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ABSTRACT

The system under development, VISIONS, is an investigation
into general issues in the construction of computer vision
systems. The goal is to provide an analysis of color images of
outdoor scenes, from segmentation (or partitioning) of an image
through the final stages of symbolic interpretation of that
image. The output of the system is intended to be a symbolic
representation of the three-dimensional world daepicted in the
two-dimensional image, including the naming of objects., their
placement in three-dimensional space, and the ability to predict
from <this representation the rough appearance of the scene from
other points of vieuw. Research in segmentation and
interpretation has been separated into the development of two
major subsystems  with quite different methodologies and
considerations.

The focus of this paper is upon Lthe interpretation system.
The primary emphasis will be on the development of strategies by
which several knowledge sources (KSs) can be integrated using
expected knowledge stored in structures called 3D and 2D schemas.,
each of which may be general or specific to the scene under
consideration. A series of increasingly more difficult
experiments is outlined as an experimental methodology #for

- developing schema—driven (e.g., top-down) control mechanisms;

each succeeding experiment will assume a set of weaker
constraints, representing image interpretation tasks where a
decreasing amount of knowledge of the situation is available.
Experimental results show current capabilities of a number of KSs
and the effectiveness of a specific 2D schema in the
interpretation of a scene.
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IN MEMORIUM
Casare Parma, 19471979

On August 30, 1979 Cesare Parma, a graduate student in the
COINS Department, was struck and killed by lightning during a
sudden thunderstorm in Amherst, Massachusetts. Many of the
results on schema-driven image interpretation in Section VI of
this paper were due to the hard work and creativity of Cesare.
All the members of the VISIONS group benefited greatly from the
blend of his strong intellect and the natural warmth of his
personality. We are deeply saddened by this loss, and this paper
is dedicated to the memory of this fine individual.
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I. KNOWLEDGE DIRECTED PROGESSING

The system being developed is called VISIOMS and is designed
to provide an @analysis of color images of outdoor scenes, from
segmentation through symbolic interpretation. The VISIONS system
is decomposad into two major subsystems: a "low—level" system
which processes the large numeric arrays of sensory data, and
then Qfeeds ¢the “"high-level" interpretation processes, which
construct & description of the world portrayed in the scene. The
ocutput of the gystem is fo be o symbolic model of the
three~dimensional world depicted in the two-dimensional image,
including the names of ob jects, their placement in
three—~dimensional space, and the ability to predict ¢from this
model the rough appearance of the scene from other points of
view,

The original design of the VISIONS system was heavily
influenced by a commitment to knowledge-directed interpretation,
and this commitment has been maintained. The emphasis of ¢this
paper is on the form of knowledge structures, called schemas, and
on the control structures necessary to coordinate a variety of
complaex processes, which are referred to as knowledge sources, or
KSs [LES77]. A knowledge source is a process which specializes
in the formation of an hypothesis about an interpretation of the
image, based upon a particular type of available visval cue and
partially processed sensory data. For example, the perspective
KS might infer the physical size of an object depicted by some

region in the image: and the object size KS might order, in terms
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of @ confidence measure, the plausible object identities based
upon that size. There are serious problems to be faced in the
general application of these processes in an integrated fashion.
In our system schemas are the means by which we deal with the
problems of control of the KSs. A schema is a knowledge
structure about a particular visual concept, say a road scene,
with procedural components for properly invoking a subset of WKSs
in @ coordinated manner.

The effectiveness of many Al systems appears to be derived
from either the constraints available via prior knowledge:, or the
restrictions of a specific task domain, or a combination of both.
The mnatural language bnderstanding system of Schank [SCH753] is
heavily directed in a top-~down manner by knowledge structures
called scripts; recently, they have proven sufficient for
extracting summary descriptions of a large number of actuval wire
service news stories [SCH791]. The HARPY speech understanding
system [LOW76]1, one of the most effective speech systems to date,
embeds a grammar and vocabulary in a network of expected
vtterances. The system operates top-down by matching paths in
the network (which represent possible sentences) against the
vtterance. One can view this system in terms of a schema for
each gsentence and the representation of this information in a
storage efficient form.

There ave various special—-purpose vision systems whose
effectiveness may be traced directly Lo the wutilization of

domain—-dependent simplications, for example blood—cell analysis,

(2]



3
assembly line parts inspection, etc. It is our belief that the
vee of schemas (LARB77] or frames CMIN751, or sascripts [SCH77))
provides a bridge between general-purpose and special-purpose
systems [BAL78, HAN78c, NEV78]. The development of an individual
schema and the verification that it is applicable may be as
tractable as the development of a particular strategy in a
special--purpose system. Knowledge of the front view of a
particular house to some degree should be wusable in a manner
similar to knowledge of the structure of a complex machine part
on a conveyor belt.

It is generally agreed that while research in computer
vigsion is definitely progressing, the problems have been found to
be extremely difficult. Our initial efPorts have been directed
at the construction of a system with sufficient flexibility and
generality to explore a variety of issues without requiring
substantial systems modifications as the research evolved. As to
be gxpected. the price of such efforts ot generality is slower
development of the system than we desired, slower than would have
been possible with a less flexible special-purpose system.
Because of the magnitude of the problem, our research methodology
has been to focus on modular components of the system wunder the
constraints of a general system desigun.

We wish to make it clear that we do not believe that
computer vision ought to be primarily a top—down process. Many
important mechanisms of human vision appear to be constructive

processes which transform sensory data without recourse to



4
samantics [BAR78, HOR77., MAR7&é, MAR/tLL The researvh elffurt
proposed here, however, attempts to direct the application of
some of these processes under the guidance of knowledge-oriented
constraints. It will be interesting to see the degree to which

this apfroach can be made general.

I11. ADDITIONAL RELATED LITERATURE

There is @ very large body of literature that is relevant to
the development of effective computer vision systems. In fact it
spans the fields of computer science, electrical engineering.,

cognitive psychology, mathematics, art, etc. with topics that

include the physics of light and surfaces, shadows and
highlights, image segmentation, color, texture, two- and
three-dimensional shape, perspective, occlusion, motion,

stereopsis, representation of knowledge, inference, and more. It
is not feasible to review this literature here, but a recent book
Computer Vision Systems C[HAN78al, edited by the authors,
documents the state—-of—the—art in many of these areas. Here we
choose Jjust to mention a few of the many efforts in image
understanding systems and leave reference of others for the more
detailed sections of the paper.

There have been interesting and somewhat successful attempts
to integrate the segmentation and interpretation processes. A
decision—theoretic approach to image interpretation by Yakimovsky

and Feldman [YAK73, FEL74] produced a region merging process that

'z
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was integrated with semantic interpretation. Effective results
on chest x-rays and road scenes were achieved. Tenenbaum and
Barrow CTEN771 demonstrated that a constraint-satisfaction
process could be used to block erroneous region merges in their
interpretation-guided segmentation system (IGS). This system was
generalized into a probabilistic relaxation process for
Propagating constraints under uncertain interpretation [BAR761.

There are a variety of image interpretation systems where
the analysis does not employ three-dimensional representations
and processes. In such cases, the output of the system wuvsvally
is the extraction and labelling of relevant entities in the
image, for example the labelling of each 2D region with an ob ject
ideﬁtitg. Sakai, Kanade, and Ohta [SAK761] produced a partial
labelling of major areas in a building scene (though there were
only five possible objects in the data base). Shirai [SHI78] has
developed a system which fits smooth curved lines to segmented
edges; this system has been used to interpret‘a desk scene
containing a variety of objects. Ballard, Brown, and Feldman
[BAL781 are using a flexible knowledge-directed system which has
been applied to both aerial images and chest X=Tays. Levina
[LEV78] has been examining scenes of human figures, cartoons, and
landscapes; he has obtained interpretations of several cartoon
images. Bajcsy [BAJ76] has vused a small semantic network to
extract river and bridge regions in aerial images. Uhr C[UHR781
has been developing a very general system for bath segmentation

and scene interpretation using a parallel-array processing system
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called recognition cones; preliminary results have been produced
on a house scene. A group at Hughes Researéh Labs [DUD77]1 has
developad a system for 2D segmentation and matching of objects
with long straight lings (such as buildings). Rubin [RUB771 has
extended the basic approach of the HARPY C(LOW76]1 speech
understanding system to a scene interpretation system for
matching an image of a city skyline with a set of such images
from different points of view. Mackworth [MAC78]1 and Havens
CHAV781 have addressed issues of control, based on a cyclic
theory of paerception, in the context of interpretation of a map
relation system.

Interpretation systems using throo-dimeﬁ;ional
representations can be applied to a wider class of imagery but
are correspondingly far more complex. Consequently, much of the
work in 3D scene description (interpretation) has primarily been
rastricted to polyhedral models of objects CROB&S, WAL751,
although there has been interesting work on generalized cylinders
as a representation for curved surfaces L[NEV77, AGI72, MAR771].
Another significant body of research has taken place at levels
below object recognition, in particular the extraction of surface
information based wupon a camera model, illumination model, and
surface properties [HOR73, HOR77. WOQ77, MAR78, BAR781]. This

work promisas to provide significant insight into constructive

mechanisms in visual perception.
Finally, there is related work in speech understanding that

has influenced our research, in particular the Hearsay system

fe



CERM7S5, LESS77] whose general structure has been followed in our

owun research.

I11. CONTROL STRATEGIES AND IMAGE INTERPRETATION

III. 1. Strategies for Controlling the Interpre Brocess

In the past we have raised two important issues of control
in our system: the basis upon which KSs are to be invoked and
the means by which alternative hypotheses provided by KSs are %o
be used. Our system was organized to deal with the selection of
appropriate KSs and a search space of interpretations by
emplbﬁing a hierarchical modular control strategy C[HAN78b,
WIL771. This computational mechanism allows user—-defined
strategies to be constructed hierarchically out of modular
components.

This approach required considerable 'machineru for dealing
with issues of search, and some of these issues drew our
attention away from the central issues of vision. The top-down
approach that is suggested by schemas bypasses problems of
recovering from errors and the inherent combinatorics of a search
space of alternatives, at least until we more fully understand
the reliability, robustness, and redundancy of our KSs when used
in ¢his manner. However, as we will point out, thg top—-doun
approach does not imply a complete avoidance of bottom-up issues.
Schema instantiation and the application of a general schema to

specific images, for example, will require the use of bottom—-up
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processes. In this case, however, the purposes and goals of the

bottom—up processes are more specific and well-defined.

I11.2. Iop—Down Interpretation yia Schemas

In the following sections we outline a highly structured
approach to the development of general top—down image
interpretation. A key problem is to develop effective ways to
employ schemas after they are somehow accessed. In some of the
experimental stages that we will outline, &he geal is o
jipterpret an image wusing either r a specifig or a general scene
gchems from gither a known or unknown perspective viewpoint.
Thus, the relevant scene schema is assumed to be known, but the
specificity of the information varies. Before describing our
experimental methodology, let wuvs note the difference between
specific vs. general schemas, 3D vs. 2D schemas, and known Vvs.

unknown perspective viewpoints.

specific schema — a schema capturing a particular instance o#f
a given type of scene or object, e.g..» a particular house,
a familiar section of road, or a specific car such as your

own;

general (prototypical) schema - a schema representing a
standard or prototypical model of & scene or object, such
as a house scene, road scene, Or car scene, but not any

specific house, road, or car scene;
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3D schema - the 3D description of a scene or object in a local
coordinate systemi this involves the representation of

surfaces and volumes, and the relationships between them;

2D schema - the 2D appearance of a 3D schema relative to a
viewer—-centered coordinate system; this is the way a 3D

schema would appear from a particular point of view;

unknown perspective viewpoint - in this case a known schema
(general or specific) can only be used as a 3D schema,
since the relationship between itec local coordinate system

and the viewer'’s coordinate system is unknown.

known perspective viewpoint - i# the relationship between the
coordinate systems of the schema and viewer is known, than
the 3D schema can be used to generate a plan for the scene

in terms of a 2D schema.

Under this categorization, a general 3D schema is a
structure describing default features of objects and general
relationships between sets of objects which are expected to hold
across a schema class [MIN75]. A specific 3D schema is a general
schema in which features and relationships have been assigned
(more) precise values and in which features and relationships
unique to the particular environment have been added. In fact
top-down interpretation of, let vus say, a road scene using a
general 3D schema would then involve the construction of a

specific 3D schema of that road scene.
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A hspecific 2D schema is a transformation of the
corresponding specific 3D schema, given an assumed view angle.
The transformation according to view angle is necessary in order
to match the specific 3D schema to the image. Similarly, a
general 2D schema represents a transférmation of the general 3D
schema given a view angle; in this case. the general 3D features
and relationships are mapped into general 2D features and

relationships.

