serve in the subject matter. For example,
the ICAI system to be described shortly, ‘tutors students in a computer
programming language (LISP). A natural decomposition of such a "1anguage"
subject area is in terms of syntax (how an element is constructed);
semantics (what an element does), and pragmatics (when an element can be
used). In fact, we contend that it is the pragmatics of a language which 15
of overriding. importance; for example, the pragmatics of a programming
language contains the general problem skills that are really the goal of the
instructional process (see also Goldstein and Papert 1977, and Brown,
Collins, and Harfis 1978). Defining in general, the types and numbers of
levels for any arbitrary subject do@ain is an open question; a Theory of
Sub ject Matter Structure would be required to resolve this issue.

A Competence Model possessing the content and form described above
would aid the ICAI system in building a model of the student's
understanding. That is, we can view the Performance Model of the student as
some transformation of the Competence Model, e.g., if a student displays a
misundersﬁanding of a concept, the system can infer based on the Competence

{1} Note, that the notion of what is "primitive" is relative to the subject

domain; we are not here arguing pro or con concerning "absolute primitives"
{Schank 19731].

Model what other concepts the student probably doesn't understand either.
Based on the differences between the Performance Model and the Competence
Model, the Instruction Monitor could then select analogies, metaphors, or
other types of descriptions for presentation to the student which would be
tailored to the specific misconceptioné, and knowledgé state of the student.
With regards to facilitating an effective Author Environment, the system's
current Competence Model will serve as the basis for building bridges to new
subject areas (and hence new Competence Models). These issues will be
explored more fully in the next two sedétions.

The issues raised in the construction of Competence Models are ones
that are constantly under investigation in Artificial Intelligence under the
ruhbrick "Knowledge Representation". 1In this area, questions such as how
Knowledge can be represented inside the compute; (Hendrix 1976, Newell 1973,
Minsky 1975], what the content of such knowledge should be [Schank and
Abelson L1977. Minsky 1975, Schmidt 1976], and what the organization and
structure of that content should be [Schank and Abelson 1977, Minsky 1975,
Newell 1973] are being explored. Progress in this area will continue to

have a significant impact on the design and construction of Competence

Models.

I.1.2.2 The IDEAL Student Environment

In order to realize the full potential of computer based instruction --

personalized instruction -- the ideal ICAI system must build a model of what

it perceives is the stater of the student's understanding, i.e., the

Performance Model. Such a model c¢an then be used, by the Instruction

Monitor in concert with the Competence Model and the data base of

alternative Instructional Strategies, to tailor the instruction process to

10

the particular needs of a student. This is a dynamic process since
different strategies may be necessary to accommodate the expected_and
ohserved changes in the student's understanding and learning style.
| Note that the task of building such a model is non-trivial; it
requires a learning system which can, through observations, hypothesiie and
verify knowledge that 1is consistent with the foregoing behavioral
observations, and in addition, can successfully predict future behavior
patterns [Soloway 1978].

The IDEAL CAI system will need a data base consistiné of alternative

Instructional Strategies. For example, a description of the Socratic

Method, and a description of instruction-by-example might be two strategies
included in this dat; base. One way to view instruct;onal strategies is as
types of élgorithms. The work of Collins [1977], in defining the Socratic
Tutoring Method as a set of prodpction rules, as well as our own work on
defining the primitives of an instructional language [Soloway 1979al, and
the earlier more simplistic and basic languages such as COURSEWRITER can be

seen as steps in this direction.

A Dialogue Facilitator is needed in order to manage the communications

interface between the wuser and the system. The choice of medium for this
communication is an open question; some have argued for natural language
[Codd 1974], while others have argued for a sophisticated menu-based system
{Newell 1977]. There will probably be no universal right answer to this
question. The key issue will be in matchihg up the abilities of the‘
components in the ICAI system with their communications requirements., For

example, a system which c¢an not answer arbitrary questions need not have

natural language communications interface.

11

I.1.2.3 The IDEAL Author Environment

The key problem for the Authoring Environment is faéilitating the
-creation of new CAI courses; the author must transfer his expert knowledge
to ;he system(s Competence Model. This process is complimentary to that of
the Student Environment, there the Competence Model must be transfered to
the student. This similarity in function is reflected in the design of the
two environments; Figure 1 illustrates their compositional symméiry.

An . intelligent Authoring Enviromment should be able to effectively
interact with potential authors who have little or no understanding of the
ICAI system; authors should not be required to be CAI experts. Rather, the

Authoring Monitor should, via the Dialogue Facilitator, be able to query the

author and extract from him knowledge in his area of expertise. The
techniques for this process are stored inia data base and are selected by
the Authoriﬁg Monitor based on a number of factors such as past utility,
requirements of the Competence Model, etc.

On a more sophisticated level, the system may inquire of the “author
whether or not the subject matter being developed has any analogies to
pre-existing subject matter domains. If so, the system may be able to draw
on its current Competence Model in order to build a new Competence Model,
thus raising the possibility of automatic generation of new Competence
Models from old ones. In this way, new information can be linked to old,
and new courses can be evolved based on previous ones. This cumulative

effect is the key to solving the problem of CAI course development.

I.1.3 A Description of MENO-I: An ICAI System for the Programming
Language LISP

In this section, we shall deseribe a system, MENO-I, which is

12

implemented and running at the University of Massachusetts. It consists of
a knowledge base -- the Competence Model -- fo; the instruction of
introductory LISP, and a Seh of questions with which a user, via the
Dialogue Facilitator, can interrogate that knowledge base (Figure 2). These
questions directly reflect the structure of tﬁe knowledge base; they also
subtlely instruct the student in ajgood problem solving technique -- ask
critical questions. Currently, there is no instructional strategy
overseeing the student's exploration.. In this section, we shall highlight
the salient characteristics of MENO-I and limit our description to what is
actually implemented; in Section I.2 we shall propose to extend MENO-I
along the 1lines of the ideal ICAI system described earlier into a more

complete intelligent Student Enviromment, MENO-II.

I.1.3.1 The Competence Model of MENO-I: The System's Knowledge Base

‘The subject area for MENO-I 1is that of LISP, a LISt Processing
* programming - lénguage. The Competence Model for this domain was built in
accord with the design goals for an IDEAL Cémpetence Model: (1) that it be
axiomatically structured; (2) that the concepts be organized in levéls
thereby reflecting the use (or role) of those concepts in the subject
matter; (3) that the éompétence Model be densely populated and richly
interconnected. {1}

With respect to the first design goal, a partial axipmatization of LISP
was developed for MENO-I. The results of this effort‘are reflected in the
Competence Model of MENO-I; 120 primitive and defined concepts have
implemented which . covers approximately 25% of a four week classroom course

{1} These issues are discussed in more detail in Stelzer, Soloway, and Woolf
(19791, Stelzer (19781, and Woolf [1979].

14

on LISP. An example of a defiﬁed concept is the syntax of an ATOM.

An ATOM is a string of characters that
must-begin-with a letter.

In this description string, characters, must-begin-with, and letter are

primitive concepts, presumed to be known by the student already. The actual
implementation of this axiomatization is in the form of a semantic network
[Hendrix 1976]. . The network description for the ATOM definition is depicted
in Figure 3 (syntax level, lower left hand corner).

In addition to being axiomatically structured, the concepts in the
Competence Model of MENO-I are also organized into coherent groups or levels
Sased on the role which a concept plays. Since the subject domain at issue
is that of programming LANGUAGES, we borrowed from the linguists their
characterization of language as being composed of:

Syntax - describes how the concept is constructed

Semantics - describes what a concept means

Pfagmatics - deécribes how a concept is used.
Foriexample, all the concepts which deal with how elements of the language
are constructed -- its syntax -- are collected together in the Syntax Level.
Many concepts have definitions at all three 1levels; in Figure 3, the
syntax, semantics, and pragmatics of the concepts ATOM and LIST are
fllustrated.

