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I. INTRODUCTION

Objectives

Learning, teaching and understanding are complex tasks in complex
domains like mathematics. Any teacher or student knows that there
is rich complexity to the subject of conic sections or continuity.
Knowing such domains is much more than knowing formal statemen£s
of definitions, theorems and proofs: there are examples;

methods; exercises; pictures, graphs and diagfams; rules of
thumb; metaphors and analogies; folksy or informal formulations
of ideas: a sense of what is important; a sense of what should
follow what. This complexity exists whether the purpose is to

learn or to teach.

One objective here is to present a conceptual framework in which
to describe and understand knowledge in complex domains. Another
is to show how such a framework can aid teaching and learning in

them.

There are several underlying tnemes. First, understanding a
domain requires a great familiarity with its connections. Polya

and Szego [1972] said eloquently:

There is a similarity between knowing one's way about town
and mastering a field of knowledge: from any given point
one should be able to reach any other point. One is even
better informed if one can immediately take the most
convenient and quickest path from the one point to the
other. If one is very well informed indeed, one can even
execute special feats, for example, to carry out a journey
by systematically avoiding certain paths which are
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customary...

There is an analogy between the task of constructing a
well-integrated body of knowledge from acquaintance with
isolated truths and the building of a wall out of unhewn
stones. One must turn each new insight and each new stone
over and over, view it from all sides, attempt to join it
on to the edifice at all possible points, until the new
finds its suitable place in the already established, in
such a way that the areas of contact will be as large as
possible and the gaps as small as possible, until the
whole forms one firm structure.

Second, being aware of what one knows and how one comes to know it
are important ingredients of expertise. Disambiguafion and
explication of the process of knowing enable one to be a smarter

student or teacher, as Papert and others have often pointed out

[Papert 1971, 1980][Buchanan and Headrick 19701].

Thus, we are engaged in epistemology, the study of knowledge. The

epistemology of complex domains inclddes the study of their '
content, structure, representation, and use. There are many
dimensions and levels to epistemology. There is study of the
domain itself, for example, through analysis of its content and
structure. There is the epistemology of one domain with respect
to different conceptual frameworks; and the epistemology of one
compared with another with respect to the same framework. There
is the epistemology of epistemologies, that is, the study and

comparison of frameworks.

In this paper, we will discuss not only the epistemology of
particular domains, but, more importantly, a;so a general
epistemological framework. Our approach reflects concerns and
methodologies from cognitive science and artificial intelligence

(AI). Important contributions of AI are the tools of information
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' processing and knowledge representation [Feigenbaum and Barr 1981]
[Winston 1977]. To be able to use them means that not only should

we know the knowledge, but also what we want to do with it.

Our analysis is based upon the experience of the author and others
as teachers and learners. The structural notions presented here
seem natural to students. Several students, e.g., in calculus,
have found that using such notions helps to give them
understanding that is different from that of acquiring a large bag
of tricks. Our cohceptual framework is currently being applied to
investigations in learning and understanding probability [Myers
1980], discrete mathematics for computer science [Wegner 1981],

and high school mathematics [Davis 1979].

One of the themes running through our work is the importance and
interaction of examples with other knowledge such as concepts and

results. The role played by examples in the evolution of
mathematical concepts is beautifully described by Lakatos [19761].
Examples play a critical role in learning and concept formation by
machines [Winston 1975] [Lenat 1976] as well as people [Polya
1965]1[Collines 1979]. Examples can also be a very effective means

of presenting new technical ideas [Wegner 19801].

Of course, attention to and understanding of the topic of
heuristics and its role in discovery are due to the Polya. His
well-known books are full of insight, e.g., [Polya 1965]; they
also provide many examples of»the kind of knowledge we wish to

explicate further.
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Structure and Representation

In this paper, we distinguish between "structure" and
"representation", Structure is something inherent in the
knowledge domain which can be teased out by examination of the

domain and how it is used. Representation is the way in which we

encode the knowledge and structure.

We can see structure, or different aspects of it, when we examine
the domain. The structure discerned is clearly influenced by our
purposes, expectations and point of view [Kuhn 19701, [Bruner
1973]. For instance, if we work with situation-action rules, such
rules will jump out as we examine a domain (e.g., [Greeno 19781).
With different purposes, we emphasize different aspects. For
instance, if our purpose is to study logical development, we
attend to deductive aspects like definitions, theorems and proofs;
if our purpose is to study expository style, we attend to
rhetorical structures. In this paper, our purpose is to
understand the knowledge better, so as to improve our skills as
teachers and learners, and io enhance our understanding of

understanding.