I11.3. An Experimental Methodology

In a system as complex as VISIONS, there exists a wide range
of plausible strategies for guiding the interpretation process.
We propose to explore these strategies by means of a set of
carefully defined experiments of increasing difficulty and
generality. By controlling the amount and type of information
provided, different portions of the system can be exercised and
different strategies to use the information can be developed.

We separate the schema-driven operation of our system into

distinct tasks:

s) Top-Down Interpretation of Images Via Schemas - this
involves the wutilization of a relevant schema as a
top-down plan for interpretation; it requires coordinated
application of the KSs, guided by the schema, to various

portions of the image.

"
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and b) Rottom—-Up Ingtanggggigg of Schemes - this is the process
of selecting a schema that is relevant to the
interpretafion of the image; in effect, it is the problem
of finding cues and paths of inference through long term
memory which imply a prototypical context which ought to

be used.

These tasks overlap a third task which ic one of the most general

gbals of (computer) vision research:

J

<) Bottom-Up Intevpretation of Images - the construction of a

surface/volume description qf the physical world in the
image without the use of prior high-level knowledge; it
ii expacted that insights into the mechanisms by which
this task might be accomplished will be gained by success
in achieving the goals set forth in (a) and (b) above,
particularly the vuse of general schemas in interpreting

scenes.

Our research effort is currently Ffocussing on tasks (a) and
(b), above. Primary emphasis has been placed on
schema—controlled strategies for emplouibg the KSs, but there is
continuing effort on the instantiation of the relevant schema.
The remainder of this section of the paper will outline
experimental stages of system development, and later sections

will provide experimental results for the Pirst of these stages.
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I11.4. Experimental Stages in Schema-Driven Interpretation

Stage i: The spgcifi§ scene schems is.kndﬁﬁi

the viewpoint is knouwn.

In Stage.l experiments., the system is, in eFPecﬁ. told what
it will see. It must merely match its highiq constrained
expectations to what appears in the particular scene. In these
experiments, a gpecific 2D schema is directly available. The
research focus is on the structure of the schema, the control
structure for driving the KSs directly from the schema, and on
mechanisms for consistently integrating the hqpotﬁeses returned
by the K8s into the schema. This experiment is an exercise of
all the components of tﬁe.sqstem and its success is fairly well
ensured. Since the specific 3D schema is available and the point
of view is known, a 2D schema can be generated which closely
matches the appearance of the 2D image. The 2D schema provides a
powerful plan for directing various KSs in processing the image
and interpreting the scene. Some of the results cited later in
this paper are a partial exercise of this capability. Those
results, we emphasize, should be viewed as exercises in

demonstrating the inteégration of the system.

Stage 2: The general scene schema is knowni
the viewpoint is known.
Stage 2 tests the system’s ability to interpret a scene
vsing a prototypical schema instead of the specific schema.

Thus, the general knowledge of TtToad scenes would be wused to
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interpret an image of some particular road scene. The spatial
constraints are more general and any given object in the schema
may or mag.not appear. Since the viewpoint of the general schema
is known (a.g..blooking dan the road), the general 3D schema can
be used to generate a general 2D schema which then provides a
list of key region, line, and vertex features, as well as rough
spatial locations and spatial relationships between features that
might appear. Strategies are needed thot have flexibility in
locking onto any relevant characteristics which are extracted
from the 2D image. The processed sensory data must be usédd by
the schema in constructing the description of the particular road
scene. While certain relationships are expected, for example
converging 1lines of the sides of the road, their existence and
location in the image can only be determined by application of

some of the KSs.

Stage af The specific scene schema is known;

the viewpoint is unknouwn.

Stage 3 exercises a different processirng capability of the
system: the ability to manipulate 3D représcntations in the
selection of the probable view angle. It must rotate and
translate a 3D description of a particulgr scene in order to
generate a 2D view which matches the scene. The problem is
simplified #from the general case because the specific 3D schema
is made available. Therefore, jf the proper viewpoint can be
determined, a very good match is ensured (c.f. results of Stage

1 in Section VI.). Heré, important information about the
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viewpoint may be provided bg the orientation of line segments,
the 2D shape of regions, and spatial relationships between
regions in the image. In addition we can attach information

about standard viewpoints to the 3D schema.

Stage 4: The general scene schema is known;

the viewpoint is unknouwn.

Stage 4 is anjﬁntegration of the techniques developed in the
first three. The. focus here is on the use of béttom-up
information to c@néﬁrain the general relationships found in the
general schema énjfﬁo obféjn the most likely view angle. It is a
non—trivial exténsién oP Stagesi2 and 3 because even the proper
viempoint‘ still lﬁavesva potentially large degree of variability
in the matching and inte;pretation process. Success here will be
dependent upon the quality of tﬁe KS‘s developed during the first
three stages and the effectiveness of the control strategies

developed in the last two stages.

I11.5. Bottom—Up Instantistion of Schemas
Stage 5: The general scene schema is unknown and

must be hypothesized and verified.

Even if expérimentS'in Stage 4 are successful and a general
3D schema from an unknown viewpoint can be vused for interpreting
an image, there is still the serious problem of determining the
relevant schema ¢to employ. In a general system for scene

analysis, the knowledge base would be expected to contain many
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schemas. Given the high cost of computation expected to be
‘associated with schema-controlled KS invocation, all possible
schemas cannot be applied to see which best f#its the situation.
Mgng researchers have worried about problems of search and error
recovery in an enormous search space of possibilities. We have
decomposed the problem of applying the correct schema from the
problem of schema instantiation so that the different issves
involved do not get confused.

The accuracy of schema instantiation is dependent upon the
degree to which features can be extracted from the sensory data.
As bottom—up mechanisms begin to construct a model of the image,
features of this model can be matched against the available
schemas in long—term memory in order to select a schema that is
relevant to the image. The problems here are related to both 2D
and 3D schemas. Since the viewpoint is unknown, features of 2D
shape which are extracted from the image cannot be matched
directly against the schema. .Rather. knowledge of possible
perspective transformations of the shape features must be used
during the matching. This is facilitated by storing with the
schema prominent 2D features from important or common points of
view; this can be accomplished by means of “standard-view"
orientation vectors attached to the schema or to parts of the
schema. However, these vectors do not obviate the need for
additional mechanisms which can suggest plausible oriontatioﬁs if

the given scene does not conform to the standard views.
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Inféronce networks [DUD7&4] may prove to be effective in
integrating the implications of a numbher of uncertain hypotheses
at various lower levels of representation. They allow the effect
of multiple hypotheses (in the form of probability updates on
nodes) to be simultaneously propagated in the net&ork. After
propagating these inferences up to the schema level, schemas with
high postefior probabilities éan be selected. There are a
variety of problemﬁ which have not yet been solved, such as the
problem of loops (cldsed paths) in inference paths, the
difficulty of egt?ﬁatiﬂg Joint probebility distributions of n
nodes, and errors due to ihconsistencg of binary (or m—ary, m
less than n) _apprbximations of the joint probability
distributions. |

Stage 5 is theﬁlqast constrained of the experiments thus
far, and depands priharilq on the ability of the bottom—up
constructive mechanisms to transform the scene data in such a way
that the appropri#te highor level KS'’s can be applied and a
schema instantiated. The development of these constructive
mechanisms Poreshadohs Stage &, one oFf the most genéral and

difficult problemd in vision.

I11.6. Bottom—Up Interpretation of Imnaes

Stage &: The goal is to construct a (partial) 3D
surface/volume description without

access. to schemas.
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It can be argued that research on vision ought to begin with
the bottom—up constructive qe;hanisms and the development qf a
general theory of vision. Often humans can recognize s;rFacg and
volume properties and dgvelop a sense of 3D space ern when there
are virtyqllq no object semantics in the image. There is much to
be learned from more constrained appraacheg which do-not involvé
higher level knowledge CHOR7S. HOR77. BAR78, MAR781. However,
they cannot be expected to solve the general vision prpblem.
Given the comploxitq of our images, we do not expect that the
current KSs w111 be spf?icienth religble. or gonerallu relevant,
to be effective over most of the image without guidance by
schemas.

Nevertheless, the insights and mechanisms developed in the
previous stages should significantly oyor}ap those needed in
Stage 6. We expect some of the KSs (e.g.. occlqsion. 2D ghape.
spectral attribute matcher) to provide useful information in the
general interpretation construction process. Stage 4 experiments
require the system to lock onto visual attributes in the image
which are consistent with schema gipectations. The location,
size, and number of objects in a schemq (e. 9., shrpbs in front of
a house, the number of windows on a wall of a house, efc.) will
vary. Therefore, mechanisms which use the visuval characteristics
in a manner consistqnt with bottom—up qnalgsis ar? required in

order to use the general 3D schema.
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IV. THE SEGMENTATION ALGORITHMS OF THI: L UW—-LEVEL SYSTEM
The VISIONS research group has maintained a long-standing
research effort in low-level imagé analysis. Our goal has been
to produce @ system which can initially provide a segmentation to
drive the image interpretation process, and m]ich later can

receive semantic feedback to direct low-lcvel procegqsing in the

refinement of that segmentation. We cannot discuss the full

range of our segmentation efforts; they are documented in a
series of reports and papers [NAG79, KOII79, HAN78b., PRA79, PRABO,
OVE79, HANBOal. Here, we 1limit our discussion to a brief
description of two algorithms, an edge relaxation algorithm and a
histob;am—guided region relaxation algorithm. Both the edge
relaxation process and the region Fformation process are
undergoing continuous development.

All algorithms are implemented in a simulation of a parallel
hierarchical machine afchitecture. called a "processing cone",
for processing images [HAN74, HANBOb]. The cone is related to
similar structures proposed by CUHR74, TAN78, TANS8O, R0S7%9a.,b13.

The segmentation processes basically involve two
complementary relaxation labelling processes C[ROS76, 2ZUC77,
DAV76]1 for partitioning images into regions and boundaries,
either of which can be preceded by a sophisticated smoothing
algorithm [OVE79] in a preprocessing pass on the image. The
boundary formation process responds to local changes in the data,
while the region formation process is sensitive ¢to global

similarities in the data. An earlier version of the region

e
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algorithm has provided the data upon which the interpretation

processes in this paper are applied.

IV.1. Edge Relaxation and Boundary Continujty

The edge/boundary analysis wutilizes a representation QF
local discontinuities in some visual Featurg (e.g.. intensitg'or
color) as a collection of horizontal and verti?él edges located
between individual pixels. The iterative edge relaxation
processes then allow contextual interactions to organize
collections of edges into boundary segments EPRA??. HAN?BbJ.

Figure 1 provides sample results of this process.

IV.2. Histoaram—Guided Region Relaxation

Region analysis is based on cluster detaction iﬁ the
histogram of some visual feature [HHAN78b, NAG79]. Prominent
peaks in the probability density function of a feature or in the
Jjoint density function of a pair of Features indicate the most
frequently occurring (or co-occurring) values in the feature
space. The region formation process therefore utilizes global
histogram cluster labels, défined by the peaks, with pixels.
These peaks also allow likelihoods of cluster labels (computed as
a function of the spatial location of the peaks relative to the
spatial location of each individual pixel in feature spéce) to be
associated with each pixel. Interactions between the label sets

of pixels in 1local neighborhoods are then used to organize
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Figure 1. Boundary segmentation
via edge relaxation. (a) Intensity
image of a 128x128 portion of a
suburban house scene. (b) Closeup
of a portion of roof trim and a
sequence showing the effect of
iterative updating of edge likeli-
hoods via constraints of boundary
continuity. (c) Initial edge
probabilities. (d) Edge probabil-
ities after 2 iterations. (e) Edge
probabilities after 20 iterations.
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connected sets of pixels into regions (i.e., connected sets of
Pixels all with high probability of the same label constitute a
region). Figure 2 outlines resultis of applying the
histogram—guided region relaxation algorithm.

Results of an earlier version of the region relaxation
algorittm appear in Figure 3. These results form the basis of
experiments in the remainder of the paper. Because of previous
limited computational resources on our 0ld computer facilities
(PDP-15 with 96K bytes core), the segmentation was obtained #from
an image with a resolution of 128xi26 pixels. This image was
derived from a 256x256 quarter of a S10x512 array, which was then
further reduced by averaging to 128x1268. The current processing

is on a VAX 11/780 with 1 megabyte core, and processing of images

with higher spatial resolution is nouw typical.

