\a /c'">/
1

——=Invited Papcer -——

 Conference on Notion»l Compuicr Litervacy Goals
for 19240

Does Computer #rogrimming
Enhance Problem Sodviung Ability?
Some Positive bvidence
on Algebva Hovrd Problems

TR # 80-05

Elliot Soluuiey ¥k
Jack Lochhead ¥
John Clcaentl

Cugunitive wEvelupmune Fruges v
Department of Physice #ud Astroenomy
University of Maseachusetts
Amherst, Mase«., 0)J002

#% Department of Computer and Information Science
Unversity of Massachusetts
Amherst, Mas«., 01002

This research was supported in part by MG Grant SED78-22043 in the
Joint National Institute of Educatirou - Mational Science Foundation
Program of Research on Cognitive Processes and the Structure of
Knowledge in Science and Mathematics.

This research was also supported in port by a grant from the
U.S. Army Research Institute for the Mehavioral and Social Sciences:
ARI Grant No. DAHC—-19-77-G-0012.

This peper rvrevieuws certain research conducted at the Uniwv. of
Mass. over the past 2 years. It sucludes material reported in
carlier reports: particularly: (Clemc¢nt, lochhead and Soloway 1?79,
19801.

ALSTRACT

There is a common intuition among those in computer scicnce. that
programming helps 4o develop good problem solving skills. In this
papcr we Teview our attempts to iseolale the specific factors in
progiamming which enhance mathematical problem solving ability. In
previcus ‘studies we found that & surprising number of college -
students have difficulty with very simple algebra word problems. We
have also shown that significantly more students are able to solve
these word problems correctly in {the context of writing computer
programs, than in the context of simply writing an algebraic

equation. e obtained similer resulls in comparing the reading of
algebraic equations within computer prvograms and the reading of
algebraic equations by themselvaes. These observations suggest that

computer programming may focus students’ attention on the active,
procedural semantics of equations, a view that many students fail to
take naturally.

We have alco conducted video—taped interviews with students as
they solved typical algebra word problems. Analysis of this data
supportis the hypothesis stated ahove. Based on this data, a
competing hypothesis has also been discounted; namely, it is not the
use that students do belter in the programming context simply because
they check their answers more carefullu.

We conclude with speculation on the impact of our results for
education. We suggest that problem solving literacy can be promoted
by teaching from an integrated algebra/programmming curricula.
Finally, baesed on companion research, we go on to suggest some
-cognitive factors important to the <choice of which programming
language should be taught, and how it should be taught.

n

PAGE

Lh‘.Introduction

: -There'js a common intuition among those in computer science
gdu;ation that programming encouragcs the development of good pvdblem
so}ving skills. Papert [19711 and the LOGD progect were early

,pfoponents' of this view; they developed a method to teach geometry

by way of camputer programming. Underlying their view is a
recognition of the importance of ‘“doing:." of activity, and of
procedure. Educators from Dewey to Fisget have emphasized that 1in

order to understand a concept students need to take an active role.
fhis pedagogical intuition needs to be investigated empirically
so that it can be articulated more precisely. A step in that
direction was made recently by Howe, 0’Shea, and Plane [1979] in a
series of experiments based on the following paradigm: @& course in
mathematics was taught in the standevd way without incorporating
computer programming, and simultancously, the same course was taught
.withvcomputer programming. Students’ mastery of the sub ject matter
wés'then compared across the two groups. In such experiments Howe et
al. obtained a consistent :ffect in favor of computer programming.
The above work might be <characterized as experiments on the
"macro" level; in contrast: the work reported here has focussed on
the "micro" level. That is, we have attempfed to develop tools which
would enable us to isolate specific, cvitical factors contributing to
the above results. Rather than studying an entire course, we have
focussed on single problems. We shall present results (section II)
concerning the surprisingly poor perFormance.oF college students on

two ostensibly simple algebra word pvoublems. These results suggest

PAGE 3

several hypotheses. One is that the errors resulted 4?rom the
students’ failure ¢to give a procecdural “interpretation to the
algebraic equation. A second set of experimental results (section
IV) provides significant, new support for this hypothesis. Namely,
students do signficantly better on certain algebra word problems when
they occur in a programming context, than when the same problems
occur in a traditional, algebréic (non-prdgrahming). context. Based
on analyses of group test data, and on video—taped student intervieuw
data, we suggest several factors involved in programming which could
account for the way in which this activity fosters a more active
interpretatioﬁ of algebta by students. We conclude with a discussion

of the implications of this work for education.

