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GENERATING EXAMPLES IN LISP: DATA AND PROGRAMS

Extended Abstract

This paper addresses the process of generating examples which meet
a set of specified properties or contraints; we call this activity
CONSTRAINED EXAMPLE GENERATION or CEG. Herein, we outline a model
for this process and describe an implementation of this model which
generates examples of data in LISP and simple recursive programs in
LISP.

The CEG process can be deomposed into three phases:

(1) SEARCH for and (possibly) RETRIEVE examples satisfying the
constraints. This is done by searching through the.knowledge
base and judging examples for their match (or partial match)

to the desiderata; :

(2) MODIFY an existing example judged to be close to fulfilling
the desiderata;

(3) CONSTRUCT an example from elementary or general knowledge,
such as definitions, more elementary examples, and general model
examples. : g

The computer implementation of this model consists of: (1) an EXECUTIVE,
which directs the overall flow of control; (2) a RETRIEVER, which
retrieves examples from the knowledge base; (3) a MODIFIER which
modifies existing examples; (4) a CONSTRUCTOR which instantiates general
model examples and templates; (5) a JUDGE which evaluates a candidate
example's satisfaction of the desiderata; (6) an AGENDA-KEEPER, which
sets up an ordered agenda of examples to be worked on.

Briefly, if the simple RETRIEVAL process finds no example in the
current knowledge base which satisfies the constraints, the system
enters the MODIFICATION phase. lere, an example is massaged to make

it satisfy the constraints. The set of examples which are candidates
for modification are ordered by their closeness to the goal example.

If no example can be modified, the CONSTRUCTION phase is entered, which
attempts to instantiate a model example to fit the constraints.

We present several example problems run on our system. The same system
architecture is used to generate both data examples and recursive program
examples; only the specific example massaging techniques are different.

We conclude with a diszEgsion of the uses of this system, e.g., in an
intelligent computer-a¥sisted instruction system for LISP tutoring;

as a vehicle to study the theoretical and computational issues (search,
constraint interactions, etc.) in example generation. We also suggest
ways to incorporate adaptive hill-climbing techniques into the CEG
process; in this way the system could learn from experience and improve
its performance over time.



GENERATING EXAMPLES IN LISP:
DATA AND PROGRAMS

In this paper we describe an architecture for a system that solves
problems of generating examples —— data and simple programs --
that have specified constraints, which we call the process of
CONSTRAINED EXAMPLE GENERATION ("CEG"). The CEG system consists
of three major parts: retrieval, modification. and construction.
This computational model for the CEG process has been implemented
on a VAX and currently solves example generation problems in LISP
of two types: (1) generation of data (i.e., atoms and lists)
having certain attributes <concerning depth, length, ordering,
grouping; and (2) generation of simple recursive. programs. The
data examples are generated through all three phases of the CEG
model; the programs are generated +through instantiation of
“templates".

SECTION 1: Introduction

Examples —— specific test cases and code =-— are important in
computer science not only because they play a central role in the
writing and debugging of successful programs but also because they
are critical to reasoning and understanding in general.

Having a rich well-organized stock of examples is intimately
related to understanding [Polya 1973; Michener 1978al. Examples
are important to developing ideas [Lakatos 1963; Lenat 19761,
learning concepts [Winston 1975 Soloway 19781 and directing the
reasoning process [Polya 1968; Bledsoe 19771 The ability <o
concoct examples often distinguishes the expert from the novice.
Thus examples are important to both computers and humans.

Automating example generation has immediate applications ¢o both
ICAI and automatic theorem proving. ICAI systems need examples to
illustrate points to its students. Automatic theorem provers need
examples to prune away bad paths of reasening.

These needs cannot be totally met by a3 static storehouse of canned
examples: no system (or system—designer) can foresee all the
examples it will potentially need; further, it would not be
efficient ¢to store every conceivable variation of an example.
Thus, we have chosen to study the generation of examples.

Having a generation system also provides us with a “laboratory" to
study the generation process itself, with the goal of explicating
the process in both humans and machines. Such a system will be
instrumental in studying the intevactions of constraints and
design-processes.