Often there are many ways‘to represent the same knowledge; the
one chosen also depends on our perferences and purposes -- on what
we are going to use such knowledge for. For instance, researchers
in logic and theorem proving often use the, predicate calculus. We
choose the representation scheme that best suits our purposes;
"best" in the sense of conceptual clarity, ease of encoding or

use. For instance, representation schemes like "frames" [Minsky
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19751, "scripts" [Schank and Colby 19731, "schemas" [Rumelhart and
Ortony 1977] and "semantic nets" [Quillian 19681, [Brachman 1979]

make it easy to encode clustering, typing, and connectivity,

An underlying viewpoint in our approach is that chunking of
knowledge is very‘important. In fact, what might distinguish an
expert from a novice is the kind and degree of chunking used in
thinking about a domain. As one becomes more expert one is able
to use bigger chunks, more encompassing and general. For
instance, the expert mathematician sees a proof as a coherent
whole, perhaps with substructure [Rissland 1978al, while the
novice may see only the succession of individual proof steps. The
novice's view is very local; the expert's can be global as well.

Experts can switch the level of description easily and naturally.

This pattern is also found developmentally: young children often
cannot summarize a story; they retell it line-by-line; older
children can present a synopsis. Adults often use more global

/

organizations like "scripts" [Schank and Abelson 19771].
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TI. A CONCEPTUAL FRAMEWORK

Structure: Items, Relations and Spaces

There are several kinds of structure in the knowledge of complex

domains like mathematics:

(1) strongly bound clusters of information: for example, the
statement of a theorem, its name, its proof, a diagram, an
evaluation of its importance, remarks on its limitations and

generality. 1In this paper, we call such clusters items.

(2) relations between items: for example, the logical
connections between results, such as predecessor results on
which a result depends logically and successor results which

depend on it.

(3) sets of similar types of items related in similar ways:
for example proved results and their logical dependencies.
Such a set of items and relations constitute a space, for

instance, Results-space.

What distinguishes a "space" from a "set" is the prominence of the
relations. The structure of a complex domain like mathematics

contains not just one but many spaces, each of which describes a

different aspect of knowledge. In mathematics, for instance, as
found in lectures and textbooks, e.g., [Rudin 1964], there are

spaces of':
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results: lemmas, propositions, theorems, corollaries, etc.,

related by logical dependency, i.e., how one result is deduced

from others;:

examples: 1illustrative situations and cases related by

constructional derivation, i.e., how one is built from others;

concepts: formal ideas like definitions, and informal ones like

heuristic principles related by conceptual dependency, i.e.,

how one concept is defined or presented in terms of others;

exercises: exercises and unresolved conjectures related by how
one exercise is generated from others, e.g., as a subproblem
that would contribute to solution of a larger problem;
b
procedures: procedures and methods related by procedural
dependency, i.e., how one procedure is composed of or depends

on others, as in program subroutines;

strategies: control methods, doctrines or heuristics related by

how one strategy engenders or contributes to the practice of

others;

goals: goals and purposes related through dependencies of super-
and sub-goals [Newell and Simon 1972], i.e., how one goal

engenders or contributes to the attainment of others.

In our freedom to use many spaces, we have departed somewhat from

the usual semantic net approach in AI since we use many nets,
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i.e., spaces, simultaneously., Each space represents a different
"cut" through the domain. In summary, if the same type of

relation can be seen in a set of items, then we can describe it as

a space.

Mathematical Knowledge

While all of the above mentioned spaces, and probably others,
would be needed to construct an exhaustive epistemological
framework for describing complex domains in general, a significant
part of the knowledge in domains like mathematics and computer
science can be‘captured in the following spaces: Results,

Examples, Concepts, Exercises, and Procedures.

Results

The set of proved results and their logical dependencies
constitute Results-space. For instance, in plane geometry [Jacobs
1974], the "Isosceles Triangle Theorem", which states that if two
sides of a triangle are equal, then so are the angles opposite
them, depends logically upon the side-angle-side postulate which
is used in its proof; a corollary result depending on this

theorem states that an equilateral triangle is equiangular.