II. Experiments with Word Problems ju & lraditional Algebraic
Setting

In a previous study, Clement, Lochhead, and Mank £1980]
uvncovered several +types of ostensiblg .simple problems which gave
students great difficulty. 1In Table 1 we list two of these problems
and typical performance rTesults. Amung engineevring students 37%
missed the first problem while 73%Z missed the ~second! In ¢their
experiments, Clement, Lochhead and Munk (1980) were able to eliminate
algebraic manipulation and "tricky wording" as sources for the
errors,

The errors made on problems 1 and 2 were largely of one kind;
most were “veversals": &5 =P instead

of S = 6P and 4C = 39S instead of UC = 48, The consistency of

PAGE 4

these error patterns argues against the idea that they were caused
simply by carelessness, and suggests that they stem from a common

conceptual bug.

ITI, Interpretation of Algebra Experiment

How is it possible for students with such weaknesses éo survive
high school and college science courses? It appears that these
students have developed special purpose translation algorithms which
work for many textbook problems, but which do not involve anything
that could reasonably be called a semantic understanding of algebra.
Many word problems are constructed so that they can be solved through
a trivial word-to-symbol matehing algovithm. Others, such as physics
problems, are given in a highly restricted context, where there are
only two or three pretaught equations to choose betﬁeen. This choice
can be made either by picking the oue equation which contains all of
the givgn var?ables or through wunits analysis. While these
techniques may be partially success?ful in many clessroom situvations,
they are too pfimitive and unreliable to be trusted in any but the
most routine applications.

In order to pursue the source of these errors, we conducted
audio and video—taped interviews with 0 students who were asked to
think out loud as they worked these and other related problems. On
the “Students and Professors " problem we were able to identify two
strategies which led to the reversal error. In ¢the first, the

student simply assumed that the ordev or contiguity of key words in

PAGE 5

the English language problem statemcnt mapﬁed directly into'the order
of symbols appearing in the algebraoic equation. Weaknesses in this
type of divect translation strategy have previously been analyzed by
Paige and Simanl1?4&61.

On the other hand, in a second incorrect strategy. students
acted as if they did use an accurate representation of the meaning of
the problem. However, reversal errors appeared to arise because of
confusion about the semantics of the algebraic equation. For
example, one subject wrote ‘465 = 1P’ énd‘explained:

“There’s six times as many students, which means it‘s six
students to one professor and this (points to 48) is six
:;Tez as many students as there arve professors (points to
When asked to draw a picture to illustrate his equation., the student
drew frum vight to.leFt vne circle wath a ‘P’ in it, an equal sign.
and six circles with "S’s" in them. Gubjects such as the above seem
to use an accurate model of the practical sitvation. but they still
fail to symbolize that understanding with the correct equation.

Apparently such subygects interpret the +eversed equation,
145 = P', as stating that a large group of students afe associated
with a small group of professars. To these students the letter "P"

stands for "a professor" rather than "ihe number of professors" and

the equal sign expresses a comparison or association rather than an

equivalence. The fact that the "S" side of the equation has a "6" on

it indicates that it is larger than the wpn gjide which has no
modifier. Thus: there appear to be more S§’s than there are P’s.
Thue the student attempts to write the algebraic equation ‘6S = P' as

a “figurative" statement. describing a passive picture in which

PAGE 6

relative sizes of the entities are represciited.

This coptrasts to the correct equation ‘S = 6P', which needs to
be viewed as expressing an active operation being performed on one
number (the number of professors) in order to.obtain another number
(the number of students). The correct equation, S = &P, does not
describe sizes of the groups in a literal or direct manner,. Rather,
it describes on equivalence relation that would occur if one were to
make the group of professors six times lavger. In other words, the
equation 8§ = &P is not a direct description of the actual
situtation, but rather, it represents the hypothetical state of
affairs which would result aftor performing +the operation of
multiplying the current number of professors by & The key to fully
understanding the correct translation lies in viewing the number six

as an gperator which transforms the number of professors into the

number of students. For example, oue subject who correctly wrote
S = 6P said:

"If you want to even out the number of students to the
number of professors, you’d have {to have six times as many
professors.

The equation is thus interpreted in a procedural manner as an

instruction to act.