For ICAI work, our CEG system has the added bonus of being able to
be used to evaluate (and correct) student—generated examples. The
same mechanisms that the system uses Lo Jjudge {(and modify}) its own
examples can be applied to student exemples. This can lead to the
trapping of student¥s) bugs, modelling of the student, and
suggesting remedipgl tutoring episodes.
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SECTION 2: The CEG Architecture

A Model for CEG

We are using a model of CEG that is based upon analyses of
protocols C[Rissland 1979; Woolf and Soloway 19801. Presented
with a task of generating an exemple that meets specified
constraints, one:

(1) SEARCHES for and (possibly) RETRIEVES examples satisfying
the constraints. This is done by searching ¢through the
knowledge base and Judging examples for their match (or
partial match) to the desiderata;

(2) MODIFIES an existing example Judged to be close ¢to
fulfilling the desiderata;

(3) CONSTRUCTS an example from elementary or general
knowledge, such as definitions. principles and more elementary
examples.

Thus, there is a spectrum of responses to a CEG task ranging from
having a ready answer as in (1) to having neo especially close
tfitting candidate as in (3). In general, Task N depends on and
follows Task N-1.

We have implemented this CEG model in the LISP domain. Written in
LISP, it currently runs interpretively on a VAX 11/780 running
under VMS. Examples of problems and solutions are given in
Section 4. This model has also been used to simulate the solution
of CEG problems in mathematics.

The knowledge in our CEG system resides in two major sources: the
knowledge base wupon which the system - runs, and the knowledge
embedded in the processes operating on that base. The knowledge

consists of general epistemological knowledge (e.g.. the structure
and ¢ypes of examples) and domain—-specific knowledge <(e.g..
particular list modification techniques).

The system consists of several compancnts —— roughly one for each
of the three phases of the model -— which handle different aspects
of CEG. The flow of control between the components is directed by
an EXECUTIVE procedure. Figure 1 shows the general architecture
of our system.

The Knowledqge

The components use a common knowledge base which consists of two

parts: (i) a "permanent"” knowledge base of
“Representation—spaces” (Michener 1978a. .1978b 1, and (ii)
“temporary" knowledge generated during the solution of a CEG

problem.
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There are four representation spaces, each of which is a set of
items, represented as frame-like data structures, and organized
according to predecessor—successor tTelationships. Examples—space:
which is by far the most heavily used in our current sysfem.
consists of known examples organized according to the relation of

constructional derivation reflecting which examples are
constructed from which others. The other spaces and their
relations are: Concepts—space: definitional dependency;
Results—space: logical dependency; and Procedures—space:

procedural dependency.

Before the system is given any CEG problems to work on, we create
an initial set of representation spaces. The initial state of the
Examples—-space for the set of problems described in this paper is
shown in Figure 2. The spaces are modified —- mostly through the
addition of examples to Examples—space — as the system works
through CEG problems.

The temporary knowledge held by the system during a CEG problem
run includes a list of the constraints of the problem: an agenda
of candidate examples, and various bookkeeping parameters such as

“boxscores", "constraint-satisfaction—counts"” and “recency
counts®”.

The Camponent Processes

The system consists of several interacting components. Briefly.,
the components and their roles are:

(1) EXECUTIVE - directs the overall flow of control;
(2) RETRIEVER - retrieves examples #from the knowledge base;
(3) MODIFIER - modifies examples;

(4) CONS’ER - constructs examples by instantiation of model
examplesi

(S) JUDGE - evaluates an example‘’s satisfaction of the
constraints;

(&) AGENDA-KEEPER - sets up agenda of examples to be worked
oni
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SECTION 3: CEG System Components

(1} The EXECUTIVE is responsible for initializing the system for a
CEG problem, directing the flow of con%trol among the components,
and cleaning up afterwards. 1t accepts a CEG problem in
prescribed format from the user and sets up the problem
specifications in the temporary knowledge base.

The problem desiderata are kept on the COMSTRAINTS~-LIST, which has
as many entries as there are constraints. Each constraint is
recorded as a pair of properties DESIRED-PROPERTY and
DESIRED-VALUE. For instance, the specification of the three
constraint problem of "a list, of length 3, where the depth of the
girst atom is 1" is recorded by the following properties (PLIST's)
for the constraints: :

CONSTRAINT-1 DESIRED-PROP: (TYPEP X)
DESIRED-VALUE: LIST

CONSTRAINT-2 DESIRED-PROP: (LENGTH X)
DESIRED-VALUE: 3

CONSTRAINT-3 DESIRED-PROP: (DEPTH (FIRST—-ATOM X} X)
' DESIRED-VALUE: 1 '

Problem 1

The EXECUTIVE dictates the behavior of the system as a whole by
specifying the orderings used by the other processes. such as the
order of retrieval of candidate examples vsed by the RETRIEVER and
the order of application for modification techniques used by the
MODIFIER.