While we have recently been concentrating on identifying the pragmatic
descriptions of programming concepts, only 1/3 of the 120 concepts currentiy
in MENO-I's Competence Model have pragmatic descriptions attached to them.
Most textbooks on programming languages present the syntax and semantics of
the language. However, they usually do a poor job of telling the reader
when to use a particular construction, or what roles various ccmponents play

in the workings of the language. Without a doubt, these are difficult

13

STUDENTS' ENVIRONMENT'

GOALS:
TRANSFERENCE OF COMPETENCE
MODEL
TRANSFERENCE OF PROBLEM

SOLVING SKILLS
Strategies for
Instruction
4 "y‘?,/v.—/.

' Dialogue. Instruction
Facilitator Monitor
Ny \ s

b

Performance
Model

Figure 2
The Components of MENO-I

MENO-I consists of a Dialogue Facilitator and a Competence Model for
the subject area of computer programming in LISP. These components are
indicated by the shaded boxes above.

15

Figure 3

Grouping Concepts into Descriptive Levels:
Syntax, Semantics, Pragmatics

Depicted here are the concepts "ATOM" and "LIST" and the network
representaions of their descriptions. The English translation of the
network for the Pragmatics of ATOM would be: An ATOM represents those

things which are considered to be (elements~of) the class of real-world
entities.

16

questions to answer. But, without recourse to the three tiered structure we
are proposing, it is not even clear that these questions even get asked!

The third design goal, a densely populated and richly interconnected
Competence Model, facilitates the generation of analogies. Analogies play
the role of relating knowledge from different subject areas. For example,
if a studént with a background in mathematics is attempting to learn LISP,
the system should be able to ﬁake analogies, where appropriate, to concepts
in mathematics; Figure 4 depicts an_analogy pbetween the LISP concept S ATOM!
and the mathematical conéept “NUMBER'. Currently, MENO-I can generate about
17 analogies drawn from knowledge bases for LISP, Chemistry, Mathematics,
English. »

The MENO-I algorithm for generating analogies is a‘graph-matching one.
If a knoﬁledge structure in mathematics, say, can be mapped onto a knowledge
structure in LISP, then an ahalogy can be made between the two knowledge
structures.. This technique is one of those identified by Stelzer [1979al in
his formal investigation of the mathematical status of analogy. There are
some serious computational problems with finding analogies using this
technique [Machtey and Young 1978]; However, we have limited the scope of
the matching in order to circumvent this computational problem -- at the
risk of losing some analogies that are in the knowledge base, but are too
costly to be found.

The analogy depicted in Figure 4 is a "linguistic" one; it 1is
expresséd in words. However, we do have the capability of displaying
"pictorial®™ analogies also. For example, a pictorial analogy for the LISP
concept “LIST' is illustrated in Figure 5. The algorithm for this type of
analogy draws on the preyiously mentioned one. However, instead of printing

"words", a computer program stored at the concept node in question is

17

analody (atom!

WHAT TYPE OF ANALOGY FOR A ATOM WOULD YOU LIKE? (PICTORIAL OR LINGUISTIC)
ling

IN WHAT FIELD ? (ENGLISHsMATHsCHEMISTRY)

a3th

A ATOM CAN BE THOUGHT OF IN TERMS OF MATHEMATICS
ATOM <IS TO> LISP

AS ’
. NUMBERS <IS TO> MATHEMATICS

THEY ARE BOTH THE BASIC BUILDING ELEMENTS IN THEIR SURJECT FIELDS

Figure 4
A Linguistic Analogy Generated by MENO-I

analogy (list?

WHAT TYPE OF ANALOGY FOR A LIST WOULD YOU LIKE? (PICTGRIAL OR LINGUISTIC)
ric -

IN WHAT FIELD 7 ({LISPrENGLISHyMATH)
end)

A LIST CAN BE SEEN IN TERMS OF AN ILLUSTRATION
PHYLOGENETIC TREE

KINGDOM ANIMALS
/ \
/ \
/ \
PHYLUM WARM coLp
BLOODED BLOODED
4 \ /7 N\
/ \ / \
/ \ / \
CLASS MAMALS BIRDS FISH REPTILES

. (ANIMALS (WARM-BLOODED (MAMALS BIRDS)) (COLD-BLOODED (FISH REPTILES)))

Figure 5
A Pictorial Analogy Generated by MENO-I

18

executed which results in the printing of a picture.

1.1.3.2 The Student Enviromment of MENO-I

The Student Environﬁent of MENO-I éontains only a.Dialogue Facilitator:
the student is provided with the abiiity to explore the Competence Model by
asking it questions. For example, one can ask "how is concept X
constructed?" A reasonablé answer to this question would be to return to the
description of the syntax of that component (Figure 6a). Similarly, one
could ask about the semantics -- "what does concept X do?" (Figure 6b) —-
and one could ask about the pragmatics -- "what role does concept X play?"
(Figure 6c¢). Also, one could ask "what is concept X?" (Figure 6d). A
reasonable answer to this question could make reference to the classes to
which concept X is a member, i.e., the superclasses of concept X. Figure 7

lists the set of questions available to the student (those asterisked are
currenyly not implemented). This 1list of questions evolved based on our
classroom experience with real student questions, and on our needs in
constructing the actual Competence Model; that is, the list of questions
which the student can ask reflects the questions we needed to ask ourselves
in ordef to build the knowledge base originally.

The student'can also ask the system to generate an example of a
concept, or test whether or not a student suppliéd response is a correct
example of some concept [Vermeer 1979]. 1In Figure 8a we see a student
asking to ‘see ‘examples of an ATOM, while in Figure 8b we see the student
testing himself by typing in proposed examples of the concept ATOM. Note,
the .system does not respond to an incorrect student input by simply saying
"wrong"; rather, it attempts to diagnose where the student's error is and

inform him of the problem. In Figure 8c we see the 'system testing the

~how. is an :atom: constructed? -

ATOMS HAS-AS-MEMBERS CHARACTERS
ATOMS MUST~BEG IN-WITH=-A LETTERS
ATOMS MUST<END~WITH=-A NOT-APPLICABLE

(a)

A Student Requests to See the Syntax of an ATOM

-~ghat does an :atom: do?

ATOMS ARE-ARE-ACTED-UPON-BY MEMBERS-OF-THE-OPERATOR-CLASS

(b)

A Student Requestg to See the Semantics of an ATOM

~what is the role of an :atom:?

ATOMS ARE-USED-TO-REPRESENT REAL-WORLD-ENTITIES

(e)

A Student Request to See the Pragmatics of an ATOM

-uhat is an :atom:?

ATOMS MEMBER-OF-THE-CLASS DATA—-ELEMENTS
ATOMS MEMBER~OF-THE-CLASS LANGUAGE-ELEMENTS

(d)

A Student Requests to See the Superclasses to which an ATOM Belongs

Figure 6
Examples of MENO-I Responses to Student Requests

In the above, student input is denoted by lower case letters, while
MENO-I output is denoted by upper-case letters.

Simple Version

PRAGMATICS : 7?:

SEMANTICS :7:

SYNTAX :7?:

SUPERCLASS : ?:

SUBZLASSES : 7?:

EXAMPLE : ?¢

CHECK :7:

ANALOGY :7?:

BIC-PICTURE

RELATIONSHIP-OF :x:

& RELATIONSHIPS :7:

Alternative Versions

WHAT ROLE DOES :7?: PLAY

HOW DOES AN :?: WORK

HOW DO :7?: WORK

WHAT DOES AN :7?: DO

WHAT DGES A :7?: DO

WHAT 18 THE MEANING OF AN :7?:
WHAT 1S THE MEANING OF A :7:
WHAT DQES :7?: DO

HOW. DO YOU CONSTRUCT A :7?:
HOW DO YOU CONSTRUCT AN :7?:

~HOW IS AN :?: CONSTRUCTED

WHAT 1S A :?:
WHAT IS AN :7: |
CLASB OF :7:

WHAT ARE SOME SUBCLASSES OF :7:

CENERATE AN : 7?:
GENERATE A :7?:

CHECK MY EXAMPLE OF A :7?:
CHECK MY EXAMPLE OF AN :7?:

ANALOCY FOR A :7:
ANALOOY FOR AN :7:

WHERE AM I IN THE NETWORK

'

WHAT 18 THE RELATIONSHIP OF
CONCEPT :x: TOD CONCEPT :y:

HOW 1B CONCEPT :x: RELATED TO
CONCEPT :y:

WHAT ARE THE RELATIONSHIPS OF
CONCEPT :7:

Figure 7

Questions Which a User Can Ask of MENO-I

The Dialogue Facilitator understands 'the

above questions; it

respond with answers to them b
y drawing upon on the knowledge base
' th?E_these questions are independent of our particular subjec% area'.
reflect the structural relationships inherent in a subject matter. '

20

can
Note
they

—-example :atom:? 21

MEALS

=~example :atom:?