V. SUMMARY DESCRIPTION OF THE KNOWLEDGE SOURCES AND INITIAL
EXPERIMENTS

This section provides a general overview of the knowledge
sources in the VISIONS interpretation system. Knowledge sources
are the means by which hypotheses are generated and verified. In
some cases, the KSs have been developed only to the point where
the results are reasonable. The advantage oF‘ this approach is
that it allows a minimally complete system to be configured and
run.  The input/output and functionality of each KS is clearly

specified and can be improved as time and resources permit.
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Figure 2. Region segmentation via relaxation histogram cluster labels.
(a) Initial intensity image of a 128x128 portion of a house scene
derived by averaging from an image of higher resolution (previous
limitations on computational resources dictated this limitation).
(b) Resultant segmentation superimposed on intensity image. Note
that there is a difference in aspect ratio in this image due to
differences in the displays used to generate the picture.

22
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Figure 3. Segmentation data used in experiments. These results of
region formation via relaxation on cluster labels were produced
Dy an earlier version of the algorithm which produced the results
in Figure 2. The region segmentation has been converted to a region
boundary representation and region labels are shown. They form
the basis of the experiments described in later sections.* Note
that only large regions or regions mentioned in paper are numbered,
but all regions have a unique label.

*The integration of the edge and region segmentations is the focus
of the current Ph.D. research of Ralf Kohler.
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A set of eleven modular KSs and several representations will
be briefly reviewed. While we cannot discuss each of these in

datail in the limited space of this paper, a short discussion of

each KS and, wherever possible, a simple example of local results

is provided. However, these local results must be viewed in the
context of the evolving design of the whule system CHAN78b, c1.

A base—level system has been implemented and is operational
to the point where interesting experiments, gsuch as the ones
described in the following sections, are being performed. In
building this base—level system, an attempt was made to provide
sufficient generality of processes and representation -- function
and structure -—— to allow us to work on different types of
scenes, to easily add knowledge in both active and passive form,
and to define and execute different types of interpretation
strategies.

The reader should note that the results cited in this
section were obtained from a version of the system running on the
University Computing Center‘s CYBER-74 time—sharing system. The
system is implemented in GRASPER [1.0W?78], a high level graph
processing language built in ALISP C[KON7351. The system has been
transferred to the COINS Department VAX 11/780 and integration
with the VISIONS low—-level system is in progress.

Table 1 provides an overview of the set of K8s currently
available and briefly discusses the representations employed in
various parts of the system. Cross references to more detailed

discussions and/or results are included.

o
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f TABLE L: SUMMARY OF KNOWLEDGE SOURCES \ND REPRESENTATLONS
i Ndme Brief Statement ol Function or Purpose Cross RcferencegT
Low~Level The goal of the low-level system is the segmentation IV
Segmentation of an image into visual Primitives (regions, boundary {Figures 1, 2,3
System* segments, and vertices), and the extraction of a
range of features to be used by the various knowledge
sources (KSs) of tne fnterpretation system.
RSV Structure | RSV is a symbolic layered graph structure of regions, Fieure 8
line segments, and vertices containing the segmenta- g
i tion results and feature descriptors. This data
structure is stored in short-term memory (STH; see
below) and represents the processed visual data upon
which the interpretation is based.
LTM™ LTM is a hierarchical representation of general (i.e. V.2
(Long-Term non—image specific) world knowledge organized into Figures 8, 9
Memory) natural levels of abstraction: schemas (stereotypical
scenarios), objects, volumes, surfaces, regions, line
segments, and vertices.
STM STM is a hierarchical structure of the same form as V.2
(Short-Term LTM and used for constructing an interpretation by Figure 8
Memory) means of the knowledge sources. An interpretation is
then the collection of instantiated nodes in STM.
The RSV structure is the bottom three levels —- all
other levels are initially empty.
Inference It is a network of a priori probabilities of nodes ITI.S5
Net KS and conditional probabilities between nodes; it is V.6
defined on the arcs and nodes in LTM, and are the VI.S8
means by which implications of local hypotheses may :Tables III, V
be propagated upward and downward through the layered
Structure. Any hypothesis geperated by a knowledge
source can then be used to generate further
hypotheses.
2D Curve This KS is designed to produce smooth fits to V.1
Fitting KS boundary segments in a segmentation. It utilizes VI.3
generalized cubic splines, automatic resegmentation Figures 4-7, 21
of boundaries at points of high curvature, and curve
fitting techniques.
2D Shape KS This KS allows symbolic classification of the shape V.3
of regions. Theconfidence that a given image region has| VI.4
a particular primitive 2D shape will be returned. The Figures 10, 22-24
results allow paths for surface & volume hypotheses via L'It-:r’l’able II
Ucclusion KS This KS uses the results produced by 2D shape to analyze V.4
| Junction (vertex) types to produce hypotheses about
! relative depth relationships between regions. Spline
Lits to boundary scgmencs produce swootilly varying |
curves at junctions, which may be analyzed for
occlusion cues.
T T e e e e . e e o - eemee e e R T T L S -}

*Funded by—EEE Office of Nava! Research under Contract Hou. MIWL4G=75=-C-0459.
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| - e
Cross Rreferences
|

Name Brief Statement of Function or Purpose

Spectral It hypothesizes object identities of a region on the (V.5

Attribute basis of a comparison between region attributes VI.2

Matcher KS (color and texture) and statistics of these features Figures 11, 19, 20
attached to the object nodes in LTM. It is designed : :
primarily for objects for which these attributes are
reasonably invariant across images (currently sky,
bush, grass, tree, road).

3D Shape KS It uses a representation for 3D shape with curved V.7
surfaces, their organization into objects and object 1v.8.3
parts, and mechanisms for manipulating the represen- Figure 12
tation. It is called a quilted solid and is defined
by collections of Coons' surface patches bounded by
cubic splines, in an object centered coordinate
system. Quilted solids are joined together by spline

’ blending functionms.

Perspective -KS| The goal is the hypothesis of surface orientation, V.9
size, and/or distance in order to produce a partial V.10
volume/surface plan of the scene. The current Vi.6
version focusses on relationships between elevation, | Figures 14, 15,2;
height, range, and width of surfaces given a camera Table IV
model and a set of assumptions regarding surface
orientation.

Horizon KS It uses the horizon schema (the most general outdoor |V.11

schema which relates sky, ground, and horizon) and
the camera model to fix the location of the borizom.
It is used to filter other hypotheses on the basis of
their relationship to the horizom.

Figures 11, 16

Object Size KS

This module is designed to generate object hypotheses

on the basis of the image size of a region. It

compares the computed physical (i.e., real world)
size of a surface, determined by the perspective

module, to the physical size of objects in LTM.

V.12
V1.7
Figures 17, 28

3D Schema The 3D schema captures stereotypical visual events I11.2
by organizing subsets of information in LTM into I1I1.4
higher order complexes of expected scenarios (e.g., V.8
a road scene schema). It may be either specific Figure 13
(a particular known scene) or general. The repre-
sentation is stored in a local coordinate system and
contains control information for top-down interpreta-
tion. A projection of a 3D schema produces a 2D
schema.

2D Schema A.ZD schema is a projection of a I schema From a I1I1.2
given point of view. The projection carries along III1.4
control strategy information and features of the VI.1-VI.5 .

projection (e.g., surface orientation, relative to

Yiewpoinc, etc.). It is used to direct top-down
lnterpretation of the image.

Figures 18-28

‘e

fe
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V.1. 2D Curve Fitting

The output of the segmentation processes is represented in
terms of horizontal and vertical edges For a variety of reasons.
They involve concerns about connectednecs of edges and the
ambiguity that occurs when edges of wvarying orientation are
associated with pixels [RIS77, HAN7Gb). It is necessary to
transform this rectilinear edge data into a continuous
represantation. By fitting smooth lines to the data, they more
accurately reflect the original visual information. However,
various problems occur when the best straight lines are fit to
the segments that form the low-level output. The first problem
is that the endpoints of a segment do not define the "natural®
portion of a boundary over which lines should be fit (refer to
Figure 4b). This problem can be avoided by wvsing piecewise
linear fits to line segments by decomposing line segments on the
basis of points of high curvature, but there are still
difficulties. The enlargement of a junction is shown in Figure
4(c) and one can see problems with best -fit straight lines not
meeting at a point (Figure 4d), or movement of the location of
Junctions if pseuvdo—junctions are formed (I-igure 4e). Finally,
any type of piecewise straight-line fitc cause a discontinuity at
the junction in the slope of line segments which are actually
portions of a smoothly curving region boundary. This is
impovtant in the extraction of surface occlusion cues (Section

V.4). These problems are discussed in move detail in [YORSO].
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Figure 4. (a) Segmentation of house scene with a typical junction of
line segments marked. Line segments are delimited by a line
termination or a junction of two or more lines. (b) The segments
bounding a region must be restructured by choosing points of high
curvature as new junctions in order to obtain correct line fits.
(¢) Enlargment of junction shown in (a). (d) The best straight
line fit to segments emanating from a junction can result in the
lines not meeting at the junction. (e) When pseudo junctions
are used, actual junction locations are moved and the characteristics
of the segments at the junction are lost.
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In order to avoid some of these problems, piecewise
polynomial functions called splines [AHL 67, GOR741 are fit to the
set of line segments bounding each region. Splines of degree 1,
2, and 3 are employed: piecewise linear, piecewise quadratic,
and piecewise cubic splines LYOR79). Cubic splines in particular

have several nice properties (refer to lrigure 5):

a) they are smooth curves —- the function as well as its

firgst two derivatives are continuous in the interval;

b) they are guaranteed to pass thvough a specified set of

points called knots;

c) placement of multiple knots at a single point allows

discontinuities to remain;

d) given a set of knots, computation of the spline
coefficients is efficiently accomplished via standard

algorithms.

The strategy currently in effect is to celect points of high
curvature as possible knot 1locations and then wuse a knot
collection procedure to pull nearby knots together. Then splines
of all three degrees are fit to the segments. I# the piecewise
linear straight line has a 1low RMS errvor, then the segment

between two knots 1is labelled "straight" and an (R, theta)
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Figure 5. Cubic splines are polynomial functions y = £(x) of degree 3.
They define a smooth curve that passes through any specified set
of points called knots: (xi,yi), i=1,...,7 in the figure.
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parametric representation is used to represent the slope and

location (up to co-linearity of the segments). If the straight
line fit is not good, then the second degree fit is tested, and
if necessary the cubic spline fit ic adopted. These points of

high curvature are computed on the basis of a modified
k-curvature [DAV761, which is the angle that is formed at a given
point by straight lines from the given point to the points which
are k away in each direction.

The result of knot selection, knot collection, and first and
third degree splines for one region is shown in Figure 6. The
spline approach has the potential to produce smooth
approximations to digital curves and allow a more accurate
analysis for junction classification [YORE0O1, 2D shape analysis,
occlusion cues, and surface hypotheses. Althaough the fits of
cubic spline curves shown in Figure 7 ave reasonable, there is
definitely need for further improvement. The knot selection and
collection process was based only upon a local view of curvature;
@ more global view of curvature may produce more appealing

boundary fits.

V.2. Long-Term Memory (L.TM) and Short -lerm Memory (STM)
General knowledge about the Physical world (or the task
domain of interest) is stored in "long-term memory" (LTM). An

image will be "understood" in terms of the concepts and relations

found in LTM. This knowledge is hierarchically organized into
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Figure 6. Using splines for 2D curve fitting of a region. (a) Original
646 points along the boundary of region 14. (b) For each point in
(a), 3-curvature was computed and all points with absolute value of
3-curvature greater than 0 were retained for the knot collectiou
process. Of the 646 original points, 467 are left. (c) From the
467 points, the knot collection procedure leaves 343: 148 are
multiplicity-3 knots and 195 are multiplicity-l knots. (d) Piece-
wise linear interpolation of the 3-curvature, O-thresholded, knot
collected boundary of region 14. (e-=g) Same as (d), but thresholded
at 1, 2, and 3, respectively. (h) Piecewise cubic interpolation
to 3-curvature, 2-thresholded, knot collected boundary of region 14.

re
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levels which represent a natural abstraction of world knowledge
(Figure B8). |

Nodes in LTM represent visval primitives with which the
system can construct an interpretation, while the arcs represent
relations (primarily AND/OR relations) which exist between the
primitives. Inter—level arcs rvepresent the paths by which
primitives at one level may be related Lo primitives at levels
above and below. These arcs represent paths for hypothesis
formation (possible inferences) within LTM; they are wused in
various ways by other knowledge sources during the interpretation
process. Section V.& discusses how the inference net KS overlays
LTM. Figure 9 depicts a representative fragment of the network
and describes the size of the network in terms of the number of
nodes and arcs.