(2) The RETRIEVER searches the knowledge base for examples on
request from the EXECUTIVE. It searches through Examples—space by
examining examples in an order specified in terms of attributes
such as "epistemological class” fMichener 1978b1, position in the
Examples—graph, and recency of creation.

In the problems described in Section 4, the “"retrieval order" used
was:

reference examples before

counter—examples before

start—-up examples before

examples without epistemological class attribute

and in the case of ties

predecessors befare
syccessors

and
left—positioned before
right—-positioned examples
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This retrieval order biases the system to examine wubiquitous and
earlier~contructed examples before others. The order of
CANDIDATES retrieved from the initial Lxamples—space of Figure 2
is thus:

(A B C)

(0 1)
(01'23456788%9
¢
(A)

(A BCDE)

With each new example selected, the RETRIEVER calls the JUDGE ¢to
evaluate the example ¢o ascertain how well it satisfies the
desiderata.

(3) The JUDGE evaluates a CANDIDATE example by cycling through all
of the DESIRED-PROPERTY/DESIRED-VALUE pairs on the
CONSTRAINTS—LIST and comparing them with the actual properties of
the CANDIDATE and recording the results of the comparison in the
CANDIDATE’s representation frame. Thus, the JUDGE'’s basic cycle
is evaluation, comparison and record.

The JUDGE records the results of the comparison by FILLING-IN <the
BOX-SCORE and the CONSTRAINT-SATISFACTION-COUNT ("CSC") slots in
the representation frame of the CANDIDATE. The CSC is simply the
number of desiderata met by the CANDIDATE.

The BOX-SCORE is a list of 2-tuples, one for each constraint, of
the form (ACTUAL-VALUE, T or NIL). The ACTUAL-VALUE is the
CANDIDATE’s value for a DESIRED-PROPERIY; T is entered if the
ACTUAL-VALUE equals the DESIRED-VALUF, and NIL if not.

For instance, the BOX-SCORE for the example "(A)" as a candidate
solution to Problem 1 would be:

¢ (LIST T) (1 NIL) (1. T) )
The CSC for this example would equal 2.
The BOX-SCORE for the example "(A B C)" would be:
¢ (LIST T (3 Ty (1.1T) )
The CSC for this example would be 3, that is, all the constraints
are met; the success of this example would be recorded as a T in

its "SF" (SUCCESS/FAILURE) slot.

(4) The MODIFIER is invoked by the EXECUTIVE when the RETRIEVER
has been unable to find an example meeting the constraints from
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its search through Examples-space.

The MODIFIER calls the AGENDA-KEEPER to set up an agenda of
examples to be modified. The MODIFJER then works down the AGENDA
trying to modify each entry. in turn until success is achieved ot
the agenda exhausted.

To modify an example, the MODIFIER examines its BOX-SCORE for the
constraints that were unsatisfied. In 8 GPS fashion [Newell, Shaw
and Simon 1959], it <calculates the DIFFERENCE between the
DESIRED-VALUE and the ACTUAL-VALUE for each DESIRED-PROPERTY not
satisfied. Using the DESIRED-PROPER1Y and the DIFFERENCE as an
index in a difference-reducing table, it applies modification
techniques to the example.

For instance, for the example "(A)" with & CSC of 2 for Problem 1.
the property not met is that of having a length equal to 3. The
DIFFERENCE between the DESIRED- and ACTUAL-VALUE is thus +2. The
difference-reducer finds the modification technique MAKE-LONGER by
looking for modification techniques aFfecting the LENGTH attribute
of a list and reducing the DIFFEREMCE by making it longer by 2.
(If the difference were -2, as would be the case for the example
“(A B CDE)" the appropriate technique would be MAKE-SHORTER).
The MODIFIER thus would make the current candidate 1longer by
adding ¢two elements to the list. (The MAKE—~LONGER routine pads a
list by adding literal atoms to the end of the list%.)

Currently, the system continues to modify the candidate example in
its attempt to satisfy the specific _gounstraints. However:, the CSC

could stay the same or even done after any specific
modification. That is, the constraints can interact and one
modification routine could destroy the work of another

modification routine, or destroy a property satisfied by the
original data. For example, the system can make a NESTED-LIST
from the LAT “(A B C)" by GROUPiIng "A" and “B", i.e..
“( (A BY C )»*. However, before the modification technique was
applied, the LENGTH was 3, but now, afier modification. the LENGTH
is 2. If the DESIRED-VALUE for LENGIH was 3, we have created a
problem!

