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ABSTRACT

The organizational structure of a distributed problem solving
system 1is the pattern of information and control relationships
that exist between the nodes in the system and the distribution of
problem solving capabilities (expertise) among the nodes in the
system. Organizational design is the explicit planning of these
internode relationships.

This report discusses the need for organizational self-design in
complex distributed problem solving systems and outlines the
design of a prototypical distributed planning system which
integrates both the coordination of "domain-level" activities and
the construction and maintenance of an appropriate organizational
structure.
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1.0 INTRODUCTION

How do intelligent individuals work together to achieve
shared goals? Creating effective cooperative behavior within a
society of interacting, semi-autonomous, intelligent systems is an
important aspect of successful distributed problem solving.
Planning cooperative behavior in distributed problem solving
systems is the subject of this report.

1.1 Planning and Distributed Problem Solving Systems

Informally, a distributed problem solving system is a system
which performs its problem solving activity in a logically or
physically distributed fashion. Distributed problem solving
systems are both complex and dynamic, and therefore require
planning of their own activities. Planning, the generation and
evaluation of alternative courses of action without actually
executing them, is needed to allocate shared resources (such as
communication media), to decide what is to be done and by which
node, and to respond to internal and external environmental events
(such as partial system failure and 1localized processing
overloads). In addition, certain potential distributed problem
solving applications (such as air traffic control and tasks
involving mobile robots) are all basically planning applications.

Although centralized planning techniques can be appropriate
in some distributed problem solving situations, they are basically
incongruous with the characteristics of distributed systems. If
planning 1is localized to a single node, environmental data needed
for planning would have to be transmitted to that node,
potentially requiring significant internode communication. Once a
plan is generated, commands would have to be transmitted to
appropriate nodes for execution, again potentially requiring
significant internode communication. Planning 1localized to a
single node makes 1loss of the planning node an important system
reliability issue. The use of redundant planning nodes can
improve reliability at the cost of further communication
requirements.

A preliminary investigation of distributed planning [Corkill
19791 focused on the generalization of a centralized planning
system (Sacerdoti's NOAH system [Sacerdoti 1977]) to accomodate
multiple and distributed centers of planning control. A key
assumption in this investigation was the existence of a mechanism
for allocating planning activity to individual nodes. 1In fact,
allocation of planning activity is part of the 1larger issue of
determining an appropriate organizational structure for the
particular problem solving situation.

The organizational structure of a distributed problem solving
system is the pattern of information and control relationships
that exist between the nodes in the system and the distribution of
problem solving capabilities (expertise) among the nodes in the
system. Organizational structures include hierarchies,
heterarchies or flat structures, matrix organizations, groups or
teams, and market or price systems. Organizational design is the




Page 2

explicit planning of these internode relationships.

The organizational structure of a distributed problem solving
system relates strongly to its effectiveness in a given problem
solving situation. This effectiveness is a multi-valued measure
incorporating such parameters as processing resources,
communication requirements, timeliness of activity, accuracy of
activity, ete. An organizational structure may lose effectiveness
as the internal or external environment of the distributed system
or the nature of the problem solving task changes. In order to
respond to such a change, the distributed system must detect the
decreased effectiveness of its organizational structure, determine
plausible alternative structures, evaluate the cost of continuing
with 1its current structure versus the cost of reorganizing itself
into a more appropriate structure, and carry out such
reorganization 1if appropriate. In general, these activities
should be accomplished in a distributed fashion.

Organizational design decisions are faced regularly in human
organizations, especially those in the business community where
pressures of efficiency are most severe. Theories of
organizational design which attempt to explain the art of
organizational structuring in these human organizations are highly
relevant to the development of organizational design knowledge for

distributed problem solving systems.

The proposed research Dbypasses further refinement of
domain-level planning techniques, such as those emphasized in
distributing NOAH, in favor of the development of a framework
which encompasses both domain-level planning and organizational
design. Although many issues in distributed domain-level planning
remain to be solved, the development of a distributed
organizational design system seems the more salient research
direction. A rephrasing of the programming adage:

"Don't optimize a bad algorithm -- rewrite it."

seems appropriate:

"Don't improve plans within a bad organizational structure --
reorganize."

1.2 The Organizational Structure of the Report

The following section serves as an introduction to the
important characteristics of distributed problem solving systems
and to the problems posed by these characteristies. 1In Section 3,
a particular problem solving task is described: distributed
traffic monitoring. Section 4 outlines the development of a
prototypical distributed planning system for the distributed
traffic monitoring task which addresses both the coordination of
domain-level activities and the construction and maintenance of an
appropriate organizational structure. Section 5 outlines a
research strategy for developing the distributed organizational -
design system and delineates those aspects which are outside the
scope of the proposed research. The potential contributions of
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this research are also discussed.

