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O. Introduction

At the level of syntax, a flowchart scheme [Manna 197k, Chapter 4]
decomposes into atomic pieces put together by the operations of structured
programming [Alagi§ and Arbib 1978] . Our definition of 'fuzzy theory' is
motivated solely by providing the minimal machinery to interpret loop-free
schemes in a fuzzy way. Indeed, a fuszy theory T= (T,o.(-)#) is defined
in section 1 by the data (A,B,C):

For each set X there is given a new set TX
of 'distributions on X' or 'vague specifications (A)

of elements of X'

For each set X there is given a distinguished
function ey : X —>TX; ‘a orisp (B)

specification is a special case of a vague one'.



For each 'fuzzy function' ¢ : X —=m TY
there is given a distinguished 'extension' ()
o« ¢ X ——p 1y, .

all subject to three axioms. This definition is motivated by the flowchart
scheme 1.E. Some fundamental sxamples are:

crisp set theory: TX = X ' (D)
) X

fuzzy set theory: TX = [0,1] : (E)

probabilistic set theory: TX = set of finite -
F

support probability distributions on X

possibilistic set theory: TX = set of ©
G

subsets of X

Space does not permit treatment of program schemes with loops. A
number of solutions including 'partially-additive theories' are discussed
in [Arbib and Manes 1980a]. Partially-additive theories can also interpret
recursive. program schemes [Arbib and Manes 1980b] . Fuzzy set theory,
p&ssibilistic set theory, the partial functions theory of 7.5 and many of the
'matrix theories' of aecfion 7 are partially-additive. Crisp set theory is ‘

inadequate to deal with loops since an input value may result in an 'infinite
loop' preventing a crisp outcome.
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This paper offers a language to compare theories., For example, (D), (F)
are noise-free, (E), (G) are not. (D), (F)have orisp points while (E), (G)
do not, but every theory has a largest canonical subtheory with crisp points
which for (E) is related to the normalized fuzzy variables of [Gaines 1976)
(see 1.15). All four are commutative theories which are antireflexive,
faithful, propositionally complete, conditional-complete and which satisfy
the eigenstate condition, Our formulation provides a 'Boolean logic' for
every commutative theory. The fuzzy set complement operation of [Zadeh 1965] ’
[0,] — [0, : x = 1-x, is our complement for the thecry of (F)!;
whereas our complement for the theory of (E) is
[0, x [0,9] —>[0,1]) x [0, : (x,3) ++ (y,x) in agreement with
[Gaines 1976] .

Much investigation in 'non-standard set theory' begins with the prémiso
that a non-standard set is a representation in a non-standard logic of truth
values, be it for observables in quantum statics [Jauch 1968, page 98]
or for fuzzy sets [Zadeh 1965] [Gaines and Cohout 1975] . If the models
are allowed to vary at all, focus is on the axiomatic structure of the logic
which is usually viewed as a lattice. Recently, however, topos theory (see
[Johnstone 1977] ; reviewed in [Mac Lane 1979] ) has demonstrated that the
generalization from two-valued logic tb the Brouwerian logic of intuitionistic
set theory follows from axioms on more primitive structural features (this

amounting to no more than a precise statement of "a subset of X x Y is

a funotion from
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X to the subsets of Y") thereby deriving the concept of Brouwerian lattice
rather than positing 'intuitionistic logic' from the outside. 1In the same
spirit, the simpler principles motivating fuzzy theories are powerful enough
to represent distributions as truth-valued functions as follows.

Denote by T the set T ftrue,falsei of fuzzy truth values. Feeling

== =SS
that the equality of vaguely specified things is also vague, we derive
‘equality maps' of form eqy X x X —» T in terms of which the
'degree of membership of x € p' for x € X p€TX is defined by

dnx(x.p) = eq,(e,(x)yp). This gives rise to the abovementioned representation
p - dn(-,p) of TX in the 'proposition space'’ "(x.

We show in section 6 that (for commutative theories such as the
fundamental examples mentioned) every Boolean polynomial extends gax;onically
to '('x by virtue §f a general ‘fuzzification prinociple' so that there is always
a logic of proposif:lone. In this framework we extend a result of Eilenberg |
from the possibilistic theory (@) to arbitrary commutative theories, to obtain
the metatheorem that every equation involving the same set of variables in each
term without repetitions (such as de Morgan's law (xVy)' = x'A ¥y' , but
not idempotency xV x = x) must be true in the logic'g:t. propositions. (I
am aware of Eilenberg's results from talks thaf he gave circa 1970 on the
'linear theories' that are promiséd in the preface of [ Eilenberg and Wright
1967] , but there is nothing in prinf to my knowledge). Even though the

:epresentation of TX in the proposition space is injective in most cases, there
8 no reaso
a why the generalized Booloan‘ operations should map distridbutions

»
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to distributions. Indeed, in the primal motivating example of crisp set
theory (D) the proposition space is the usual Boolean algebra of subsets

but a Boolean polynomial applied to singletons does not always yield a

singleton.

Elements of T(X x Y) are 'joint distributions'. One would hope
to construct amap [° : TX x TY —— T(X x Y) whose image is the
set of 'independent’ joint.' distributions realized by 'simultaneous’

consideration of two distributions. The map e, o of (B) allows this
for crisp distributions and systematic use of (C) produces two candidates

r 10 P > for F' » depending on which variable is fixed first., Commutative

theories are those in which "'1 = Fz and these include the fundamental
examples,

But a much deeper understanding results from thinking of distributions
as operations, Consider W € T §1,...,n¢ . In crisp set theory,
w € f“ veesyn} has the operational interpretation that given any

n-tuple (x, .....xn) in a set X, W operates to choose x,, that is,

W induces the functions



-8-

la)
wx : x"_.__> X by (:Ix(x.l.....xn) 3 X, e In the fuzzy world where
XyreeesXy € TX as well as W are only vague apec:lticat'iona. there is still

the induced operation defined by

™)
X

(mx)® —> TX

(1)
” —_— «*w)

where we write o : f‘l,....nj ——e3p TX instead of (x,,...,xn); thus,
#

o." as in (C) has form T§lyeeesn§ ———>TX which returns an element of TX

vwhen evaluated on the fixed w. Examples are given in section 3.

We may then say that a function ™ —>T iga homomorphiem
if it commutes with all of the operations, a standard definition in algebra,
More generally, say that a function Ty X eeo X Txn —_—3» TY

is an n-homomorphism if it is a homormorphiem in each variable separately.

The commutative theories are characteriz’d a8 those theories admitting tho‘
‘fugzification principle' that each ¢ : x1 X eee Q:xn 3> TY has a
unique n-homomorphic extension ¥ : rx., X eoe X 'I'Xn =——> TY. For example,

th§ map [ : TX x TY —>3> ™X x Y) mentioned above is the unique 2-homo-
morphic extension of e AxB® Further, any algebraic operation on a set,
call it £ : X®——>X, induces e,f : X' ———3TX and hence

;;:E : (TX)® ——> 7x which is how, in particular, Boolean polynomials

n
$true,falsed — 5 {gggg.gg;gge 1ift to T as we claimed they did above.

[Linton 1966] anda [Kock 197] called attention to n-homomorphisms in the
coutext of commutative theories. (Kook was interested prizarily



in the condition that [": TX x TY ———3 T(X x Sr) is an isomorphism
so that 'every joint distribution is independent', a degenerate condition
from our perspective. This condition becomes interesting, however, when
the functions in (A,B,C) are allowed to roam over more general closed

categories than the category of sets and functions, as they do in Kock's work).

To make proper contact with work in the logic of computer programs, a
preliminary obstacle is to interpret a function of form X ———p T(Y + 2)
(here Y + Z denotes disjoint union; see flowchart 8.A) as

a 'conditional statement' if p then x else f for some proposition
p : X —p T and some o : X — TY, P13 X —» TZ, Two different

solutions are presented. The first is based on the Boolean polynomial

3 if-then-else
§ true, false ~> § true, false

DTS2 S ———

(py2,8) f——b f if p = true (1)

[ ifp:f&lgg

(Indeed, all other Boolean operations may be defined in terms of if-then-else

--gee [Manna 1974] for a complete discussion-- with equations such as

PV a = if p then true else q
p' = if p then false else true

====8 4231 (J)
pAa = (pV q)

p=>9 = »'V q
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all of which continue to hold in the logic of 'propoeitiona by the
metatheorenm already mentioned. On the other hand, the metatheorem does

not apply to
jfpthen felseg = (p A2V (p' A @) (K)

From the fuzzy theories point of view, if-then-else is then seen as more
basic than V, A, (=)' ). More generally, consider the 'Boolean
conditional' bey : { true, faleo§ x X x X ———3 X defined by

f=2—1-1- ==soe

bcx(gzz'gg.x.y) = X, box(gg;gg.x.y) =z yo For commutative theories, the

fuzzification principle yields the extension l?o':x : T x TX x TX ——> TX,

On the other hand, the operational interpretation of a truth value induces
the 'distributional conditional' dey : T x TX x TX ———3» TX, Either:
conditional may be used to define if p then of else p , though do, vas

chosen for the reasons discussed in section 8. The motivating problem of

representing functions in conditional form axiomatizes the tonditional-complete'

theories.

Because fuzzy theories are coextensive with the algebraic theories of
universal algebra [Hanes 1976, oxerciae 12, page 32] there is an abundance
of examples as well as extensive information on how oxanpies are generated,
The issues of importance in this paper are different from tho#o of universal
algebra, however. For instance, many of the theorems do not extend nicely
to noncommutative theories whereas from a universal algebraic perspective

the commutative theories constitute a rarified class of examples whose general
theory is not much richer.

21
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Many topics have been omitted, Algebras (including their fuzzy
theory interpretation) and generalizations to arbitrary categories are
treated in [Manes 1976] . Automaton realization problems are discussed
in [Arbib and Manes 1975ab] .

The earliest construct equivalent to the fuzzy theories of this paper
are the 'standard constructions' in the appendix of [Godement 1958] . The
founding work is [Lawvere 1963]) . A more complete history is included in
the end-of-seotions notes of [Manes 1976] .
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1., Fuzzy theories

Consider the algorithm shown in (A).

begin

Dl | d

shoot a particle at
target R = R1 U R2 ( B3

i R R2 R3

(A)

shoot a particle at
target 8 = 81 U 82

F1 82

In a 'dartboard' scenario, one may imagine that this algorithm is crisp,

end

terminating in exactly one of §R1,R2,81,828 , Another interpretation is
provided by the following fragment of the American game of baseball: R =

batter with full count, miss = foul ball, R1 = strike 3, R2 = ball 4,

R3 = hit ball, 81 = batter out, 82 = batter safe. Traditionallj;_ this algorithm

T

is crisp most of the time but fuzzy a significant number of times. Quantum
theory is a source of related algorithms whose outcome is fuzzy 'even in

principle'. The 'branched questionnaires' of [Zadoh 1976, Section 4] also give
rise to fuzazy algorithms of this type.
Modern computer programming languages such as PASCAL emphasize 'structured
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programming' (see [Alagié and Arbib 1978] and the bibliography there) as
a systematic tool in the analysis and synthesis of flowcharts and programs.
There are three operations from which all flowcharts are to be built from

atomic ones:

composition tjiu t
(B)
u
conditional %ﬁ P &Egﬁ g else h
true false
| (©)
4 h
iteration while p do ¢
T —— E-2--2-1~ 1 ==
true A false
N\

. (D)
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A flowchart is loop-free if it can be built without using (D). Our definition

of fuzzy theory can be motivated entirely by the need to interpret the

following loop-free scheme:

(E)

(It is not hard to adapt the results of [Elgot 1975] to show that fuzzy
theories can interpret any loop-free scheme, 20 we will not belabor that
point in this paper.)