Thus, in the next version of this systems we shall re—judge an
example after each modification. I+ the CSC is improved., the
MODIFIER should continue modifying this example further by going
through another difference—analysis, difference—-reduction,
Judgement cycle. If +the CSC goes down, the MODIFIER might
abando(;)its attempt to bring the example into line. That is. the
MODIFIER should return to the AGENDA and compare the current
candidate’s C€SC with the top candidate in the AGENDA; the one
with the highest CSC should be chosen for subsequent modification.
In this way, the MODIFIER would be engaging in a form of
hill-climbing.

When there is more than one unsatisfied constraint, the MODIFIER
orders its modifications according te the order specified by the



PAGE 7

EXECUTIVE. In the sample problems in this paeper, the modification
order C;fSis to apply modification techniques that affect the
CANDIDATE’s attributes of:

TYPE before

LENGTH before

DEPTH before

GROUP ING

(S) The AGENDA-KEEPER is called by the MODIFIER and CONS'ER %o set
up the AGENDA of examples to be modified or instantiated.

When called by the MODIFIER:, the AGEMDA-KEEPER compiles an agenda
of items to be modified based uvpon the CSC’s calculated and
recorded during the retrieval phase: +the examples are ranked in
order of their CSC’s. Thus, the CSC is used as a measurement of
the closeness aof the example to meeting the constraints. In ¢the
case of a tie, the retrieval ordering is used. ’

(6) The CONS'’ER is called by the EXECUTIVE when the MODIFIER is
unsuccessful in 1its attempts ¢to produce a solutiom or a model
needs to be instantiated. This latter case is particularly
important to the generation of progroms from templates.



PAGE 8

SECTION 4: Generation of Data Examples
Problem 2

ENOTE: the text in this section (and in Section 5, Sample Output) is
actvally computer output generated by our CEG system; however, ex—

planatory text has been added, and some output modified ¢to improve
readability. 1]

The second CEG problem asks for 3 lict of length 3 whose first atom
has a depth of 2. The constraint list is:

(x1 (desired-value list desired—prop (typep candidate)))

(x2 (desired—-value 3 desired—-prop (length candidate)))

(x3 (desired-value 2 desired—prop (depth (first—atom candidate)
candidate)))

The retrieval phase is entered with the Examples—space of Figure 2.
The retrieval order of candidates is:

<abc>
CHedigitsD>
C#dbitsd
<emptyd>
<a>
<abcde>

The RETRIEVER reports on each candidate tried, by printing out its
BOXSCORE, CSC and SF:

candidate name = <abed candidate--value = (a b c¢)
csc = 2 sf = nil
(enftry—-x1 (lat t))
(entry-x2 (3 ¢))
(entry—x3 (1 nil))
“failed"

candidate name = <##digits> candidste-value = (0 1 2 3 45 & 7
8 )
csc = 1 sf = nil
(entry-x1 (lat ¢))
(entry—-x2 (10 nil))
(entry—x3 (1 nil))

"failed"
candidate name = <##bitsd candidate—~value = (0 1)
csc = | sf = nil '

(entry—x1 (lat t))
(entry—x2 (2 nil))
(entry—x3 (1 nil))

"failed"
candidate name = <empty> candidete~value = nil
csc = 0 sf = nil

(entry-x1 (atom nil))
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(entry—x2 (O nil))
(entry-=x3 (0 nil))
“failed"”

candidate name = <a> candidate—value = (a)
. csc = 1 sf = nil
(entry—x1 (lat ¢))
(entry—=x2 (1 nil))
(entry-=x3 (1 nil))

“failed"
candidate name = <abcde> candideste—value = (a b ¢ d e)
g€sc = 1 sf = nil

(entry—-x1 (lat %))
(entry-x2 (5 nil))
(entry—x3 (1 nil))
“failed"

The problem desiderata are not met by any examples in the data base,
and thus the modification phase is entered.