2.0 AN INTRODUCTION TO DISTRIBUTED PROBLEM SOLVING SYSTEMS

The phrase "distributed system" invokes an intuitive feeling
of the class of system under consideration. Notions of processors
scattered about, interconnected in some fashion by cables or radio
links, come readily to mind. Such physically distributed systems
are now economically realistic due to developments in
microprocessor technology [Noyce 1967; Scientific American 1977]
and network technology [Cerf & Kahn 1974; Kimbleton & Schneider
19751. While much of the original motivation for distributed
problem solving system research has stemmed from the availiability
of physically distributed architectures, it 1is important to
emphasize that logically distributed systems embody many of the
properties of their physically distributed cousins.

2.1 Important Characteristics of Distributed Systems

If mere physical distribution is not a suitable 1litmus for
defining the class of distributed systems, what are the
significant characteristics of these systems?

One significant characteristic is system decomposition. A
distributed system is composed of a collection of modules or nodes
and can be viewed from two perspectives ([Lesser & Erman 1979,
p. 557]. From a reductionist perspective, a distributed system is
considered to be a centralized system that is decomposed over a
number of nodes, each of which is a part in the overall system.
From a constructionist perspective, a distributed system is
synthesized from individual systems operating at each node. These

-two perspectives arise from the inherently hierarchic (in the

systems-composed-of-systems sense of hierarchy [Simon 1969,
p. 87]) nature of a distributed system. While both perspectives
view the same reality, the reductionist viewpoint tends to
encourage a search for appropriate ways of pulling apart existing
centralized systems. The constructionist viewpoint tends to
encourage a search for ways of organizing individually "complete"
systems into a society of cooperating nodes. The constructionist
viewpoint is taken in this report.

A second significant characteristic of distributed systems is
restricted internode interaction. Tnteraction between nodes in a

distributed system is expensive (in a cost/benefit sense) relative
to 1local computation. In physically distributed systems this
expense can arise from a number of factors:

o Internode communication 1is 1limited by the physical
properties of the communication channel(s). This often
results in a cost which grows with the amount of
information to be communicated and the distance between
interacting nodes. Due to communication channel
management issues, information which is transferred in
large units may be more cost effective than the same
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information transferred in small units.

o Internode communication may have significant time delays
in transmission. Such delays arise from propagation
delays in the communication media, queueing delays for
accessing the communication channel, and buffering delays
in forming larger units of information from smaller
units. '

o Internode communication may be incorrectly exchanged or
lost altogether. Errors in communication can result from
encoding/decoding errors and errors during transmission.
Loss can result from hardware failure in communication
channels or processors (nodes).

In logically distributed systems this expense can arise from
the bounded rationality [Simon 1957] of programming modules.
Bounded rationality limits the amount of information which can be
absorbed by a programming module and the amount of control which a
module can exercise. Processing resources are required to respond
to an incoming message or to construct an outgoing message.
Because processing resources are limited, a module sending or
receiving many messages spends significant processing resources in
communication that would otherwise be available for problem
solving activities. As the number of interacting modules becomes
larger, increasingly general communication protocols may be
required to handle all types of intermodule messages. Such
generality comes at the <cost of increasingly complex module
interfaces which require additional processing resources and at
the cost of additional complexity to be handled by the system
designers.

Physically distributed systems are also logically distributed
(the two distributions need not coincide) and incur these same
logical interaction expenses.

The effect of the high cost of internode interaction in
distributed systems is to force a restriction of the view an
individual node has of the state of the rest of the system. This
restriction can be handled in several ways:

o By decomposing the system task in such a way that a node
usually has in 1its 1local database the information
required to complete its processing. External
information required by a node 1is assumed to be
relatively small in quantity.

o By providing a node with algorithms which can perform
significant processing despite the presence of incomplete
and abstracted information in its local database.
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Conventional distributed system design methodologies have
concentrated on the first approach to handling restricted local
views. The distributed system is organized so that each node's
local database contains an exact copy of the appropriate portions
of the overall problem solving database. 1In these systems, a nqde
rarely needs the assistance of another node in carrying out its
problem solving activities. Only when information is not 1locally
available does node interaction occur. This interaction takes the
form of a request for information from another node which is
returned as a complete and correct result. This type of
distributed approach has been termed completely-accurate,
nearly-autonomous (CA/NA) [Lesser & Corkill 7980] because of the
maintenance of complete and correct information
("completely-accurate"”) and the emphasis on wunassisted local
processing ("nearly-autonomous").

While the CA/NA approach is well suited to conventional
distributed system applications, a number of important potential
applications for physically distributed systems cannot be
partitioned effectively due to the physical distribution of data
and the type of processing required at each node. In these
situations, the CA/NA approach is expensive (this time in monetary
terms) because of the amount of communication and synchronization
required to guarantee completeness and consistency of the local
databases. The CA/NA approach can also be expensive in logically
distributed systems when the number of modules and their
interactions become so complex that it is conceptually difficult
to design and computationally expensive to maintain a complete and
consistent intermodule interaction structure.