"IV. Computer Progqrams vs. Algebraic fquations: Experimental
Results

On the basis of the foregoiug analysis, we developed the

following hypothesis: if student: werve placed in an environment

PAGE 7

which could induce them to take a move active, procedurall view of
equationg, then the errorT rate on these problems should govdomn. One
clear candidate for such an environment is that of computer

programming. That is, a computer program is a definite prescription

for action; it is a set of commands which produces some result.

Relow, we present empirical .tests of this hypothesisi; in the next

section we shall present our analysis of ilhese results.

Experiment 1

In this experiment. our subjects weve primarily freshmen and
sophoﬁores in a course an machine and acscembly language programming.
Half the class uwas given problem 1 in Table 2 while the other half
was simultaneously given problem 2 in Tzble 2. The only difference
in the questions is that the latter asks tor a computer program while
the former asks for an algébraic equation. As jndicated in Table 2
significantly more students could solve problem 1 than could solve

praoblem 2. Probability of these results on the assumption that

errvors on each problem were equally likely is p < . 05.

Experiment ¢
The above experiment explored the writing of computer programs

or equations. However. Clement, Lochhead and Monk [1980] observed

that reading equations also gave studenls a great deal of trouble.

That is, many students failed to write a correct explanation of the

PAGE 8

relationship expressed by the cquation. Following +the hypothesis
outlined. above, we wanted to compsre {he results of students reading
and explaining an equation, which was embedded in a computer program,
with students reading and explaining an equation, which stood aloneo.
The two questions in Table 3 were given as part of an 11 question
test to 87 freshman, engineering students. The diFFerence between
the groups which answered one correctly but the other incorrectly is
quite interesting. Namely, the group of students who answered the
computer problem correctly (problem 2, Tahle 3), but %he equation
problem incorrectly (problem 1, Table 3) was more than 3 times as
large as the group who answered the equation problem correctly, but
missed the computer problem. This difference is significant at the
. 003 level. .Here again, we see that the programming environment

Facilifated the students’ understanding.

V. Why a Programming Context Decreases Reversal Errvors: Saome
Hupotheses

Based on the experiments described earlier, we developed a set
of hypotheses (see Table 4) that could explain the performance
difference discussed above. Other recearchers have commented that

they felt that hypothesis 4 was the key reason for the performance

diF?erence. That is, they felt that “checking one‘’s answer by
substituting numbers" was the factor that enabled students to write
the correct equation. This technique --- writing a program down. and
“running it" with test data for verification ——— is emphasized in

prb§$amming courses. Moreover, if {he “checking" hypothesis were

PAGE 9

correct, then the coniribution of the programming environment per se
would be minimal; one could -"run" straight algebraic equations,
though this technique is not stressed in instruction.

In order to better understand the factors involved, we employed
the same technique that had provided valusble insights in the algebra
study (Clement, Lochhead, and Monk [317301), namely., "video-taping
students as they solved problems. The same written test discussed in
Experiment 2 above was given to students who were taking a second
course in computer programming. We selected for video—taping., O

students who missed the algebra version of the problem on the written

test. During the video-taping session, we asked each student to
solve 4 problems, of the type discussed earlier. Half these students

vere given the problems in the following order: an algebra version,
a programming version, an algebra version, and a programming version;
The other half started alternating with the programming version. O#
the 5 students interviewed, 3 "flip—flopped"” on their answers at
least once, i.e., they got the algebra wrong and the programming
corréct (or the programming correct and the algebra wrong), and some
did this more than once. In some cases, the opposing solutions
appeared within 30 seconds to 1 minute of each other, with the
student’s wfitten work appearing on the same piece of paper. It is
interesting to note, though, that al) U students did answer the last

(fourth) problem correctly.

In tpe video—-taped interviews with these students, we did not
see any indication that number checking/substitution was the main

factor contribuiting to a correct program solution. It appeared that

PAGE 10

other factors in the programming environment were more important.
For example, the stuents reqularly and systematically put a READ
statement at the top of the program. 7This appeared to "trigger" the
concept of input, which in turn, tviggered the concept of wvariable,
i.e., a place that holds a value, & number. Thus they were lecss

likely to fall into the misconception of thinking of 8 as a lahel for

"a student. " [1]1 As they wrote the program, or after it, the students
repeatedly gave "qualitative" explanations for their correct answer.
For example, one subject said:

Slightly more bought hamburgers than bought sandwiches...
So I knew &/7 wouldn’t quite work sa it must have been
7/6. ..