The AGENDA of candidates for modification is as follows (the CS8SC is
given after the candidate’s name):

(<abecd> 2)
(xbits> 1)
(<a> 1)
(Ceadigits> 1)
(Cabcde> 1)
(Cempty> O)

The MODIFIER goes to work on the first candidate, (A B C):

current candidate = <abc> “value = " (a b ¢c)

constraint = ((typep candidate) list)
actual score = (entry—x1 (lat t))

modify—candidate ok

constraint = ((length candidate) 3)
actual score = (entry—x2 (3 t))

modify—candidate ok

constraint = ((depth (first—atom candidate) candidate) 2)

actual score = (entry—x3 (1 nil))
"find-diff" (increase~depth—-by 1)
“apply—-dif#®

reducer = make—deeper—x new—-candidate = ((a) b c¢)
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modify—candidate modified

The candidate’s depth attribute has been modified by the modification
routine MAKE-DEEPER-X to produce a new example, which is then judged:

candidate value = ({(a) b ¢c)
csc = 3 sf = ¢t

(entry—x1 (nlist ¢))

(entry—x2 (3 t))

(enfry-x3 (2 ¢))

("created new frame for example " marlil—009 ((a) b c))

“success!!"

Problem 3
The CONSTRAINT-LIST for the next problem is:

(x1 (desired-value list desired—prop (tupep candidate)))

(x2 (desitred-value 5 desired—prop (length candidate)))

(x3 (desired—-value 2 desired-prop (depth (first—-atom candidate)
candidate))) .

(x4 (desired-value 3 desired—prop (depth (first—atom (cdr candidate))
candidate))) . '

The order of candidates retrieved and judged is:

<ahc>

#¥#¢diai /e - i
2**:3;;5)@ ‘/MIM{'“Z” Srseelie E E-ﬂ/a’c
<empty>
<a>
<abcde>
marl1-009

Since no example meets the constraints, the modification phase is en-
tered with the following AGENDA:

(<abcde> 2)
(maril1-009 2)
(<x#Ebitsd> 1)
(<a> 1)
(Cexdigits> 1)
(<abc> 1)
(Cempty> O)

The MODIFIER sets to work on the first candidate (A B C D E):
constraint = ((typep candidate) list)
actual score = (entry—x1 (lat t))

modify—-candidate ok
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constraint = ((length candidate) 5)
actval score = (entry=x2 (35 ¢))

modify—candidate ok

constraint = ((depth (first—atom candidate) candidate) 2)

actval score = (entry—x3 (1 nil))
“tind—-diff" (increase—depth—by 1)
“apply—-dif#" : .
reducer = make-deeper—x new—candidate = ((a) b c d e)

modify—candidate modified

constraint = ((depth (first—atom (cdr candidate)) candidate) 3)
actual score = (entry—x4 (1 nil))

"find-diff" (increase-depth-by 2)
“apply—diff"
reducer = make—deeper—x new—candidate = ((a) ((b)) c d e)

modify—candidate maodified

candidate value = ((a) ((b)}) ¢ d e)
csec = 4 sf = ¢
(entry—x1 (nlist ¢))
(entry—x2 (5 ¢))
(entry—=x3 (2 t))
(entry-x4 (3 t))

The modification is successful and the new example is added %o the
Examples—space.

("created new frame for example " marl1l1-010 ((a) ((b)) c d e)) ‘suc-—
cess!!t"

The Examples—space after the successful solution of Problems 2 and 3
is shown in Figure 3.
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SECTION 5: Generation of Program Examples

In order to apply the CEG model to a particular task area, one needs
to identify a set of descriptors, or constraints, for examples in
that task area. Above, we have identified several which describe
simple data examples: TYPE, LENGTH:. DEPTH. etc. The set of descrﬁQ:/
tors we use in our initial implementation of the CEG process for pwWa- ~
grams, are based on a model of the underlying structural and fung-
tional similarities of simple LISP programs L[Soloway and Woolf,
19801.

In particular, we can divide such problems and programs into three
classes: CLASSES, BUILDERS, and SELECTORS. A PREDICATE returns True
or False (NIL); a BUILDER returns the elements of a list which did
not meet the test criteria plus some operation on those that didi
and a SELECTOR returns only those elements which did satisfy the test
criteria.

In addition, within each class, one can identify "OR" problems and
“"AND" problems. For example, MEMBER 1is an OR-PREDICATE, while
IS-LIST-OF-ATOMS is an AND-PREDICATE; REMOVE-MEMBER <could be con-
strued as an OR-BUILDER, since it deletes only the first occurrence
of a element from the list, while REMOVE~ALL-MEMBERS might be called
an AND-BUILDER since it removes all occurrences of an element from a
lis¢.