DEFINITION 1,1 A fuzzy theory is T = (T,e,(-)#) where

T assigns to each set X a get TX

o assigns to each set X a function ey * X 3 TX

(-)# assigns to each funotion « : X —>TY a tuncﬁ:lon ol# : TX =———>»TY
subject to the following three axioms on arbitrary o ': X —>> 7Y, p $ Y ——>T2,

extension axiom q# ey = & (where juxtaposition denotes composition)

post-identity axiom (ex)# = idgy (vhere idy : YT—>Y, y oY)

associativity axiom  (Fe)? o pact

HEURISTICS 1,2 1In a fuzay interpretation of (E) the 'outcome' is a vaguely- |

”
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specified element of fb,d,e} » more generally motivating the passage from

X to TX as :Ln (0.A). We have not limited the construction to finite X because
there are theoretical advantageé in being able to form T(TX) whereas TX is
often infinite even when X is finite (0.E,F). Now (E) has the form of the
composition p;e. Since the output of p is already vague, this motivates
the need for ot#, the output of (E) being o(#(p(a)). Even so, the semantics
of (E) is not precise because the data determining (E) take the form

p: fa}—>Tfb,cd , q :{c}——> T{d,e} and we have yet to explain how to
write down o : fb,6} ——> Tfb,d,e? . Intuitively, (i) of(b) = b

whereas (ii) o{(c) = q(c) . The obstruction to (i) is overcome by ey,
the more precise description being o(b) = *b,d o}(b)‘ The heuristic
L Aad

meaning of oy is 'the inclusion of the erisp distributions among the vague ones',
While we have not assumed that ey is injective, this is proved in . .
theorem ' 4.4 below. Continuing, the problem with (11) is that we do not yet
know how to think of T{d,e} as a subset of T{b,d,ed. This difficulty is
overcome as follows. Whenever X is a subset of Y let £ : X—>Y be the

inclusion map, f(x) = x, and sot 8 : X—>TY = oy f. Then

P* 1 TX —> TY provides the desired map (which s proved injective in

. theorenm b3 below). The more precise version of (i1), then,

is o(e) = (e f)#(q(c)) where f : fd,el—> fb,d,e3 is inclusion,
§b,a,e}

For more complex schemes than (E) there will be compositions

® ; # in which the first term has more than one input line. The definition is
clear: for o : X—>»TY, f: Y —>T2 &;p =f¢°< 1 X ——> TZ,

The associativity axiom asserts that this composition is associative (proof: for
¥:2—> TV, if (X3R);7 = &3(A;¥) sot o = 4dy, whemse (¥7B)¥
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Y¥P¥ ot o 3 (Bi¥) o (4PN « FH(PPR) o ¥*B# uhoreas,
conversely, (o3 )3 ¥ = ¥¥(PFaty . (¥¥pMya . (I . ws(Bi YY),

The extension and post-identity axioms are motivated, respectively, by the
flowchart tautologies '

X
id X & X
X = e Y = A
Y
& id T
Y Y

The extension axiom derives its name from the fact that ﬂ# extends o{ whereas
the post-identity axiom is named after its flowshart tautology.

CRISP SET THEORY TX =

—::-'-:..::sm—z::::n =2=l:==z==u==z===== x' ‘x B 1‘X'

FUNDAMENTAL_EXAMPLE 1,4: FUZ2Y SET THEORY Let TX be the set of functions from

————————————————— --r===a=n~===—=z-=a

X to the unit interval [0,1] . Let ey(x) be the characteristic function
of §x3, that is, ox(x) Baps ¥y to 1 if ¥ = x and maps y to O otherwise, If -
ot X—>17, xrol Y —>[0,1], ,detine o ;o — oy by

"

of.#(p) : T—>[0,1], v Sup, H:I.n(p(x) oL (‘y))

The compoaition P#O( is the composition of fussy rolationa of [hdoh 1965,
page 3'46]
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PUNDAMB‘TAL EXAHPLE 1,58 PROBABILISTIC SET THEORY Define TX to be the set of

ey
[ - - E P PP =:EDocsgessEasns

finite support probability distributions on X. Thus an element of X is a
function p @ X-—->[0.1] such that p(x) = O for all but finitely many x

and ZP(x) = 1. Let e (x) assign probability 1 to x and hence probability

O to every other element. If o : X—>TY, x m a« : ¥ —>[0,1],

define 0(# ¢! X—>TY by

u#(p)

t—=>[on], 7 ) ety

Here a function X —> TY amounts to a column-stochastic matrix with

X indexing columns and Y indexing rows and composition o3 P 1is the usual
composition S« of colum-stochastic matrices.

FUNDAHMAL EXAMP 1.,6: POSSIBILISTIC SET m TX is the set of subsets
=====sS====czs=zszs=oss =-==-.-.=== S=TITTaTTTIEESES

of X, e,(x) = ix} y ol (p) e (J(A(a) :t a €p) . Composition is the
usual one for binary relations,

EXAMPLE 1,7: CREDIBILITY Tumn! In this example, values are unambiguous |
but their acouracy is vague. Let C be a partially ordered get of 'erodib:llity
values' possessing binary infima and a greatest element 1, Let TX = C x X,

Define e,(x) = (1,x). Given o : X —>»TY, o decomposes o(x) = (.P(x).f(x))

into a proviso funotion J and a value function f, that is, 'o((x) = £(x) with
credibility J(x)'. Define o by °‘#(c,x) = (Min(c, P(x)),£(x)). Then
composition is described by 'if Ol(x) = y with credibility o, and A(y) =
2 with credibility o, then («; f)(x) = 2 with credibility Min(o,,c,)'.
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EXAMPLE 1.8: PRIORITY THEORY Let TX be the set of all strings Xqoeox, with n 21,

each x, € X and with no repetitidns, that is, xi;{x if ifj. A distribution

h|
is a 'choice of outcomes in order of priority' with unmentioned elements of X
‘abstentions'., Define ex(x) = X¢ For o ; X =——>TY define

°¢ #(x.‘-o-xn) to be the string obtained from the juxtaposition o((x,) <e- X(x,)

by keeping the leftmost occurrence of each symbol and deleting the others,
#
(Thus if o((x1) = ¥,7, and ot(xa) = Yq¥3¥p0 (x1x2) = 4 ¥5)e

EXAMPLE 1,9: NEIGHBORHOOD 'maogg If X is a topological space, the neighborhood

== :-.—.::::-._=====g=========§n:=

tilter N of x € X is a family of subsets of X possessing the following four
properties: |

1) xe n
(1) IZN,, N, € N then N, (1N, € D
(1i1) IZNCS and NENh then 8 € A
(W Nh 4 o
For any set X, let TX be the set of all families M of subgets of X possessing

these four properties. Define ex(x) = fA CX:x¢ A?. For o ¢ X w=pTY,

define 0(#(72) = SBCY: {xé‘X:BGO((x)gGh?.

We conclude this section with a brief treatment of fuzzy theories as
algebraic objects, defining homomorphisms between theories (which we call

theory maps), quotient theories, subtheories and product theories.

DEFINITION 1,10 Let T = (T.o.(-)#). "1__?' = ('T'.%‘.(-)#) be two fuzzy theories.

SSSREInsEsnzoss =

A theory map A: T——T  assigns a function Ay 3 TX—>TX to each

set X, subject to two axioms., The first is (F) which asserts that Axox(x)



“19-

ox/ X
X Ax (F)
.o.x\_i l

a 'o'x for all X, x € X The second axiom asserts that given o : X = TY

TY
Ay (@)

TY

A

and o defined by (G), then the commutative square (H) obtains. It is

o

TX . ->» TY
M l la @
™ > TY ’

trivial to verify that idx ¢ TX=——>»TX always defines a theory map

g——>£ and that if A:E-———bg and p:g—ég are theory
maps then so is A : T —>R dofined by (MA)y = My Ay .

EXAMPLE 1, 11 Let ‘1‘ be priority theory, T be possibility theory. Then

A :T—>T dofined by A(xgeeex) = §xi40009% 3 is @ theory map,

DEFINITION 1,12 A gquotient theory of T is a theory map )\:'r——>¥ such

BEQSBGSSU“:B&



that each A, is surjective (= onto Tx). Given a theory T and surjective

functions of form A, : TX ——3> TX there is at most one way to define & and
(=Y & as to make T into a theory in such a way that A is a theory map
(proof: (F) defines @ outright; similarly, given o« : X —>TY, since A!
is surjective there exists a choice function of : X —»TY such that (G)
holds so that (H) must hold for the chosen o and this is possible for at

#

most one X" since /\x is surjective). Thus if 2 4is a theory and Ex is an

equivalence relation on TX for each set X, the resulting quotient sets

Ay : TX ——> TX/E, collectively 'is or is not' a quotient theory of T.

EXAMPLE 1,13 1In fuzzy set theory, [0,1] is often projected onto §0,17

bf choosing a cut point, This idea is tantamount to a theory map as follows.
Fix a cut point 0 S o <1, let T bo fuszy set theory and let T be posaibility

thoory. Then

M

T > TX
P
X —>[0,] = fx€X: p(x)> 03
is a quotient theory of 2. The verification rests on the following property

 of the unit interval: 1if Sup(x‘i) > ¢ then some x; > 6, This axiom has been
emphaeized by D. 8. Scott [Boott 1972, page 110] 4in a different context.

soEIsRSz=szT o=

DEFINITION 1,14 A subtheory of T 18 a theory map A: T —>T such that
each A, is injective (= onme-to-one into TX). Given a theory T and injective

funotions of form A, : TX——>TX there is at most one way to define
e and (-)#aoaatonakol‘intoatheoryinmohavaythat A is a theory map



e —— ———————— P % & # 8 S = =

(proof: (F) is possible if and only if ex maps into the image of 1\ in whioh

case e, = A ?x is the only poaaible definition; given ® , & ag in ),

u# in (H) exists if and only if X Ay ®aps into the image of Ay and then

‘= A7'@™ ), 1s the only possible definition). In particular, if TX

is defined as a subget of "fx. there is at most one way to make T into a theory
such that the inclusions TX — TX constitute a theory map and, if so, we

say 2 is a canonical subtheory of "1:. It is trivial to verify that any interasecotion
of canonical subtheories of T is again a canonical subtheory of T 8o that,

in fact, any construction &oﬁni.ng a subset TX of TX must generate a canonical
subtheory,

EXAMPLE 1,15 { p€ [o,ﬂx 3 p(x) = 1 for some x§ 4is a camonical subtheory

of fuzzy set theory (of. the 'nmormalised fuzey variables' of [Gaines 1976,
page 180] ).

EXAMPLE 1,16 Let T be credibility theory with credibility poset [0,1] and

S

let T be fuzzy set theory. Then M) y) = cifx=y,=0ifxAy
is a eubtheory T —>T,

EXAMPLE 1,17 ‘'Non-empty' and 'finite' define subtheories of possibility theory.