I knew the ratio of people getting hamburger to sandwich is
Just a 1little bit more thaw une so I was looking for a
fraction using the numbers in the problem which would be
slightly more than 1.

[J

After the correct equation was written doun, we did see some students

checking the equation with numbevsi however, this came after the

students appeared quite»conﬁident with their equation, as evidenced
by explanations such as the above.

At this point our analyses and conclusions (e.g.. the five
hypotheses in Table 4) are in flux. We are, for example,
investigating the hypothesis that studeuts have different “spheres"
or "frames" of knowledge for algebra and programming. When asked to
solve a problem using a program, the student may be switching to a

new knowledge base, somewhat independent of the algebra knowledge

(11 By "labels" we mean that students« appeared to treat "S" and "P"
as they would “feet" and "yards" in {the following relationship "3
feet = 1 yard. "

PAGE 11

base. We are currently analyzing move video—tape data in order to

evaluate and rcofine our hypotheses.

- VI, Implications for Education

The data of Clement, Lochhead, and Monk [19803] show that it ig
pafficula¥lg important +to distinguich between the mafh courses a
student has taken and the knowledge of mathematics the student
actdallg possesses. If one defines mathematical literacy as the
ability to translate back and forth befween problehs in the world and
mathematical .descriptions. then there is good reason to question
whether mathematics instruction has promoted such literacy.

This is not merely an academic qucection. Recent.survegs suggest
that Russian college students are at lesst twe years ahead of their
American counterparts in the level of their mathematics coursework.
~Like <the missile crisis of the 1960’s, this information could spur a
major national effort to catch up. But if Russian math courses are
noc more effective in teaching students how to think mathematically
than are our own, we may only be compeling to see who can get further
behind. We do not mean to belitile the potential threat of a
math—gap. On the contrary we see it a« a very sefious issue which
must be studied seriously and quickluy.

Based on our work, we can make (wo proposgls which might
facilitate “problem—solving litevracy."* The first 1is obvious:
integrate.a course(s) on programming inlo the mathematics curriculum.

The assumption underlying this recommendation is that "transfer” will

PAGCE 12

gccur —= the skills learned in the pvogremming course will resurface
in the mathematics courscs. While our data does not conclusively
show transfer, we have results which are consistent with that
hypothesis. In particularw, recall d{Lhast all students who uwere
interviewed on video—tape did cventually solve the test problems
correctly. Whether this was a practice effect or a true transfer is
unclear. We are currently planning & serics of experiments to

further explore the "transfer" quesition.

Our second proposal is more radiré]: redefine much of the early
"mathematics” curricula to be progromming based. That is, teach
algebra as an integral part of programming. Clearly, the students

would learn the same symbol manipulalion skills that they develop in
the algebra course, but in addition, they would be in a better
position to develop problem—solving literacy, which is the goal of
the former courses. Transfer would be less oaof an issue, since
algebra and programming would be integrated at the start! We believe
that this approach would help studeuts develop a much deeper
understanding of the conzepts of variable and function, and a much
greater facility with mathematical modelling in practical situations.
Clearly, this suggestion is not ncw; it has been put forth, in

various forms, by Papert (1972].

VI.1 A Cognitively Appropriate Programmiug Langquaqge

——

If programming should be included in the curricula:, the question
of "which language"” to wuse comes up. Here again: the style of

research employed in the above studies could play a key role. That

PAGE 13

is, with the precious little empivical research into the cognitive
factors involved in programming [Seide) and Hunter 1970, Mégé% 1979,
Miller 1974, Ledgard 19791, and with the current push in thé
direction of more “formality" in programming, programming languages
are in danger of becoming like mctlhematics, i.e., developing a
notation system that students can learw, but only with difficulty,
and can manipulate, but without any real understanding. We have
beaun an empirical study, using the group testing and ipdividual
video—%taping techniques desctibed abaove, to explore how students
learn to program in Pascal, a programmiug language which has recently
gaineq wide acceptance.

Our preliminary rvesults are quite wunsettling (Soloway, et
al T19R0N) We conductcd a pilet e«tudy of students in a summer
school course on introductory Pascal programming. 'During the course,
we collected "on-line protocols" of siudents as they interacted wit
the Pascal system in order to solve homework assisgnmenfs. and we
administered a group test at the end of the school semester. Based
on an analysis of this data, we found, Ffor exampie, that students
were confused in many ways about the bzsic iteration constructs in
Pascal. They did not seem to understond --= ov trust -—— the <complex

functions which the for, while, ond repeat constructs perform.