Examples

An important aspect of examples is that one builds examples from

other examples. The relation of constructional derivation
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emphasizes this and allows the collection of examples to be
coherently organized. For instance, in order to show that not all
second degree equations represent conic sections, one can modify
the example of the equation of a circle

X*R2 4 y¥%2 =

to x*%¥2 4 y*¥2 = _l4_ Thus, the second example item would point

back to the first, and the first would point forward to the

second .

Another instance of the construction of examples is the derivation
1

of the example y = xsin; near the origin from the reference

examples y = -x, ¥y = X and y = sinx.

s

% f\\\\\?i’///nu
ya-x —il Yeouinx

by squeezing the oscillations to occur between the lines y=x and

y= -X.

The generation of examples is an interesting study in itself
[Rissland, 1980], [Gelbaum and Olmstead 1964], [Steen and Seebach

19701.
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Concepts

Concepts include formal and informal ideas. A formal ideaiis a
precisely stated notion like a definition, e.g., the familiar
"epsilon-delta" definition of continuity given in calculus. An
example of an informal i&ea is the Earaphrase of continuity as
"not 1ifting the pencil from the paper". It is not a bona fide
mathematical definition But it is an idea that is frequently used.
Informal ideas also include individual heuristics of two types:

mega-principles and counter-principles. A mega-principle is a

"big" idea that either is an informal truth, such as "Continuous
functions have no gaps or breaks", or suggests a good line of
attack, such as "Try factoring the polynomial into linear

factors". A counter-principle, on the other hand, summarizes

troublesome points or offers a wa}ning,.like "Be careful about
dividing by quantities that might be zero" or "Don't forget to

calculate the new dx".

Concepts can be related by dependencies of definition or pedagogy.

A definition can be definitionally dependent on another if it uses

the other in its formulation; for instance, the limit definition

of continuity uses the concept of "limit". Pedagogical'dependency

is more subjective: it reflects our feeling that one concept
should be learned or introduced before another. Some authors map
out the conceptual dependencies of topics and chapters in their

books e.g., [Dunford and Schwartz 19581, [Royden 19631].
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Exercises

Exercises play an important role in helping a student. They can

be related in several ways, as in the use of the solution or

method of one exercise to pose or solve another. For instance,

solving the cubic equation

x**3 1

]
o

involves solving the quadratic equation

"
o

X®%2 4 x + 1

More complicated, and often subtle, relations between exercises

are found in higher level mathematics courses like real analysis.
Procedures

In many domains, like computer science and applied mathematics,
there are large collections of methods and procedures. Procedures
can be related by the dependency of one procedure on another,

This relation is important in analyses of skills like arithmetic,
where for instance addition is a predecessor skill for
multipiication [Davis and McKnight 1979). The ordering is often

related to student "bugs" [Seely-Brown and Burton 19771].

The dependencies can be used to organize procedures
hierarchically. For instance, the procedure to find the roots of

a cubic equation like the one above is composed of the procedures

13
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to factor it as

(x = 1)(x**¥2 + x + 1)

. and then to pick off one root, 1, by observation, and, finally to
compute the other two by using the quadratic formula. For cubic
equations with not sé nice a form, the sélution procedure might
include trying to guesé a root, which itself involves procedures,

and then proceeding as before.

Representation-graphs

The dependency relations in the spaces allow us to treat the

spaces as directed graphs where the nodes represent items and the
arrows, the relations between them; the direction shows the
inherent predecessor-successor ordering. In this way, we have

have several graphs: results-graph, concepts-graph,

examples-graph, etc,

Thinking of the spaces as directed graphs is a useful conceptual
aid since it allows us to picture them easily and from the picture
to discern connections and the overall complexity of the domain.
In fact, the use of the word "space" is itself an aid since it
calls to mind a mathematician's idea of space with its notions of
coherence and distance. The graphs are a way to picture the
representation spaces that represent the structure of the domain;

the graphs themselves are not a part of the domain.
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Structure: The Notion of Dual

An item is related to other items in its representation space
through the space's dependency relations. In addition, an item is
related to items in the other spaces. The notion of dual concerns

these inter-space relations.

As an illustration, consider results, examples, and concepts,
which together constitute a large part of the knowledge in many
mathematical domains. Results are connected to examples and
concepts as well as to other results. The dual items of a result
include: (a) the examples motivating and illustrating it; (b)

the concepts needed to formulate it and those derived from it.

Similarly examples and concepts are connected to itemsioutsidé of
their spaces. The dual items of an example include: (a) the -
results illustrated by it and proving things about it; (b) the
concepts illustrated and suggested by it. The dual items of a
concept include: (a) results leading to its formulation and those
proving things about it; (b) examples motivating and‘illustrating

it.