HAKLZO
(a)

A Student Requests Examples of a Concept: ATOM

=check my example of an :atom:

ENTER EXAMPLE OF ATOM

ari
ARI - 18 AN ATOM

(b)
MENO-I Checks a Student's Examples

If a student types an incorrect example, MENO-I dos not simply respond
"INCORRECT"; rather, it tries to explain why the student's input is
incorrect.

=check my example of an :Qtuq:
ENTER EXAMPLE QF ATOM
:Sari .
SART - BEGINS WITH A NUMBERs IT IS NOT AN ATOM

=check ay example of a :functional-expression:

ENTER EXAMPLE OF FUNCTIONAL EXPRESSION
:(fi;stﬁ alpha bdeta) .

TU? LEVEL STRUCTURE LOOKS ¢COD

FIRST# — IS AN ATOM

ALPHA - IS AN ATOM

BETA -~ IS AN ATOM

(FIRST# ALPHA BETA) = IS A LIST

THE CPERATOR “FIRST#" REGUIRES 1 ARGUMENT;
YOUR EXAMPLE IS SEMANTICALLY INCORRECT

(e)

A Running Commentary in the Checking Process

The motivation behind the commentary is to make evident to the student
the process which underlies the checking/generation of an example.

Figure 8
Illustrating the Generation and Checking of Examples

22

student's proposed example of a functional expression. {1} The "running
commentary” supplied by the system as it analyzes this more complicated
concept is meant to provide the student with a sense of the active procedure
behind the generation/testing of this concept.

A In the list of Figure 7, we have tried to identify questions which a
student can use to explore and illuminate concepts in the Competence Model.
While these questions will be explicitly used by the student attempting to
learn a specific programming language, we contend that he/she will aiso be
picking up good problem solving skills. 1In fact, we plan to test whether or
not the ability to ask questions transfers when the student is confronted
with a new programming language (see Section I.2.5). Thus,'we hope that not
only will the student be 1learning problem solving skills in mastering a
programming language such as LISP, but also, the student will be 1learning

"how to learn" by mastering how to interact with and ferret out information
5 .

from a knowledge base.

This concludes the description of the components of MENO-I. In the'
next two Sections. we shall describe our futher exploration of the knowledge
needed for problem solving and{computer>programming; we plan to integrate
the knowledge gained in this enterprise into the system's Competence Model.
First, we shall describe our work in idéntifying the pragmatic knowledge
involved in solving a class of problems. Next, we shall highlight the

results we obtained from empirical studies comparing computer programming

versus traditional aigebra as a language for solving word probiems.

{1} A "functional expression" in LISP is the term used for an operator
(function) followed by the appropriate input arguments.

23

I.1.4 A Problem Solving Taxonomy'

In developing knowledge for inclusion in MENO-I's Competence Model, a
major emphasis has been on the'>identification.'of underlying .- common
structure. This methodology led to a significént insight-when Awe examined

the problems and programs often used in the ;nstruction of LISP; namely,
problems which appear very different when stated in English, nonetheless
have computer program solutions which appear quite similar. A closer
inspection of the problems and programs resulted in the development of a

taxonomy of problems, in which there are currehtly three categories:

predicates, selectors, and modifiers. It turns out that ONE program
template (schema) is all that is necessary in order to generate programs for
ALL the problems just mentioned. This is an interesting and surprising
result which we plan to investigate further [Soloway 1979b].

wé shall try to give an intuitive feel for each of the problem types by
posing‘ problems thaf one might have if one had a garden and one wanted to
retrieve some facts about that garden's pistory {1}. Figure 9 gives a
layout for the garden in question for one year, 1978.

A predicate problem is one which asks a question and requires an answer
of TRUE or FALSE. Typical predicate problems for the garden domain might
be:

Was broccoli always planted in the North-bed?

or

Was the yield of corn high in all the beds that had broccoli in
them the year before?

{1} We use gardening as an example subject domain since it is relatively
intuitive; the taxonomy is most certainly independent of this domain, and
can be easily transferred to other domains if desired,

24

GARDEN LAYOUT

North Bed
[Brocolldl |
[_Corn |
East Bed Wesc Ded

=
[__Corn |

South Bed

Figure 9
Garden Layout for 1978

? (pepe=i)

*00 YOU WANT A PREDICATE. A BUILDER, CGR A SELECTOR?"
Jpredicate

*13 IT AN ‘AND’ OR AN °‘OR’ PREDICATE?"
Jor

sWHAT I8 THE FUNCTION NAME?™
dtest=crop=or ’

“WHAT 18 THE VARIABLE LIST?*
d(ded=data. crop)

*UMICH 18 THE CDRING VARIABLE?”
= dsad=data

oWMAT 19 THE TEST ON THE IDEAL ELEMENT?®
d(equal crop (get=crop (car bed=data)))

*WGRE. LT I8 o

(DE TEST-CROP-OR
(BED-DATA CRCP)
(COND. ((NULL BED=DATA) NIL)
((EQUAL CROP (QET-CROP (CAR BED-DATA))) T)
(T (TEBT-CROP=-CR (CDR BED=DATA) CRCP))))

? (print=bed=history bed=n)
(1976 NS LETTUCE HIGH BED=-N)
(1977 NS LETTUCE HIGH BED=-N)
(1978 NS BROCOLLI MEDIUM BED-N)
(1978 NS CORN MEDIUM BED-N)

2 (test=crop=or bed=-n ‘lettuce)
T

2 (test=crap=or bed=n ‘cukes)
NIL

Figure 10

Solving a Problem by Generating a Computer Program

In the above, the problem solving system generated a program to solve
a user's problems. He wanted to know if lettuce had ever been planted in
the North Bed, the answer being Yes (T); he also wanted to kow if cukes
had ever been planted in the North Bed, the answer being No (NIL).

25

While, these questions may appear syntactically different, they are
nonetheless asking the same kind ‘of question; namely, both require a TRUE
or FALSE answer. The programs which solve the above problems in fact are
identical except for "content" issues such as corn vs. broccoli, ete.

A selector problem is one which requires that a search be made for
those entities which have the -specified properties; this problem type
requires ”as an answer the names of the entities which meet the
specification. A problem of this type might be:

Which beds had cucumbers in them in 1978?

Here, the required answer is a list of only the beds in wﬁich some entity
existed. Those beds which did not meet the specification are ignored.

A modifier problem is one which requires a search through some entities
for those which meet some specification; the desifed subset is then
transformed in some manner. The answer returned here is the union of those
entities not initially ﬁelected together with those entiﬁies which were
Subsequently'transformed. A problem in this class might be:

In order to project how the garden might look in 1979, replace
lettuce by radishes.

The answer to this question would simply be a list of all the beds with
their original contents, except that whenever lettuce appeared, now radishes
would appear.

In order to evalu;te the utility of this taxonomy -- and in order to
make it very precise, we performed the following two experiments: (1) we
used the taxonomy in classroom instruction of LISP, (2) we wrote a computer

program which helps a user generate programs to solve the user's problems.