Non-empty possibility theory is a subtheory of neighborhood theory via A (A)
= §BCX:ACB}. Pinite non-empty possibility theory is not a subtheory of prob

abilistio set theory if ‘\x{"v'""‘n? assigns probability 1/n to each X,

In this precise sense, a set of possibilities is not a set of equally likely

outcomes.
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DEFINITION 1,18 If (T, : 1 € I) is a family of fuzzy theories, their produot

is the theory T defined by

™ a :'|"|'r1x1
ex(x:l t1€I) = ((ei)x(xi) : 1€ 1)

Given o : X —3>TY write of(x) = (O‘i(x) : i €I); then for P
2o 1€D € X, ofp) = (i) :1em,

DEFINITION 1,19 A theory map A\ : T ——> T 4ie an isomorphism if each

f 4+ 1 31 <31+

)‘x is surjective and injective. It is not hard to see that, in this case,
)\;‘ constitutes a theory map, '.;L: and g are isomorphic if there exists an
isomorphism from T to 52';. For example, fp €fo.1]x s p(x)€ §0,13 for anx?
describes a subtheory of fuzsey set theory which is isomorphic to possibilistic
set theory, |

1
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2. Equality and degree of membership

For the remainder of the paper mention of Tz (T,e,(-)#) without further
modification refers to an arbitrary fuzzy theory.
In this section we define fuzzy truth values, define the equality of

distributions as a fuzzy truth valued function and explore properties of
this equality,

DEFINITION 2.1 TRUTH VALUES Fix a two-element set {gggg,gglgg} of crisp

T S T T e e e e o T ey S T S o S e e e e g
EE aa - 4 --F F F F

truth values and denote this set simply as 2, Define the set of T-truth values

as the gset T = T2 of T-distributions on true and false. We will generally

write true € T for the more cumbersome o (true) and similarly for false.

DEFINITION 2,2 E_DEGREE-OF-MEMBERSHIP MAP We regard Zx as both the =set
EEEES s L B P et Py ey epd ey

of subsets of X and the set of funotions from X to 2 via the usual identification
8 7(8 where Xs(x) = true i x € 8 and = false if x ¢s. For each
p—t—1 -3 -3 ==

8 €X, dofine f T 1 X —>T  (see (X)) by TXA = (eaxs)#. We then

%

>

2
o l e, ' (A)
X -> T

X
 define the degree-of-membership maps

éxxrx dnx —>T
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by dm (S,p) = (mls)(p). We call TX;.= dm (S,~) the T-characteristic

function of S. We also use the same motation dm, : X x TX ——> T
for the restriction to singletons, dm(x,p) = dm, (fx3,p).

OBSERVATION 2.5 THE EXPONENTIAL LAW OF SET THEORY There is a bijective

R i P e T e e e Y e b
correspondence
f
IxY —m———> 2 (8)
Ly —> 7%
g
given by {g(y)(x) = £(x,y)s Similarly,
4
XxY —————3 3
; )
‘ Y
h T
OBSERVATION 2.4 COORDINATEWISE _EXTENSION Given o : X —>» (‘r!)z. define
ESRSSnsSSE=anes 3‘-’:-—83:2:88:38: 34—+

o

: TX—-—>(TY) by o (x) = ((d')#(x) : 2 €2) where o, 8 X ety TY

is o composed with the z-coordinate projeotion (‘H)z —py TY,

Dﬂgﬁgﬁ é-é _-===_=§£‘___=Irg=§g The "II'..ﬂn—-——-Mlj't ...2."‘ 8
N oy
TX x TX ———ee—3 T
(with the interpretation 'p = q has truth value eqx(p,q)') are defined
as follows:

step 1 Begin with the degree-of-membership map restricted to
singletons

X xTX — T




m. gt ———— e a8 o ot

.t et

step 2 Apply exponential law (G) to step 1:
X ; aFTx

step 3 Apply coordinatewise extension to step 2:

T~ T X

step 4 Apply exponential law (C) to step 3:
 eq,
™ x X —3> T

Note: By construction, eq*(ox(x),p) = dnx(x,p).

- - 4 1§ i 1

EXAMPLE 2,6 CRISP EQUALITY Let T be orisp sot theory. Then T = 2,

T& = Jlfs and qu(P,Q) = gg__!.g ifp=qand = ggl.gg ifp £ q.

EXAMPLE 2,7 EQUALITY OF FUZZY SETS Let T be fuzzy set theory. The set of
==== ===nemn=c = =

o o p e o . - —
=ttt -+ 3 =23 31

truth values is not the unit interval [0,1] but is, rather, [0,1)° whose

typiocal element t = (t ) oconsists of 'a degree of truth and a

truo’tfalse
b -4~ -+ FJI==

degree of falsity'. This idea was also suggested by [Gaines 1976, page 180] .
Given p,q : X —> [0,1],

oqx(p.q) = t, t = Bup_ Hin(p(x) «q(x))

=== _ (D)
e = Supx"y .H:ln(p(x) va(y))

In particular, the usual \egree-of-membership of x in p' in the fuzzy
sot literature, namely p(x), is the true coordinate of d.mx(x,p) which, however,

also has false coordinate Sup p(y). In general, dm (S,p) has true

coordinate Bup(p(x) : x € §) and has false coordinate Sup(p(x) : x £ S).
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EXMPLE 2.8 PROBASILISIC BUALITY Let T be probabilistic set theory.

Then T may be identified with the unit interval under the bijection

t e+ prodbability of gg\__xg. Then

oag(pea) = > px)a(x) (E)

a familiar formula for the probability of equality of two independent
random variables on a finite probability space. Notice that dm,(x,p) is’
just p(x) and that, in general, dm (S,p) = Z(p(X) : x€S8).

EXAMPLE 2.9 POSSIBILISTIC BQUALITY Let T be poseibilistic set theory.

-+ttt 1 S S 4+

Then T has four elements ¢ R {gglse} ’ fg;__-ggf. § gg;gg.gggg} which we

shall respectively relabel as ggggﬁned. no, yes and maybe. Then

{11

0qy(psq) = undefined if p 48 empty or q is empty
= RO if p, q are nonempty and disjoint )
= yes itp= fx} = q for some x
- magbe olse

Aleo, dnx(s,p) = yes if p is a nonempty subset of 8 and is oqx(s,p) in

every other case,

EXAMPLE gﬂgnggm FOR THE CREDIBILITY THEORY For E__'P as in 1,7,

o b i i el 2 RS TR L Ty

eq,((cyx),4(c'\x')) = true with credibility Min(e,e') if x » x', and =

false with credibility Min(c,0') if x&x'.



A

EXAMPLE 2,11__EQUALITY FOR
EE R s==m=—-

*
Trspoosmts ===

THE PRIORITY THEORY Let T be as in 1.8, Then T

L3 B P E pTeTete

has four elements true, false, true false, false true which we shall
o==] s=Ss=== =SS ansmzms ==

=IIS= SERs=

respectively relabel j:__x__:g__xg, 52%320 moretruethanfalse, goretglaethantg_ug.

= 1

For p = pyecepys Q = qqeeeq , equality is given by

eqy(p,a) = true ifp=q-=p,
= false if py £ qy for all i, }

e an e e S e s e e

= morefalsethantrue if p, # q,, some Py = 9y

gﬂ}_@@__gz‘l-? EQUALITY FOR'THE NEIGHBORHOOD THEORY In general, equality
relative to a subtheory is computed in the ambient theory, In particular,
equality relative to the 'non-empty' subtheory of possibilistio set theory

1s just as in (F) save that undefined is deleted from T and the first case:
in (F) should be deleted. Let T be the theory of 1.9, If A represents

non-empty possibility theory as a subtheory of T as in 1.17, A, is bijective

vhen X is finite (because if N € TX, N 1o finite so that NN € N).
Thus for T, T = {Zgg.gg,ggggggand (F) desoribes eq, when X is finite, For

general X, asome terminology is helpful. Given M € Xy x € X say that 7!

converges to x 12 §x} € N and say that N excludes x if there exists N
€N vith x ¢N. Then

qu(h N ) = yes it N .7" converge to a common point

= Bo if §x : Mexcludes x3 € N (1)
= gﬂgg else

To clarify the first case, notice that if 72 converges to x, N-=
{A $ X €A§. In general, dmx(s.h) is Yes if 8 belongs to N, is no

if the complement of S belongs to N and is otherwise gggg.
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DEFINITION 2, 1;_ ANTI-REFLEXIVE THEORIES As is reenforced by the following

=====B======—— -3 - ] 2 et

table, eqx(p.p) is the 'degree of vagueness' of p € IX:

theory 0q,(p,p)
crisp set theory gx_'gg
fuzzy set theory Sup xp(x), Sup_ (Min(p(x),Sup Axp(y)))

(true coordinate first)

probabilistic set theory Z p(x)p(x)

——— o w— e = -
b

possibilistic set theory undefined, Yes, mxbe accordingly as p

is empty, crisp, otherwise

credibility theory (cytrue) if p = (o,4x)
priority theory gx_'t_xg if p is orisp, ggggt__:ggggggngg%gg else
neighborhood theory gggg if p is corisp, mgg else

T is anti-reflexive if for all X, p € TX, if eq,(p,p) = true them p is criep.
All of the theories in the table above are anti-reflexive. Any subtheory _
of an anti-reflexive theory is anti-reflexive and any product of anti-reflexive

theor;l.oa is anti-reflexive,

EXAMPLE 2,14 A THEORY WHICH IS NOT ANTI-REFLEXIVE The credibility poset

LR e e e I R e e P T

of 1.7 is a wonoid with infimum as multiplication and Vgreato-st element as
unit, More generally, if C is any monoid, the comstruction of 1.7 with
multiplication replacing infimum and with unit replacing greatest element
produces a fuzzy theory. The formula of 2,10 generalizes, and if p = (¢,x),
0qy(p,p) = (co,true). The equation 'eqy(p,p) = true' here, then, "



—
Zv

is '(costrue) = (1,true) which amounts to the requirement that co = 1,

Now, for example, take M the monoid of subsets of a set with sysmetric
difference as multiplication and empty set as unit. In this example ¢6 - 1
holds for every o, so that 0qy(pyp) = true for every p.

DEFINITION 2,15 SIWETRY OF BQUALITY Say that T-squality is gymmetris
if for every X and for every p,q € TX, eqy(p,q) = eqy(qa,p). This condition
holds for every theory mentioned eso far except the neighborhood theory,

Indeed, let Z be the neighborhood theory, let X be the real line, and 1let N x

be the filter of neighborhoods of x € X in the usual topology. On the one
hand, it is true that eqx('hx, "ly) is maybe when x = y and no when x £ y.

On the other hand, fix x and set M= §y€X:y £x3 , N = $u,x3 € X,

Then eqxon,'hx) e ggzgg vhereas oqx(hx.?") = no,

DEFINITION 2,16 THE EIGENSTATE CONDITION quantum mechanics, the aot of

= v e == o = o o = PPy - - -
=—=-...—__=====-=--—==—=-—=:=—==—====g=—===

of measuring an observable forces a orisp state, While the analogy is
loose, it suggests the following colorful terminology. A theory 2 satisfies
the eigenstate condition if for all X, and for all x € X, p € TX, if

da (x,p) = true then p = e,(x). All of the examples considered so far satisfy
this condition,



EXAMPLE 2.17 A THEORY NOT SATISFYING THE EIGENSTATE CONDITION Define a

R R S S S N S T R N s N g S T N T e s m e

modifiocation of priority theory as follows, TX is the set of all repetition-free

strings xjeeex (n 2 0) in which the empty string A is now allowed., Define
ox(x) = X, and obta:lnq#(x_'u-xn) fronm o((x1)o.oo((xn) by deleting
repoated &ymbols.. For example 0(#(/\) = A, and for O((x,) = ¥4¥0s °((x2)

# : . 4
= ys.vzy,*. o (x1x2) = y1y3y4. The set 7 of truth values consists of those of
2.11  together with A. To see that the eigenstate condition fails, observe

that dm, (x,xy2) = true (be.cause true false false reduces to true).