The interpretation of an image is viewed as a set of
instantiations of the nodes in LM These instantiations
constitute short—term memory (STM) and are¢ shown on the left side
of Figure 8. This representation of knowledge, as well as its
relationship to the inference net. is the subject of ongoing
research by J. Lowrance, a graduate student in our research
group. Both STM and LTM are implemented ac a layered graph in
GRASPER [LOW781, a graph processing language extension to LISP

which follows the general approach of [IFR159, PRA711.



35

' SHORT TERM MEMORY LONG TERM MEMORY
. Image Specitic Model R priori General Knowledge

A

, SCHEMAS SC CLASSES
: D
; (esnace)
' OBJECTS : 08-CLASSES
i RECTANGUL
SOLID
VOLUMES VL-CLASSES
' ECTANGUL CAN-PROJECT-AS -‘j
SURFACES SR-CLASSES
' 1
RG-68 PEZOID, g
_— GREEN @’
f REGION RG-CLASSES
> < SEGMENTS $G-CLASSES

-

oL
"
i , r 5
ACUTE
&  G@p
k_ VERTICES VT-CLASSES

Figure 8. Hierarchical decomposition of long-term memory (LTM) and
. its relationship to short-term memory (STM). LTM contains the
stored knowledge to which the system has access. An interpretation
of an image is viewed as a set of instantiations in STM of nodes
in LTM.



36

HIRRS

RES I DLGGE

CC=
CARAGE &
DRIVE

_________ [ —

L1 <— (upward, downward)
conditional
probabilities

/

T e, e, e, e . ————a

A T ARD
X 1 XOR

TRIANGLE-

CILATERA
sxc /

(a)

Figure 9. (caption on next page)



Relation nodes (AND and XOR

which they reside.

The pairs (x
for use by t
lists, contr
relation sta

of vonjuncts and disjuncts).

»¥) on solid lines are the upward and
he inference net (see Section V.6).

ol information (strategies) attached to
tistics for the entire network.

column gives the number

INTRA-LEVEL INTER-LEVEL
RELATIONSHIPS RELATIONSHIPS
Level g # YOR # AND # XOR p Pair]?f
Nodes r XOR- - - AND- Levels
# XOR disjuncts # AND conjuncts # XOR disjuncts # AND conjuncts

SCcC 10 0 0 3 8
0o 0 6 17 SCC~-0BC

OBC 33 0 0 9 25
0 0 24 24 OBC-VLC

VLC 10 1 1 0 0
0 0 9 13 VLC-SRC

SRC 27 11 28 0 0
0 0 14 14 SRC-RGC

RGC 21 11 24 0 0
0 0 4 5 RGC-SGC

SGC 8 1 6 0 0
0 0 0 0 SGC-VTC

VrIC 17 3 14 0 0

(b)
figure 9. Detailed Structure of a Fragment of LTM. (a) A typical portion of the knowledge network.

names of primitives are prefixed by the level on

a plane containing a set of inter-level relations.
downward condition probabilities, respectively,
Not shown are the priors for the nodes, attribute
nodes, etc. (b) A summary of the node and

For both the exclusive OR and AND relations, the first
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Vv.3. 2D Shape

The 2D shape of a region may be an important cue to the
identitg of .an 'obJéct. or to attributes of a visible surface
(such as the 3D orientation of the surface). Many simple
relationships between the physical world and its 2D image
projection are captured in LTM. For example, the 3D shape of
simple volumes (e.g. cylinders and rectangular solids), as well
as the 2D shapes of 3D surfaces (e.g.. the rectangular surface of
a window), are related to standard 2D shapes (e.g. rectangles,
trapezoids, circles and ellipses). Therefore, in order to gain
access to paths by which 3D hypotheses may be formed: symbolic
attributes of shape, where they are relevant, must be associated
with regions.

First, we outline the strategy for 1labelling geometric
shapes formed by straight lines. Figure 10 is a portion of LTM
which captures an informal definition of several ghapes in terms
of the straight line segments Fforming them. The shape
classification is hierarchical; ¢that i« quadrilaterals are a

superclass of both trapezoids and parvallelograms, the latter

being a superclass of rectangles and rhombi, etc. The
definitions of shapes involve increasingly restrictive
constraints as the hierarchy is descended. Therefore, if the fit

for a quadrilateral is not very good, all) shape types which are a
subclass of quadrilateral need not be examined. In ¢this way a

large amount of computation is avoided.



39
P

S3 Mt\c\.ri\&ch: rabinx va\ﬂc\elj L‘a g?ohr Cfahmrsﬁ
Sy SV s w1 ?om‘t I commen (Ven
8 — %Sz _ﬂ'\—h 9) B, C, MCJ .

c LaouaJ) = ML'M i C (% (s a 5\»&8# Lm)}

one og ﬂio. ‘\-wo rPa(rs oQ
‘.‘.{'miak\' Lins are po.ru\al

Sy . .
] mtmggméz Ckvap) = fi (ELZ:IE ave parslt))

s
//‘E’Pc:':'l‘ﬂi f),\'u- o? tncs

S3
S’Zeg.’ ee%t araluo v Pvn \)EW s og oﬂw:.:(g ‘Jms dve V.\n\uc(

%.)5-3 ‘Mn mﬂ‘
gl;sﬂ F\mu"

=) CL‘X\\' = MUn S.C'Lg"‘;l ?am\u), ¢ L%,_,S-, P\m)(a‘)
‘ o riaet amds * ¢(qnad)
S L‘%\‘* 65 3: Sscond (S u? L‘ms ?.v.x]al |
o GJ tudagle: ()= wi e is 90

Lisy=Lls)=Llss)=1lsy) S * C (Fw') Xor C(hve)]

9’ s’ @,

L) = Lis) = LBa) = LSy

3 e.\‘ Y{g‘* 3"61" |83 \&v\%m g\mf.‘\im
© S el \ —e—c-- 5
E\\M\L\S N + s 3

S¢ —sl %."‘ﬁc. N A L’:-%Mrc) = C E LL‘-"\’ Weo)s \_@‘) -

¢ (vhombus) = o 5 o LLs'OyS e (redd)
i) = Lisy-
=15t + ¢(por)

or _QLst\mmS- min {c(o;) (s ‘io’fwl

¢ (ehombus)
NL\'Q-'- QLSC 9**&\%%\\' l\‘he_) = Q(ﬂms e rvov oc S, 2,5)
C (586, poael) = § (sloge of 5, 0md ,)
(o L€|¢SZ 3* Y(s\\r %hg) = $k5\o?c 0{‘ s, ﬂuc} S,_)
¢ (5nd Sz Fegud bgth) = § (LY, Us0)

Figure 10. Hierarchical definition of a portion of the shape types

currently in LTM. c(x) represents the heuristic confidence measure
of shape type x. The classification of shapes loosely follows
the classification based on affine symmetry [NEW6S].
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A quadrilateral requires four siraight lines and the
confidence that a region satisfies this condition can be
heuristically specified as the minimum confidence that each of
four segments is a straight line. ’'he confidence of a straight
line is the RMS error of the best fit to the actual data. Figure
10 outlines the manmner in which the computation proceeds and
hope?ullg'is self—explénatorg. It should be noted that the
composition of confidences involves a product of confidences in
an attempt to implement a worst-case analysis. One should note,
finally, that heuristic functions are needed ¢to specify the
confidence of primitive attributes or relationships such as
straight line, parallel line, right angle, or equal length; it
is expected that any reasonable function will suffice. The
result of fitting geometric shapes to segmented regions is shown
in Table II.

In addition to primitive shapes Formed by straight 1lines,
quadratics are wused to detect good fits of ellipses and circles
to the regions [AGI72, SHI78]1. Originally all types of conics
(i.e., the type of curves produced by cutting a right circular
cone with a plane, including ellipse , hyperbola ., parabola .,
etc. ) were fit, but this has been replaced by spline fits.

Most regions in our outdoor scenes are not classified as any
of the simple shapes mentioned and are labelled symbolically as
‘blob’. Nonetheless, important information such as the

parametric fit of the 2D spline analysic is carried forward for

later 3D processing.

”



Region Shape Probability Aspect Ratio

Rectangle .937 6.33
RC--0047

Trapezoid .96 _—
KG-0050 Rectangle .99 6.33
RC-0051 Rectangle .99 6.33
kG-0054 Rectangle .99 6.00

Rectangle .80 . 7.5
kG~-0060

Trapezoid .85 —_—

Rectangle .80 6.25
RG-0045

Trapezoid .85 —

Rectangle .85 10.33
RG~0049

Trapezoid .90 —_—
RG~0086 Rectangle .99 3.00

Table II. Summary of 2D shape fits to selected regions of Figure 3.
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V. 4. Ogglusion

Researchers in image processing have long recognized the
importance of picture junctions as luci of surface information.
When objects in scenes are limited to planar surfaces forming
trihedral vertices: the analysis of picture junctions can be
efficiently axploited. The constraint of surface planarity
ensures that only straight lines will appear in the image and the
trihedral constraint guarantees that there will be a small number
of fairly well-understood vertex types CHUF71,
CLO71, WAL79, TUR74]. When scenes contain complex curved objects,
the problem becomes more difficult.

The cubic spline fits to the image provide useful occlusion
information at picture junctions. Placement of knot(s) at the
Junction ensures that two line segments, meeting at a junction,
which are part of a continuous line, will be smoothly fit by the
splines. This is a generalization of the "tee" junction in the
polyhedral domain, but does not require assumptions about
straight lines. A simple strategy for determining the dégree of
discontinuity (e.g., relative angle) between pairs of line
segments approaching the junction yielde occlusion hypotheses at
the Junctions. York LYORB80] is currently examining the
improvements obtained by a spline approach vs. piecewise linear
fitting on Turnerfs classification of the 2D junctions formed by

the meeting of 3D curved surfaces L[TUR741.
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V.5. QObject Hypothesis via Spectral Attributes

For a restricted class of objects occurring in outdoor
scenes, attributes of color and texture can be expected to remain
relatively invariant across a wide range of scenes. The spectral
attribute KS matches region attributec to stured attributes of
several objects (sky, tree, bush, grass, and road) and returns a
measure of the degree of match, ranging Ffrom —-100 (no match) to
+100 (excellent match). The stored attributes were obtained by
measuring 60 features across samplec of each object extracted
from a data base of 29 images. A piecewise linear decision
function which reflects the expected variability of each feature
of an object is then formed. The matching process extracts an
identical set of features from the region (or union of regions)
to be identified, and uses the decision function to generate a
degree of match for each object. This research is part of the
Ph.D dissertation of T. Williams; move detail appears in
CHAN78b., WILS80].

The attribute matcher can only be used to hypothesize the
presence of certain “target" objectcs based upon the expected
invariance of their color and texture attributes. There are many
objects such as cars, shirts, and moct other man-made objects
which vary in their spectral characteristics. This KS, however,
will return a confidence value for any region, regardless of
whether the region represents a target object or not. Therefore,

we require mechanisms for filtering thecse hypotheses.
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Figure 11 jllustrates the resultec obtained by applying the
spectral attribute matcher KS to the 21 largest regions of our
example. Of the 21 regions, 14 were tarvget regions (3, 8 10,
90, 20, 79, 15, 37, 82, 96, 90, 83, 110, and 93) and 7 were
non—-target regions (14, 58, 41, 56, 3%, VO.Land 21). O0Of the 14
targets, 8  were correctly identified on the basis of a maximum
confidence decision. If bush and trce are collapsed -into a
single object (which is not unreasonable given the similarity of
spectral attributes), then 11 of the 14 are correctly identified.
Of the remaining three target errors, the correct hypotheses had
the second highest confidence in two cases (regions 15 and 96);
region 8 represents a mixture of sky and small tree limbs and the
correct hypothesis is debatable.