Students either made explicit those Ffunctlions which are implicitly
performed (e.g.. loop end testing, iudex variable incrementing) or
they assumed that more actions would be performed than actually are
(e. g.. incrementing the index ~vaviable in the while construct).

Since we believe that one of the primawry benefits of programﬁing is

PAGE 14

Ehaﬁ it requires students to make each step explicit, we are
suspicioué.of the blind initiecl usec of sophisticated constructs uhiéh
haQelméng implicit operations. We speculate that in FactAstuden€s do
not have mental models of the primitives which campose these higher
iével coﬁ;tructs. This suggests thet they should be taught iteration
First using the primitives, and then graduaté ‘to the complex

constructions, as was often done in teaching BASIC and FORTRAN.

VII. Concluding Remarks

We have attempted to empivrically explore the contribution of
programming to problem solving in the context of ostensibly simple
word problems. Our general hypothesis was that programming does
enhance problem solving, because programming encourages the needed
procedural view. We have carried oul & number of studies on this

question (Clement, Lochhead, and Sulowoy [19801), many of which are

reported here. To date, all support our initial hgpotﬁesi&
. Clearly, however, much more needs to be done. In particular, our

woTk has focussed on a limited context, and issues such as transfer
"must be further explored. Nonethelerss, we are encouraged by the
results of these studies, and are plamming further -experiments in
order to broaden and deepen our hypolherses. Finally, based on this
research, we have put forth two sugqeetions which call Ffor the
"wedding” of mathematics and programming. Nhilg many questions
remain to be researched, we have befarec uc the exciting prospect of

uncovering new modes of instruction many times more powerful than

those we now employ.

PAGE 15

Clement, J., Lochhead, J., and Monk, G. (1930) "Translation
Difficulties in Learning Mathemotics," Amevican Mathemabical
Monithly, in press.

Llement, J., Lochhead, J. and Soclouay, &. (197?9) "Translating Between
Sumbol Systems: Isolating Common Difficulty in Solving Algebra
Word Problems," COINE Technical Report 79-19, Department of
Computer and Information Sciunce, University of Massachusetts,

“Aniherst.

Clement, J., Lochhead, J. and Soloway, [, (1980) "Positive Effects of
Computer Programming on Students’ Understanding of Variables and
Equations, " Proc. af the National ACM Conference, Nashville.

tHiowe, J.A. M., 0’Shea, T. and Plane, J. (1779) "Teaching Mathematics
Through Logo Programming, " DAJ Rescarch Paper 115, Department of
Artificial Intelligence, University of Edinburgh.

Kaput, J. (197%a) Personal communication.
Kaput, J. (1979b) "Mathematics and lLeavning: Roots of Epistemologicai

Status," Cognitive Process Instyruction (J. Clement and J.
P oohhend Ede b Fro-idin Inetituvte Press. Philad:zlzhic.

Ledgard, H., Whiteside, J., Singer, A, ond Seymour, W. (1979) “"Report
on an Experiment on the Desian of Interactive Command
Languages, " COINS Technical Reperti 77-21, Department of Computer
and Information Science, University of Massachusetts, Amherst.

Mayer, R.E. (1979) "A Psychology of Leawvning BASIC," Comm. of the
ACM: November.

Monk, G.S. (1979) Personal communication.

Paige, J. and Simon, H. (1966) "Coguitive Processes in Solving
Algebra Word Problems," Problem $Solving Research, Method and

Theory (B. Kleinmutz, Ed.), John Wiley and Sons, New York.

Papert, S. (1971) “"Teaching Children (o be Mathematicians versus
Teaching about Mathematics, " MIT AJ L ab Memo 249, Cambridge.

Papert, 8. (1979) "Computers and Learning, " in The Computer Age: [2)
Twenty~-Year View, (M. Dertouzos and J. Moses: Eds.), The MIT
Press, Cambridge, Mass.

Seidel, R.J. and Hunter, H.G. (1970) "ihe Application of Theoretical
Factors in Teaching Problem-Solving by Programmed Instruction, ™
International Review of Applied Peycholoqy, Vol. 19, No. 1,
April.

L

and - Misconceptieons in Studenis”’
-Programming Issues, " in preparvation.

PAGE 16

Soloway, E., Bonar, J., Barth, J. and Waslf, B, (1280) “Conceptions

Understanding of Basic

Prosilem 1.