TJT DIm== ===

" 'DEFINITION 2,18 FATTHFUL . THEORIES The set of T~propositions on X is defined
================s=:=====a======u=n=: = —

to be the get Tx of all funotions from X to T . giataitmufor
all X the representation map

) ¢
™ T (0
P — dﬂx("op)
is injective, The four fundamental examples are faithful,
SEELATIION 2,19, FROPOSTTIONAL CMPLETENESS T is propositionally complete

if for all X,.whenever p, q are distinct elemonts of TX there exists a
proposition o : X ~——p T with a(#(p) '] ot#(q). The four fundamental
exazples are propositionally eomploto/ because:
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ggg___)gga‘l’ g.ZO A faithful theo eory is. -propositional 1y complete, ‘
Proof, Just observe that dnx(x.p) o c(#(p) for o = °2Z{x ;* 0

HAPLE 2,21 THE CONVERSE OF 2,20 FAILS  The neighborhood theory is |
propositionally complete. To see this, if N /£ M then there exists, say,
Nch with N ¢ M, Detine o = Xyt X—> T, Then «&¥(n) .

dmx(N,h) = Zgg wherm' ﬂ#(m) = anxt'u',.‘h) £ yese On the other hand,

this theory is not !.aithﬁiij a:ln,cﬁ it is not hard to show that the cardinal
of TX for infinite X is larger than the cardinal of T,

Engggzgﬂ THE PRI OMYWBWPWIWWI&E Indeed,

::a.asz:::amngg CHRIISASTSITSTE

it x, y, T are dietinet olemta of X, xys m:zy € X cannot be dtst:l.ngai.ahod
by any propositioan.
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3, Distributions as operations

In this section we show that distributions may be equivalently viewed

ag operations.

DEFINITION 3,1 THE OPERATION INDUCED BY A DISTRIBUTION Let n be a set.

e e g o o o e e B e ey o T e S E o e e e S g T = i S e g £ et g 7 £ S
=.-._-—_';.'___-——_3—:._—-—-—_.__-.-._——=--.--=_-.._-_——-.-—...—...ﬂ...u_-___--._.—

set). Fix W € Tn, For each X, @ induces a function of form

Gx s (TX)®——> TX defined by
A #
wx(ot) = X"(W) (K)

for each n-tuple of distributions of : n —3=TX € (IX)7,

DEFIN;TIOP_‘_Zég ABSTRACT OPERATIONS Let n be a set. An abstract n-agi

o ——— —— o —— ot 1t T T e i S e S B
—=========== SmSs=sSIS oSS =EcoZEEES

E-ogaration 7T assigns to each set X a function of form ‘C’x s (TX)® ——3 TX

subject to the coherence requirement that (B) holds for every

T
X
(rx)® > TX
i
¢ o
(P = l l ¢ f {(B)
(zy)* i TY
Ty

P: X —> TY, Diagram (B) asserts that for each n-tuple of : n—>TX,

TI(P#“) = f#f'x(‘*). In terms of the composition o 3 @ = P#O( s the.condition
is simply that " respects composition: T,(%;8) = (T,(X)); 8 .



M
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A
THEOREM 3.3 The passage w s & of 3.1 establishes a bijection from the

set Tn of distributions on a to the get of abstract n-ary T-operations,

Proof. To prove that (B) commutes for & use the assooiativity axiom for T:

By o PRty - gty o @) Now let T be an arbitrary

abstract n-ary T-operation., Each o : n —3 TX induces (C) as a special

r!l
(Tn)® -3 Tn
e)yn l o# (©)
(10)® — —> TX
%

of (B), Hence if W is defined to be Tn(on) €Tn, T =& because using

the extension axiom and (C) we have Tx(“) = Ti(“#en) =o (T;(en)) = (?&(o().

86 far, then, we have seen that W& is well-defined and surjective. To
complete the proof we must show that & is determined by W and this follows

froa the post-identity axioam since & = oi:(w) = &n(on). D
EXAMPLE 3.4 CRISP OPERATIONS For i € m, (o, (1)), 2 (M) —> T 4s

the i-coordinate projection as is immediate from the oxtension axiom, These
are the only operations in orisp set theory,

FUZZY SE? OPERATIONS Given w : n —» [0,1] € Ta

w:mm "':!==== SisuoEzoIe

A
w

X
([0,17%)® > [0,1]%
(2, :4€0) 4 X ——n[0,1]

X~ Sup,Min(W(1),2,(x))




PROBABILISTIC OPERATIONS The operations in probabilistic set
t—3—4—3

S+ Fd 3t S a3 -1

theory are those of convex combination, If W € Tn and if p, € IX (¢ W n)}

then a&(p,‘) = 2 w(i)pi .

It et P-4 -2 b - =2 ]

EXAMPLE 3,7  POSSIBILISTIC OPERATIONS If W & n and p; ©X (i €n)

then &y (p) = (Jlp, : 1 €m).

EXAMPLE 3.8 OPERATIONS FOR THE CREDIBILITY THEORY If W= (c,3) € Ta

======-—..-.=..====..=z~=====-=-=_=====c========::=====

and (o;4x,) € TX (i € n) "then “’x("i"‘:l) = (Hin(c.cj).xj).

EXAMPLE 3.9_ OPERATIONS FOR THE PRIORITY THEORY If W = iqeeed € Tn

S==R=2sSS P 2 . o e o b e

and p;, € TX (i€n)  then & (pi) is obtained from pH...pik by keeping

the leftmost occurrence of each symbol and deleting all other oceurrences.

EXAMPLE 2:10 OPmATIONSFORTHENEI 00D THEGRY It W€ Tn

o= = s D e T RSP e L e

and 2 N, €™ (1 €n), WU(N) & facx:ificnsaeNn, 3 c w}
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k., Homomorphisms

Homomorphisme are maps which respect the g-operationa. Each function f : X—3p Y

inducea a homomorphiem Tf : X —> 7Y which is injeotive when f is and

which is bijective when f is. Homomorphisms play a role in developing further
basic properties of theories in this seotion,

DEFINITION AND THEOREM ‘_t_._‘_l_

e o~ s o o e o
B - T Y e

Let ¥ : TX——> TY be a function. The following
three conditions on ¥ are equivalent and define when ¥ is a homomorphi sm,
1 ¥ commutes with all T-operations, that is, for every abstract n-ary

rx
(Tx)® — TX
Ynl l? . (A)
(T!)n ,T.Y > TY v

g-opoéation Ty square (A) commutes: ‘P‘t'x(pi) = r,(vp‘)._‘ for all n-tuples
(p1 $ 1 €n) in TX,
2~ ¢ = (?.x)#o

3 ¥= o(#forsom Xt X —3ppTY,

Proof. 1 implies 2. Let q € TX and consider (A) with n = X, ¢ = 4. Using
(3.A) and the post-identity axiom, %¥(q) = "f(eﬁ(q)) = $(dy(ey)) =

e = (Fo¥(@) oo that 9o (up)f.

2 implies 3. Set K = Pey. |
3 implies 4, This is immediate from the definition (3.B). O



OBSERVATION 4,2 PUNCTORIALIT! 01" T Given f : X—>»Y tﬁoro is an
induced homomorphism $: IX—3>TY defined by Tf = (er)#. Then
T(id,) = eﬁ = id,, and for g : Y —>13, Mg?) = (ozgt)# = (((ozg)#o!)f)# ’
= ((ezg)#(oyt) W . (ezs)#(eyf)# = (Tg)(Tf). These two equations --whose

vérification required all three fuzzy theory axioms~- agsert that T is a
functor from the category of sets to itself, The commutative square (B)

e

X
X A —> TX |
£ l lrr (B)
Y > TY
°y

then asserts that e is a natural transformation from the identity functor
of the category of sets to T. (For facts about functors and natural
transfornations see [Mac Lane 1971] or [Arbib and Manes 1975¢] ).

Note: The g-oharactoriutio function of 8 of 2,2 is an example of
this construction, |

The second statement in the next result guarantees that 'TX is abstract®,

E&EQ’_.‘E_’_‘::Q Let £ : X—>»Y, Then if ¢ L injective, Tf is injective,

If £ is bijective, Tf is bijective.

Proof. The second statement depends only on the functoriality of T, For if
f is bijective it has an inverse g and (Tg)(Tf) = T(gf) = T(idy) = dd,,,
(T£)(Tg) = id,y similarly, so that Tg is inverse to Tf. A similar argument
almost proves the firat gtatement. If £ is injective and X is not empty then



e
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there exists 8: Y—>X with gf = id,; since (Tg)(TL) = “’-rx' Tf is :'mjopt.ivc.
A different argument must be used if X is empty. (Wo regard the unique function
@ —>X, 'the inclusion of the empty subget’, as being injective since if a

map is not injective there are two distinct elements in its domain which are
mapped to the same element), There is no problem if T¢@ = @ . Otherwise,

there exists a function o : Y —> T¢ and hence the homomorphism

& iy ——>Tf. Nov it is obvious from 4,1 and the associativity axiom

that

idp, ¢ TA—>TA is a homomorphism ()

It 1 TA—>TB, $: TB—>TC are homozmorphisns,

(D)
#¥ 1+ TA—>1TC 4is again a homomorphism

Hence d#(‘l‘t) and 1% d : T¢ —» T¢ are bdoth homomorphisms whereas

it is clear from 4,1.2 that there is only one homomorphism T¢ —>7¢.
It follows that d#(l't) e 1%, and Tf is injective. 0O

DEFINITION AND THEOREM &4, l& The following four conditions on a fuzsy theory
L - -

are equivalent and define the class of consistent theories.
1 *true £ false', that is, e, t 2 —>T2 is injective,
ouDm =2

2 It £ 4dg:X—>Y, then Tf £ Tg : TX —> TV,
3 There exists Y such that TY has a§ least two elements.
& For all sets X, e ¢ X = TX is injective,
Proof, 1 1:#11032. It £4g: X—>Y there exists h : ¥ —>»2 with
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hf £ hg (e.g. if f(xo) £ g(xo) let h(£(x,)) = true, h(y) = false for all
y A f(xo)). Applying (B) twice, we have T(hf) o, = e,hf and T(hg) oy
= e;hg. As e, is injective and hf £ hg we must have T(ht) oy £ T(hg) eye

Applying functoriality, (Th)('!.‘f)ex £ (Th) ('I‘s)ex and Tf £ Tg in particular,
2 implies 3. This is obvious since there is at most one function
IX —> TY if TY has at most one element,
3 implies 4, If TY has at least two elements, cartesian powers of TY éet

arbitrarily large and given any set X there exists a set Z and an injection

#

A 2 X i (TY)Z. Lot ol" : TX > ('1'!)z be the coordinatewise extension

of 2.4. Then o(#ex = o, 'But then e, is injective bocause o is,

b implies 1. Set X = 2, O

Note: The above theorem is adapted from [ Lawvere 1963] .