Of the 7 non—target regions, S of the regions (58, 41, 56,
35, and 70) represent portions of the white house wall and all
were hypothesized as sky. In the absence of any additional
information, such hypotheses are recasonable and cannot be
eliminated. The remaining two regions ave both roof (regions 14
and 21) and both were hypothesized as grass. probably due to
gimilarity of values for several crude texture measures. Both of
these hypotheses. and three of the previous five, can be filtered
if the location of the horizon is known and the ground is assumed
to be flat. Regions 14 and 21 cannot be grass and be located
above the horizon, while regions 58, &5 aud 70 are either below
or straddle the horizon and hence cannot be sky. This will be

discussed again in the "horizon" KS (Scction V. 9).
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Confidence Measure |
Area (maximumconfidences .. - Correct Corract
Region s'irc.led) ! yy;::n:::;ed I:ﬁ:::t Correct Hypothesia? o Hypotheses
¢ pixelsl 1 of £ 2 3 , ¢ l(nax. conf.) (visual.;' Hypothesis? |(Bush/Tree mmenca th::eIed
. y Horizon
| pleturet 3 &5 3 & & one object) %S
!
14 o1 | 18.9 -10{ 32 |~-S5{-17]-16 Grass House Roof No No above assumed horizon no hyp.
t
3 1939 | 11.8 [-62|-48| 41} 74 [-84 Sky Sky Yes Yes Yoo
1
8 971 | s.9 -20{- 6| 31| 47 |~46 Sky Tree ? ? mixcure: tree without ?
1 5 leaves and sky
1
10 793 | 5.9 ~33| ~40|-88|-53| 46 Tree Tree Yes Yes Yes
: white house wall in sun-
58 606 ’ 3.7 =52{=41]|=49| 20 (~-21 Sky House Wall No No light; region straddles no hyp.
: assumed hortzon
white house wall eaves, &
41 s60 | 3.4 - 8[=-23{-70]-38| 76 Tree House Wall No No gutter in shadow matches No
: tree onbrightness, texturel
30 518 | 3.2 |-54|-41{-53|-41| 14| Tree Tree Yes Yes Yes
}
56 486 3.0 -60]-51|~-62 - white housa wall; region a0 hyb.
! 60 231-23 Sky House Vall No Ko atraddles assumed horizon no Ay
J
20 427 | 2.6 |10]37|-88|-50| 54 Tree Tree Yes Yes Yes
1
T
kH 410 | 2.5 |- 2{13[-61}32|-16 Sky House Wall No %o white house vall with Yo
\ shadow of tree
+
i 373 | 2.3 |as| o [-92]-71[ 46| Tree Bush No Yes confidence for bush 1 Yos -
. almost ae large as tree
T
- - - white house wall; part of ?
70 3s4 ! 2.2 2| 7 |-61| 29 |-25 Sky House Wall No No region sbove horizon
T
15 330 | 2.2 |-27|20[-56{-32{ 2 | Grase Tree No No regicn above horizon; Yes
, tree next most
y region above horizon;
21 e | 1.9 |-8|40]31]|-35(-16] Grass Roof No No 11ikely knocks out road no hyp.
} also
37 308 | 1.9 |-33{-30|-92]-53] 44 Tree Tree Yes Yes Yes
—t
82 238 | 1.5 2| 0|-77{-53]- 2| Bush Bush Yes Yes Yen
t
96 217 | 1.3 4 | 6 [-53]-53|-10] Grass Bush No No bush next most likely No
}
90 202 | 1.2 |29/ 9 [-85(-71] 0 Bush Bush Yes Yes Yes
f
83 198 | 1.2 39| 0 {-94(-71] 44 Tree Bush No Yes bush next sost 1ikely Yes
;
110 196 | 1.2 =48] 32 | 25 [=35|~46 Grass Graas Yes Yes Yas
}
93 196 | 1.2 |29 |-20{-89|-74( 35 Tree Bush No Yes bush next mosc likely Yeo
H
Figure 11. Results obtained by applying the spectral attribute matcher KS

to the 21 largest regions (ordered by decreasing size) of Figure 3.
The results obtained by filtering the hypotheses by the horizon KS

(see Section V.11)

are also shown; if there are no positive

confidences after filtering, no hypothesis is generated.
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The statistics on the remaining 73 reqgions are approximately
the same, although 1if the size of the region falls below a
minimum size, reliable texture measures cannot be extracted and
performance falls oféf. A number of the regions have negative
confidence values for all target objects and no hypotheses are

generated for these regions.

V.6. The Inference Net in Long Term Memory

The rapresentation of declarative information is a layered,
hierarchical graph structure in which nodes represent visval
entities anq arcs represent the relationships between these
entities. By associating probabilities with nodes and
conditional probabilities with arcs, an "inference network"
CDUD746, KON781 is defined. The avcs and probabilities define
weighted paths by which implications of lucal hypotheses may be
propagated vupward and downward through the layered network. Any
hgpothesis generated by any knowledge source which results in a
change in the a-priori probability of a node can then be used to
generate changes in likelihoods at other nodes via these paths.
Moreover:. entire partial interpretations may be used to generate
hypotheses about likely identities of unexplained portions of the
image. The presence of a window &#nd roof, for example, would
strongly imply the presence of a house and consequently the house
scene schema.

The inference net of the Prospector system C[DUD78]., as

originally formulated, is designed to propagate information in
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one direction only, from low-level “"evidence" nodes towards high
level “goal® nodes. The method by which information is
propagated is developed from a Bayesian probability formulation
of the joint occurrence of the visual entities in the long term
memory network. Prospector only employc conditional probability
distributions ietween pairs of nodes (i.e., governed by joint
probability distributions of two nodes at a time). In some
situations, however, it is desirable (or necessary) to define
Joint and conditional distributions across n nodes in order to
capture higher level dependencies. In any case there are serious
theoretical issves inherent in the use of inference nets, such as
consistency or loops of inferences which relates to convergence
problems in relaxation labelling. These will not be discussed
here, but related issues are discussed in LHANSOa, LOW801].

Table III is a summary of the way apriori probabilities of
nodes higher in the network change as a result of vpdating the

likelihoods of lower nodes as shown and then propagating upward.

V.7. 3D Shape Representation

There are several important issues invalved in the
specification of the 3D shape of an object. The more important
of these include the choice and representation of the shape
primitives, the choice of a coordinate system within which the
relationships between primitives can be described, and the ease
with which features useful for recognition and/or matching can be

extracted [MAR77, AGI72, AGI76, NEV7LH,  NEVZ77,  BAD79). These
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(. 40000E-1 B)
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(.60000E~1 E)
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(.28574E0 G)
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(+30340E0 E )
(o26627C0 6 T)
(. 22978C0 )
. (2 228658E0 T)
(. 1603SE0 13)
23¢ scC-HOUSE
(.34487E0 E)

Table III.

Sample results from the inference net KS.

The results shown

are inferences upward from one level to the next, assuming the
igstantiations and associated probabilities as shown. The instantia-
tion(s) represent evidence via some KS for updating the probability
The prior and posterior probabilities of nodes
higher in the network are shown. The effect of propagating

different pieces of evidence from below are labelled with letters

of some node(s).

after the probability.

Actual instantiation of hypotheses on

the image of Figure 3 are given in Section VI.S.

w
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issues are being investigated by York in his Ph.D. thesis C[YORBOI]
by applying and further developing techniques from the
computer—aided design community C[CO0&7, CUUL74, GOR741.

The most popular 3D shape representation -- generalized
cylinders [NEV77]1 -- involves formation of a 3D volume developed
by sweeping & given planar cross section down an axis (Figure
12a). Thus, an object centered coordinate system is employed and
an assembly of subparts is described by relating the local axes
to each other [MAR77].

Our efforts are directed at making the relationships between
subparts accessible, the relationship of surfaces to volumes more
explicit, and the development of a representation for arbitrary
curvature of surfaces. The representation (Figure 12b) employs
Coons surface patches, whose four sides are delimited by cubic
splines [C0O0741. The surface patch (Figure 12c) is formed by
using an interpolation, or "blending” function, from the pair of
opposite sides of the surface patch. The blending function
itself is also a cubic spline; it allows a smooth transition
between adjacent patches, both those defining a gsingle volume, as
well as adjacent volumes, as in a cér fender and car body. A
"quilted solid" is defined by six surface patches related to a
volume—-centered coordinate system (Figuve 12d). Figure 12(e)-(g)
depict surface patches from several different points of view.
Many kinds of information can be stored with or derived from a

quilted solid (Figure 12h).

¥
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Figure 12. The three-dimensional representation of shape. Much of

the representation is based upon cubic splines, Section V.1.

(a) The generalized cylinder representation. (b) A Coon's surface
patch P(u,w), where u and w are parameterized on the interval
[0,1], employs four B-splines P(0,w), P(1,w), P(u,0), P(u,l)

to delimit the surface patch boundary; blending functions which
are also B-splines interpolate between opposite sides of the
surface patch. (c) Two adjacent surface patches A and B can be
smoothly joined at a common boundary if the blending functioms
are constrained properly. (d) Six surface patches can define
the shape of a volume around an axis which is used to relate the
spatial orientations of such volumes.
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(e) (£)
(g) (h)

Figure 12. (e) A single surface patch can also be used to fold around
upon itself to produce a volume. In this figure, one boundary
reduces to a point. (f) Telephone handle using one surface
patch. (g) Telephone handle using three surface patches showing
smooth join between patches. (h) Screwdriver formed from two
patches.
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A system for separately defining arbitrarg surface patches,
combining patches into volumes, combining volumes into obJects..
building specific 3D schemas, and rotating schemas subject to the
assumption of a given point of view is partially developed.
However, these components have not yet been integrated into our

system.

v.8. 3D Schemas

There is a great deal of expected structure in our visval
environment and it seems evident that such expectations are
important in processing visval information. One of the functions
of the 3D schema is the organization of subsets of information in
LTM into higher order complexes of stereotypical situations in
such a way that the spatial relationships between objects,
volumes., and surfaces which might occupy or define that space are
made explicit. The 3D schema would allow rotation and
translation of the prototypical scene so that its appearance from
any point of view can be generated. ‘hus, the processing of a 3D
schema allows the generation of potentially relevant 2D schemas.

The results given in Section V1 demonstrate top—-douwn
interpretation of an image. In order to do this it was assumed
that a specific 3D schema was available, that it could be rotated
given an assumed point of view, projected onto a 2D image plane,
and then hidden lines removed. While those 3D facilities were

not available ¢then, and 2D schema information was supplied

directly, they are now available.
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Our current version 6f specific 3D and 2D schema have Fdr

each schema 'region a-céntroid of the expected central location
and a radius representing the decreasing likelihood that the
schema region appears at that location. Thus, one can think of a
spherical or circular proﬁabilitq cloud denoting expected spatial
position. This crude representation of location allows selection
of regions in the image for matching against schema objects;
furthermore, alternative region selections can be ordered by
degree of location match. Figure 13 depicts wire #frame and
surface representations of a model of the house image. The 3D
schema we have described attempts to capture approximate relative
spatial information of ¢the entities appearing in Figure 13.
There are still interesting problems remaining that are
associateﬁ  Qith fhe goneéation of 2D schema from 3D schema. For
example, the likelihood that a 2D schema region is visible will
be related to the 1likelihood that another schema region will
occlude it. Many issues related to the generation of»speci?ic 2D

schema from specific 3D schema are under examination.

v. 9. ums.g_ﬂ.zs.

The perspective knowledge source coucentrates on the ways in
which the general relationships gqoverning perspective
transformations can be used to extract or explain information
concerning surface orientation, dictance, and size ([(DUD73,

HAR78]1. A region (or the union of a group of regions) represents

the projection of a 3D surface onto the 2D viewing plane. The
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Figure 13. Wire frame and surface representations of a model of the
house image seen from two points of view. The current 3D house
scene schema is actually an abstract representation of the approximate
relative spatial locations of the entities in these images. The
components (volumes, surfaces, straight line segments) are actually
represented by a position in space and a radius associated with a
decreasing likelihood of the component appearing at that location.
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problem then is to recover some of the UD attributes of that
surface from the segmented image. Figure 14 is a simple sketch
depicting the relationship of the dicstance and height in the
Physical world and their associated parameters in the image.

The current version of the perspective KS focusses on the

relationship between the following variables:
@) elevation - vertical distance above the ground plane,

b) height ~ vertical distance from visible bottom edge to

vigible top edge of surface,

c) range - horizontal distance Ffrom viewing location to a

distinguished point on the surface,

and d) width - horizontal distance From the visible left edge

to the visible right edge of the surface.