With respect to the classroom evaluation, we felt, and the students agreed,
that the taxonomy helped them to "move up a 1level"™ in their problem

solving/programming ability by giving them a tool with which to look at new

26

problems. - That 1is, the students saw that they could use the taxonomy to
examine a new,'and apparently different problem, and transform it into one
which they already knew how to soive. This is precisely the generalization
of problem solving skills that we set out to teach! Clearly, a more
structured evaluation is required before any conclusions with regard to
improved human problem solving skills can be drawn. Nonetheless, we were
very encouraged by the students immediate grasp and use of the taxonomy.

We also developed a computer program, PSPS-I {1}, which interacts via
questions with a user in order to ferret out the underlying issues in a
problem, and based on the ansers to those questions generates a LISP program
which solves the userfs problem. For example, in Figure 10 we illustrate a
typical interactio‘n with PSPS-I. "I'he problem that the user wants tq solve
is: .

Were all thé vegetables in the North-bed cucumbers?
PSPS-I first asked the user a series of questions, and then produced a LISP
program to solve the problem. This program was then ?run" (evaluated) on
the particular bed in question with the resulting answer NIL (FALSE), i.e.,
no, not all the vegetables in the North-bed were cucumbers.

At this stage, the majority of the problem solving work is still done
by the user; .however. the stage is set for us to make the system smarter,
thus requiring less technical knowedge by the user. Also, PSPS-1 currently
generates programs in LISP, However, the taxonomy is unquestionably
independent of LISP. Therefore, we feel that Qia analogy mappings, we could

generate program solutions in languages such as BASIC or FORTRAN.

{1} PSPS-I stands for Problem Solving by Program Synthesis.

27

I.1.5 The Utility of Programming Languages for Enhanced Problem
Solving: Empirical Evidence

A number of research groups have claimed that computer programming is a
good source for problem solving techniques. The LOGO group was an early and
consistent proponent of this view ([Papert 1971a, 1971b]l. The Learning .
Research Group at_ XEROX-PARC with their language SMALLTALK hold a similar
view [Goldberg and Kay 1977]. However, to date, there has been 1little -
empirical evidence pro or con for this position. Recently, the MENO Group,
in conjunction with the Cognitive Development Project in the Department of
Physiecs here at the University of Massachusetts, has performed a series of
psychological tests which seem to indicate that, in fact, this hypothesis is
correct. We shall briefly outline the motivation of the experiments, and
then describe the results obtained [Clement, Lochhead, Soloway 1979].

The physics group, mentioned above, discovered that a surprisingly
large number of college freshman engineering students had difficulty with
the ratio problem depicted in Figure 11. In fact, out of 150 students 37
percent missed it! When an equation of the sort nX = mY was required
(Figure 12), the percentage of incorrect answers (73 percent) rose
considerably higher. From video-taped interviews it appeared that the
students understood the problem; they were able to describe verbally the
relative sizes of the groups; and they even could draw pictures representing
the different sizes. Nor does the difficulty seem to stem from a
misunderstanding of the English description; the students were also given
the same ¢type of problem in pictorial form with similar performance
resulting.

One of the hypotheses we developed in order to explain these results
was that the students who gave the incorrect answer of "6S=P' for the

algebra problem in Figure 11, did not interpret "6S' as an active process in

PROBLEM:

Write an equation using the variadles S and P to represent the
following stateaent: “There are sis tices as cany students as
professors at this university, ® Use S for the nusder of students
ot P for the ausder of professors.

Pm:ut' Parcant
Carrect Incorvect
. . 8- k1)
1319 .
Carrect Ansuer: ' P=8

. Typteal Incorrect Ansuer: P

Figure n

A Ratio Problem Used to Assess Student Understanding of Math

A surprising number of college freshman engineering studens
this seemingly simlpe ratio problem.

Urite an equaticn using the variadles Cané S ta represent the
folloving statememt: "At Mindy‘s restaurant, for every four
pecple: who order cheesecake o there ire five pecple vdo ordered

- strodel.® Let C regresent the ausder of cheesecabes and S re=
srasent the nusder of strudels ordered.

mém Percent
Correct = [ncorrect
a - n
. 3130
Correct Ansuer:) 5: 2 48

Typical Incorrect Ansuer: L2138

Figure 12
A More Complex Ratio Problem

With a more complex ratio problem, the number of incorrect
increased even more dramatically.

missed

answers

29

the standard mathematical way, namely "6 times S'. That is, they seemed to
think that since the student group was larger -- which it is -- then in
order to symbolize that picture mathematically, one put a "6' in front of
the 'S' thereby indicating the large size of the student group.

We then hypothesized that if the students were put‘in a situation which
more strongly compelled thgm to take an active view of “6S', then their
performance on this type of problem might improve. The obvious choice for
such an -active environment is computer programming. For a variety of
reaéons, not all of which have yet been ideﬁtified. computer programming
seems to suggest to students that they view numbers, variables and
operations thereon, as acfive processes. However, we felt that, a priori,
it would seem that writing a computer program“to solve a problem such as the
one in Figure 11 would be more difficult than writing an equation for the
same task. Ngnetheless. we felt that possibiy the active environment would
override the other complications which might ari#e in this environment.

On the basis of several experiments, it turned out, in fact, that
significantly more students were able to solve problems of the ratio sort in
the programming context, than were able to do sSo in the traditional
algebraic (equational) context. (The results of one experiment are
presented in Figure 13.) We have begun to do video-taped interviews to
isolate the causes for this result; preliminary protocols indicate that the
programming context does "set the stage" differently than does the
equational one. A student solved a ratio problem wrong using an equation,
and on the very same piece of paper solved a similar ratio problem correctly
using a computer program!

We find this result to be very exciting. On the one hand, it is what

many in the computer science/artificial intelligence community have for a

Progran

@iven the following statement:

*At the last company cocktail partys for every & people who
drank hard liquour, there were 11 people who dvank beer. °

Write a computer program in BASIC or FURTRAN, which will output
the numder of beer drinkers when supplied (via user input at
the. terminal) with the number of-hard liquour grinkers. Use H
for the nuader of people who drank hard liquours and B for the
nusber of people who drank beer.

Percent Percent

Correct Incorrect
Equation 45 99
p .05
Progran 67 3
8 = 101
Figure 13

Problem Solving Enhanced in a Programming Enviromment

~The results of the above experiment indicate that students seem to be
able to solve problems better in a programming environment as opposed to
the more traditional equational (algebraic) environment.

31

long time believed. On the other hand, no hard evidence had been gathered

to support this intuition. Furthermore, the implications for mathematics

¢

education are quite revolutionary. The "theorem-proof" style of math

education 1is seriously called into question; greater emphasis on making

mathematics active is required.

32

I.2 Proposed Research: Objectives and Descriptiaen

In the 1last chapter we outlined the' éheofy behind and the
imﬁlementation of MENO-I, a rudimentary Intelligent CAI System. In this
chapter we shall first describe how we plan to extend this work and build
MENO-II, a full fledged ICAI Student Environment which will be able to
tailor instruction to the needs of the different students. Next, we shall
describe how we plan to evaluate and compare the two dominant ICAI
instructional strategies. Coaching and Socratic Tutoring, as implemented in
MENO-II. 1In particular, the following specific objectives will be described

in the next four sections:

- Implement two state-of-the-art instructional strategies;
develop a language for specifying instructional strategies.

- Implement the mechanisms for building a Performance Model
of the student.

- Implement a student-system communications interface based
on "menu-selection."

" = Evaluate and compare the effectiveness of the two-
instructional strategies.

In the next section we shall first examine the two major instructional
strategies which have emerged in the ICAI literature, showing first their
common root, and then their differences. Next, by way of hypothetical
dialogues, we shall show how these two strategies will be implemented in
MENO-II. Finally, we shall highlight our design of a new language in which

instructional strategies can be specified.

33

I.2.1 Instructional Strategies for MENO-II

Objective

Implement two state-of-the-art instructional strategies; develop a language
for specifying instructional strategies.