Examples, results and concepts also have dual items from the
spaces of procedures, goals, exercises. etc; Exercises are
closely tied to the procedures, examples, concepts and results
used in their solution and those that the exercise illustrates and
affords practice with. Iq many high school texts, the relations

between exercises and worked out examples are particularly close.
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Strategies, goals and procedures are often strongly connected

because the strategies are dual to the goals that they are useful
for achieving; the procedures are ways to implement or carry out
the strategies. 1In programming, this is often célled “pragmatiés"

as compared with the syntax and semantics.

Thus each item is related to certain items from the other spaces:
we call the set of those items, its dual. Duals themselves have
structure: some dual items tend to precede the item in teaching
and learning, others, succeed it. For instance, motivating
examples for a result come before the result; other examples,
like those showing the limitations of the result (e.g., that the
converse is not true) come after‘it. Thus, we can distinguish pre
and post duals. These of course may depend on pedagogical and

cognitive style.

The power of the dual notion is that it allows us to associate
items that might not be closely related with regards to in-space
relations. For instance, two concepts might be widely separate in
Concepts-space (e.g., because they are taught many chapters
apart), but are closely related in the dual sense in that they
share many examples. An important part of understanding is
building up such associations; assigning exercises which draw on
seemingly distant concepts is a way to help students establish

such dual relations.
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Taxonomies

Another important component of knowledge is the knowledge that not
all items Serve the same function in learning and understanding.
For instance, experts (teachers and learners) know that certain
perspicuous ("start-up") examples provide easy access to a new
topic, that some ("reference") examples are quite standard ahd are
always exhibiteé as illustrations, and that some examples are

anomalous and don't seem to fit into one's understanding.

We can develop a taxonomy of items based upon how we use them to
learn, understand and teach a domain., In discussing
Cohcepts—space. we have already mentioned different kinds of

concepts. Briefly, some important taxonomic classes of items are:
(1) Results

(a) basic results: basic, first proved results;
(b) key results: major, frequently used results;
(e¢) culminating results: goal results;

(d) transitional results: intermediate logical

stepping-stones;
(e) technical results: results establishing technical

details;

17
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(2) Examples

(a) start-up examples: perspicuous, easily understood and
presented cases;

(b) reference examples: standard, ubiquitous cases;

(¢) counter examples: 1limiting, falsifying cases;

(d) model examples: general, paradigmatic caées;

(e) anomalous examples: exceptions and pathological cases;
(3) Concepts

(a) definitions: formal definitions and specifications;

(b) informal paraphrases: informal formulations;

(c) mega-principles: "big" ideas like certain heuristics;

(d) counter-principles: heuristic warnings;

One can also distinguish kinds of procedures, exercises, and

goals. Such a taxonomy is not an exclusive classification since
an item can serve more than one role; for instance, some start-up

examples become reference examples as one learns more in the

domain. It is also surely not exhaustive.
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Worth Ratings

Not all items are of equal importance. One can use a worth

rating, such as a scheme of *'s (as in the Michelin guidebooks):

* an interesting item, worth noticing;
% an important item, worth a "stop",
Lk a very important item, worth a "detour";

#%%%  an extremely important item, worth a " journey" in itself;

The worth rating and the taxonomy are related in that certain
classes tend to be worth more than others; culminating results
tend to have three and four-star ratings, whereas technical or

transitional results might not even rate one star.

Just as items can be given a worth rating, so too can relations.
For instance, the dual relations of examples to a given result
probably have varying degrees of worth and importance: a telling
counter-example, say to the converse of a theorem, is probably
much more important as a dual example than an example which is
just another instance of the theorem. Tagging the relations -
provides a way of describing the worth of an item relative to
another item. Thus in addition to the "global" worth of an item
with respect to the entire knowledge domain, items can have
"local" relative worth. In this way, for instance, a 1-star
example which is'usually not very impqrtant can be recognized as

very important in relation for a particular item.

19
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Context

In describing a domain, we must also include contextual
information such as assumptions about what domains precede it and
which items can be taken as known or axiomatic; these might be
culminating results of a predecessor domain. Also important is
the state of knowledge of the learner in studying the domain,

e.g., prerequisite skills and material.