An alternative and relatively new type of distributed system
uses the second approach to handling restricted local views. 1In
these systems, a node's local database is not required to be
either complete or consistent with the databases of other nodes in
order for the node to function. Because a node's algorithms and
control structures operate on information which may be incomplete,
inconsistent, and even incorrect, these systems are inherently
more complex than CA/NA distributed systems. Since information
may be based on processing which wused uncertain data, an
iterative, coroutine type of node interaction in which revised
decisions are periodically exchanged is used to problem solve.
This type of system has been termed functionally-accurate,
cooperative (FA/C) [Lesser & Corkill 198017.
"Functionally-accurate" refers to the requirement that the system
exhibit ~accurate input/output behavior without requiring all
intermediate aspects of the computation to be correct and
consistent. "Cooperative" refers to the property that nodes 1in
the system form a cooperative network to achieve the overall
system task.

Networks of cooperating nodes are not new to Artifical
Intelligence (AI) research. The ACTOR formalism of Hewitt [1977]
and the BEINGS system of Lenat [1975] are examples of the
"cooperating experts" problem solving paradigm. Tn this paradigm
a system is composed of a network of communicating problem solving
"experts". FA/C distributed systems extend the "cooperating
experts" paradigm. (as implemented to date) in two important
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directions: intelligence and motivation.

In "cooperating experts" systems, knowledge 1is distributed
among the M"experts" to the degree that each "expert" becomes a
specialist in one particular aspect of the overall problem solving
task. An "expert" has 1little or no knowledge of the problem
solving task as a whole or of general techniques for communicating
and cooperating with the rest of the system. As a result, an
"expert" cannot function outside the context of the other
"experts" in the system nor outside the communication and
cooperation protocols specified (in advance) by the system
designer.

A node in an FA/C distributed system is assumed to possess
sufficient overall problem solving knowledge that its particular
expertise (resulting from either specialist knowledge or a unique
perspective of the problem solving situation) can be applied and
communicated outside the context of the other nodes in the system.
This does not imply that a node functions as well alone as when
cooperating with other nodes -- internode cooperation is often the
only way of developing an accurate solution -- but the node can at
least formulate a solution using only its own knowledge.

A node in an FA/C system also possesses significant expertise
in communication and control. This knowledge frees the system
from the bounds of designed protocols and places its nodes in the
situation of developing their own communication and cooperation

strategies [Nilsson 1980, p. 419].

The second significant difference between cooperating
"experts™ and FA/C distributed systems 1is motivation. Simply
stated, cooperating "experts" are message-driven in their
behavior. The "expert" awaits receipt of a message, performs
activites based upon that message, communicates results of those
activites, and awaits receipt of a new message. A node in an FA/C
distributed system is self-directed in its activity. For
instance, if a node does not receive an appropriate piece of
information from another node, it is able to continue processing
using whatever data are available at that time. As will be
discussed in Section 4.2, a node can choose whether to engage in
activities suggested by other nodes or pursue its own "best
interests." The importance of such "gelf-motivation" in program
modules has been suggested by Fox [1979a, p. 3591].

The result of these differences 1is that FA/C distributed
systems can resolve uncertainty and error in data, communication,
control, or algorithm as an integral part of their problem solving
activities. This capabiTity 1s especially important in a
distributed environment where uncertainty and error resulting from
the characteristics of the distributed system can be significant.
In fact, additional mechanisms traditionally required to handle
hardware, communication, and processing errors may be superfluous,
given that uncertainty resolving mechanisms are already a part of
the distributed system architecture [Lesser & Corkill 1979, 19807].
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The cooperating "experts" paradigm remains an important apd
useful design and programming methodology for constructing certain
AT and other systems. 1In fact, a cooperating "experts" system
might be an appropriate component of a node in a FA/C distribu@ed
system. However, as a model for a society of communicating
experts, and in particular as a model for a distributed system,
the sophistication of the "experts" appears far too low. Crane
[1978, p. 48] in describing the cooperating "experts" approach
notes:

The effort is an attempt to develop a formal programming
system by means of which effective "message passing” can
be accomplished among a network of "actors." Whereas
we seem to interact among ourselves so easily, such
formal attempts to imitate this interaction illustrate
just how sophisticated and complex our communication
actually 1is, and that the evolution of comparably
sophisticated artificial intelligence systems will
likely be a 1long and difficult "incremental and
evolutionary process."

We argue that the FA/C distributed system model 1is an important
"mutation” in that evolution.

In review, an FA/C distributed system 1is composed of a
collection of semi~-autonomous nodes in which:

o internode interaction is expensive relative to internal
processing;

o each node is capable of functioning with incomplete and
inaccurate information about its environment and the
state of the system;

o each node is capable of formulating a solution to the
problem outside the context of other nodes in the system;

o each node is self-directed;

0 errors are resolved as an integral part of problem
solving activity.