The recognized goal of CAI is individualized instruction, wherein each
student interacts "with his own computer." While the decreasing cost of
computer hardware will enable a one-on-one student-computer ratio, the real
question arises as to which instructional strategies are best suited for
this type of instruction? The "lecture hall style," in which a professor
addresses 30 to 300 students, does not seem to take advantage of the ability
to converse with and focus attention on individual students. Two strategies
which do seem to take advantage of the one-on-one relationship is that of an

athletic coach (Goldstein (1976, 19791, Burton and Brown [1979]) and that of

a Socratic Tutor [Collins 1977]. A good coach tunes and sharpens the skills
of an individual player; personal interaction 1is the .key.‘ since this
procesé requires the subtle molding of students' skills. No standard
procedure based on the "average” Student would be‘as effective. The coach
must also limit his comments and provide an environment in which the student
can himself discover his strengths and weaknesses.

Socratic Tutoring, with its origins in the dialogues of Plato, is also
based on the interaction/dialogue between two or more individuals. In this
setting, however, the tutor proceeds in a more systematic manner conveying
the subject matter to the student, while probing the student to uncover the
student's misconceptions and confusions. Thus, it is not too éurprising
that these two instructional strategies should be at the heart of a number
of ICAI systems [Goldstein 1979, Burton and Brown 1976, Miller 1979, Bates,

Brown and Collins 1979], where the clear objective is the individualization

of instruction.

34

While these strategies have a common root, they diverge on how they
facilitate instruction individualization. The key difference is the degree
to which the instructional strategy permits the student to DIRECTLY interact
with the subject matter/learning environment (e.g., a sub ject matter such as
LISP programming, or an informal learning environment such as a game). In
the Coaching approach, the student 1is permitted almost tot;l freedom to
explore his environment directly, while in Socratic Tutoring, the student's

probihgs are all filtered through the -tutor. Figure 14 captures this

distinction pictorially; in the Coaching Strategy, there is a direct 1link
from the student to the enviromment with the Coach observing the stﬁdents
investigative attempts and inéruding only at Jjudicious moments. However,
the .Socratic Tutor fields vall inquiries by the student, so the student's
link to the enviromment is through thg Tutor.

In Figure 15 we list a number of other differences between the two
strategies; these differences either follow _directly from the key
difference mentioned above or are at least consistent with it, For example,
since in the Cbaching Strategy the student can interact with the environment
himself ;- and is, in fact; encouraged to do so .-- the Coach directs 'or
structﬁres the instructional dialogue much less and possibly inAa less
systematic way than does the Socratic Tutor. Typically, the Coaching
Strategy has been embedded inba game environment. Thus, the gaﬁe has been
the structuring/driving force in the environment, since the student is
trying to resolve the competitive situations and win the game. The twists
and turns of the game itself may control the situation .and thus information
and skills may not be introduced in a highly structured manner. Typically
too, the Socratic Tutor has been embedded in a non-game environment (e.g.,

rainfall prediction [Bates, Brown and Collins 1979]), and thus the Tutor

Goach \
SUBJECT MATTER
or
STUDERT . INFORMAL LEARNING
ENVIRONMENT
(a)

SUBJECT MATTER
or

INFORMAL LEARNING

| Socratie
Tutor

(v)

ENVIRONMENT

Figure 14

A Pictorial Comparison of
Coaching and Socratic Tutoring

35

Differences COACH Socratic Tutor

Key Difference:

1. degree to which student high pegligible
DIRECTLY interacts with
subject matter/informal
learning eanvironment

2. degree to which student low high
is directed by instruc-
tional strategy

3. degree to which strategy high medium
responds to student
errors and miscomcepticas

4. degree to which instruc- " low ' high
tional strategy intrudes
or probes student

S. degree to which student high low
evaluates his/her own)
ansvers and progress

6. degree to which the low wedium
instructional strategy

provides explicit
answers to student
errors or queries

Figure-lg

Differences Between Coaching and Socratic Tutoring

37

itself becomes the driving force by posing problems fér the student to
solve. In this case; the Tutor can expand into the subjéct matter much more
systematically than can §he Coach. While the Socratic Tutor does respond to
stﬁdent 'errors (diffe;ence 3), they are THE major signal to the Coach to
possibly intercede. Difference U makes a complimentary point; while the
Socratic Tutor is allowed to actively probe the student, in order to
pinpoint the student's difficulty, the Coach, who 1is trying to keep his
intrusions to a minimum, is not permitted this luxury.

| All the differences listed in Figure 15 simply highlight the intuitive
differences that come to mind based on our experience with Coaches and

Tutors. Note, any particular implementation of these two strategies may

vary the differenées between them, accentuating or diminishing them,
Furthermore, only Socratic Tutoring h#s been worked out in consistent detail
and’ genérality [Collins 1979, Stevens and Collins 1977]; a number of
Coaching philosophies haQe been put forth [Goldstein 1979, Burton and Brown
1979, Miller 1979]. In the abovevdiscussion we have tried to remain as
faithful to these many sources as possible.

We plan to implement these two strategies for MENO-II. This will
provide the basis for (1) an evaluation and comparison of the two
strategies, (2) the development of a general ‘"language" in which
instructional strategies, such as Coaching and Socratic Tutoring, can be
specified.

We will first implement a Socratic Tutor for MENO-II. The hypothetical
dialogue listed in Figure 16 illustrates how this strategy will look in our
domain. The systematic explication of a concept, in this case the syntax of
an ATOM, is the trademark of the Socratic Tutor. While Socratic Tutoring

has been much more well specified than Coaching, and while claims for

38

ATOMS [IN LISP SERVE THE SAME ROLE AS NUMBERS IN ARITHMETIC
{state an analog]

DO YOU THINK 'ALFHA' IS AN ATOM?
(ask for a prediction about a particular case]

" 1 don't kuow.
II Is.

DO YOU THINK THAT ALL THE SYMBOLS OF AN ATOM ARE CHARACTERS?
[form a general rule based on an insufficient factor]

Yes.

DO YOU THINK '2BETA' IS AN ATOM?
{pick a counter example to the general rule]

Yes.

2 IS A CHARACTER, BUT THE FIRST SYMBOL OF AN ATOM MUST BE A -
LETTER; THUS '2BETA' IS NOT A LEGAL ATOM. :

DG YOU THINK 'ALPHA4' 1S AN EXAMPLE OF AN ATOM?

ssesscse

Figure lﬁ

Socratic Tutoring: A Hypothetical Dialogue

subject independence have been made for this specification, nonetheless
changes will need to be made in order to effectively utilize this approach
in our domain. For example, the major test of the Socratic Tutor has been
in a domain containing causal relationships between physical processes
(weather changes); our domain, however, has facts (e.g., the pragmatics of
‘an ATOM) and abstract processes (e.g., LIST concatenations). Also, an
assumption is made in Socratic Tutoring -- as well as in Coaching -- that
the student already knows something about the domain; the task of
instruction is then the refinement of the student's preconceived notions.
However, in our case, a student will most likely not know anything about
LISP; thus tutoring rules will have to be developed which utilize analogies
to tap into domains which the student does know about in order to make
connections to the new domain. (see line 1 in the hypothetical dialogue,
Figure 16).

Another hypothetical dialogue (Figure 17) illustrates the Coaching
strategy in our domain. The less directive, more stand—offiéh, nature of
the Coach is evident in this dialogue. While it is not eQident from the
dialogue, the student's queries for examples of a concept, and his request
for a check of his generated example are routed to the Competence Model;
the Coach watches the student and notes his/her actions, but the student is

directly in contact with the subject matter.

On ; closer inspection of both dialogues, the reader may notice that
the questions asked by either strategy are similar, and in fact, the queries
posed by the student are similar to those of the strategies. This
observation 1leads into the development of a general language in which ta

state instructional strategies, the topic of the next section.

40

I.2.i.1 A New Language for Specifying Instructional Strategies

There are two genéral observations which can be drawn from the
hypothetical dialogues. First, both the Coach strategy and the Socratic
Tutor strategy made use of the same "questions" to interrogate and instruct

the student; the major difference between the two strategies, in

computational terms, is the control structure {1} for each strategy. The

second observation is that the strategies AND the students in both dialogues

used the same questions; that is, the students were also allowed to
interrogate the instructional s&stem {21.