In mathematics the "same" set of items can be studied in several
mathematical contexts or settings: one can study operators in
finite dimensional vector spaces (i.e., matrices) or in Hilbert
space or in normed linear spaces.. The settiﬁgs themselves can be
organized into a space with a generality'relation or what Al

researchers refer to as "is-a" or "ako" ("a kind of") hierarchies.

Since our purpose in this paper is to concentrate on a domain
within a given context, we shall not dwell upon the influence of
setting other than to say that it is important. We will keep our

discussion localized to one context.
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Representation Frames

In our representation of an individual item we include the kinds
of information described above. We use the "frame" format [Minsky
19751 to represent an item each of whose facets or subparts is
represented in a "slot" of the frame. Slots can contain
declarative, procedural or relational information. 1In the

following discussion, slot names occur in capital letters.

Items have a NAME, like "continuity". The CLASS of an item is its
taxonomic class. The WORTH slot contains an evaluation of worth,
perhaps in terms of zero to four stars. Its SETTING is the

context in which it is valid or presented.

An item can be presented in more than one way: as a declarative
STATEMENT, in terms of its derivation or PROCEDURE, or by a
PICTURE or diagram. For instance, the declarative statement of an
example states what the example exemplifies; its procedural
aspect describes its construction; its picture is a schematic
diagram or plot or kinetic sequence of pictures. The declarative
aspect of a result is a statement of its hypotheses and
conclusions (e.g., in "if-then" form); 1its procedural aspect is
its proof. A concept can be stated declaratively or in terms of a
procedure that implements it or that provides a way to test
whether an item is an instance of it. For instance, the
"derivative" can be defined in terms of limits or in terms of

differentiation procedures.

The declarative aspect of a procedure is a statement that says
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what it does; its procedural aspect is its code. The declarative
aspect of an exercise is the problem statement; the procedure

could be its solution.

Relational information is encoded in slots containing pointers to
other items. IN-SPACE pointers point BACK to predecessor items
and FORWARD to successors. DUAL-SPACE pointers point to dual

items.

The pointers, or sets of pointers, themselves have structure. We
have already mentioned the pre- and post- distinction for dual
pointers and that pointers can also have worth ratings. Pointers
can also be partioned into clusters of dual items that can be
thought of as a group bound to the item (e.g., a cluster of
examples varying slightly only in their numerical values) or sets
of predecessor items that are sufficient to derive the item (e.g.,
when there may be more than one way to derive a proof from other

proved results).

An item can have REMARKS such as NOTA BENE's (NB) and CAVEATS
which point out particularly noteworthy or critically limiting
things about the item. An item might have PRAGMATIC data telling
what the item is éood for. In addition an item has PEDAGOGICAL
information regarding how and when to present it, like materials
needed for a demonstration of it, or leading questions to ask
about it; BIBLIOGRAPHIC data like references to books, articles,
films; APPLICATIONS data pointing to real-world applications.

OTHER data might include historical remarks.
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III. AN EXAMPLE

In this section, we map out and discuss a section of a high school
algebra text introducing the important notion of "function". This
extended example will illustrate how one can distil the
ingredients of knowledge from a standard mathematics text and
represent them in the conceptual framework developed in the

previous sections,

It should be said that in extracting this topic for illustration

we lose some of its richness; it will seem shallower and less

connected than it would in the context of the entire text or
course. However, even in the few pages of text examined, there is

a surprising amount of material.

The examples will be taken from a widely used text Dolciani,
WOotén. Beckenbach and Sharron [1968]. Our example deals with the
topic of functions and relations (Sections 4-1 and 4-2). It
assumes background about sequences of real numbers, which was

covered in the previous chapter.
Section 4-1 begins with a discussion of the example of the

negative, odd integers, which can be thought of as constructed

from the important reference example of the odd integers:
-1, =3, =5,..., 1-2n, ...

Using this example, the authors introduce the notion of "pairing"

and "ordered pair"; the third number in the sequence is paired

23
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with -5, through the formula 1-2n, which evaluates to -5 for n=3,

and, of course, by simple counting,

The authors then define the coﬁcepts of "coordinates",
"components" and "equality of ordered pairs". Equality of ordered
pairs is then illustrated with

(3, -5) = (3, 1-2%3).
Inequality is illustrated with

(3,-5) =/= (-5,3).
Thus the first pairs serve as an illustration (post-dual example)
to the "equality of ordered pair" concept; the second, a derivate

of the first, as a 1imiting counter-example.