The interrelationship of these variables depends on the
orientation of the surface in three -cpace. For simplicity, we
assume the orientation is either vertical (i.e., perpendicular to
the ground plane, such as a tree) or horizontal (i.e., in the
ground plane, such as a road). While these assumptions may appear
to be  wunnecessarily restrictive, they are sufficient to cover

many surfaces of interest.
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Figure 14. Perspective - ground plane, vanishing points, projective
geometry.
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The four variables described above are interrelated. Given
the assumption of ground planarity and a camera model (angle of
inclination to ground plane, focal leugth, and height abave
ground plane), knowledge of any onc implies knowledge of thé
remaining three, although the form of the relationship depends on
whether the orientation of tPe surface is assumed vertical or
horizontal. We are continuing to explore ways to use perspective
under weaker assumptions in our current research.

In general, there are usually several unknown quantities to
be determined and depending on the assumptions made one can solve
for different variables. Applying the perspective KS to selected
regions of Figure 3, it is easily determined that the range of
region 79, for example, is about 37 meters and its height is 1. 41
meters; this required assumptions of ground planarity, and that
the surface projected as region 79 is perpendicular and attached
(i.e., 1zero elevation) to the ground plane. More extensive
results from the perspective KS, and the use of these results for

the development of a 3D spatial plan are presented in Section VI.

V. 10. Euther Development of the Perspective KS

In Figure 15 there are several sources of infaormation in the
images that relate to the 2D progection of 3D volumes and
surfaces. Figure 15(a) shows a series of identical objects
diminishing in size. I# it 1is possible ¢to generate the
hypothesis that the objects are of identical size and orientation

-~ a sitvation that is not uncommon in various geometrically
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regular aspects of our man-made world -- then the tops and
bottoms of ¢the telephoﬁe poles provide lines of convergence to
vanishing points on the horizon line. ‘lhe diminishing size of
the telephone poles is a particular example of a feature
gradient, known to be important in the perception of space
CeIBSO].

The use of the perspective eﬁuations for size and distance
demands knowledge of the tilt angle of the camera relative to the
general plane. This information is provided by the position of
the horizon in the image when the ground is planar. Figure 15(b)
depicts an example where the horizon line can be inferred when in
fact it is not visible in the image'ﬁor are there convergent
lines which could be reliably used. In the physical environment
corresponding ¢to Figure 13(b), the plaza provides a flat surface
which is defined in the image by the bhottom of the feet of the
figures. The horizon line lies in this plane. If the relative
angle of the camera to an infinitely planar ground surface is O,
then the hofizon is in the center of the iﬁage. and in general
tilt is directly computed from the distance of the horizon to the
center of the image. The height and distance of the various
figures may be determined directly from the distance of their
feet from the bottom of the 2D image. Yet a third plane is
roughly described by a least rms error fit of the points
corresponding to the eyes of the figures; if the camera is at a
similar height to the eyes (not an unreasonable assumption), then

this plane is constrained to go through the horizon as well.
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Figure 15. Examples of images in which perspective information provides strong cues to the spatial
phone poles are recognized to be objects

arrangement of surfaces and objects. (a) If the tele
of identical sizc that all lie in a plane, then the t
of convergence to vanishing points on the horizon 1lin

o
e

Ps and bottoms of the poles provide lines
. The converging lines of the road provide

similar information. The image distance of the horizon from the center of the image provides
relative orientation of camera to ground plane. The camera is computed to be tilted .6 degrees

upward.
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Figure 15(b). 1In the plaza scene the horizon line can be inferred when in fact it is not visible. The

bottoms of the feet provide points which lie in the ground plane. The line producing minimum RMS
error from the heads of the people gives an approximation of the horizon line because the camera is
approximately at the same height. The arches if recognized as such could also provide further

convergent cues concerning the horizon. The tilt angle of the camera has been computed to be 2.4
degrees upward.

09
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This implies that the eyes of the figures, or more roughly the

tops of their heads, must lie at apbroximatelg the same height in
the image, as is evident in Figure 15b.

There are many other interesting cituations which deserve

investigation, such as:

a) deriving the orientation for planar surfaces that are at
some general orientation, not horizontal or perpendicular

to the ground plane;

b) assumptions concerning lines which are near parallel or
perpendicular and their implications about the physical

world;

c) deriving distance to objects and comera tilt angle from
assumed or known physical sizes of the objects

corresponding to regions in the image.

Continuing research on the perspective KS will focus on the
information required for the construction of a spatial plan of
the 3D scene, the development of a collection of mini-strategies
for wusing ¢this information, the determination of the conditions
under which these strategies may be activated, and on methods for

extracting this information from the image data.

V.11, Horizon Schema and Horizon Filter K&
It should be clear that the effects of perspective and

distance on the projection of surfaces in the image are
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determined by the observers positiom the camera model (of
height, pan, tilt, and focal length), aud the orientation of the
ground plane. These factors also determine the position of the
horizon in the image, if it is visible. The horizon schema is
perhaps the simplest and most general of the schemas present in
the system. The function of the horizon schema is to define the
relationship between sky. grodnd. and hovizan ., and to provide
the global coordinate system for placing objects and schemas in
space (Figure 16).

The horizon schema also provides the basis for a filtering
KS applied to the hypotheses generated by other knowledge
sources. Since the spectral attribute K8, for example, has no
notion of the spatial location of its tavget objects, some of its
hypotheses may be inconsistent with the location of the horizon
in the image. By collapsing the more obvious spatial constraints
into a knowledge source associated with the horizon schema, many
erroneous hypotheses can be eliminated. I-or example, in Section
V.5 Figure 11, region 58 was hypothesized to be sky. Nhile,this
is a reasonable hypothaesis based solely on spectral attributes
(white walls tend to "inherit" the color characteristics of the
ambient illumination or reflected illuminant characteristics from
nearby objects), "sky" regions cannot exist below the horizon and
the sky hypothesis can be eliminated. Since no other reasonable
hypothesis exists, no hypothesis for thfs region can be generated
by the spectral attribute matcher. For region 15, the hypothesis

"grass" is eliminated since the region is above the horizon; the
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Illustrative diagram of the Horizon KS and its use as
Hypotheses which violate the spatial constraints
Regions which extend

below the horizon cannot be labelled sky, while regions which extend
above the horizon cannot be in the ground plane (e.g., road, grass).
Therefore the cross-hatched region cannot be labelled sky, grass,

or road.

Figure 16.
a hypothesis filter.

imposed by the horizon can be eliminated.



‘ 64
next most likely hgpotheﬁis (tree) 'capnot be eliminated and
becqmes the final hypothesis.

‘Thelresults from the horizon filtcr K5 applied to the outpb%
of the spectral attribute matcher 4 are shown in Figuré 11.
Note that the assumption of ground planarity is built into the
current version of the horizon schema, and that the real world in

many instances presents us with more complex situvations.

V.12. Qbject Size US

The object size K8 1is responsible for generating ob ject
hypotheses based on the size of & region (or collection of
regions) and the results of the perspective KS. For example.,
once a region is known (or assumed) to represent the projection
of a vertical surface, the perspective KS can compute the
distance to the surface in the phgsical world and its physical
height and width. The size KS uses this data to return a list of
object hypotheses ordered by the confidence that the physical
object could be the given size.

The size KS makes use of expected sizes of objects that are
stored in LTM. Both major and minor axes and their expected
orientation are used where possible. Figure 17(a) shows examples
of the ranges of sizes for selected object classes in LTM. A
piecewise linear approximation to the gize probability density
function is formed #from these ranges as shown in Figure 17(b).
Computation using only the vertical axis (for clarity) of several

objects is shown in Figure 17(c)i in this figure, the size

e
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—
Horizontal Axis Vertical Axis
Object
Smallest | Smallest | Largest | Largest | Smallest | Smallest | Largest Largest
Possible | Probable | Probable | Possible | Possible | Probable | Probable | Possible
Bullding-{ ¢ .84 1.20 1.40 1.40 2.0 2.40 3.40
Door )
Building- . 0
Shutter .25 .30 .60 1.0 .5 .71 2.0 2.8
3“;1:;“3‘ 3.40 4.80 | 11.30 32.0 1.70 2.40 16.0 27.0
Building-| 4, .60 1.20 2.40 .25 .35 2.40 3.40
Window
Bush .60 .84 1.70 4.80 .60 1.0 2.0 2.80
Car 2.0 3.40 4,80 6.70 .60 1.0 1.40 2.0
House 5.70 9.50 16.0 27.0 3.40 4,80 9.50 13.50
Human .30 42 .60 .84 1.0 1.40 2.0 2.40
Roof 2.0 4.80 16.0 27.0 2.0 2.40 4.80 6.70
Tree 1,70 3.40 6.70 13.50 . 2.0 3.40 13.50 32.0
Tree 1.70 3.40 6.70 | 13.50 7 1.0 9.50 19.0
Crowmn
Tre= .25 .60 1. 71 1.0 5.70 23.0
Trunk .25 70
Utilicy .25 .30 .42 .60 2,40 3.40 9.50 13.50
Pole
(a)
£(x) 1
1 '
| |
1 Area = 1 !
! \
1
\ 1 _ horizontal or _
smallest smallest largest largest = vertical size
possible probable probable possible
(b)
Figure 17. Object Size KS. (a) Typical size ranges for horizontal and

vertical axes of some objects in LTM; all sizes are given in meters.
(b) Approximation to a probability density function formed from the
values in LTM.
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Figure 17(c). Object confidences given a size are based on the probability of the size falling
in a default + 5% window (exaggerated for clarity), although the actual window can be set
by the perspective KS on the basis of an error analysis of the computed size. These
probabilities are scaled up, making the highest equal to 100. For expository purposes,
only the vertical axis computation is shown; in actual applicationms, both horizontal
and vertical extents are incorporated, resulting in a more constrained set of hypotheses.

99
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coordinate axis is shown in both metcys ond the logarithm of
meters,

The perspective KS returns a compuled size and the range of
the size; the default range is +57. Rased on this window of
size values, a confidence value is computed for each object in
LTM +from the ensemble of piecewice approximations. If this
window falls outside the size rauge For the oabject, the
confidence value 1is defined to be -J00. Objects for which the
window overlaps the expected range produce positive confidence
values. This value is determined for each object by integrating
the area under the curve (for that objyect) within the error
window, and then normalizing by the largest value produced for
any object (times 100 so that the largest will have a confidence
value of 100).

Applying the size KS to RG-50 (a window shutter) of Figure 3
results in the hypotheses: tree trunk with confidence 100,
shutter with confidence 35, and all othcers are negative. More

extensive results are provided in Section VI. 8

VI. RESULTS OF INTERPRETATION WITH A SP-CIFIC 2D SCHEMA

VI. 1. Introduction

One of the purposes of 3D schemas 1is to generate the
appearance of prototype scenes from suy point of view For
example the 3D schema of a road scene can be rotated and

projected to produce the image of @ rvoad scene as it would be
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expected to appear to an obser?er lonﬁing down the road. A
particular projection of a 3D schema is referred to as a 2D
schema and will be very useful in directing top—down analysis of
the image. It is best thought & &« a plan (a set of
constraints) for interpretation of the imege.

A 2D schema of a specific house scene viewed from a front
diagonal perspective is implied by the illustration in Figure 18.
This 2D schema is not a projection of a general house scene., but
rather of a particular house scene. The general house schema
would need to specify the expected variability of the general
house scene.

The current representation of the 2D schema involves a set
of information for each region including location of centroid,
area, 2D symbolic shape with an aspect ratio of ﬁaJor to minor
axis, color and texture features, location and properties of
boundaries, object identity, 3D surface orientation and 3D size.
To perform these experiments the 2N schema was g¢generated
manually, and current work will make it possible to drive a 3D
schema representation and automatically form the projection,
estimate likelihood of occluding schema surfaces, and #fill out
the required attributes from the LTM knowledge base.

It should be clearly understood by mnow that the current
spatial representation of a 2D schema is not a direct copy of the
model drawn in Figure 18(b,c), but iustead approximates the

location of this information.
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all the experiments of Section VI.

are for aesthetic purposes. Currently

the position of schema regions is defined by parameters of centroid and area.
Schema regions also may have additional parameters of color and symbolic
shape, and any subset of these four parameters may be used by a matching

funciion

applied to image regions.