Taken together, the.above-,two characteristiecs of the instructional
dialogue serve as design criteria for a new and general language we plan to
develop which’will enable authofs to specify instructional strategies. Thé
objective in this design lies in having a common language which a stﬁdent
can use to explore the knowledge base, AND which an author can use to encode
an instruétional.strategy. fhe basis of this common language is the set of
"questions" (see Figure 7) which are available in MENO-I only to the
student. That set needs to be augmented in order to facilitate additional
types of interactions; nonetheless the key idea that questions should be at
the heart. of an instructional dialogue -- and thus, an instructional
language --- 18 consistent with our earlier discussions of good instructional

Strategies for individualized instruction. Note, the development of this

{1} A control structure in a programming language specifies the order in
which an event is to occur; it includes the ability to specify that an
event take place on the condition that some other event occur. In FORTRAN
or BASIC, the DO-loops or the FOR-NEXT loops, the IF-THEN statements, and
the subroutine calls are types of control structures.

{2} This was more true of the Coaching strategy.

DO YOU THINK 'ALPHA' IS AN EXAMPLE OF AN ATOM?
I don't know.
IT 1s.
What do I do now, help.
WHY NOT ASK TO SEE A FEW MORE EXAMPLES OF ATOMS.
Generate an example of an ATOM. .
BETA2
Generate another example ‘o; an ATOM. .
HBZQR
What ohouid I do?

mucrasxmrocnzcxmuamucmrmcmmm
OF AN ATOM?

O0.K., 1s 2BETA an ATOM?
NO

WHY NOT ASK TO SEE THE DEFINITION OF THE SYNTAX OF AN ATOM?

Figure 17
Coaching: A Hypothetical Dialogue

41

42

language will proceed concurrently with and based upon the implementations
of the specific instructional strategies. {1}

A major benefit will accrue from this coamon language; namely, we will
have made a giant leap from being bnly able to provide instruction in the
subject domain 1itself, to being able to provide instruction in the
instruction process itself! Since the language in which an- author encodes
instructional strategies is also available to the student, the student will

be able to 1literally see the instructional Strategy being employed by the

system. He might then coﬁe to understand that strategy and use it himself
to continue exploring the knowledge base. The student, in this situation.
will have "learned about learning".

Finally, the specification of an instructional strategy is an
educational question which can be explored empirically. Thus, we feel that
this new languége will. provide a powerful ‘Eggi in which alternative

instructional strategies can be specified and evaluated. The educator will

then be able to precisely define what is meant by "instruction by example",

"instruction by lecture", etc.

I.2.2 Modeling the Student's Understanding: The Performance Model

Objective

Implement the mechanisms for building a Performance Model of the student.

Approach to Objective

An effective ICAI system must match up and balance the capabilities of

its components. Therefore, while our main initial effort will be in

{1} We refer the reader to a working paper [Soloway 1979a] for a more
detailed description of this new instruction specification language; an
extended hypothetical instructional sequence is also presented there.

43

developing the InstructionaIVComponents for MENO-II, such effort would be
wasted if the system did not have access to a rudimentary model of what the
system Selieves is the state of the student's understanding. That is,
without some idea of what the student knows or doesn't know, the
instructional end of the system would be operating in the dark. Thus, we
p;opose to dévelop a rudimentary Performance Model along the lines of one
employed in the WHY System of Bates, Brown and Collins [1979]; the Overlay
Model of Carr and Goldstein [1977] is another example of this type of
Performance Model.

The Performance Model for the student will be a copy of the system's
Competence Model. The two models will differ in that the Performance Model
will be labeled with tags which indicate how well a concept is thought to be
understood by the student, and how that judgment hés made (Figure 18). For
exampie. when the student comes to the course initially, his Performance
Model will have only the labels "Assumed Known™ on all the primitive
concepts, and "Unknown" on all the others., As the student is exposed to the
subject matter, the 1labels on the concepts should change to "Known“,
"Inferred Known™, or "Told". Thus, the changing of the tags on the concepts
illustrates the dynamic, evolving nature of the Performance Model and is
meant to realistically reflect the student's evolving understanding.

The axiomatic structure of the Competence Model will aid us 1in the
labelling process of the Performance Model. For example, from the structure
of the Competence Model the system can easily determine which concepts are
"primitives" and hence are assumed to be known by the student when he/she
comes to the course (Assumed Known). Also, since the "derived" concepts are
explicitly defined in a strictly hierarchical fashion, the system can make

inferences about what is needed to be known in order to understand a later

Known - The student has explicitly demonstrated knowledge
of thisg concept.

Assumed kmown - This concept is so trivial that the student
13 assumed to know it. .

Inferred known - The student has demonstrated knowledge from
which one may easily infer this concept.

Told - The tutor has told the student this information.

Mentioned - The student has mentioned this concept in an
incorrect context, so he/she knows someching about it
but not how it relates to the overall process.

Unimown - The student has not yet demonstrated knowledge
of this concept. '

Figure l§

The Performance Model: Assessing The Student's Knowledge State

The student model may be thought of as a copy of the Competence

in which each node is annotated with one of the above comments.
from Bates, Brown, and Collins [1979])

44

Model
(taken

45

concept (Inferred Known) .

.while the Performance Model described above should be sufficient for
phe needs of MENO-II, we have no illusions as to its rudimentary nature.
Thus, we plan to explore the development of more sophisticated Performance
Models. 1In particular, if the student's understanding is different than the
instructor's, i.e., the Performance Model is not a copy of the Competence
Model, then how can the Performance Model be built up, and how can links
from the Coﬁpetence Modél to the Performance Model be made? The key to this
problem, we feel, is.in the explication of the notion of analogy. A good
instructor builds on what the student already knows by first making scme
initial conneétions to the student's concepts, then applying an analogy
mapping from the student's cdncepts to his own understanding in order to
generate new knowledge structures more in concert with what'the student
knows, and finally modifying his instruction to fit the new knowledge. - For
example, some students do not understand "tree structures" but do understand
"poinﬁer structures.ﬁ While an instructor may have planned his instruction
around "tree structures", a good instructor will recognize the student's
weakness and strength, make an analogy from tree structures to pointer
structures, and continue the instruction in terms of pointer structures.

How analogies can be discovered between two already existing
structures, an& how they can be used to generate a new structure from an
old, are open questions. We have taken a first step towards of solving
these questions by developing a formal, mathematical model of analogy
(Stelzer 1979al; we plan to continue developing that approach, and we also
plan to begin turning that formal model into executable computer programs.
The ability to effectively make and find analogies will be exceedingly

useful in the construction and utilization of more realistic Performance

46

Models.

I.2.3 An Improved Dialogue Facilitator: A Sophisticatd Menu-System

Objective

Implement a student-system interface based on "menu-selection."

Approach Lo Objective

In building systems which interface with people, one immediately runs
into the communication barrier; .what "language" should interface the man
and the machine? It is a commonly held opinion among researchers (e.g., see
Codd [1974]) in this area that a natural language, such as English, would be
the best language for the user. However, the subtleties and flexibility of
natural language expressions . pose significant theoretical and practical
difficulties for algorithmic description. In fact, natural language
research is an area in and of itself [Schank 1977]. Since we want to direct .
our energies to issues more sSpecifically related to CAI, we shall propose a
different approach to coping with this problem.
| We feel that the developing "menu-system® technology will serve our
needs as a "front-end" interface. Such a system would present the user with
information abéut some concept, and a set of alternative actions which the
user could initiate. For example, in our problem, a menu system might
display information about an “ATOM!, and permit the user to ask the
questions described earlier about ATOMS. We have chosen a particular menu
system, called ZOG [Robertson, et al. 19771, to customize for our project.
In what follows, we shall describe how this menu system will serve as a
Dialogue Facilitator in MENO-II [Bonar 1979].