QBSERVATION 45 INCONSISTENT THBORIZS The previous result pakes it easy to
identify the inconsistent theories. The existence of oy implies that TX is
non-empty if X is, If '5 is inconsistent, it follows that TX has exactly one
oleﬁent if X is non-empty. Thus there are at most two ways to define TP
acoordingly as T# is empty or has one element. In either case, e and (-)#
are uniquely defined and satisfy the three axioms. Every inconsistent theory
is isomorphic (in the sense of 1.19) to one of these two. These theories are
uninteresting and we shall largely forget about them, adapting our notatioms to

the consistent case. In particular, for x € X we shall write x € TX instead
of the more cumbersome ex(x) in most cases.
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DEFINITION 4.6 NOISE-FREE THEORIES The set T# of 'distributions on no

SSnEssIs== S e s T

outcomes' represents 'noise'. T is noise-free if T# = é.

DEFINITION 4,7 THEORIES WITH CRISP POINTS A 'point' is a distribution on

SsS=== --===—======:::::::8:22382223:8:28

one outcome., Let 1 be a one-element set. T has crisp points if T = 1
(more precisely: ® ¢ 1—>T1 is bijective). By 4.3 it doeen't matter which

one-element set we choose,

THEORRM 3.8 A consistent theory with erisp points is moiss-free.
Proof., Consider the square shown below in which ¥ is the unique homomorphisa

T L4 - ™
?l l T(gggg)
™ - T2
T(false)

133

from T$ to T. The square commutes because there is only one homomorphisa
from T¢ to T2, Since T bas orisp points T(true) = true and T(false)
= false. 8ince true £ false, T¢ must be eampty. O

EXAVPLE 4,9 PURE NOISE Let N be any set (of 'pure moises'). Define a fuzmy

gorssgsxn

theory Tby TX o X + N (+ .:L;nd:l.catoa disjoint union), oy(x) = x, u#(x) =

ol(x) if x €X and = x if x € N, Thus a distribution is either crisp or a
pure moiss. T¢ = N. This theory is antirefloxive and faithful and
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satisfies the eigenstate conditions., The equality funotion is given by

equ(psq) = true ifp,qé€X,p=gq
= false ifp, qa€X,p #£q
= p iz péN

= q ifpeX,q€CN

Thus g-equality is not symmetric unless N has only one element,

The next result makes use of the degree-of-membership map
dmxzzxxl‘x —» T2  of 2,2,

THEQREM 4,10 T hag crisp points if and only if for every X and p € IX,

dmy (X,p) = true.
Proof. If dmx(x,p) is always true, argue as follows. The map true : 1—»2
is injective so, by 4.3, T(gsrgo._;.) ¢t M1 —>T2 is injoctive. 8Since

true = X, : 1 —>2, T(true) = dm,(1,-). Thus T(true) : T1 —> T2
is injective and has a one-element image which implies that T1 has one element.
Conversely, assume T1 has one element, Consider the trtangleq below, Here

4 L
X ey 1 K ——mmp ™ =1
N (¢
R trve ,,&\‘l (tzue)
2 T2

f is the unique function from X to 1. The leftmost triangle commutes because
'xx is constantly true. The rightmost triangle results by applying functoriality.
Since T = 1, dmx(x,-) o Txx hag image fgggg} as desired, g
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The following ig adapted from [Wraith 1970, page 23] .

THEOREM 4,11  Every fuzzy theory has a largest canonical subtheory with

Prbof. 8 4 § is a canonical subtheory of 3. it is immediate from the definitions
that for any X, dm,(X,-) for T restricted to &X is the same map as dm (X,-)

for §° It then follows from 4.10 that if CX is defined as the subset of all
p € TX with dnx(x,p) = true, then S has crisp points if and only if SX C CX
for all X. To complete the proof we must prove that C is a subtheory., To
see that dnx(x,ox(x)) € CX use (B) as follows: dnx(x,cx(x)) = (T 'Xx)(ex(x))

= 0,%,(x) = true., Now let & _ : X ——=>»CY and let i, : CA—3> TA
2 x -3 43~ o . A

denote the inclusion map. Consider the diagram shown below, If of : X —p TY

)
X, “y
P2
is defined to be i, %y + We must show that o maps CX into CY. Now observe

that ((T ‘x!)o(# ) o = (T X!)(e(#ox) = ('r‘X,) 1,0(0 is constantly true

because (?Xy) i, dis, whereas (X,) e, is also constantly true as was shown
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a few lines above. Applying (D) and 4,1.2, (T 'X!) «# ’I."XI. Thus
for p € X, dag(T, () = X AN(XF(P) = @ KI(P) = amy(Xyp). In

particular, if p € CX, &”(p) € CY, O

12 Examples of the Tf Aoonstruction are shown in the table below.

theory (T£)(p) for £ : X —>»Y, p € TX

crisp set theory £(p)

fuzzy set theory y > Sup(p(x) : £(x) = y)

probabilistic set theory | y r E(p(x) : £(x) = y)

possibilistic set theory | f2(x) : x € p}

credibility theory (c,2(x)) if p = (c,%)

priority theory '1eftmost occurrence reduction’ of
£(xg)ecef(x ) if p = X;eeeXy

neighborhood theory {BCY: §x€X:£(x) €EBF € p}

Crisp set theory, probabilistic set theory, priority theory and neighborhood
theory have orisp points. The subset of TX comprising the largest subtheory
with orisp points in the remaining three examples is as follows, For fuzsy

sot theory it is all p with Sup_ p(x) = 1. This coincides with the
‘normalized fuzzy variables' mentioned in1,15when X is finite, but is generally
a larger subtheory. For posaibilistic set theory it is all non-empty subsets,
For credibility theory it is the distributions of form (1,x) so'that in this

case the largest subtheory with crisp points is isomorphic to crisp set theory.
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5. Independent joint distributions

In this section we study multivariable mappings which are homomorphic
in each variable separately and use them to characterize commutative theories.
Commutative theories admit a concept of independence for joint distributions

and are characterized by the commutativity of each pair of distributions.

DEFINITION 5,1 Forn 2 1, a function ¥ : X, X oee x X —> TY is

IIJTIT I ==
an n-homomorphism if for each i €§15000,n} and for each Py € 'I‘XJ (all j £ 1),
the function f" H TXi nce—gs TYg %(Q) = ?(poloooo 9p1-1 9Q9pi’1gooo’pn)

is a homomorphism. Thus a 1-homomorphisa is a homomorphiem,

NOTATION 5.5 If at all possible we ghall use simply

6 : Xy xeoe XX e TX, X 000 % TX, for the more cumbersome

[} X ose X @ ®
x1 xn

THEOREM 5.3 Given two n-homomorphisms ¥;¢ ¥, ¢ TX; X ceo X T ———3 TY

guch that ¥; ¢ = ¥, e: Xy X oo xX —T , ¥ = ¥4

Proof. Use induction on n, For m = 1 this is just 4,1.2, Now suppose that

there exist pi e Txi with ?1(p1ocooqpn+1) ﬁ ¢z(p1gooo'pn+1). For J = 1,2’
set S‘:’(p) = ?j(p.,...ogpn.p)o as ¥, £ ¢, and both are homomorphisas, there

exists x . € X , with % (x ,4) A ?Z(xm.‘). For § = 1,2 define.



Yj H '1‘)(1 X eee X 'I‘Xn — TY by Yj(q.‘,....q,n) = ?;,j(q19.oo.qn'xn+1)o
Then the 3’3 are n-homomorphisus and, setting q ='p,, !f.‘ A ¥,. By the

induction hypothesis, there exists Xy ¢ TXy for i = T4e009n such that

y“ (x1 ’ooo'xn) # yz(x“'o..'xn) as doﬂil"d. D

OBSERVATION 5.4 TWO CANDIDATES As discussed in the introduction, ™MX x Y)
is the set of 'joint distributions on X, Y' and, in isolating the concept of
"independenco' for such joi..nt distributions, it is natural to seek a map

of form TX x TY ——3 T(X x Y) whose image constitutes the independent

ones, We observe here that there are in fact two candidates T'.‘, I > for

-such a map, The construction uses the exponential laws 2.3 and coordinatewise

extension 2.4,

*XxY *xxY
XxY —————3p (X xY) step 1 XxY ——> (X xY)
2 2
rs ’ r, <
X ————3 T(X x Y) step 2 Y ———> (X x Y)
3 ' 3
f Y | K X
X —————3> (X x Y) step 3 Y —————3 (X x ¥)
b : L
r 2
TX x ¥ ~eee—> T(X x ¥) step 4 XxT¥ ———> P(X x ¥)
S
r " rs
Y ———3 MX x Y) , step 5 X ———— (X x Y)TF
6 : .
r“' X Fg
TY ———> T(X x Y) step 6 PX ———— T(X x T)T¥
n A

™ x TY ——————» P(X x Y) step 7 ™ x TV ————p P(X x Y)
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TI=T===: i~ -3t=f 2 Fpt -]

”1<x‘ooox ’y1oooy ) = (x1'y1)oco(x1,y ) XY} ( 'y_‘) oo(xm,yn)
rZ(x‘l"'xm'yf"yn) = (x1.y1)"'(xn,y1) eee (H'yn)".(xn'yn)

Hence f'.l £ f'z.

EXAMPLE 5.6 _COMMUTING DISJ._‘RIBUTIONS For any sets X,m,n there are canoniocal

s o o o o o e o awy og wm mar 0
3 - - - e e

isomorphisms (X2 = BX8 = ™™ using the exponential laws 2.3

vherein (x:lj :i1€m, JEN) € x“’“‘ corresponds to ((xi.j ti1€m):i€n)
€ (X™® and to ((xi‘1 :3J€n):i€m) € (XM®, Baythat p €Ty, q €T

commute if their corresponding operations of 3.1 do, that is, if for eéery
set X diagram (A) commutes. Equivaleatly, given (ri:] :4€m, j €0) € (TX**",

@)"
()2 X0 e ((TX)™® > (TX)®
«rx)®"® 8 W
3" ‘l
(mx)® ™

B

?lx(ﬁx(rij :i€m): j€EN) = 'p‘x(t'a‘x(r:“j : J€n) : 4 ;m).

For example, & binary operation + and a ternary operation ¢ commute if

(aq4q + 83) ¢ (ay; + a5;) o (‘*13 +85) = (“15‘“12“13) + (ayqea ;00 ,).



are equivalent and define when {l__‘ is a commutative theory.
1 For all sets X, Y, ey L y* XY > T(XxY) hasa

2~hommorphio exbension f' :™X x TY —3> T(X x Y), Such [’ (unique

by 5.3) is the independent joint distributions map,

2 Every function of form & : Xy X eee xX —> TY (n 21)
has a unique n-homomorphic extension & : TX, X oo X 'rx# ——3 TY,
>3 For all sets X, Y the two maps Py -r'?_ of 5.4 " are equal,
j, Every pair qf g—distribut:lons commutes,

Proof. 1 is equivalent to 2, 1 is a special case of 2., Conversely, use induction

onn, Forn =1 use ot#. Given o« : x1 X eee X xn+1' use the inductive hypothesis

to obtain an n-homomorphism ¥ TXy X eo0 X TX) —p» T(l, X eoe X !n) extendin,

‘X1 X eoe X X'° It is easily checked that the composition
. n

¥ x ia
'x'x1x---x'rx xTX ——-—->T(X1x---xx)x!x1

| r

T(x1 X eo0 X xn+1)

&
Y .

is an (a+1)<homomorphisn extending X, Uniqueness follows froa 5.3.
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1 is equivalent to 3, If P1 = r 20 the result is a 2-homomorphic
extension of o since I 1 is homomorphic in the second variable and r 2

is homomorphic in the first variable (step 6 of S.4). Conversely, given

r s prooceed as follows. Consider the seven steps in the definition of f' 1
but working backwards starting with f' ¢ proceeding from’ step 6 to step 5 by
composing with ey and proceeding from step 3 to step 2 by composing with eye
Then [ ? is a homomorphism coordinatewise since r is 2-homomorphic, so that
r'f : «r ? )#. Similarly, [ 2 is a homomorphism coordinatewise since [ is

2-homomorphic and [ :’ is just a restriction of [, so [ ? =« ([ f Y. But

then it is olear that "= [,. Simitarly, [a [ .