2.2 The Structure of a Problem Solving System

Now that we have discussed the characteristics of distributed
problem solving systems motivated by their distribution, it is
appropriate to look at the characteristics motivated by the tasks
which these systems are to perform. These tasks are all
considered problem solving tasks and therefore the systems are
termed problem solving systems. We first consider the
characteristics of a centralized problem solving system.
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A problem solving system is composed of three components:

o sensors -- provide raw data about the system's
environment (both external and internal);

o effectors -- permit modification of the environment;

o a problem solver -- uses the sensors and effectors to
achieve or maintain desired goals.

A simple example of a problem solving system is a hand-eye robot
which manipulates blocks on a tabletop. This system could have as
sensors: a stationary video camera for viewing the tabletop, a
keyboard for accepting the demands of researchers, and a
thermocouple for determining internal processor temperature. As
effectors, the system could have: a "hand" which can manipulate
single blocks anywhere on the tabletop, a printer for complaining
to researchers, and a fan which can be switched on if processor
temperature rises alarmingly high. These components form a
sense-decide-act cycle with the environment as illustated in
Figure 1a (liberally adapted from Arbib (19721 p. 19).

The problem solving component has three main activities
(Figure 1b):

o interpretation -- developing and maintaining a model of
the environment;

o planning -- developing and evaluating alternative courses
of action (plans) without actually executing them;

o plan execution -- using effectors to apply a plan to the
environment.

In the hand-eye system, interpretation would involve hypothesizing
the initial positions of the blocks on the tabletop (environmental
model generation) and watching to see that the hand was achieving
the desired goals during plan execution (execution monitoring).
Planning would involve hypothesizing a sequence of stack/unstack
operations for the hand to perform (plan generation) and revising
the remainder of a plan as surprises are discovered during plan
execution (plan revision). Plan execution would involve the hand
movement details required to pick up blocks and place them at
locations specified in the plan.

2.3 The Structure of a Distributed Problem Solving System

From the constructionist viewpoint discussed in Section 2.1,
a distributed problem solving system consists of a number of
distributed problem solving nodes, each node having sensing,
effecting, and problem solving capabilities. Continuing with the
hand-eye example, a distributed two-kand problem solving system
might consist of two of the single-arm, single-camera systems
sharing the tabletop and linked by low-bandwidth communiceation.
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Once a second hand-eye system has access to the tabletop,
numerous interesting problems arise. Because each system views
the tabletop via a different camera, multiple and possibly
inconsistent interpretations (environmental models) are possible.
Given identical goals to achieve, the two systems could
potentially generate incompatible plans which, if executed, would
interfere with one another through conflicts in block usages.
During plan execution, the two systems must avoid crashing their
arms together as they perform their various activities. Corkill
[1979]1 discusses a number of additional issues in the distributed
planning and execution of simple blocks world problems. Dealing
with such domain-level issues 1is only one aspect of planning
activity in a distributed problem solving system.

A more difficult problem is determining which node should
perform what activity (what Smith [1978, p. 5] calls the
"connection problem") and how that activity relates to the
activities of other nodes. An important characteristic of a
distributed problem solving system is that only sensing and
effecting are ever fixed with - respect to individual nodes.
Problem solving can be performed at any node which has sufficent
physical resources (processing capacity, memory), procedural
resources (problem solving tactics [Sacerdoti 19791 and
knowledge), and communication capability. This flexibility in
problem solving locale leads to a wide range of potential
distributed problem solving structures.

Localized Problem Solving. In localized problem solving, only
sensing and effecting are distributed. Problem solving
(interpretation, planning, and plan execution) is localized to a
single node which receives sensory data from all nodes and
transmits effector commands to appropriate nodes. This problem
solving organization is illustrated in Figure 2.

Advantages:

o Centralized problem solving techniques can be used
without modification.

o There is no internode communication cost to the problem
solving process itself.

Disadvantages:

o Environmental information collected by the various nodes
must be transmitted to the problem solving node.

o Effector commands must be distributed to appropriate
nodes.
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o There is no internode parallelism during the problem
solving process.

o Performing all problem solving at a single node may
require substantial processing capability, forcing the
need for non-uniform processing capabilities in the
distributed system.

o Problem solving node failure means loss of all problem
solving activity. (Redundant problem solving at other
nodes further increases the communication demands on the
system.)

Completely Distributed Problem Solving. In completely distributed
problem solving, all aspects of the system (sensing,
interpretation, planning, plan execution, and effecting) are
distributed. This problem solving organization is illustrated in

Figure 3.