The discussion returns to the primary topic of functions:

"Sequences are special examples of an important
mathematical concept, called a function. A function is
any pairing of the members of one set (the domain) with
the members of another set (the range) so that each member
has exactly one partner in the range.. Thus, the infinite
arithmetic sequence ‘

-1' _3' -5.000
is a function whose domain is {the positive integers} and
whose range is {the negative odd integers}."
Thus, using the negative odd integers as a start-up example, the
authors have introduced the definition of function. If we were to
fill in representation frames for the negative odd integers

example and the function concebt (as presented so far), they would

be:



Page 25

NAME: Odd negative integers
CLASS: start-up
SETTING:

DECLARATIVE STATEMENT: This example introduces the
concept of function through the concept of ordered pair.

PROCEDURAL STATEMENT: a, = 1-2n

IN-SPACE POINTERS: BACK: 0Odd integers
FORWARD:

DUAL-POINTERS: PRE-CONCEPTS: Sequence
POST-CONCEPTS: Ordered pair, Function

(Note that into the frame we are entering only the knowledge
presented in the text. Putting in additional knowledge that

reflects our own understanding is quite a different exercise.)

NAME function
CLASS definition
WORTH #¥##
SETTING

DECLARATIVE STATEMENT: A function is any pairing of the

members of one set (the domain) with members of another
set (the range) so that each member has exactly one
partner in the range.

IN-SPACE POINTERS: BACK: Ordered pair
FORWARD:

DUAL-POINTERS: PRE-EXAMPLES: Odd negative integers
POST-EXAMPLES:

NB: Each member of the domain has exactly one partner in
the range.

(We have set the worth at three stars because Dolciani et al have

used the word "important".)
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To build a complete representation, we would also need to create
frames for the concepts of "ordered pair", "coordinate/component",
and "equality of ordered pairs". Tbe frame for "ordered pair"
would have a PRE-EXAMPLES DUAL pointer to the "negative odd
integers" example which was used to motivate it; it would have
FORWARD IN-SPACE pointer to the concept "coordinate/component"
which in turn would have a FORWARD pointer to the concept
"equality of ordered pairs", which would point BACK to
"coordinate/component” which in turn would point back to "ordered

pair",

Some of the interconnections among the examples and concepts
introduced thus far is shown in the following fragments of the

examples- and concepts-graphs:

Concepts—-graph Examples—graph

sequence negative odd integers
I ; |
ordered pair .

|
cooordinate/compone

|
equality of ordepéd pairs (3,—5)1(3.1—2*3)

function
Next, the terminology of value and belong to is explicated. We
have the following statement which the authors italicize for
emphasis:
"Thus, you can think of a function as a set of ordered pairs

in which different ordered pairs have different first.
‘coordinates."




This paraphfase can be thought of as the first variation on the
theme of function; we could represent it as a concept which
follows from the "function" concept and inherits its slot values
(unless otherwise noted) by default from its predecessor, the
"function" concept. Alternatively. in our representation frame,

we could- introduce a slot for PARAPHRASE.

Next, we begin to acquire some procedural knowledge about

functions:

"One way to specify a function is to show its ordered
pairs in a table with the members of the domain named in
one column (or row) and the corresponding values of the
function in another column (or row)."

A simple example illustrates the function table idea:

Domain ! Function
Element | Value
-1 ] -1
-2 ] -1
3 | 1
4 | 1

Note that the authors are combining the first few integers,
particularly +1 and -1, with a sprinkling of minus signs, to
generate an example. One could say that this is an instance of
the "meta"-heuristic of "using plus and minus one's" for

generating examples.

Next comes a nota bene remark on the preceding example and the

function concept:

"Notice that this function does not have a different value
corresponding to each different member of its domain."

Page 27
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This NB deserves comment and encoding as a counter-principle,
which we could name the "not necessarily one-to-one"
counter-principle or CP(not necessarily one-to-one). It is
.closely connected with the "exactly one" NB of the "function"
concept, which also is acquiring the status of a
counter-principle, which we name CP(exactly one). As the authors

state in their teacher' s manual:

"This is a good place to make sure that students
understand that although each element of the domain of a
function is paired with exactly one element in the range,
there is no restriction as regards ... an element in the
range." :

The preceeding function table example is then re-presented as an

example of specifying a function by a set of ordered pairs:

{(=1,-1) (-2,-1), (3,1), (4,1}

The section's start-up example (negative odd integers) is further
used to illustrate the table procedure., It is also used to
introduce specification of a function in terms of a formula and
the use of a function symbol:
"The formula an = 1-2n, n € {the positive integers}
provides a compact way to show pairings in the sequence and
suggests a convenient way to indicate function pairings in

general. However, let us replace the symbol "aim>" with the
function symbol

a(n), read 'aof n'..."