3 is equivalent to 4, Let p €ETm, q € Tn and set 8 = P,‘(p.q)
€ T(mxn)., We begin by using 5.4 (but writing m, n instead of X, Y) to

compute the operation Qx : (TX)B*R =3 TX  induced by s, Let

V.Y
(r, jiiemjen € (TX)®*®, By definition 3.1, ay(ry4) is obtained
by evaluating

F., (’13)#
™ x Tn 3 T(mxn) > TX

at (p,q). As r'f = (P?)# is coordinatewise a homomorphism, if we hold p

fixed in the map above, we get a homomorphism % : Tn —>TX so that

Y= ("j" Jen)# where 8y = (r“)#r'#(p.d) € TX., Letting ind i R—>p@mxn
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T in (r z:I.Gu,Jen)#
3 13
Tm 3 T(mxn) —> TX

A

(B)

®axn | ’ij)

m > @mxn

(r“ t:i€m

be the injection map i - (i,j), diagram (B) commutes. Using this diagram
and the associativity axiom for T, 8y = (rij s1i€m Je n)#( Ff)#(p)(j)

=gyt 1€m 3 € PHE*E = s ten®n) = fry 1w,
We then compute that ax(r“ :41€my J€n) = (rij s ie€m, J €n)# f'1(p.q)
= Y(q) = (s, : J€ 2)%(g) = ax(";) 1 J€EN) = ax(fx(rij 11€m 1 § €n).

A similar calculation shows that if t = [L(p,q) € T(mxn) then

'1?1((:'1‘1 t:i€m jEN) o Sx(ex(rij t J€Nn) ¢ 41 €Em), It them follows at once
that 3 implies &, That & implies 3 is proved the same way since if Py Q
commute then ( f'.,(p.q))A a (f'z(p.q))A #o that [ (pyq) = 2(pe)

by theorem 3.3, O

EXAMPLE 2‘.3 The five examples tabulated below are commutative.

TTEERSTEE



commutative theory

[ and &

crisp set theory

Mp,a) = (pya), o =

fuzzy set theory

F(pya)(x,3) = Min(p(x),a(y). H(pyyeeesp,)(y)

x.€X, -

= Sup “in(p1 (X1 )....‘pn(xn)gﬂﬁ .....Xn)(y))
i"71 .

probabilistic set theory

Mp,q)(x,¥) = p(x)aly). ;‘(p1.....pn)(y)

- z p1 (x“)...pn(xn) “(X,‘ goee .Xn)(Y)

xicxi

possibilistic set theory

Np,a) = pxa.  Apjseeesn))

= U X (Xy00009x )

x¢py

ocredibility theory

P((°1 .ﬁ).(cagxz)) = (Hin(c1.°2),(!1 .xa))
It pi = (ci.xi) and d(x1 .ooogxn) s (ﬂ'y)'
then a(p1 pooe 'pn) ] (Hin((hc., XY |°n) ’y)

THEOREM 5.9 If T is & commtative theory, T-equality is symetric.

Proof, By an argument similar to the proof of equivalence of 1 and 3 in

5.7, the T-equality map of 2.5 eqy : TX x TX — T is the unique 2-homomorphic

extension of §: X x X —> T where S(R.Y) =§§=ug it x =y, ag_g;gg it x £y,

Since h{p,q) = oqx(q.p) is another 2-homomorphic extension of 8. R=o ©qye D




é’;";::Z;l 0 The neighborhood theory and the pure noise theory are not
;omutativo gsince we have seen in 2.15 and 4,9 that equality is mot symmetric
in these theories. The converse of 5.9 fails since the priority theory is
not commutative by 5.5 whereas itas equality,map, discussed in 2,11, is

symmetric,

Given probability distributions p, q each of p, q may be roéovored fron

their induced independent joint distributionj for example, p(x) nvz p(x)a(y) .
y

This is not true for fuzzy sets since if r = [(p,q) with p(x) €a and
q(y) 2 a then r(x,y) = Min(p(x),q(y)) = p(x) is independent of q. No

such example exists when Sup(p(x) = 1 = Sup(q(y)) in view of the following
result:

are equivalent.

1 T has crisp points.

2 For each pair of sets X, Y the independent joint distributions map
[: TX x TY — T(X x ¥) is injective. |

THEOREM 5.11 Let T be a gcommutative theory. Then the following conditions

Proof. 2 implies 1. Let 1 = {aj be a one-olement set. Lot £ : 1 x 1 —p1
be the unique map, f(a,a) = a. Define

r Tr
F =2 MxT —— (1 x1) ————p ™

Since Tf is an isomorphism by 4.3, ¥ is injective. As T is commutative,
¥lay=) : M1 =Tl is a homomorphism, As 16.31 is the only’ homomorphism
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T1 —>T1 mapping a to a, $(a,p) =p for all p € ™. 8imilarly, ¥(p,a)

= p for all p. But then given p € T1, p,a) = ¥(a,p) 4mplies (pya) = (a,p)
and hence that p = a, that is, T = 1.

1 implies 2. We begin by observing that for any theory with ecrisp points,
the homomorphic extension of a constant map is constant. To prove this, let
¥ : 1—>»TY take the value r € TY and let P X ——>1 be the unique map

so that o = 3’,5 ¢! X ——3 TY is constantly r. As 7# TP is a homomorphism

T #
TX P > T1 ¥ > TY
® @,
e ] T <
X —p ]
p

equalling YA when preceded by oy 3# 'l‘f = 0(# o But since o is bijective,

’6# Tp 1is constantly r.
To apply this principle, define pry : Xx Y —»X by pry(x,y) = x

and consult diagram (C). Here B is defined as eypry and X is obtained from

B by coordinatewise extension and the exponential laws (cf. steps 1 to 4 of
S.4). Since Plx,y) = o,(x) is independent of y and since the homomorphic
extenaion of a constant is constant, o{(x,q) = ex(x) for all q €TY, But then

(c)
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as the perimeter of (C) commutes and as [' is 2-homomorphic, (T prx) I is

the 2-homomorphic extension of p. By uniqueness of homomorphic extension,

it follows that triangle (®) commutes. Putting these facts together,

(T prx)'r'(p.q) = eﬁ(p) =p for all q. Arguing similarly, (T pry) I(p,q) = a.

Thus (p,q) may be recovered from ['(p,q) and I" is injective. O



6. The logic of propositions

For commutative theories, algebraic operations extend from X to TX
and, in particular, every Boolean polynomial eitends to T. vhite T need

not be a Boolean algeobra, a large clasas of Boolean equations continue to hold,

OBSERVATION 6.1 THE FUZZIFICATION PRINCIPLE If T is a commutative theory,

P2 g LT EE o T =

each function £ X.' X ooo X xn———p Y has an n-homomorphic extension

"

: TX,' X eeo X 'rxn ——3»TY defined in the notation of 5.7.2 by

"2

= -‘?o Yhen n = 1, £ = T, The case n = O is not covered. Here, ¢

agounts to an element y of Y and we shall define ¥ = y (that is, oy(y)).

DEFINITION 6,2 The Boolean logic of the commutative theory T is its set T of

'£-truth values together with the operations f as £ ranges over the finitary Boolean
polynomials 2 ——5 2, The usual practice of defining a Boolean algebra
in terms of a small finite sst of operatioms depends on equations of form
f = @ where f is a Boolean polynomial and ¢ is an expression built from the
given small set of operationa. Since ; =8 may not hold in T, it would be
prejudicial to favor some operations over others.

In our examples we will emphasize the familiar 'or', 'and' and 'not'

operations, written V , A: 2x2 — 2, (=)' : 2 —»2 ag well as the

Boolean conditional bcx $2%xX XX ~——z X defined by bcx(gx;__gg.x.y) = X,

bcx(ggl.gg,x.y) = Yo (It is natural to say bcx(p,xoy) = 'if p then x else y';

the more precise motation is necessary owing to a competing conditional to be
introduced in{~" . section 8). Then b“é'x : T xTX x TX ——» TX is always



defined and I;:T is a ternary operation on 7.

6.3 BOOLEAN LOGIC FOR FUZZY SEIS See 2,7 for notation,
e e T Tt e S Pt et Wit
~y s . "~ - ~ -
gar!‘.-gggg_e_ =1, ggggggLsQ = 03 52;2229._;3 =0, gg;aggggggg =1

In general, for any £ : 2‘—-—-)2. t1’ooo.tn € T ’ 11.....xn € 2'

(;(t.‘ ’.oo.tn) )k s S\fl%x‘l X )*Hin(t.‘ (&, ) '.o.'tn(xn))
veeo X

for k = true, false, and t;(x,) alternate notation for subscript notation.

~
For s, t € T we will wr_:lto 8 Vt rather than the more oumbersome s V¢

both hore and below, and similarly for A and ', Then
(s V t)gg\._e_e o M(Hm(agggg,tggg) ,Hin(sggg,tguﬁ.g) 'm“ggl,gg'-tgggg))
(sVv 1:)£g;gg = Hin(agglgg,tggl_gg) |
(s t)gggg = Hin(sggg.tgggg)
(s At);g;gg = "q("“("ggl-,,;g’tgg;_gg) ,Hin(agggg,tmg).Hh(cmg.tgggg))
“true ” “rales’ *'talee " %grue

Further, for t € T, q, r € TX, the Boolean conditional is given by
Boy(t,q,r) (x) = Hlx(ﬂin(t.gggg,q(x) WSUpGE(y)) Min(ty,, o8 a(3) y(x))
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EXAMPLE 6,4 BOOLEAN LOGIC_FOR PROBABILISTIC SET THEORY See 2.8 for notation.

—————————— cEsEIaEosnzaRIns Pt gt 3 A Pt tef 3

Here true = 1, false = O, We have
t 31—+ f +--+- -3

BVt = st + 8(1«t) + (1=8)t = B8+t - st
sAt = st
8' = -8

l?éx(t,q,r) = tq + (1-t)r

EXAMPLE 6.5 BOOLEAN LOGIC FOR POSSI§Z_I_I£=I§IC SET THEORY In the notation of

S - R =2t -1

2,9, gg\___xg"= yes and rf_g%gg”: no . V and A are commutative (this is always

-t ==

true as will be proved below) and hence are defined by

. undefined Vt = undefined undefined At = undefin
P-4 —t—2 34 mInTTETOn WESSTJET=N ST IINWRES
mabe V maybe = maybe maybe A magbe = maybe
And, for t £ undefined,
Jes V't = yos Yes At ot
g Ve = ¢ gg At = g
Also,
undefized! = undefined paybe’ = maybe
yeo' = m ne' = yes

The Boolean conditional is given by

G&x(uggggg__i’ggg.q,r) = ¢ b‘éx(gggl_:g,q.r) = q U r
I’;cx(gg.q.r) = q b’:x_(g‘__!oq’r) = &

if both q, r £ ¢ whereas &x(t,q.r) = ¢ if either q = ﬂ or r= ¢.