The above functional similarity among the problems is nicely mirrored
by ' the structural similarity in the programs which solve such praob-
lems. In the predicate case, for example, one can abstract a
template from the code for an OR-PREDICATE and an AND-PREDICATE,

i.e..,

( IS-LIST-OF-ATOMS (LST) ( MEMBER (LST ARG)
(COND ((NULL LST) T (COND ((NULL LST) NIL)
((LISTP (CAR LST)) NIL) ((EG@ (CAR LST) ARG) T)
(T (IS-LIST-0F-ATOMS (T (MEMBER
(CDR LST)1 (CDR LST!) ARGI

( PREDICATE-TEMPLATE (CDRING-VARIABRLE ARGl ARG2)
(COND ((NULL CDRING-VARIABLE) <7, NIL>)
((TEST (CAR CDRING-VARIABLE) [ARG11 [ARG21) <NIL., T2)
(T (PREDICATE-TEMPLATE
(CDRING-VARIABLE) ARG1 ARGZ21]

A similar analysis can be given for BUILDERS and SELECTORS; also,

extensions can be made to handle nested lists rather than single

lists—of—-atoms [Soloway and Woolf, 19301, For this paper:, we shall
: concentrate on programs in the PREDICATE class.

_Based on the above discussion, the descrviptors we have used to speci-
fy the constraints in this part of the system are:
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descriptor possible~values
FUNCTION-TYPE PREDICATE, BUILDER, SELECTOR
QUANTIFIER AND. OR

TEST-TYPE legal LISP predicate
TEST-ELEMENTS legal arguments to the test-type

For example, the specification of MEMRER would be:

CONSTRAINT-1 DESIRED-PROP: (FUM-TYPE X)
DESIRED-VALUE: PREDICATE

CONSTRAINT-2 DESIRED-PROP: (QUANT X)
DESIRED-VALUE: OR

CONSTRAINT-3 DESIRED-PROP: (TEST-TYPE X)
: DESIRED-VALUE: EQ

CONSTRAINT-4 DESIRED-PROP: (TEST-—-ELEMENTS X)
DESIRED-VALUE: ( (CAR LST) ARG )

Before going into a detailed discussion of our particular choice of
descriptors, we shall first present two sample runs of the CEG sys-—
tem.

Sample Output

In the first example, we shall assume that our knowledge base has in
it only a description of the PREDICATE-TEMPLATE which belongs to the
"model" class of examples. Thus, in c¢reating a specific program
(e.g.. MEMBER), we need to go into the CONSTRUCTION phase of the CEG
processes in order to instantiate the template.

Above we listed the constraints which specify MEMBER.

The RETRIEVAL process finds that the only example in the knowledge
base is a MODEL example.

candidate name = PREDICATE-TEMPLAIL candidate-value =
( PREDICATE-TEMPLATE
(lst arg)
(cond ((null cdring—variable) <t—or-nild)
((test (car cdring—-variable) argl arg2) <nil-or-—t>)

(t
(PREDICATE-TEMPLATE (cdr cdring-variable)
argl
argeal) )
csc = 1 sf = nil

(entry—-il (predicate t))
(entry—~i2 (template nil))



(entry—i3 (test nil))
(entry—~i4 (((car cdring-variable) argl arg2) nil))

“failed"
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Since ¢this example is by nature genersl, it must fail the RETRIEVAL

process; now, the CONSTRUCTION phase can begin.

constraint = ((fun—type candidate) predicate)
actual score = (entry—-il (predicate ¢))

modify—candidate ok

##comment: the example already met this constraint: thus no
modification is necessary. '

constraint = ((quant candidate) or)
actval score = (entry—i2 (template nil))

“find—-diff" (make—or—predicate—from—template—predicate)
“apply—diff"
reducer = make—or—predicate—fvom—template—predicate
new—candidate =
( member (lst arg)
(cond ((null 1st) nil)
((test (car cdring-variable) argl arg2) t)
(t ( member (cdr 1lst) arg)ll))

modify—candidate modified

##comment: the ‘OR’ semantics are instantiated.
constraint = ((test—type candidate) eq)
actual score = (entry—i3 (test nil))
“find-diff" (make—test—-type)
Yapply—dif#”
reducer = make~—~test-type new—candidate =

( member (1lst arg)
(cond ((null lst) nil)
((eq (car cdring-variable) argl arg2) ¢)
(t ( member (cdr lst) argl)))

modify—candidate modified

##comment: EQ is substituted for test.