Straight lines (without squiggles)

represent boundaries wnose shape and rough position is known, and can
also be used to direct matches to nearby straight line segments in the

image.
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The position of a 2D schema 1region is defined bd two
parameters, the position of its centreoid and its area. The
squiggly boundaries in the 2D schema of ligure 18 are for display
purposes. Actually, the posifions of the schema regions are noat
known except to the degree that <constraints are implied when
there is a distinctive shape, such as rectangle with a particular
aspect ratio. On the other hand. theve are sometimes boundaries
with known characteristics (e.g. long and straight) appearing in
expected positions such as those bounding the roof in our house
scene schema. Lines whose shape &re known are drawn without
squiggles where they are roughly expected to appear in the image.
Top—down control of the KSs in the interpretation of an
image is relevant in the case where expectations about a given
scene are available. The experiments in this section are
intended to depict the case where the system is attempting to
interpret a known scene via a specific ¥ schema, i.e., from a
known point of view (Stage 1 from Sectiun 1I11.4). We also assume
that the camera model (focal length of 1lens, ¢€ilt angle, pan
angle, and height above ground) is kuown. Results will be
presented of the control by 2D schemas of the 2D shape KS,
spectral attribute KS, fits of straight 1line segments, the
perspective K8, and the size KS.
The 2D schema KS directs matching of schema regions to image
regions and some schema line segments to image line segments.
The matching process employs a weighted evaluation +function on

features of symbolic 2D shape, size, colovr, and position between

e
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regions in the image and in the schem~. Ue will not go over the
details of the heuristic match function here. although we note
that any non-empty subset of the Ffeatures can be used for
matching. Note that it is necessary, iu general, to expand or
contract the schema in order to correlete schema size with image
size, This is a function of distance and camera parameters and
would have to be part of schema processing if it is to be robust
in its application.

Matches can also be defineq to operate between a schema
region and groupings of several image regions, or a schema line
segment to a group of imaée line segmenis, but then a search is
necessary to discover the best groupiugs. The search for good

matches can be directed by a variety of strategies. We will

present simple results of a feuw.

VI.2. Semantically Directed Merging via 2D Schema

The first experiment will demonstrate the matching color and
texture attributes in order to improve & fragmented segmentation.
It involves the interaction of the spcciral attribute KS and the
2D schema in an attempt to merge many adjacent regions whose
object identities are the same. The strategy attached to the
specific 2D schema for applying KSs to perform semantic merging
is outlined in Figure 19 It firet involves calls to the
spectral attribute matcher to get a lict of object types which it
can match. The 2D schema contains information on the areas of

the image in which these objects (tree, bush, sky, and grass) are
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2D Schema
select schema regions
f
/
select consistent
hypotheses and
/ merge regions
Which schema-
objects does _ filtgr
SA matcher select / candidate get impossible
have image regions hypotheses hypotheses
statistics
about?
SA RSV SA * | HORIZON
'REE
2D Schema Image

Figure 19. Semantic merging strategy. The 2D schema determines from
the spectral attribute matcher which schema objects it can classify,
then selects schema regions which are the expected locations of
those objects, then determines all image regions in those vicinities,
checks which objects are implied by those attributes, filters
object categories which are inconsistent with the horizon model,
and then merges regions with identical labels that are comnsistent
with the schema.
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expected to appear. Thus, it distinguishes the areas expected to
be target objects from the areas of now ‘target objects. The 2D
schema then accesses the region segmentation to select <candidate
image regions for matching. Each schema region which is expected
to contain one of the four types of objecls above will be used to
direct semantic merging via the attribute match KS. In these
areas adjacent regions will be merged if their identities are
verified by the attribute KS to be cousistent with the schema.
Thus, the attribute KS can be viewed as verifying the 2D schema
plan.

Figure 20 shows that semantic merging allows most of the
fragmentation in the tree to be merged, and separate grass and
bush regions to be linked as well. The image is greatly cleaned
up and more representative of the semantics of the scene. The
results might be further improved by applying the horizon K5 to
filter the object hypotheses that are inconsistent with the
approximate location of the horizon (which has been established

via a camera model to be below the center of the image).

VI.3. Straight Line Segment Analysis via =D Schema

Let us use the long straight 1liues in our 2D schema to
search the image for good candidate matches (refer to Figure 21).
The search is constrained by placing a8 rectangular mask around
the selected schema edge (Figure 21b). All lines whose midpoint
is inside the mask, and whose slope is within a specified

tolerance of the slope of the schema 1line are selected as
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possible matches. The next step is to merge all co-linear
segments within the mask into new seaments, and then match all
the recsulting line segments to the schema line. The match is
based uvpon attributes of slope, length, distance between centers,
and RMS error, with a best (merged) match #for each schema
straight line segment. Results for two schema edges —— the right
side and lower side of the roof -— are shown in Figure 21(c).
The merging of image line segments 34 and 94 clearly produces the
best £fit to the schema straight line on the right side of the
roof and this 1line segment is completed in Figure 21(d). The
lower boundary of the roof also produces a clear match.

I® the results of the line segment construction are fed back
to the shape KS, region 14 is now identified as a parallelogram
with 65% confidence. Note that we expect ¢this to improve
further, when the lower straight line of the roof is extended to
meet the other straight lines and cut off the region 1leaks on
both sides of the roof. Figure 21(e) shows straight line fits
with minimum RMS error. It is estimated that the confidence can

be increased to over 90%.

VI.4. Gymbolic Region Shape Matches via 2V Schemas

Certain regions in the schema and the image have symbolic
attributes of simple geometric types such as rectangle,
trape:oid, ellipse, etc. The shape attributes of schema regions,

where they are relevant, are pre-defined (or else will be
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Figure 21. Results from schema-directed straight line segment analysis.
(b) Original

(a) High-level schema used to direct merging of segments.

€ -Av3Y

segmentation showing mask used to locate candidate line segments.

(c) The candidates for matching against schema segments SL~3, SL-4,

SL-5 are SG-34, SG-94, SG-134, SG-224, as found in the masked area

of (c). The results of matching combinations of these segments
are shown in the left-most column. Clearly, segments SG-34 and

SG-94 form the closest match. (d) Insertion of roof boundary
segment as a result of schema match of SL-3, 4 and 5 to segments
§G-34 and 94. (e) If straight line fits are used to improve the roof
boundary, the confidence of a parallelogram can be increased sharply.
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generated during 3D schema projection). The shape attributes of
image regions can be determined by the &D shape KS.

Let us examine the strategies depicted in Figure 22 for 2D
shape matching. The schema requires access to the results of the
2D shape KS and the 1list of schema regions with distinctive
geometrical shape. The shape matching function then can use
shape and position to detgrmine a degree of fit. There are three
types of matching capabilities of schema and image regions using
any subset of the four features:

a) location of centroid,

b) symbolic shape.

c) intensity/color, and

d) area.

The matching function can be applied:

a) directly between a schema region and an image region,

b) between a schema region and a group of adjacent image

regions, and

c) between a template (possibly derived from a previous

match of image regions) and groups of image regions.
Let us now examine the results summarized in Figure 23.

First, consider an attempted match --— without the wuse of
_postion information -— of all schema regions and image regions
which have distinctive geometric shapes. This will show that the
2D schema can be robust without an exact spatial plan for the =4))
image. The 2D shape KS was run on 3l regions within the

expected house area, and those image regions which have a high
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Figure 22. 2D shape matching. The 2D schema calls the 2D shape KS to
extract regions with primitive geometrical shapes and then matches
them with schema regions by symbolic shape label and position.

The match can be applied to individual or groups of image regions.
Additionally, features of color and expected area can be used.
Image regions which are matched can be used as a template to be
moved over the image.
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Figure 23. Shape matching via 2D schenma.
Results of matching house shutters based upon shape matches and
2D shape KS. (a) Portion of the original segmentation. (b) Portion of
the 2D schema. (c) Of the 5 image regions with high confidence of
rectangle or trapezoid, two regions, 45 and 50, are matched against
schema regions with roughly similar shapes. The match is based upon
size, shape, and color and the best five matches are shown. Note that
low evaluation is best. The overall match is shown on the left while
the match factors of the features in the order given above are shown
to the right. (d) The image regions found to match with shutters in
the schema. Note that the feature of position (neither schema nor
region) was not employed.
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confidence of a primitive shape type can be further processed.
Each of <these regions is used to match against schema regions
with similar shape based on attributec of size, shape/aspect
ratio, and color. The result of hatching regions 45 and 50 with
the best five schema regions is tabulated in Figure 23(c). They
are found to match reasonably well with the various shutter
regions in the schema and poorly with other schema regions. The
left shutter has fragmented in the original segmentation and
region 45 is closer to a trapezoid than a rectangle.
Consequently, it has a poorer match with rectangular shutters
than region 50. It should be noted that the evaluation function
is scaled into O (perfect matches) to 1000 (no match); this
evaluation function has not yet been made consistent with ¢the
form of other KS outputs.

The second step shows the improvements obtained by the
addition of positional information to better form carrespondences
between schema shutter regions and image regions. There is a
good match for five of the six shutters in the front and one of
the two on the left (Figure 23c,d). Noite that the left—-most
shutter has not been found and only a part of the next one has
been found because of region fragmentation.

Figure 24 demonstrates the grouping capabilities of the 2D
schema by focussing on the left two larvge shutters in the image.
The centroid of the schema region is wuscd to select candidate
regions for grouping and the match Punction (based upon all the

features) is used to select the subset which matches best. The

fe
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(b)

(maltch-grours left-shutter ‘(single obe-shutter-23)

(35 (RG-0072 RG-0064 RG-0059 RG-0052 RG-0044) 18 52)
(39 (RG~0072 RG-0064) 35 42)

(60 (RG-0064 RG-0059 RG-0052 RG-0044) 35 85)

(40 (RG-0069 RG-0064 RG-0059 RG-0052 RG-0044) 35 85)
(65 (RG-0049 RG-0040 RG-0046 RG-004S) 18 112)

78 (RG-0050) 32 103)

(93 (RG-0075 RG-0071 RG-0047) 18 167)

(96 (RG-0075 RG-0047) 35 157)

(131 (RG-0073 RG-0069 RG-0059) 18 243)

(136 (RG-0049 RG-0046) 52 220)

(138 (RG-0053) 35 240)

(142 (RG-0048) 81 203)

(150 (RG-0074 RG-006%5) 52 247)

(156 (RG-0075 RG-0071) 68 243)

(160 (RG-0043) 18 302)

(172 (RG-0070 RG-00446 RG-0045) 104 240)

180 (RG-0095 RG6-0086 RG-0070 RG-0065 RG-0045) 120 240)
(187 (RG-0055 RG-003%5) 70 303)

(194 (RG~0074 RG-0070 RG-006%5) 87 300)

(199 (RG-0062) 92 305)

(e)

Figure 24. Schema-directed grouping of image regions with simple and

distinct geometric shape. (a) Portion of original segmentation
extracted from Figure 3 showing the fragmentation of the left

two shutters. (b) Grouped regions found by 2D schema. The right-
most shutter of the left pair was found using the centroid of the
schema region to select candidate regions for grouping. (c) Results
from match function when a mask formed from the right shutter of

the pair is moved to the left and matched against groupings of
candidate regions on the basis of color and size. Regions 72, 64,
59, 52, and 44 match best. The merged collection is shown in (b).
The confidence that the second region from the left is a rectangle

81
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right shutter of the pair is extracted by this technique, but due
to the severe fragmentation of the left shutter this technique
was not employed. The shutter on thé far ieft'was found by
moving a template, of the size of the right shutter, towards the
left and grouping regions on color and size. The best match is
then selected. The 2D shape KS is then applied to determine the
rectangular fit on the left two shutters, producing confidences
of 247 and 94%, rospectivélg. It is difficult to interpret the
24%Z value at this point since there has not yet been any tun}ng
of the performance curves of the shape confidence measure; wﬁndo
not know, as yet, how fast the match values decrease relative to

a ‘good’ match.

VI.5. Combination aof K Results
The result of integrating the hypotheses of the attribute

KS, 1line segment matches, and the 2D shape KS yields the results
in Figure 25. Note that many of the regions in the image are
labelled with the proper object identity. Figure 25(c,d) was
produced by & clean—up process of merging wunlabelled adgacent
regions within the house schema region and the remaining

background area.

VI.6. Eormation of a Spatial Plan Using Pergpective Information
The proper use of the perspective KS requires that a set of

assumptions be generated regarding the orientation of surfaces.

is



(c) (d)

Figure 25. Combination of schema-directed KS results. (a) Original
segmentation. (b) Combined results of 2D schema with attribute KS,
line segment matching, and region shape KS. (c) All regions without
semantic labels are merged under guidance of 2D schema (i.e.,
unlabelled house regions are kept separate from unlabelled background
regions. (d) Same as c, but labels are provided on diagram:

C) tree C) roof

sky @ shutter

C) bush © unlabelled house
©)

grass C) unlabelled background
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In practice they would be determined via the specific 3D schema
and other information from long-term memory, dut 1n Ch1is vrase the
set of assumptions necessary to drive thﬁ perspective KS are
obtained directly from the 2D scheme. Thus, knowledge that a
particular region is bush, and that bushes are usually
perpendicular and attached to the ground plane, is available to
the 2D schema if it has been generated fFrom a 3D schema. These
critical assumptions allow the perspective K8 to place that
region (bush) in the 3D world model.