Advantages:

o Communication required for interpretation is reduced
because some environmental data is available locally and
because problem solving can proceed using an appropriate
partial environmental model.

o Communication required to distribute the plan for
execution is reduced because a large portion of the
generated plan may be executed locally.

o There is the potential for internode parallelism in the
problem solving process.

o Local nodes only solve a portion of the problem, a
potentially less complex and processing intensive task
than solving the complete problem.

o Failing processors only mean the loss of a portion of the
problem solving.

Disadvantages:

o FA/C techniques for coordinating this type of problem
solving in distributed environments must be developed.

o Communication is required to perform distributed problem
solving.
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Of course a range'of structures between localized problem
solving and completely distributed problem solving are possible.
By parameterizing the ratio of internode/intranode communication
paths shown in Figure U4, the entire range of problem solving
structures can be subsumed into one model. But which
parameterization 1is Dest suited to a particular problem solving
situation? This is but another difficulty in planning activity in
a distributed problem solving system.

2.4 A Definition of a Distributed Problem Solving System

We have outlined the characteristics of distributed systems
and have introduced the FA/C approach to the design of distributed
systems. We also briefly discussed the structure of a distributed
problem solving system in terms of its sensors, problem solver,
and effectors. So what is a distributed problem solving system?

A distributed problem solving system, 1in our view, 1is a
network of fully-functional problem solving systems (nodes), each
of which contains a problem solver component which is FA/C in
character. In addition, each node is capable of controlling the
ratio of internode/intranode communication associated with any of
its problem solving activities.

In the following section, a specific FA/C distributed problem
solving architecture is introduced in the context of a more
naturally distributed application than the blocks world:
distributed traffic monitoring. This architecture will serve as
the environment for the prototypical distributed planning system
outlined in Section 4.

3.0 DISTRIBUTED TRAFFIC MONTTORING

Distributed traffic monitoring is the task of generating and
maintaining a model of traffic in an environment wusing a
distributed problem solving system. The monitoring system we will
consider is to locate, track, and identify vehicles and patterns
of vehicles moving within a two-dimensional area. A number of
processing nodes are located throughout this area, and each
processor is linked to a set of (possibly non-uniform) acoustic
sensors, As a vehicle moves through the monitoring area, it
generates characteristic acoustic signals. Some of these signals
are detected by nearby sensors which indicate the frequency and
rough location of the signal source. Smith [1978] used a similar
distributed vehicle monitoring task in illustrating the contract
net formalism for distributed problem solving.

The traffic monitoring domain 1is interesting for several
reasons:
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o It is a natural task for a distributed approach, since
sensors are geographically distributed.

0 Internode cooperation is required to solve the problem.

o The task can be easily varied in terms of signal
complexity, temporal and spatial constraints on possible
interpretations, and node-sensor configurations.

o Signals, harmonically related signals, vehicles, and
movement patterns of vehicles offer a natural
decomposition into disjoint levels of abstraction, with
independent processing possible at each level.

o Multiple, diverse sources of knowledge must be wused 1in
order to resolve errors in the sensory data (a harmonic
set formation expert, a signal tracking expert, etc.).

An FA/C distributed problem solving architecture for the
traffic monitoring task is currently under development [Lesser,
Reed, & Pavlin 1980]. This architecture is a generalization of
the Distributed Hearsay-TI architecture used by Lesser and Erman
[1979] in their pilot distributed interpretation experiments.

Each node in this system 1is an architecturally complete
Hearsay-II system [1]. "Architecturally complete™ means that each
node could function as a complete Hearsay-II system if it were
given all of the sensory data and the required processing routines
(knowledge-sources).

Two levels of planning can be indentified in the distributed
traffic monitoring system. At the organizational-level, planning
involves the design and construction of an appropriate
organizational structure. This includes decomposing the task for
distributed execution, determining an appropriate organizational
structure for achieving the task, assigning individual tasks to
nodes (what Smith calls the "connection problem" ([Smith 1978]),
allocating communication media and other shared system resources,

[1] "Hearsay-II" refers to the generic problem solving
architecture developed as part of the Speech Understanding
Project at Carnegie-Mellon University [Erman & Lesser 1975;
Lesser & Erman 1977; Erman, et al. 1980] and not to its
widely-known speech understanding incarnation (sometimes
called "the C2 configuration"). The generic Hearsay-II
architecture has been utilized in such diverse applications
as protein-crystallographic analysis [Englemore & Nii 1977],
image understanding [Hanson & Riseman 1978], multisensor
interpretation [Nii & Feigenbaum 19781, dialogue
comprehension [Mann 1979], complex 1learning [Soloway &
Risg?an 19771, and as a model of human reading [Rumelhart
19761.



Page 17

and monitoring and possibly revising the structure of the
organization as the task progresses. This type of planning is
sometimes termed "strategic" planning.