—

constraint = ({(test—elements candidate) ((car 1lst) arg))

actual score = (entry—isg (((car'ching—variable) arg arg2) nil}))

“find—-dife" (make—test—elements)
“apply—diff"
' reducer = make—test—elements new—candidate =
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( member (lst arg)
(cond ((null 1lst) nil)
({eq (car 1lst) arg) t)
(t ( member (cdr 1lst) arg))))

modify—candidate modified

##comment: the correct arguments to EO are instantiated.

candidate value =
( member (lst arg)
(cond ((null 1st) nil)
((eq (car 1lst) arg) t)
(t ( member (cdr 1lst) argl)l)d
csc = 4 sf = ¢
(entry—il (predicate t))
(entry—i2 (or t))
(entry—-i3 (eq t))
(entry~id4 (((car 1lst) arg) ¢))
(“created new frame for example " marl2-009 MEMBER )

“syccesgs! !

A new example, named ‘marl2-009’ is added to Examples—space; it can
be used for subsequent example modification.

Now, assume that IS-LIST-OF-ATOMS. an AND—-PREDICATE.: has been pro-
duced through modification of MEMBER, an OR-PREDICATE. Let us follow
an example in which the system is asked to produce a function called
ALPHA-COMPARE, which rteturns true if the given character is greater
than any other character in the given list.

Below we list the constraints which specify ALPHA-COMPARE.

(il (desired-value predicate desired—prop (fun—type candidate)))

(i2 (desired—value and desired-prop (quant candidate)))

(i3 (desired—value lex—-gte desired—-proup (test—-type candidate)))

(i4 (desired—prop (test-elements candidate) desired-value (character

(car 1s¢))))

As usual, the RETRIEVAL process attempts to find an example in the.
current Examples—space which satisfy ihe above constraints. The can-
didates to be examined are:
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“candidates are:"
mar12-009
marli2-010.

candidate name = mari2-009 candidote—-value =
( member (lst arg)
(cond ((null 1lst) nil)
((eq (car 1lst) arg) ¢)
(t ( member (cdr lst) argll)?
csc = 1 sf = nil
(entry—il (predicate t))
(entry—i2 (or nil))
(entry—i3 (eq nil))
(entry—id4 (((car 1lst) arg) nil))
“failed"

candidate name = mari2-010 candidate—-value =
( is—list—of—-atoms (lst)
(cond ((null 1lst) t)
((listp (car 1lst)) nil)
(t ( is=list—of-atioms (cdr 1lst)))))
csc = 2 sf = nil

(entry—il (predicate ¢))
(entry—i2 (and t))
(entry—i3 (listp nil))
(entry—igq4 (({car 1st)) nil))
"failed®

The MODIFICATION process can now begin. The list of candidate exam—
ples below are ordered on the basis of their CSC value; the MODIFI-
CATION process will take mari2-010 (is-—-list-of-atoms) from the AGENDA
to work on first.

“candidates are:"

(mar12-010 2)

(mar12-009 1)

current candidate = marl12-010
value =
( is-list—of—atoms (lst)
(cond ((null lst) )
({listp (car lst)) nil)
(t ( is—-list—of—atams (cdr lst)))))

constraint = ((fun—type candidate) predicate)
actval score = (entry-il (predicate ©))

modify—-candiate ok

—— . - D et 2 e St e s s W




constraint = ((quant candidate) and)
actual score = (entry-i2 (and ¢))

modify—candiate ok

constraint = ((test—type candidate) lex—gte)
actual score = (entry-i3 (listp nil))

“find-diff" (make—test—-type)
“apply—-dif#"
reducer = make—test—type new—~candidate =
( alpha—-compare (character lst)
(cond ((null 1lst) ¢)
((lex—gte (car 1lst)) nil)
(t ¢( alpha—compare (cdr lst) 1lst))))

modify—candidate modified

##comment: the new test, lex—gte, replaces listp.

constraint = ((test—elements candidate) (character (car 1lst)))
actual score = (entry—i4 (((car 1lst)) nil))

“find—-dife" {make—test—elements)
“apply—dif&"
reducer = make—test—-elements new—candidate =