At this point there is another warning to the teacher:

"Be sure that students do not call the formula a function.
The formula does, however, specify or define a function over
(in this case) {the positive integers}."
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This is really another counter-principle, which we name CP(formula

vs function).

To update our function frame, we would now add the function table
and formula information to the PROCEDURAL STATEMENT slot, another
example pointer, and pointers to the CP(not necessarily
one-to-one), CP(exactly one), and CP(function vs formula)

counter-principles,

We now come to "Example 1", the first explicitly labelled example,
the standard reference example of the absolute value funcﬁion over
the domain of the real numbers. A discussion of the implicit
definition of the domain, i.e., the domain of definition, is

presented briefly.

From these remarks, we also learn that the tacit setting for all
of the discussion is the real numbers, R.
"Also, it is agreed that the domain, unless otherwise specified,

consists of those real values of x for which the formula provides
‘a unique real value of f."

This "agreement" is illustrated with the function

f(x) = 1/x%¥2

Note that the authors have begun to use the letter "f". This
seems unremarkable to anyone who has studied functions; it is
part of the tacitly held knowledge that "f's", "g!s" and "h's" are
often dsed for functions, and "a's" for sequences. Furthermore,

the second function (1/x**2), while not explicitly derived from
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the first (|x!), is not unrelated to it, because the absolute

value function can be defined in terms of the square root:

\ x*%2

Thus, the authors are really using examples coming from a cluster
of examples around the x**2 example. This knowledge is not
explicitly present in the section of text under examination, but
is present in the larger fabric of algebra and mathematics in
general. The connections probably help to make the discussion

more cohérent, at least to the authors and the teachers,

Example 2 is, in fact, the important reference example x¥*¥2, which
is ubiquitous in discussions about functions, polynomials,

parabolas, etc. The example is presented as:
h = {(x, h(x)) : h(x) = x¥**2 }

It is used as an illustration of the concepts of function, domain,
range, and domain of definition; thus its frame would have
pre-dual pointers to these concepts and their frames would have

post-dual pointers to it.

The next example, Example 3, is a counter-example serving to
differentiate between the concept of "set of ordered pair" and
"function". It can also be thought of as a counter-example to
highlight the "exactly one" counter-principle or nota bene remark
(NB) of the function concept:

"Let g be the of all ordered pairs of real numbers such
that g = {((x,y) : xy¥*¥2 = 1}."
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(Notice the use of second power again.)

This counter-example for "function" serves as a start-up example
for "relation", which is then defined in terms of the "ordered

pair" concept. This concludes Section 4-1,

Thus at the conclusion of the text of this first section on
functions, we have several elements in Examples- and
Concepts-spaces, and none in the others (although we have begun to
build up knowledge of procedures, like graphing, which could be
represented as procedure-items when they acquire."critical mass".)
We have spent most of the discussion on the "function" concept and
a large part on the "negative odd integers" example. Thus, at in'
a very few pages (three, to be exact), we have established thé

"function" concept.

In a high school text, exercises play an important role. The

exercises for Section 4-1 are used to provide the student practice
with the new concepts. Thus they serve mostly a dual role. A few

harder exercises (in group "C") serve as nice introductions to

other topics by encouraging the student to discover new knowledge.

The exercises are organized according to the concepts which they

treat: i.e., by dual relations to concepts. In other sections,
the exercises are often dual to examples in the sense that they

ask the student to work through an example or procedure.

In the second section on functions (4-2), the authors begin by

discussing the notion of "mapping", introduced with an example of
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mapping in the everyday sense.

This notion is then pulled into the function discussion:

"You can think of any function as a mapping of its domain
into its range."

Thus the authors have introduced the second important variation of

the function concept, which we could call the "function as

mapping" mega-principle.

The important schematic of the "mapping diagram" quickly follows:

Domain | Range ' Domain Range
5 i 1 5
10 ' 2 I
20 i 2 20 -~
30 i 3 30 e

Thus the procedures of making a function table and a mapping
diagram are linked. Next comes the graphing procedure:
"pnother way of picturing a function depends on the fact

that ordered pairs of real numbers can be graphed in a
plane."