EXAMPLE 6, 6 BOOLEAN LOGIC FOR CREDIBILITY THEORY tme = (1.3:;33).

e e T T TN T TR TR RSa=s

talge" = (1,false) (where 1 is the greatest element of C). In general,

=== sS=s=S

it f(ﬁ’ooo'xn) s Y f((c1.5&1),...,(cn,xn)) = ("h(ca"ooo’cn)QY)o For
u, v€2,¢,d € C wve have

(eou) V (d,v) = (Min(c,d),uVy v)
(C'u) A (d.V)

(cyu)' = (o,u')

(Min(c,d) yu A v)

The Boolean conditional is given by

b':;x((c.gx:ﬂ:.x_g).(e1 .x‘),(cz,xz)) = (Min(o,c,),x;)

bay((0,£a188) , (044%;) 4 (0,4%5)) = (Hin(o,0,) yx,)

We wish to motivate what comes next by considering an arbitrary ‘binary

operation £ : X and its extension f : (Tx)a—b TX where T

is possibilistic set theory. Then by 5.8, f(A,B) = §f(a,b) 1 a €A, b€ B,
Define ¥: (TX)> —TX by AAB,C) = £(A,£(B,C)) =

§2(a,2(by0)) t a €A, b €B, 0 €C3. It is clear that ¢ is a 3-homomorphisa
(1.0. by 3.7, $P( Ul\i.B.c) U?’(Ai,n,c). eto.). It follows similarly
that t(f(A,B) +C) is a 3-homomorphism, It is then immediate from theorem 5.3
that f is associative if f is,

The argument breaks dowa if a variable is repeated., For example, consider
. 2 ~ ~
Frao®—s m, 0B o 6,00, 1fa €8 vitha A, 8, £,
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and if b € B, t(a.',f(b,aa)) € P(MU AZ,B) but will not, in general, be .

an element of S‘(A, »B) U ‘/’(AZ,B), s0 ¥ need not be a 2-homomorphim. In
such a case, if g : xa--b X, 8(x,y) = £(x,2(y,x)), fél 8o

DEFINITION 6,7 Universal algebra ([Cohn 1965), [Gritzer 1979)) deals

with equationally-definable classes of algebras, The treatment here will be

as informal as possible. Examples of algebras defined by operations and

equations include groups, rings and Boolean algebras (but not fields since
multiplicative inverse is mot a totally-defined unary operation). Boolean

algebras may be presented by imposing two binary operations A, V (intioun

and supremum), one unary operation (-)' (complement) and two nullary

operations (= constants) 0, 1 (the least and greatest clements) and by imposing
well-known appropriate equationas., In addition to the equations provided by

the prosoﬁtiation. many other equations will hold. A number of valid equations appea
in (A) and (B) below, The expressions appearing om either side of an equation

XAy = YA X
xA(yAs) = (xAy)As
xA1 = x

x'' 2 x

(xVy) = x*A Y
(a)

XAX = X
xXVXx = x

xV1 »

b



xVx' = 1

xAx* = O
(B)

x Ax!

YA Y
xA(yva) = (xAy)VixA 2)

are called terms. Given an equational presentation S an R-g_]&e_b;z_'g_ is a set
| equipped with the corresponding operations which satisfy the given equations.
If X is an fl-algebra and if t is a term with n variables, t induces a map
X% — X by substituting elements of X for the syntactic variables. If
X is an .ﬂ.-algobra and if ‘£ is a commtative theory then each of the ﬂ-oporations
on X extends to TX by the fuzzifiocation prineciple 6.1 and so each Jl-tern with
n variables induces a map (TX)" ———»TX, Define an JU-term to be
- multi-homomorphic if it has n 2 1 variables and is such that whenever X is
an Jl-algebra and T is a commutative theory, the induced map (TX)®——p TX
is n-homomorphic, A4l1 terms on either side in (A) are multi-homomorphic because:

THEOREM 6,8 Let t be an Jfl-term with n 3 1 varisbles. Then if each variable

SCISsSms=esn

in t occurg without repetition, t is multi-homomorphic.,

Proof. We use induction on the derivation tree of t. (For example, if
t =xV(y A1), the derivation tree of t ia

/ v\
x N\
y 1
Derivation trees are unique and, unless they consist of a single variable, have
a topmost decoupling; see [Cohn 1965, II1.2] , [Manes 1976, 1.11] .



Let X be an JSl-algebra and let T be a commutative theory. Each

n-ary operation W in the presentation A} induces an operation wx t XD e X
~ n

and hence the operation Wy 1 (TX)" ——> TX. Thus each JU-term t with

n variables has interpretations ty : X® —> X and toy ¢ (tx)® — TX.

(For example, let §? present Boolean algebras as in 6.7, let B be a Boolean
algebra, let T be possibility theory; then AB(b,c) =bAe, IE(L,H) =

{b/\c:b€l'..c¢l(} s it = xA x then th(L): XB(L,L) s
§pAc:b, €13 notice that t (1) = §6Ab:b€L} alL isa aifferent

oporation). The statement to be proved by induction is: 'if ¢ has n 3 1
variables which occur without repetition then "'rx = :x' o

For the basis step, if the derivation tree of t consists of a single
abstract variable, its interpretation in every algebra is the identity map

8o that t, = *r(tx) = '.l'(:ldx) = ddp, = to.

For the inductive step, if t has n % 1 variables and is not a single
variable it has a unique tbpnoot decoupling

w
t = /
t1 e o o tm

with @ 2 1, W an m-ary operation in the presentation J’I and t1,...,tm terus,
Clearly, any repetition of variables in a ti would induce one in t so that

~
the induotive hypothesis applies and t!.x = tigy \ for 1 £41i<€a, The



~ . ~ ~ ~ .
t L] wx(t1Tx'ooo'tmrx) = wx(t1xgoo.’tmx)o Fix ket‘|ooo.n§ and

TX
substitute fixed elements of TX for all but the kth abstract variable in t.

*h bstract varisble in t which resides

Substitute variable p € TX for the k
in ti for unique i because there is no repetition of variables in t. Then

trx is a function of p. Since Gx is independent of p for j £ k, t.l.x(p)
is the composition of the two homomorphisms &x(""vpo"‘) and

~ ~S ~ : .
“’x(t"x’.oo.ta:“)x'(-)’t(k+1 )X'...'tmx). Thus t.rx is n-hommrphic. It

~
follows from 5.3 that t,. = t, . - 0

DEFINITION 6.9 A _CONDITION OF EILENBERG Given an equational presentation

- o 0 e e e v
B e = e e e e T 3

U, an fl-equation t = s is nonrepetitive if the set of abstract
variables ocourring in t coincides with the set of abstract variables occurring
in s and if no repetition of variables ocours either in ,t or in s, In the
examples of 6.7, the equations of (A) are nonrepetitive ‘whereas none of those
of (B) is nonrepetitive.

I believe that the linear theories studied by Eilenberg (mentioned in the
introduction) amount to equational presentations in which each equation is

nonrepetitive and that Eilenberg proved the following result for the ocase.
2 = possibilistic set theory,

METATHEOREM 6,10 Let X be an -algebra and 101: T be a commutative theog.
e —— e

g e A oy o = o
-"—'—...—:—-::2———-

Then every nonrepetitive J2-equation true for X is true for TX.

Proof, Let t = 8 be a nonrepetitive equation with common number of variables n,
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Adopt the notations of the proof of 6.8, If n > 1 then by 6.8 toye
are n-homomorphisua (TX)® ——3 TX and so are equal by 5.3 if t, = 8ye

Now consider the case n = 0. (Example: (1V1)A 1 = 1V 0). For each

“y
x® - X
° l lax | ©)
(rx)® — —>» TX
“x

m-ary operation W of the presentation J with m > 1, diagram (C) commutes.
It follows by induction on the derivation trees, that ty, = ox(tx) and s

sinilar]:.aothatiftxuax.trxsqrx. D

EXAMPLE AND OPEN QUESTION 6.11 The equation xA(xAy) = (xAy)A x

ot T gy S
-t 2 3 4 3 ot

is not nonrepetitive but is true in the Boolean logic of g because it is a
consequence of the nonrepetitive equation xAy = y A x. The equation
xVx = xV(x*A x) is false for the Boolean logic of probabilistic set
theory but is true for that of possibilistic set theory. In partioular, this
equation is not a consequence of nonrepetitive oquationa.. Wo leave unanswered
the basic question: 1Is every equation true in the Boolean logic of every

. commutative theory necessarily a consequence of.nonrepetitive equations?

DEFINITION 6.12 ORDERED STRUCTURE Let ‘1‘ be a commutative theory. Consider

=== ::22"8::-: 3+ 33 3441442

the following three sets of equations for the Boolean logic of 2‘
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xA(yAz2Z) = (xAy)A =z XAy = yAX

xV(yve) = (xvy)Vve xVy a yvx (D)
x' =z x (x,\y)- = x'Vv ¥y (xvy)u a XAy

xAx = x xVx = x (E)

xA(xVvy) = x xV(xAy) = x (P

All equations in (D) are nonrepo?.itivo and eo hold. By (D) if either equation
in (E) holds so does the other, and similarly for (F)., If (E) holds then
XSy definedby xAy = x 1is a partial order with respect to which
xAy = Inf(x,y) and, dually, x &' y doefined by xVy =y 1isa
partial order with xVy = Sup(x,y). By (D), x $y if and only if .
' g' x'. If these orders exist, they coincide if and only if (F) holds and
in this case we say that the Boolean logic of g is a lattice,

EXAMPLE 6.13
Iz ==ommm=S
commutative theory partially-ordered status of Boolean logic L
3
<
fuzzy set theory 8sSt& BP.E!E s tE!_'!_lg and ("gelgg = Hn('ﬁ!gg't&lgg) :
or M.'m(am,m,i:f 1 ) § Bpo1se 5 "ax(tfalse'ttme)
=== ====s === sSuss= t———3—
not a lattice

probabilistic set theory not partially ordered

- possibilistic set theory undefined < false < maybe < true; not a lattice

eredibility theory (ow) S (4,v) itoS$dand (U=vorus= false,

v = true); not a lattice
=T




gz;q:zggggz_(:)r_j:g:lg Characterize those commutative theories whose Boolean

The following result shows that at the very least such theories have corisp
points.

THEOREM 6,15 For a commutative theory Ty the following are equivalent:

oy o S o o = e 0 e T
STI=SSESEEs=sS=

1 T has crisp points.

Proof, 1 implies 2. The map ¥: T — T defined by P(r) =r A false

is the unique homomorphism mapping both 2{.23,' {._g;gg to gg;gg. Define

23—

T ? > T
Bl (@)
.2 01 02
2 > 1 > 2
t g

£ : 2—>»1 to be the unique map to the one-element set 1 = faj and define
g : 1—>2 by g(a) = false. As is clear from diagram (@), ¥ is a homomorphism
satisfying e, = e.8f so that ¥ = T(gf) = Tg Tf. BSince T1 has only one

element by hypothesis, ¥ is constant as desired.