Figure 19 depicts the structure of a typical "menu frame" Awhich would

be painted on a display type terminal; Figure 20 depiets an instructional

47

title

\ —

A "Typical" i0G Frame FRAME 33

This is an example cf a %Sypical (0GC frame. The %ext part of the frame
text contains one “chunk” of useful information

1. A reasonadble next #frame to examine

2. Instruct the system to perform some action

frame
apecifi
‘xf:;nuc 3. Another redsonable nes: P#rame to ovplare
I-INSTRUCTIONS
R-REFERENCE
: U-USEFUL intarface
navigation C-CHECK specific
opticns opticuns

a—alter b-bdback d=display h~help m—mark n-nest r-return 1-zog ~C-exa1t

Figure 19
The Organization of a MENO Frame

The above illustrates how the information in a frame will 1look to a
student when displayed on a CRT by MENO-II.

Lists = Made up rrom Atems MENO 21

Lists are the way to group and order things in LISP Let’s look first at the
simplest type of lists.

Investigate:
B=-BUILD
D-D0
R-ROLE
E-EXAMPLE - W=WHAT
N-NEAR 0-0THERS
C-CHECK B-BUILD
A=ANALOCY . D-DO
R=-ROLE
N-NEXT: Pursue lists of atoms E-EXAMPLE
N=-NEAR
1 Pursve ‘fuyll-dlown’ lists C-CHECK
2. Pursue a special case — empty list ' A=ANALOGY
3. Pursue drawing a picture of a list B-B810Q
G—-GUESTIONS

8~alter Db-back d~display h=help m-mark n-next r—return :-2Z06 “C-exit
Figure 20
An Example Frame: LISTS

Descr1ptive information about a concept, LIST in this example, is only
part of what is a available in a frame; the student can choose an action
from the menus at the right hand side and bottom of .the frame. These
choices allow the student to explore the knowledge base himself, ask
illuminating questions, or permit the instructional strategy to continue
the instructional process.

48

frame for the csncept “LIST'. Information is grouped into "“frames" which
consist of a concept, with actions that can be taken by the user in response
to the presented material. In our case the presented material would be a
concept node vin the Competence Model, and the actions would be the set of
questions appropriate to that concept. These questions will always appear
on the right hand part of the screen. The information in the center of the
screen is dependent on the instructional strategy. For example, if the
student did not know what types of duestions to ask about a concept, then
the student could gelect one (or Some) which are suggésted by the particular
instructional strategy; these aré listed in the middle of the screen under
INVESTIGATE. Also, the student could simply go on to the next concept in
the lesson, by selecting the next option.

Tying the presentation of the material to a menu system does not mean

that the result will be a programmed-instruction or "canned" course. The
~student 3lways has the option to go ahywhere he/she would ulike to in the
Competence Model by simply askiné questions about the concepts; the student
need not elect to choose the NEXT-CONCEPT option. Nor is the concept which
will be presented next decided before the student takes the course, as it is
in programmed-instruction. Rather, the instructional strategy can
. dynamically select the next concept based on whatever information is
available, The menu system in no way inhibits or restricts the user with

respect to his flexibility to explore the subject matter; it only serves as

a communications link.

49

1.2.4 Evaluation of the MENO-II ICAI System

Objective
Evaluate and compare the effectiveness of the ' Coach' and *Socratic Tutor'
instructional strategies.

As we mentioned earlier, the two instrﬁctional~ styleS whiéh. hQQé
émerged in ICAI are the Coach [Goldstein 1976] and the Socratic Tutor
[Collins 1977]. No comparison of the effectiveness of these strategies has
been conducted. We are in the unique position to perform just such a
comparison; the architecture of MENO-II will permit us to "plug;in" a
Socratic Tutor module or a Coach module while keeping ALL other components
constant. Thus, we propose to run one group of students on MENO-II wusing
the Socratic Tutor module, and one group on MENO-II using the Coach module;
performance measures from the two groups will then be compared.

There will be two types of evaluations: formative and summative

(Wagner ‘and Seidel 1978].

I.2.4.1 Formative Evaluation: Feedback from Experiments

Three experiments will be conducted during the first 16 months of our
work. A course of four weeks in duration on LISP prbgramming will be given
{1}; in the first two experiments MENO-II will be used in'conjunction with
traditional classroom instruction, while in the third experiment, MENO-II
will be used to provide the total instruction. A variety of evaluation
techniques will be used in order to give us feedback on

- the adequacy of MENO-II
- the adequacy of the tests which we plan to use during

summative evaluation

{1} In the chapter on the Project Schedule we discuss how we shall obtain
the students for these courses, and who shall be in charge of the classroom
instruction. '

Complex computer systems, such as MENO-II, need to be tuned and
balanced in order to maximize their utility; components must themselves be
modified, but more importantly. their capabilities must be coordinated and
integrated. Student evaluations resulting from experience with MENO-II will
be important in this regard. For example, in order to assess the quality of
MENO-II's Performance Model, we plan to use video-taped interbiews of
students actu;lly engaged in interacting with MENO-II. A member from our
research team will carefully interview the student as he/she interacts with
MENO-II; the interviewer will attempt to assess changes in "the knowledge
state of the student, e.g., where thev student's confusions are, what
concepts he feels he understands. We will then compare the interviewer's
guesses with MENO-II's guesses as reflected in the Performance Model. Also,
we will Qideo-tape two students working togetheé; 1‘stud;nt will explain to
éhe other student the ‘what' and ‘why' of his actions. Again, comparisons
to MENO-II's behavior will be made. This latter technique frees up the
interviewer, and has been quite successfully utilized here at UMass by a
member of our research team, Dr. J. Lochhead, in previous research in
cognition and education [Lochhead 1979].

The video-tape interviews will also brovide us with anecdotal
observations concerning the performance of other components of MENO-II. For
example, where can the layout of the "menu" of the Dialogue Facilitator be
improved; does the Competence Model contain adequate explanations and
sufficient analogies; to what degree is the instructional sequence being
tailored to th§~individua1 characteristics of the students, etc.

We will also ask the students to take pre- and post-performance tests

and fill out a subjective evaluation questionaire which we plan to use

during the summative evaluation. This will help us debug and tune those

51

evaluation tools.

I.2.4.2 Summative Evaluation

The summative evaluation will be devoted to comparing the effectiveness
of the Coach and Socratic Tutor strategies. During this period no changes
to MENO-II will be made. The experiment wili consist of running half the
students, in the programming language course, on MENO-II equipped with the
former strategy, and the other half on MENO-II equipped with the latter
strategy. Data will be collected on student performance and data will be
collected on computational aspects of the ICAI system itself. With respect

to student performance, three types of information will be gathered:

1. Performance of students on tests dealing with sub ject area.
2. Transfer of learned skills to other related subject areas.

3. Subjective perceptions of the students concerning various aspects
of MENO-II.

The performance of students will be measured by their scores on a final
test. T™wo types of skills will be tested for: the ability to recall
factual information, and the ability to coordinate a number of concepts and
apply them to problems not presented in the course. A problem of the first

sort would be:

which of the following are syntactically
correct examples of ATOMS:

(a) ALPHA
(b) ZBETA
(¢) ALPHASBETA
Problems of this sort require knowledge of the syntactic, semantic, and

pragmatic aspedts of the subject area. A problem of the second sort would

be:

Write a program which returns the nth item
in list.

Problems of this sort require both the recall of syntactic, semantic, and
pragmatic information and, more importantly, the coordination of these
components.

The type of problem which we feel will test the degree to which
students can transfer what they have learned is as follows:

The following expression is a statement in

the programming language SNOBOL. What do

you need to know in order to understand it?

Line WPAT = “EMPTY' :S(ALPHA)F(BETA)
This type of question can not be answered by rote factual recall. Rather,
it requires that a student abstract from his/her understanding of LISP some ‘
general principles of programing languages and problem solving. Also, the
student must~ab§tract from the specific learning experience, tbe strategy or

‘algorithm for "going about learning".