Let us consider the strategy for the computation of the
distance and size of an unoccluded object which is perpendicular
to and touches the ground pianea this strategy will be applied
to computing the range and height of the bushes. The stratagy by
which the 2D schema controls the application of processes is
outlined in Figure 26. The spectral attribute matcher KS can be
veed to Validato the regions presumed to be bush and grass.’
Their common boundary implies that it is unlikely that the bottom
of the bush is occluded. Next the perspective KS is called ¢to
determine the distance and size of the bush. In this examnle the
range of the bushes is based wupon tuwo assumptions: vertical
orientation and the elevation of the bottom of the bushes is O.
Then, the identity of regions 102, 110, 11?, and 113 as grass
implies that there is no occlusion of these bush regions. Hence,
the image coordinates of the region can be translated into a
range in the physical world. Once the range is computed, then

the image size —-- region height and width -— allows the physical

fe
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Figure 26. Strategy for computing size and distance of unoccluded object
which touches ground. The SA KS is used to verify that the regions
expected to be bush and grass. The fact that they have a common
boundary implies that the bottom of the bush is not occluded
(assuming the ground Plane is planar). The perspective KS is used
to compute the distance and size, while the object size KS verifies
that the computed size is in the expected range of bush sizes.



86

size to be computed. Note that in order to carry out this
analysis, the system employed the oD schema, the spectral
attribute K8, and the perspective K3. The inference drawn from
this chain of hypotheses, namely that the region represents a
bush, can be partially validated by noting that the computed size
falls within the allowed range for bushes stored in long—-term
memory (see VI. 7).

Figure 27(a) describes the camera geometry from a bird’s eye
view with the image plane shown in PFrunt of the focal point for
convenience. The range, offset, and elevation of a
surface/object in the physical world must be computed in terms of
the viewer—centered coordinate system invol?ing the line of sight
of the camera. Figure 27(b) 1lists rvesults of applying the
perspective K8, under control of the 2D schema, ¢to selected
regions of our test image. All the regions considered (bushes,
shutters, house wall) lie roughly (particularly the bushes) in a
pair of planes which are vertical to the ground plane and
oriented at a diagonal to the right, away from the viewer. The
location of objects are graphically portrayed in the bird’s eye
view of Figure 27(c).

In order to use the results in an effective manner, an error
analysis should be taken into consideration. With an assumption
of ground planarity and a camera model (focal length = S0 mm,
elevation gbout 2 meters, because the person was standing on
higher ground, tilt = 2 degrees uvpward), then the range of a

physical point in the ground plane can be derived directly from

ty
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the image coordinates of the point (in pixels). However, the
computation is not a linear function of this image distance, and
both the physical range and its associated error increase
exponentiallq. Table IV lists the absolute and relative error of
a one-half pixel error for each row of pixels starting from the
top of the image (i.e., row 1 in our 128x128 pixel image). The
error in the range is shown superimposed on the location of
objects in Figure 27(c). A one-half pixel error in width will
produce an error in physical width which is relatively constant
over the image unless the camera has s wide—arigle lens (e.g., a
fish~eye lens). Note that error in range will propagate directly
into an error in physical height and width and this must be taheé
into consideration by the object size KS.

Even such simple perspective results as shown provide the
beginnings of a 3D gpatial layout. The ranges of the row of
bushes in front of the house provide a range of possible
orientations for region 56 (the house wall). This partial plan,
shown as a bird’s eye view, is illustrated in Figure 27(c). The
angle 2f# the shutters has been computed to be 24 degrees from the
line of sight. The house in Figure 3(a) does not seem to be
oriented at such a gsteep angle, but there is significant
foreshortening. This orientation has been determined to be

accurate via external physical examination of the environment.
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9 HBouse 39.1 game as 90
front
same as 90; 82 vertical
82 ¢ %0 Bush 32,0 472 2.54 1.59 vith sage 1"108‘ as 90
19 Bush 7.5 3.78 2.63 1.61 same as 90
8 Bush 40.9 6.56 1.58 1.48  |same as 90
99 and 56 lic in one
56 ::::: 39.1 2,39 2.8 plane; range of 56 is
san as 99; 56 is vertical
&2 Shutter 33.0 <375 .300 1.50 vertical, hedight = 1.5 o
50 Shutter 3.8 1.22 237 1.50 height = 1.5 o
51 Shutter 34.8 1.70 .237, 1.50 hefght = 1.5 m
54 Shutter 36.7 2.54 .250 1.50 height = 1.5 a
60 Shutter 44.0 5.15 «300 1.50 height = 1.5 m
(b)

Figure 27.
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Figure 27. Results of forming a spatial plan using the Perspective KS.
(a) Imaging geometry and description of terms used in presenting
the perspective results. The Z axis represents the gravitational
vertical; for the example image, the line of sight is inclined 2°
from the X,Y plane. (b) Computation of physical location and size
based upon assumptions shown in the right-hand column. (c) Ground
plan of house determined by the perspective KS. The results of (b)
in terms of range and offset fix the locations of objects in the X,Y
plane. Both range and offset are expressed in meters. The two
vertical scales show the correlation between range and rows of
pixels in the image. If a pixel in a row is assumed to have
elevation 0, then the physical range is obtained by reading the
range scale. The error range of Table IV is superimposed as a
vertical line through the location of the bushes; the angle of
the bushes is computed to be 24° from the line of sight.



Computed Range Absolute Error Relative Error

Pixel in Row gf pixel ® (meters) (%)
bottom

of —» 128 27.1 416 1.5

image 127 28.0 442 1.6

126 28.9 .472 1.6

125 29.9 .504 1.7

124 30.9 .540 1.7

123 32.0 .580 1.8

122 33.2 .624 1.9

121 34.5 .674 1.9

120 35.9 .730 2.0

119 37.5 . 794 2.1

118 39.1 .865 2.2

117 40.9 . 945 2,3

116 42.9 1.042 2.4

115 45.1 1.15 2.5

114 47.5 1.28 2.7

113 50.2 1.43 2.8

112 53.3 1.61 3.0

111 56.7 1.82 3.2

110 60.6 2.01 3.4

109 65.0 2.39 3.7

108 70.2 2.79 4.0

107 76.2 3.30 4.3

106 83.4 3.95 4.7

105 92.2 4,82 5.2

104 102.9 6.01 5.8

103 116. 7.71 6.6

102 134. 10.25 7.6

101 158. 14.3 9.0

100 193. 21.3 11.0

99 247. 35.1 14.2

98 342, 69.0 20.1

. 97 559. 197.1 35.2

horizon gq 1529. 5294. 346.

—> 95 -6180. 296.

Table IV. Error analysis for perspective KS.
represents a physical point in the ground plane (i.e., at elevation
0). The range of the physical point and its associated error, under
an assumption of one-half pixel error in the image, are computed as
a function of the row of pixels in which it appears in the image.
This table was derived via the camera model for the specific image

under consideration: f = 50 mm, tilt = 2°, elevation = 2 m (because

It is assumed that a pixel

the picture was taken from a slight rise in the terrain).
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VI.7. Qbject Hypotheses Based on Size
Once the perspective KS has provided ﬂqpotheses about ranges
of surfaces and the physical sizes of their projections, the size
KS can be used to generate object hypotheses on the basis of the
computed sizes. Figure 28 shows the hypotheses and their
associated confidences formed by applying the size KS to selected
regions from Figure 3. In each case, the default range on size
(computed size +3%) was used:, although these values can be set by
the result of the perspective KS and the location of the region
in the imuge. Also note that these results could be filtered by
spatial location, much as the hypotheses Fformed from the spectral
attribute matcher were. This resuylts in a partial check 'én the
assumptions used by the perspective K5 during the computation of

the size.

VI.B. DBottom-Up Schema Instantiation

The results discussed in the previous sections (VI.1 to
VI.7) were obtained primarily on the basis of top—down guidance
from the correct 2D schema. This section describes a simple
experiment ¢to instantiate a schema on the basis of bottom—up
data.

Ir. this experiment, the inference net was used to propagate
data vupwards from the object level to the schema level, assuming
- that bush, tree, four shutters, and grass were instantiated at
the object 1level. From the results cited earlier, it is

reasonable to expect that these objecte could be obtained #from
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Figure 23. Summary of results of object size KS for selected regions of

Figure 3.

The sizes shown were computed by the perspective KRS using
the default + 5% error range (see Figure 17)

. The actual range can

be set by the perspective KS on the basis of the error analysis.
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bottom-up analysis of the image: bush, tree, and grass from the
spectral attribute matcher, and shutter and roof from the
coﬁbined horizon filter, 2D shape matcher, Perspective, and size.

The results of this experiment are shown in Table Vi they
overlap somewhat those shown in Table )11. The strategy used to
obtain [the results wss very crude. They are based solely on the
Propagation of the set of object idcntit;es to the schema level
via the inference nef. No attempt was made to validate the
results via top-down matches, such as spatial location, or any
other informatioﬁ in the schema. Note that instantiating one or
two shutters increases the confidence of the house scene schema
as expected: additional instantiations will not significantly
increase this confidence. Information about the expected number
of shutters on a house (or for a more exact example, the number
of tires on a car) is stored in arcs in LTM and is thus taken

into account by the inference net KS.

VII.  CONCLUSIONS

The results citéd in this paper represent the current state
of devélopmqnt of the VISIONS system. A top-down interpretation
of a scene has been successfully performed, although the
conditions under which ¢this interpretation was obtained were
highly constrained. It demonstrates some degree of integration

of the system, from automatic segmentation of the digitized input
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through symbolic output of object identities and generation of g
rough plan of the three~dimensional space in the scene.

The primary emphasis of our current efforts is on the
development of strategies by which the many knowledge sources can
be integrated in order to interpret 2D color images, However,
the ability to obtain the correct interpretation is inherently
linked to the quality of information provided by these processes:
without plausible hypotheses about the image, there isn‘t any
control strategy worthy of investigation! Nevertheless, it is
not feasible for us to attempt to perform extensive research in
all the areas represented by the KSs. Thus, we must balance our
efforts in the development of more complete knowledge sources
against the development of interpretation strategies. Currently,
we have implemented at least a simple version (and sometimes a
complex version) of several KSs.

Each of the KSs developed can be used in different ways to
produce several different kinds of hypotheses. The experiments
already performed seem to indicate that there may be many
mini-strategies for using the KSs in perticular ways across the
range of images. For example, the percpective KS can determine
physical dimensions of surfaces, while the object size KS uses
these results to produce a confidence measure for ob ject
hypotheses; or the horizon KS can be used to filter implausible
object idéntities from the output of the spectral attribute
match?r KS. Interesting strategies can be modelled in terms of

the overlap of information related to perspective, occlusion.
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size, shape, Junction analysis, etc. With proper design the set
of local processes may be built to answer the questions that are
of importance to each other, and this network of processes can be
flexibly and incrementally constructed. As the strategies are
understood, they can be incrementally embedded in the schemas.
The results presented in this paper were generated via
top-down control of the KSe wusing a specific 2D schema -- in
effect a plan — for a specific house scene. The analysis was
highly biased towards Success because the schema is tuned to the
particular situation: the case of looking at a familiar scene
from a familiar point of view. It does, however, show some of
the ways that the KSs are able to interact, and can also be
viewed as an experiment in verifying that gsome stored schema is
applicable to a given image. The 1last experiment demonstrates
bottom-up interaction o¢ the KSs in an attempt to instantiate the

Proper schema from a set of schemas.

The facilities now exist for actually developing to a much

deeper level some of the ideas we have only been able to suggest
as promising. The benefits of some of the interesting
developments of our colleagues in the research community over the
last few years has led to a deeper appreciation of the problems
yet remaining. This is reflected somewhat in a shift of research
emphasis, as we Propose a highly structured research paradigm for
exploring the issuves we set forth. A series of increasinglq more
difficult experiments wil] provide an experimental methodology

for developing schema-driven (e.g9.., top-down) control mechanisms;

“
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each succeeding experiment will assume a set of weaker
constraints, representing image intevpretation tasks where a
decreasing amount of knowledge of the situation is available. It
is worth noting, however,that the basic approach is not
substantially different from the initial top-down approach that
started the VISIONS progject [HAN74, 1R1S74], although it is

considerably richer in detail.
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