( alpha-compare (character lst)
(cond ((null lst) ¢)
((lex—gte character (car lst)) nil)
(t ( alpha—compare character (cdr lst) ))))

modify—candiate modified

candidate value =
( alpha-compare (character lst)
({cond ((null 1lst) ¢)
((lex—-gte character (car lst)) nil)
(t ¢ alpha—compare (cdr lst) 1lst))))
csc = 4 sf = ¢
(entry—-il (predicate €))
(entry—i2 (and ¢€))
(entry—-i3 (lex—gte t))
(entry—id4 ((character (car 1lst)) ¢))
(“created new frame for example " marl2—011 alpha—compare )

“gsuccess!'!"
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The new program, ALPHA~-COMPARE, was produced as a modification of an
existing program, IS-LIST-OF-ATOMS. The contents of Examples—space
now is: ‘
PREDICATE-TEMPLATE <-~--constructed-from—— MEMBER

MEMBER <---constructed—-from——— I1S-LIST-OF-ATOMS

IS-LIST-0OF-ATOMS <{---constructed-from—— ALPHA-COMPARE

Issues in CEG Program Generation

The CEG system in this domain works exactly like the system in the
data domain; the basic GPS architecture is used to massage the can-
didate example into the desired goal. As is the case in the data do-
main, the assumption of noninteracting subgoals will be violated when
we try and extend the system for the generation of programs of ¢the
BUILDER and SELECTOR types. '

Also, the set of descriptors will need ¢o be expanded. For example,
a BUILDER takes some action when it comes across an elemen%t of the
desired characteristics, e.g..

( REMOVE-MEMBER (ARG LST)
(COND ((NULL LST) () )
((EQ (CAR LST) ARG) (CDR LST) )
(T (REMOVE-MEMBER ARG (CDR LSTI]

More generally, the "level" of the descriptors is uneven.
Function—-type and Quantifier are more abstract descriptions, while
Test—type, Test—elements, etc.., are 2t the LISP level. One might

want a higher level specification of these attributes, with the ma-
chine making the inferences concerning the specifics of the LISP re-
alization.

How far can the underlying “"template model" be pushed? Hardy [19735]
used ¢templates to generate a wide class of programs for examples.
Burge [1976] uses template—like structures in describing an even
wider class of problems. Typically, however, the program synthesis
approach has been more akin to “construction from principles" in
which ¢truth-preserving transformations successively modify the pro-
gram specification [Barstow, 1977i FManna and Waldinger, 1977;
Ulrich and Moll, 19791]. We have found that the extended taxonomy can
account for the majority of programs in the introductory LISP text,
The Little LISPer (C(Friedman, 19741, Thus, we are optimistic that
this model will be sufficient to build a system which can produce a
rich set of programs. '
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SECTION é; Conclusions and Future Work

In this paper we have described a computer system based on a model of
Constrained Example Generation. The system is able to generate exam—
ples in LISP of data and programs using the game architecture. We
are currently actively using the system to explore issuves such as:

1. the effect of the initial contents of Examples—space and the
sequence of solved problems on the growth of Examples—space

2. the effect of alternative exomple ordering functions an the
RETRIEvVAL and MODIFICATION processes

3. the effect of interacting constraints, e.g., impossible con-
straints. '

We plan to use our CEG system in an intellegent computer—assisted in-
struction tutoring environment. We are currently building a tutor to
teach students about programming languages such as ULISP and BASIC.
In ¢this context, CEG will serve the tuftor in two ways: (1) it will
generate examples to the specifications set by the tutor; and (2) it
will evaluate student generated ecxamples for the tutor. The same
JUDGE used by CEG, can be used to evaluate a student’s example and
help track down his misconceptions and bugs through analyses of
differences between what the tutor requested and he generated. of
course, for such interaction, the tutor must be able to generate
specifications for examples.

In the future, we also plan to incorporate adaptation into the sys-
tem. For example, the system can keep track of the performance of
the various example ordering functions and choose the one that has
the best performance. Also, we plan to apply hill-climbing techni-
ques to the modifying processes themselves. That is: since there are
alternative ways to massage and modify an example, those routines
which lead to the most succeses should eventually be selected first.
Adaptation on the modification techniques will be particularly impor-
tant if the system is to be able to improve its performance, and thus
"learn" from its own experience. This capabiljty will require the
addition of a NOTICER, a STATISTICIAN, and an EV TOR.

The current implementation is only a "first—-pass" and does not cap-
ture the richness af the CEG model. Nonetheless, we feel that it has
demonstrated the uvtility of this model, and, we feel that subsequent
implementations and additional task domains will permit us to contin-
ue exploring the process of example generation.
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