Within the organizational structure planned at the
organizational level, domain-level planning is performed.
Domain-level planning involves the achievement of specific vehicle
monitoring task goals and the coordination of activities within
the organizational structure. This type of planning is sometimes
termed "tactical" planning and involves issues of plan generation,
execution monitoring, and plan revision.

An organizational-level planner will require knowledge about
the suitability of various organizational structures to particular
distributed problem solving scenarios. This knowledge can be
developed from two sources. One source of organizational design
knowledge is the operationalization of design theories "borrowed"
from the field of Managment Science. The second source is an
empirical evaluation of various (static) organizational structures
using the distributed traffic monitoring system. Synthesis of
organizational design theories (from the first source) and
empirical data (from the second source) should 1lead to
organizational design methodologies for the distributed ¢traffic
monitoring system and eventually to formal models of
organizational design for distributed systems.

4.0 A PROTOTYPE DISTRIBUTED PLAMNNING SYSTEM

This section discusses the design of a prototype distributed
planning system for the vehicle monitoring task which integrates
planning at both the organizational and domain levels.

4.1 A Goal-Directed Hearsay-II Architecture

Although the data-directed behavior of the original
Hearsay~II architecture has many advantages, it 1is severely
limited in its ability to plan its interpretation activities. The
scheduler (and a portion of the blackboard monitor) could be
considered as a rudimentary planner which decides which knowledge
sources (KSs) should be executed (and in what order) to best
achieve the system goal of generating the most credible
interpretation of the input data.

When a hypothesis is created or changed on the blackboard a
number of KSs are added to the scheduling queue, a list of pending
KS executions. Such a blackboard modification 1is <called a
blackboard event, and the KSs which are added to the scheduling
queue are determined by the characteristies of that blackboard
event. An evaluation function is used by the scheduler to rank
the pending KS executions. This function wuses a model of the
current state of system processing and a model of the expected
effects of executing each pending KS execution.
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There are two major limitations to this purely data-directed
approach. First, scheduling decisions are based on an
instantaneous evaluation of the improvement a particular pending
KS execution would make in the current state of processing.
Scheduling has no continuity of purpose or high-level view of the
reasons for executing a particular pending KS execution. As a
result, many potentially superior KS execution orderings can be
missed by the scheduler.

Second, the scheduler cannot choose to execute a KS on its
own initiative, but must await data-directed activity to place the
desired KS on the scheduling queue. Consider, for example, a
pending KS execution that requires the existence of a particular
type of hypothesis (a precondition hypothesis) before it can be
released for execution. 1If that precondition hypothesis does not
exist on the blackboard, either the pending KS execution must
await data-directed activity to (hopefully) create the
precondition hypothesis or the pending KS execution can be
discarded to be (hopefully) recreated as a result of the creation
of the precondition hypothesis. The first approach was used 1in
the '"problems 1list" of SU/X and SU/P [Nii & Feigenbaum 1978] and
the second approach wused in the C2 speech understanding
configuration of Hearsay-II [Lesser & Erman 1977].

Clearly, what is needed is an integration of data-directed
and goal-directed behavior [Lesser & Erman 1977, p.796; Nii &
Feigenbaum, p. 500]. To achieve such an integration, we add to
the original Hearsay-II1 blackboard (which will now be called the
domain blackboard) a second blackboard which contains the same
levels and dimensions as the domain blackboard. This new
blackboard is the planning blackboard and contains data structures
representing problem solving goals, plans for achieving these
goals, and the scheduling queue.

Rather than adding pending KS executions to the scheduling
queue, the blackboard monitor places goal/KS-action structures
onto the planning blackboard. These structures explicitly
represent the intended effects of each pending KS execution. 1In
the original data-directed Hearsay-IJ architecture these effects
were implicitly modelled. A separate set of KSs, collectively
called the domain-level planner, reacts to modifications on the
planning blackboard. The domain-level planner performs such
activities as goal decomposition (subgoaling), planning for the
achievement of precondition hypotheses (without awaiting
data-directed hypothesis creation), merging of goals, generating
alternative plans, etc.

The scheduling queue in the goal-directed Hearsay-11
architecture 1is an ordering of KS actions on the planning
blackboard. Because the actions are explicitly 1linked to the
goals which they are intended to achieve, the scheduler can make a
more informed decision about the execution sequence of KS actions.
Additional details of the goal-directed Hearsay-II architecture
are discussed in Corkill & Lesser [1980].
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The addition of the planning blackboard and domain-level
planner to the original Hearsay-II architecture has an added
significance in distributed systems consisting of a number of
architecturally complete Hearsay-II nodes. Goals provide an
additional means of internode communication and control. Goals
can be transmitted to other nodes for achievement, and incoming
goals can be placed onto the planning blackboard to compete with
locally generated goals.

Decisions of what goals to work on, whether to favor
internally versus externaly generated goals, and which goals to
transmit to what other nodes are organizational design issues. 1In
the next section, we introduce an organizational-level planner
into the extended Hearsay-II architecture.