2 implies 1. Using the same notations, consider diagram (H), As
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1 : » 2
,, .
™ i > T (%)
, l*f
T
As Tg o,(a) = e, g(a) = false = P(false) = Yo, gla) =

Y ¢ en(a'), the homomorphisms ¥ Tg and Tg are equal, Since ¥ is constant
by hypothesis, so is Tg, By 4.3, Tg is injective. It follows that T
has only one element, O
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7. Superposition

Matrix theories over a complete partial seniring admit a superposition
principle, Fuzzy set theory and poseibility theory are examples,

SEEINITION 7.1, COMPLETE PARTIAL SEMIRINGS A complete partial semiring is
(R,Z,-,ﬂ where R is a non-empty set, 2 is a partially-defined operation
on arbitrary families in R, ¢ is a binary operation on R (which we shall write

re rather than res) and 1€ R gubject to the following four axioms:
axiom 1, (rs)t = r(st), *1 a r = 1r
axiom 2, If 2 (r : 41 € I) is defined then for all s, Zler, s 1€T)
~+ 2(r;s 1 1€ I) are defined and equal, respectively, s 2(:1 :4€1),

(z(rizi.CI))u.

axiom 3. For 1-'olenent families, 2.(r) = »r.

Before stating the next axiom, we point out that by a partition on a set
I ve mean a non-empty family (Ij $ J€ J) of pairwise disjoint subsets of I
~ whose union is I; but we allow '.t3 to be empty for any set of J.

axion 4, If (riz1€I)isanyfam11yinnand1f(lasjﬁJ)iaa
partition of I then 2(r, : 4 € I) 1ie defined if and only if
(Z(r, 1 4€ I): JEI 1 defined and, when defined, they are equal.

This definiticn is a hybrid of the complete semirings of [Eilenberg 1974)
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and the partially-additive semirings of [Arbib and Manes 1980a] e When
Y ie the supremum operation of a complete lattice, we recapture the complete

lattice ordered semigroups of [Goguen 1967] .

if {aj is partitioned into ( {a} +#) we deduce for r € R that
r = 2(r) a A Z(r),z¢ ) so that 2¢ exists and acts as an
additive zero. We henceforth write O for 2, ¢ . A sinilar argument shows
that any sum of O's is O,

'EXAMPLE 7,2 The unit interval is a complete partial semiring in a number of

SSasnom--

ways. We list four,
1 z = Sup, .

2 2=Sup, hd

Min,

numerical multiplication,

3 For finite families let 2 = Min(1,usual sum) and for arbitrary

families let 2(1‘1 : 1€ 1I) be the topological limit of the net of finite
partial sums. Set « = Min,

4 I as in 3 but « = numerical multiplication.

EXAMPLE 7,3 Let R = {0,1} « Define 2(x~1 :1€I) tobeo, 1,
undefined accordingly as {:l €1:; ry = 1 Z is empty, has one element, has

more than one element. Define o to be the. Boolean A.

DEFINITION 7.4 MATRIX THEORIES  Let R be a complete partial semiring. The

matrix theory of R is the fuzzy theory mat, = (T,d.(-f#) as follows, TX =
f P : p is a function from X to R such that for every ‘fuhctiqn q from X to R
2Ca(x)p(x) : x € X) exists in R§. Define ex(x). to be the Kéonockor“
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delta V=14t xey, 50 irx4y, Given & : X ——s?v, p € X,
define “#(p) = E(Nx(y) p(x) : x €X).

In such a matrix theory, o : X=——3TY may be thought of as a matrix
with entries in R with X indexing columng and Y indexing rowg, The composition
£:p = F#o( is then matrix multiplication and oy 18 the identity matrix,

It is easy to show that §‘§§R is a commutative theory if and only if R
is commutative in the sense that rs - ar,
E’,‘;”g&i_;é The fuzzy set theory = mat, for R as in 7.2,1. The possibilistic
set theory = mat, for R the two-element Boolean lattics with =V , .. A,
For R as in 7.3, 5§§R is a new theory, the partial functions theory. Here, the
image of ox misses only one element of TX, the constantly-0 function which we
interpret as ‘undefined’., Thus a patrix of : X ——PpTY corresponds to the
partial function x jup oX(x) if (x) € Y, undefined else; this correspondence
is bijective between matrices and partial functions., Matrix multiplication is
the usual composition of partial functions., The partial functions theory is
a subtheory of possibilistic set theory via the ‘theory map that 'aenda 'undefined’

to the empty set.

OBSERVATION 7.6 SUPERPOSITION Given a function f $X +Y —p Z dofined
=====a====================n==z

on the disjoint union of X and Y, let fx denote the restriction of ¢ to X, f!
similarly, any matrix theory admits the Buperposition maps



“xy
X + ¥) —p TX x TY

The principle here is that a distribution on any set of outcomes induces
distributions on each subget of outcomes (measuring the 'contribution' of

that subset). For each X, Y 8yy is injective and is bijective precisely when

E is defined for every pair., Indeed, 8yy is bijective for fuzzy set theory
and for possibilistic set theory, but not for the partial functions theory.

The maps Syy Bay be generalized from binary to arbitrary disjoint unions
and in this form it is not hard to imposes axioms so as to"

ohAractorizo matrix theories. The proof follows closely that of

[Johnson and Manes 1970, Theorem 2.1 (4 implies 1)) and so will not be given here.

ECNPLE 7,7 WOLTISED THEORY Let R = §0,1,2,.0. § | |03 vith the uoua

2=t 4

sum and product. The multiset theory is the aubtheory T of mat, with TX

the set of funotions p : X——>R sguch that (i) {x:p(x) 0} is finite
and (i1) no p(x) = 0 . If p(x) = n the ix;terpretation is 'x ocours in p

n times', All. of mat, is a theory with a similar intorprotatioa, ‘

EXAMPLE 7.8 If T is noise-free and consistent it is not a matrix theory
since there is'no map TX ——3» TX x T, For this reason, neither crisp
set theory nor probabiiistic aot‘ theory are matrix thooriea,
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8. The distributiocaal ‘conditional

a:s--azazcazﬂsas STSDRI=SHmom e

S somnenTe

DEFINITION 8.1 THE DIS'I'RIBUI'IONQL CONDITIONAL Let T be a (not necessarily
P e e T =

computative) fuszey theory. The distributional conditional Baps

dey

Tx™x ™ ——————a ™

are defined by dcx(t,q,r) = 3x(q,r) vhere, t € T = T2 induces a binary

operation £ as in 3.1. Our comvention is "trus-coordinate first' so that

in 8 = (q,r), ‘truo aq and

EXAMPLE 8,2

Spssassun=s

theory

C‘t’% Lo

dcx(t »q,T)

crigp set theory

qiftatm.riftztalao

fuzzy set theory

s whore 8(x) = Max(Min(t o,q(x)),,lﬂ.n(tmh’.r(x)))

probabilistic set theory

tq + (1-t)r

possibilistio set theory

Qift o ges, rift ano, #1r

t s undefined, qu 4f ¢ = maybe

credibility theory

(qe0) $£ t = (gggg,c), (r,0) if t = (false,c)

priority theory

qQif ¢t = true, r if ¢t = false, obtained respectively

from qr, rq acecordingly as t = norotruothantalso

or morefalsethantrue, by deleting all repetitions

WITIDTE ST STIVESIR

mept the leftmost ocourrence.
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neighborhood theory qirt = yes, r iftas no, q ﬂr it
t = maybe
pure noise theory qQ if t = true,.r if t = false, t 42 tE N

Comparison of o:lcx and ‘;"’x for fuzzy set theory and possibility theory

makes the following result a likely conjecture:

THEOREM 8.3 If T is oom:i:utatg_g_ theory, the following are equivalent.

1 T has crisp points.

2 The Boolean conditional coincides with the distributional conditional,

Proof. 1 implies 2, For fixed q, r € TX, dcx(-,q.r) and ﬁx(-.q,r) are both

homomorphisms T ~——3 TX &0 that by k.1 it suffices to show these maps

-
=z=====

agree on gggg and false. Since z has orisp points, every constant map

TX ~——2>» TX 48 a homomorphism, B This
was shown in the proof of 5.11 (1

implies 2). It follows that the first projection TX x TX —> TX is the
2-homomorphic extension of the first projoction X x X =3 X, and so must coinoide
with ﬁx(gggg.-;-); Thus dcx(gggg.q,r) =q= b‘éx(gggg.q.r)_. By a similar

argument dcx(g_gl.gg,q,r) =P = l?c’x(gg%gg,q,r).

2 implies 1. By hypothesis, de, : T x TTXT —> T isa B-hombmoréhim
go that ¥ : T ——p™ defined by Yir) = do, (true,a,r) is a homomorphiss.
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Thus "P is simultaneously the unique homomorphism mapping a to a, namely
idp,+ and the map constantly a. It follows that T = 1. O

The examples of 8.2 suggest that the distributional conditional is a
little more natural than the Boolean conditional and it is more often defined
as well. We favor it in the next two definitions,

EFINITION 8,4 Given p:X —» T, a: X —pT¢, P: X —p T2
ISSIITSnTISERET
define

if p°then o olse B

== o2~ -2—1 133~

X » T™(Y + 2)

by (if p thenxelsef) (x) = dey 2(p(x), ®(x), A(x)). (Here, if
inY ¢t Y~—»¥+Z is the injection intoe the disjoint union, in, similarly,

the more cumbersome but more precise notation is

doy o(p(x), T(iny) &(x), T(1n;) A(x)). Intuition is provided by

N

(A)

flovchart (A). Define Oy as the map

£
& x @* x @¥ > 2(Y + 2)

(ot P —> ifp them « glss
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and let d!z’ T xTY x T2 e T(Y 4 2) be o'gz when X has one

element,

DEFINITION 8.5 Let T be an arbitrary fuzzy theory. Say that '5 is

scmEmosntgm==h »

conditional-complete if GYZ is surjective whenever both Y, Z are non-empty.

For such T it follows that every map X =—~—> T(Y + Z) decomposes into

the form if p then «#else 8.
=z z_== sS===

.

gRssTsnoss

EXAMPLE 8,6 The theories in the following table are conditional-complete,

fuzzy theory q € T(¥+2) has form if p then of else @ where ...

orisp set theory if q € Y, q = if true then q else p (any B € Z)

ifq€ 2, q = if false then else q (any « € Y)

fuzzy set theory q = i (1,1) then q, else q,

2y = 0y 4 = if O then o glse q; (any &)

probabilistic set theory] if k
'»a=if 1 then qy glee B (any M)

1 K
else q = if k then (1/k)qy else (1/(1-k))a,

———————— ====

possibilistic set theoryl q = if ggxég then q Y else q ﬂ Z . s

if q = (2,6), q = if false then else q (any o)

Smaw  Enome s ae - eton
—_—— mReRS =SS

credibility theory if q = (y,0), q = if true then q else p (any fp)

pure noise theory  |ifa €Y, q= if true then q else f (any B)
if.9 €2y q = if false then L oloe ¢  (any &)

if Q€ N, q = if true then q elae q
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The formula shown above for fuzzy set theory works in fact for any matrix theory.
The priority and neighborhood theories are not conditional—éompleto. If the
definitions in 8.4, 8.5 were modified to use the Boolean conditional, fuzzy

set theory would not be conditional-complete,
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9, Conclusions

Rather than positing th? internal structure of a set of 'vague
outcomes' in advance, the axioms for a fuzzy theory impose only those
structural aspects required to interpret a loop-free program.scheme.
Just as a discussion of symmetry groups would bypass the use of group
theory in arithmetic, our treatment of fuzzy theories bypasses the
universal algebra interpretation. Commutative theories with crisp points
and commutative matrix theories provide broad classes of examples which are
- ¢lose to standard ones in fuzzy theory. Because a commutative theory allows
simultaneous observation of any pair of distributions, any futurg application

to quantum theory is likely to devote attention to noncommutative theories.
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