Standard Statistical analyéis will be carried out on the data collected
from these tests. We anticipate that students exposed to one instructional
style may do better on one test yet do worse on the other test, when
compared with students exposed to the second instructional strategy. For
example, a.priori we feel that the Coaching style, which fosters student
probing ofr the subject area, will increase students' transference ébility.
but possibly at a cost of insufficient practice and review in the subject
matter itself.

We would also 1like to gather information on the preferences and
attitudés of the students, and correlate that with the backgrounds and -

abilities of the students. As a tool for this analysis we . may use the

standard course evaluation questionaire used here at the University; of

53

course, we will modify that questionaire to refiect our interests in
cémputer related aspects. Video-taped interviews may also prove insightful
in this regard. "

We will also gather data on various computational aspects of MENO-II.
In particular, two types of information will be collected:

- utilization of computational resourses
- subjective observations on the requirements of the various
components in° MENO-II as a function of the instructional
strategy.
It is clear that the cost of computer hardware is decreasing rapidly, and
thus computer resources, such as "compute time," may need not to be
optimized. However it may still be interesting to compare the wutilization
aof sucﬁ resources by the two instructional strategies. Besides a comparison
ofhthe efficiency of the strategies, resource dtilization might show
bottlenecks and "problem areas in the instructional strategy itself; this
type of analysis has become quite popular and useful in debugging and tuning
other types of software systems (e.g., operating systems, language
translators) [Svobodova 1976].

A more novel question to ask is: what requirements does a particular
instructional strategy make on the other components in the ICAI system. For
example, does the Socratic Tutor tend to require a better_ Dialogue
Facilitator; are natural language capabilities necessary? Need the
Competence Model be more structured for effective Socratic Tutoring than for
Coaching? Since the Coaching strategy discourages explicit probing of the
student, does this entail that a Coaching strategy requires a more
sophisticated Performance. Model? At this stage, answers to these questions
may only be subjedtive; however, such Jjudgments may be the basis of

further, more empirical, evaluation.

4

« In conclusion, we should remind the reader that we will be evaluating

two computer programs, which embody two instructional philosophies; while

we will of course try to remain as faithful to the philosophies in our
lwplementation as possible, final rejection of one philosophy over another
requires more evidence than we can muster in only two years. Nonetheless,

if successful, we will have the first empirical evaluation and comparison of

two state-of-the-art ICAI instructional strategies. !

55
II. DELIVERABLES

II.1 Deliverables from Current Research

Four types of products have resulted from our current research:

1. The specification of the components comprising the Student and
Author Enviromnments in an IDEAL ICAI system.

2. The implementation of a rudimentary ICAI system, MENO-I.

3. An empirical evaluation of computer programming (the subject matter
of MENO-I) as an aid to problem solving.

4. A set of reports documenting our results.

In this proposal, we have outlined the design of an IDEAL Intelligent
Computer-Assisted Instruction (ICAI) system which will achieve the goal of
CAI; high-quality, individualized instruction. Such a“systed will . require
a great deal of "intelligence"; it will need to understand the subject
matter under consideration, the studentis learning style and knowledge

state, and possess strategies for instruction in order to perform at the

desired high level.

The IDEAL ICAI system has served as a plan for the design and
implementation of a particular ICAI system, MENO-I. 1In the following, we
describe the software which comprises MENO-i and which is cﬁrrently running

on our computer here at the University of Massachusetts.

1. Competence Model: This component represents MENO-I's understanding
of the subject area; it is a knowledge base consisting of concepts
and relationships about programming and programming languages in
general, and LISP in particular. In instructional terms, this
knowledge base contains approximately 25% of a four week course on
Computer Programming Using LISP. It is capable of making analogies
to other subject areas (e.g., English, Mathematics, Chemistry) in
order to accommodate differences in individual students. Besides
this richness in breadth of knowledge, the Competence Model is also
rich in its depth of understanding of the material; the key
concepts are described at three different levels: syntactic,
semantic, pragmatic.

2. Dialogue Facilitator: This module processes questions posed in
restricted English by the student and accesses the Competence Model
in order to respond with an answer. The 1list of permissable
questions is meant to reflect good problem solving behavior; we
have tried to identify questions which will reveal the essence of a
‘concept. For example, one can ask "how is concept X used?" or
"what does concept X do?" One can also ask for and receive examples
of a concept. Or, the student can ask that his own example be
checked; if the student's input 1is incorrect, the Dialogue
Facilitator in concert with the Competence Model tries to explain
why the student's statement was incorrect.

3. A Automatic Problem Solving System: In order to further identify
Eroblem solving knowledge for eventual inclusion in the Competence
Model, we developed a Taxonomy of Problems, Currently, this
taxonomy serves as the basis for a computer program which can
automatically generate computer programs as solutions to problems
presented by a user.

The Dialogue Facilitator and the Problem Solving System are written in
LISP; the Competence Model 1is written in GRASPER, a graph processing
lapgﬁage extension to LISP: The total package requires approximately 65K on
a. CDC 6600. Response time varies between 2-6 seconds depending on system
load.

As an additional aid in explicating the tacit knowledge involved in
problem solving and programming, Qe conducted several empirical experiments
comparing the problem solving behavior of students in a computer programming
context with students in a traditional algebraic (equational) context. The
surprising, yet robust result, we obtained .was that students do better
solving word problems when they are asked for a computer program solution,
than when they are asked for an algebraic solution --- even though the same
solution is required!

Our work has produced a number of reports; a complete list is given in
Chapter V. In order to collect and focus attention on our work, we have

begun an ICAI Working Paper Series; we are currently in the process of

establishing a mailing 1list and a distribution policy for these reports.

57

One wofking paper has already been submitted to a journal, while two others

are being reworked for journal submission.

II.2 Deliverables from Proposed Research

Three types of products will result from the successful gompletion of
our research objectives:
1. A working Intelligent Computer-Assisted Instruction System,
MENO-II.
2. An evaluation and comparison of the effectiveness of two
state-of-the-art instructional strategies: Coaching and Socratic

Tutoring.

3. A set of reports documenting our results,

MENO-II will be capable of tailoring an instructional dialogue to meet
the needs and abilities of different students. It will be composed of the
modules in the Student Environment of our proposed IDEAL ICAI system: a

Competence Model, representing the system's understanding of the subject

matter (computer programming using LISP); a Performance Model, representing

the system's understanding of the student's evolving knowledge state; a

Dialogue Facilitator, a communications interface between the student and the

Instruction Monitor; an Instruction Monitor and a data base of

Instructional Strategies which monitor and direct the instructional

dialogue.

MENO-II will serve as controlled testbed for the evaluation and
comparison of two instructional strategies: Coaching and Socratic Tutoring.
During a period of formative evaluation, student feedback from video-taped
interviews, performance tests, and questionnaires will be used to tune and
balance the components of MENO-II. For the summative evaluation, the group

of students in the class will be divided, with half béing exposed to MENO-II

equipped with a Coaching strategy, and the other half being exposed to
MENO-II equipped with a Socratic Tutoring Strategy. The comparison between

the two groups will be based on tests of student performance in the subject

59

area itself, and tests of the ability to transfer learned skills to other
subject areas. Also, quantitative measures of computational resource usage
will be gathered and analyzed. The compatibility of the particular
instructional strategy with the rest of the ICAI system will be appraised.
This research will generate reports which will be directed at a number
of different fields. We plan to publish a description and analysis of the
ICAI system itself in computer science/artificial intelligence journals such
as Artificial Intelligence, International Journal of Man-Machine Studies,
IEEE Journal on Systems, Man, and Cybernetics. We plan to publish the
descriptions of the evaluation of the ICAI system in education oriented
journals (e.g., Instructional Science). Finally, we plan to publish
comprehensive articles on both the system and the evaluation in journals
which afe more interdisiplinary, e.g., Cognitive Science, Internatibnal
Journél of Man-Machine Studies. Journal articles will be preceeded by a
working paper in our ICAI Working Paper series, and may also be presented at

various conferences.