4.2 An Organizational Planning System

Now that a second blackboard (the planning blackboard) has
been introduced, a third called the organizational blackboard is
added. The organizational blackboard contains goals which direct
the activities of the domain-level planner and, indirectly, the
basic interpretation system.

Goals on the organizational blackboard are manipulated by the
organizational-level planner. This planner is charged with the
development and maintenance of effective cooperative relationships
with other nodes for the purposes of achieving planning-level
goals perceived as important by the node.

Recall that planning-level goals can be generated both
internally and externally. In order to process an externally
generated goal in favor of an internally generated one, the node
must "believe"™ that the externally generated goal 1is more
important. Nodes are basically egocentric, but all nodes share
the goal of accomplishing the interpretation task in the most
effective manner. A node is ready to change the ratings of its
(internally and externally generated) goals if "convinced" that
such a change will improve system performance.

The degree to which a node needs to be convinced in order to
change 1its goal ratings places that node at a particular point on
the self-directed/message-directed continuum. A completely
self-directed node pursues only those goals which can be justified
by its own knowledge of the problem solving situation. A
completely message-directed node pursues only those goals which
are deemed important by other nodes. The message~directed
approach has been advocated by Hewitt [1977], Feldman [1979], and
Smith [1978].

The approach taken in this research is that neither extreme
is well-suited to the uncertain environment of a distributed
problem solving system. The self-directed extreme does not allow
node activity to be determined by what other nodes know about the
problem solving situation (e.g., "If you would do GOAL, it would
really help us out."). The message-directed extreme does not
allow a node to ignore requests for activities which it knows are
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not appropriate (e.g., "I know doing GOAL for you won't help us at
all, so I'll ignore it.") or notify the organization of that fact
(e.g., "I'm telling you that we shouldn't pursue GOAL { because

e FM.

A degree of skepticism on the part of a node allows it to
continue work on goals which are highly justified on the basis of
local knowledge despite reception of goals for which there is
negative 1local evidence. This skepticism can lead to an increase
in the system's ability to tolerate some error in control (goal
specification). Errorful or less-than-desirable goals can be
ignored by skeptical nodes which possess information to the
contrary. A node with a unique perspective is not necessarily
stifled by an uninformed majority. The degree of skepticism
exhibited by a node should dynamically change according the node's
certainty as to the system importance of its own goals: as the
certainty of a node's own goals decreases, it should become more
receptive to externally generated goals; as a node becomes
convinced of its approach, it should become more skeptical of
conflicting external goals.

In distributed problem solving systems composed of 1large
numbers of nodes, the existence of idiosyncratic degrees of
skepticism can further increase the robustness of the system. In
situations where there exist two competing approaches (one
advocated by the organization and one apparent to some of its
members) individual variances in node skepticism will insure that
both approaches are pursued by the organization. The approach
apparent to a portion of the node population is implicitly
pursued, without the cost of making an explicit organizational
decision. Of course this robustness comes at the price of
uncontrolled expenditure of resources by the skeptical nodes.
Reed and Lesser [1980] describe an analogous thresholding behavior
theory for the selection of activity by honey bees.

The notion of skeptical nodes also has an analog 1in a
relatively new approach to understanding the motivation of
individuals 1in business organizations. Frequently called
expectancy theory, this approach is based on four assumptions
[Nadler & Lawler 19771:

o Behavior is determined by a combination of forces in the
individual and forces in the work environment --
different work environments tend to produce different
behavior in similar individuals just as dissimilar
individuals tend to behave differently in similar
environments.

o People make decisions about their own behavior in
organizations -- most of the behavior of individuals in
organizations is the result of individuals' conscious
decisions.

-8
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o Different individuals have different needs, desires, and
goals -- these differences are not random but are based
on the kinds of outcomes desired by the individuals.

0 Individuals make decisions among alternative plans of
behavior based on their perceptions (expectations) of the
degree to which a given behavior will 1lead to desired
outcomes.

Crane [1978, p. 104], in discussing biological and societal
systems, considers the appropriateness of dual-directed control in
which a balance between top-down (message-directed) processes and
bottom-up (self-directed) processes are maintained. The
skepticism of nodes is a mechanism which can provide such a
balance. Interestingly, Crane also discusses dual-directed
control in the context of the individual as a balance between
conscious and subconscious processes. It may be reasonable to
view goal-directed (conscious) and data-directed (subconscious)
behavior as analogous dual-directed control at the level of a
single system node.

Historically, the notion of decision-making using a
combination of locally perceived information and decisions
received from others goes back at least as far as the Kilmer,
McCulloch, and Blum [1969] model of the reticular formation (an
important control system in the brains of vertebrates). Their
model consists of a voting system of small neural regions, each of
which sees a small portion of the environment and receives the
decisions of a 1limited number of other regions. The voting
strength of each region varies with an evaluation of its
decision-making performance. In their model, activity was
selected only when a suitable majority of the regions arrived at a
concensus.