There is next a digression about graphing and coordinate systems.

Before giving examples, the authors state the graphing procedure

for a function and the definition of "graph":

1
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"To picture a function in the coordinate plane, plot the
graphs of all the ordered pairs of the function. The set
of points obtained is called the graph of the function."

Note that the "graph" concept has been defined procedurally as the

result of the "graphing procedure".

Drawing a graph is illustrated with Example 1 of Section 4-2

1 - ixi,
which is closely related to Example 1 of Section 4-1, the absolute
value function

f(x) =

X

Before Example 2,

g:ix ——->3x-5, x & 1{1,2,3,4)
the authors introduce another way of representing a function as a
"mapping statement" that involves the use of the arrow. Example 2
is not particularly noteworthy, except that once again it is built

around the integers 1,2,3,4.

Example 3, L = {(x,y) | x=4 }, is used as a counter-example to

distinguish between the "function" and "graph" concepts. It is
dual to "exactly one" counter-principle. It is also an example
for the "relation" concept. Its graph, which lies on a vertical

line, gives a pictorial representation for the "exactly one" CP.

The oral exercises for this section are quite nice, because they
exercise both the mapping diagram and graph representations for
functions. Included are examples that are not functions. There

are several "favorite" reference examples for the concepts of
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one-to-one, onto, bijection, continuity, differentiability, etec.
For instance, the graphical exercises (nos. 5-16) contain: (1) a
function composed of other functions (#9); (2) a function with a
" jump" discontinuity (#10); (3) a graph which is a well-known
figure, but not a function, i.e., a circle (#11)3 (4) a step
function (#13); (5) a non-function of x; but a function of "y"
(#15); (6) an absolute value function, =ixi (#12); and the

absolutely standard parabola y=x*¥¥2 (n 14).

Thus in two short sections there has been a tremendous amount of

knowledge clustered about the function concept.

While it is not reasonable to expect anyone to analyze or map out
all of a mathematics text in this detailed a fashion, it is use ful
to examine a section or two in this way to highlight the amount of
knowledge that is presented or tacitly assumed, and the degree of
interconnectedness of it. Such an excercise also serves to
highlight the complexity of the task of learning and understanding

new knowledge.
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IV. IMPLICATIONS FOR TEACHING AND LEARNING

In addition to representing the knowledge contained in textbooks,
the conceptual framework can be used to organize what we know

about a subject. The process of filling in the frames prompts us
to recall and disambiguate knowledge. It can also help structure
and represent lessons, which for instance, could be thought of as

a sequence of frames.

The framework can be used explicitly to help students understand
or explore a domain, for instance, by asking them to map it out or
£fill in frames. The frame implicitly contains questions to be
ask;d about an item (e.g., "How important is it, and why?™) .
Students, at least at the college level, enjoy the mapping process
and find it helpful to their acquisition of understanding (e.g.,

A
when reviewing the subject). In some ways the mapping process is
more important than the representation finally produced .
Exercising their knowledge by directing their attention to
important items and relations gives focus to their efforts at
synthesis. Using specific questions that probe and prompt
understanding, such as found in [Rissland 19781, gives the

students a way to actively pursue understanding, a process often

expected to happen magically.

Thus the framework suggests new homework and test questions, like
those to probe dual connections (e.g., nGive two examples of this
concept: a standard case and a not so "nice" case."). Students
are not asked to give enough examples, much to their detriment

since generating examples forces them to understand the involved
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concepts, results, etc. One can encourage them to explore duals

in another way by asking why two items, e.g., theorems, are
‘related (even thought they are found in different chapters). Such

questions will encourage students to become active investigators.

For teachers, the conceptual framework offers guidance in choosing
items for presentation. For instance, knowing that some examples
are better than others for introducing a concept encourages one to
look for such a "start-up" example to introduce a new concept.
Knowing about the knowledge encourages one to tell others about
it. It is easier to share one's knowledge if one has a way of
talking about it. It also reminds one to tell students important
learning and understanding heuristics that one often forgets to

mention because they are so thoroughly assimilated: for instance,

instead of hoping that the students will come to recognize an
example as a standard, why not tell them it is a "reference",
which they should think of as an old friend to be used to test out

conjectures and new definitions.

Thus, a conceptual framework for knowledge in complex domains can

help organize known knowledge and direct exploration of new. By
knowing about knowing, one can be more expert in learning and

teaching.