Urite an equation using the wvariables © and P to represent the
following statement: “There are ¢ix times as many students as
professors at this University. " Use O for the number of students and
P for the number of professors.

Sample Size % Correct % Incorrect

150 63 Q7

Problem 2:

j =8

Write an equation using the variables € and G to represent the
following statement: nat Mindy’s rvestaurant, for every four people
who order cheesecake, there are five penple who ordered strudel. " Let
¢ represent the number of cheesecakes and S represent the number of

strudels.

C-mnip Gize % Corrtect % lncorrect

150 27 73
Problem 3.

Spies fly over the Norun Airplane Manufacturers and return with an
h

aerial oto vaph_of the new planes in the yard.
BH® DO ® (O D
Go D

They are fairly certain that they have photographed a representative
sample of one week’s production. UWrite an equation using the letters
R and B that describes the relationship between the number of red
airplanes and the number of blue planec produced. The equation should
allow you to calculate the number of bluc planes produced in a month
if you know the number of red planes produced in a month.

@

Y
~

Sample Size % Correct % JIncorrect

34 32 &Hi

able

O cmraremitnan

i.—.

w

Problem 1:

Given the following statement:

"At the last company cocktail perty. fov every & people who drank
hard liquour. there were 11 people who drank beer. "

Write a computer program in BASIC which will output the number of
beer drinkers when supplied (via user input at the terminal) with the
number of hard liquour drinkevs. Use { for the number of people who
drank hard liquour, and B for the nuawbey of people who drank beer.

Sample Size 7Z Corvect 7Z Incorvect

92 69 31

Problem 2
Given the followinyg statement:

YAt the last company cocktail party., Efor every 6 people who drank
hard liquour, there were 11 peovle who drank beer. "

Write an equation which represents the above statement. Use H for the
number of people who dranx hard liquour, and B for the number of .
people who drank beer.
Sample Size %Z Correct Z Jncorrect
a1 45 9

Probability of these results on the assumption that errors on each
problem were equally likely is p < . 0OV

Table ¢

Praobicm
Write o

i

il

sontence in English that gives Lhe same jnformation as the

falliouing cquation:

A is ¢
8 is ¢t

Problem
Progrem
Input I
K = ¥*
Print WK
End

For the

A = 78

he numbeyr of escemblers in o factovy.
ke numher of solderers in a faclovy.

o

Kayalk

mathematical

number of Kayalks.

above computer program describe in English the
relationship which exists between 1, the number of Igloos, and K. the
Camparison of Prohlem J ¢nd Problem 2
a. Number of people who got 1 corvrect, but 2 incorrect)
b. Number of people who got ¢ correct, but 1 incorrect 18

Probability of these results on the assumption that case a and b were

equally

likely is < . 005

Tahle J

——— e

While various mathematica) symbols (e.qg.,» the equals=—oign)
are often open to a varicly of interpretations = in
mathematics (see [Koaput 197901), programming languages

. vequire that only one intevpretation be associated with each

symbol. This fact is wusually cemphasized in programming
language instruction. For examples, the meaning of /=° in

1Y = I + 1v is explicitly defined as an act of replacement,

i.e., the value of the rtight side of +the equation beconmrs
the new value of the wveriabhle on the left. Also, the
interpretation of variables is clear, i.e., they stand {for
numbers which are acted on by operators. ' :

Explicitness reguirvred by the suntax of proaraaming
languaqgeos. The fact that one must write ‘%58 vather than

simply ‘68" might serve {o prompt one to view that
expression operatively as mesning “six times the numbay of
students® rather than falling inte the ervor of viewing it
descriptively as "six studentis®.

Viewing an "eguation” in a8 proarsmuming lasnguaoe as an asctive
input/output transformation. lhet is, the vight hand side of
the equation (the input) is opevated on to produce a valve
for the left hand side (the oulput). :

The practice of debuaging proarems. Wiile students may not

be encouragod to “pun their equations® in typical
mathematics courses, this concept of actual number testing
is an integral part of programming and programming

education.

The practice of decomposing & pyoblem into explicit steps. A
number of students solved Lhe computer program problem by
writing down a two step scauence of operations,

X B/&6

B 114X
One interpretation for this phemenon might be that students
"saw" partial results "produccd"” on the way to the solution.

Table 4

Preliminary Hupoihcsis:
Why Programming Facilitastes ’roblem Solving