The skepticism scheme extends this notion to allow node
activity to occur without such a consensus. When there is no
agreement, the organization pursues a number of activities
(similar to a breadth-first search) implicitly and in parallel.
As the number of agreeing nodes increases, organizational activity
becomes both more specific and more explicitly controlled.

4.3 Beliefs and the Organizational Planning System

Each of the three blackboards (domain, planning, and
organizational) is partitioned into a self-image and numerous
peer-images. The self-image partition contains all of the
blackboard data structures described thus far. Peer-image
partitions represent the beliefs a node has about the domain,
planning, and organizational information possessed by other nodes.
Such beliefs can be expected to be more detailed 1in the
peer-images corresponding to closely interacting nodes than in
models of nodes with little or no interaction.
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The use of beliefs 1is receiving much attention in the
language wunderstanding community. One example 1is the use of
beliefs by Cohen [1978] and Allen [1979] in  computer
implementations of a model of Speech Acts [Searle 1969]. Cohen's
work focused on the planning side of Speech Acts, the planning of
what to say to achieve particular communication goals, and Allen's
work focused on the recognition of the intended goals by the
listener.

Their research is directly relevant to distributed problem
solving systems in which communication is relatively expensive
compared to computation. Speech Acts can provide a parsimonious
high-level internode communication 1language [Sacerdoti 19781 by
restricting the scope of the Acts to the goals and processes of
the distributed problem solving system. Because communication
relates to the problem solving task, much of the planning activity
required for message generation and recognition already exists on
the blackboards of the proposed problem solving architecture.

The domain blackboard portion of a peer-image contains
beliefs about the modelled node's developing map of vehicle
pattern movements. These beliefs are derived from communicated
information and inferred from the behavior of the node and that
node's role in the problem solving system (as perceived by the
modelling node). Domain-level hypotheses and beliefs allow a node
to decide who might be appropriate to ask for a particular piece
of information. (Belief that a node knows a piece of information
does not require a belief as to its content.) Such a decision
avoids the need for announcing a general request for the
information.

The planning blackboard portion of a peer-image contains
beliefs about the goals and planned activities of the modelled
node. These beliefs are also both derived and inferred.
Planning-level hypotheses and beliefs allow a node to decide who
should receive 1locally generated information based on the
perceived goals and activities of other nodes. Such a decision
avoids the need for the other node to request that the information
be communicated.

The organizational blackboard portion of a peer-image
contains beliefs about the organizational goals and relationships
of the modelled node. Organizational-level information and
beliefs allow a node to decide which tasks it should perform and
which tasks will be performed by others.

In summary, domain-level beliefs describe what a node knows
about the problem. Planning-level beliefs describe how that
information was/is/will be used. Organizational-level ~beliefs
describe why that information (and processing) is important to the
overall problem solving task.

’
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5.0 THE STUDY

5.1 Research Methodology

Development of an organizational planner for the vehicle
monitoring system must begin with the design and implementation of
the goal-directed Hearsay-IT architecture. The architectural
design is well underway [Corkill & Lesser 1980]. A part of this
work is the delineation of the types of domain-level goals in the
traffic monitoring domain.

A second activity is understanding the formal and informal
aspects of organizational design from the perspective of
Management Science. Much of this knowledge appears descriptive
rather than prescriptive in character. Fox [1979a, bl was
successful at transferring certain organizational notions to the
design of complex software systems by human programmers.

As the distributed vehicle monitoring system becomes
operational, evaluation of particular (static) organizational
structures in the context of various task situations will be
performed. This evaluation will require the development of
organizational effectiveness measures (which are needed for the
organizational-level planner as well).

Synthesis of these empirical evaluations and ideas gleaned
from organizational design theories 1is expected to produce
sufficient organizational design knowledge for the construction of
the organizational-level planner. It 1is anticipated that the
organizational-level planner itself is well within
state-of-the~art planning technology. An effective domain-level
planner, however, appears to require significant developments in
distributed planning methodologies and will be considered outside
the scope of the proposed research.

5.2 Potential Contributions of this Research

What are the potential contributions of this research?
Perhaps the most significant contribution would be demonstration
of both the importance and tractability of organizational planning
in distributed problem solving systems via performance comparisons
with static organizational structures.

A second contribution would be the detailing of a distributed
problem solving architecture which integrates domain-level problem
solving, domain-level planning, and organizational-level design.

A third contribution would be the development of an
organizational design knowledge base for the distributed vehicle
monitoring system. While some of this knowledge would be specific
to the monitoring task, it is reasonable to expect that general
principles for organizational planning in distributed systems
would be brought to light. Such general principles would be of
interest in future work on the development of formal models for
organizational design 1in both computer science and management
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science.
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