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Abstract

An associative memory system is presented which does not fequire
a "teacher" to provide the desired associations. For each input key
it conducts a search for the output pattern which optimizes an ex-
ternal payoff or reinforcement signal. The associative search net-
work combines pattern recognition and function optimization c&pa-
bilities in a simple and effective way. We define the associative
search problem, discuss conditions under which the associative search
network is capable of solving it, and present results from computer
simulations. The synthesis of sensory-motor control surfaces is

discussed is an example of the associative search problem.
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Numerous reports have appeared in the 1iterature describing asso-
ciative memory systems in which information is distributed across large
areas of the physical memory structure (e.g., Amari, 1977; Anderson
et al, 1977; Cooper, 1974; Kohonen, 1977; Nakano, 1972; Wigstrom, 1973;
Willeshaw et al., 1969). The simplest of these are based on the pro-
perties of correlation matrices, and all of them exhibit interesting
and suggestive forms of content addressability, generalization, and
error tolerance. There have also been numerous discussions of the pos-
sibility that these forms of memory structures may provide models of
biological memories. In all of these studies, the storage process is
one in which a series of "keys" and "patterns" are repeatedly presented
to the memory network which stores the key-pattern associations.

As models of memory, these associative memory structures suggest
how a rapproachment might be reached between connectionistic, location-
alistic views of memory and Gestalt, mass action views (e.g., Freeman,
1975; John and Schwartz, 1978). Associative memories use learning rules
that are connectionistic in character yet need not store information in
localized form. However, as models of learning they exhibit only a very
simple form of open-loop learning. Since the desired response (the pat-
tern to be reproduced) and the stimulus intended to elicit that response
(the key) are both explicitly presented to the system during the training

phase, these studies do not address the case of learning in which neither



the associative memory nor the environment knows the desired response.

In this paper we describe an associative memory structure, called an
Associative Search Network or ASN, which is not told by some outside process
(e.g., a "teacher") what pattern it is to associate with each key. Instead,
for each key, the network must search for that pattern which maximizes an
external payoff or reinforcement signal. It operates by generating an.out-
put pattern, receiving an evaluation from its environment in the form of a
scalar level of payoff or reinforcement, updating the-contents of its mem-
ory, and then repeating this "generate-and-test" procedure. As thisjkind'
of learning proceeds, each key causes the retrieval of better choices for
the pattern to be associated with tﬁat key. What gets stored in the asso-
ciative memory is a result of reinforcement feedback through the environ-
-ment. By eliminating the need for a "teacher" to explicitly bfovﬁde the
~ pattern to be stored, the ASN effectively solves a central problem faced
by an adaptive system. No part of the system need have a priori knowledge
about what associations are best. |

This type of 1earning should not be confused with what is'commonly
called "unsupervised learning" or "learning without a teachef". ,These'
labels refer to the problem of clustering input patterng according to a
given measure of similarity so that members of each cluster are more sihi-~
lar to one another than they are to members of other clusters. Like the
learning exhibited by the associative memory structuﬁes.cited ébove, this .

type of learning is open-loop: any consequences of the system's actions

are irrevelant. Nor should the type of learning exhibited.by the ‘ASN be

confused with Tearning in which an error rather than.reinfOrcement of pay-
off is returned by the environment. There are several impdftant differences
between error-signa1 and reinforcement learning, but the most important one

to be noted here is that in the error signal interpretation of the learning



rules used in the associative memory systems cited above; the error must

be a vector giving the signed component-wise error of the system's response.
The reinforcemént signal returned to the ASN, on the other hand, is a scalar
which is just the environment's evaluation of the system's response. The
fact that the ASN is able to learn to produce optimal output vectors based
on scalar environmental feedback should be kept firmly in mind. This type
of learning has been called "learning with a critic" by Widrow et al., 1973.
A critic need not know what each optimal response is in order to provide
useful advice.

The ASN combines two types of learning which are usually only considered
separately. First, it solves a pattern recognition problem by learning to
respond to each key with the appropriate output pattern. This is the prob-
Tem solved by the associative memory systems described in the literature.

The method used is similar to stochastic approximation pattern recognition
methods (see, for example, Duda and Hart, 1973, for a good discussion of
these techniques). At the same time, the ASN uses a different type of learn-
ing to actually find what output pattern is optimal for each key. It gffect-
ively performs a search using a stochastic automaton method to maximize a
bayoff or reinforcement function. Stochastic automaton search methods orig-
inated in the work of Tsetlin, 1971, and are reviewed by Narendra and
Thathachar, 1974. Other systems capable of performing this kind of search

do not perform the pattern recognition task. For example, the ALOPEX system
of Harth and Tzanakou, 1974, to which the ASN is closely related, performs a
search but is not sensitive to different input patterns and this is not an
associative memory. The learning the ASN accomplishes solves both the search

and the pattern recognition problems in a simple and effective way.



A]thddéh learning systems capable of solving both.types of problems
have been discussed in the adaptive system theory literature (Mendel'and‘
McLaren, 1970), these systems do not have the error tolerance and gener-
alization capabilities of distributed associative memories. The only neural
theory which contains this synthesis is that of Klopf, 1972, 1979, 1980..
Klopf emphasizes closed-loop reinforcement learning and correctly points
out that, despite common opinion to the contrary, it has been largely neg-
lected by neural theorists. The results presented here demonstrate the
sign%ficance and novelty of Klopf's theory. We will discuss the ASN in
light of Klopf's theory below. Also closely related is the notion of "boot-

strap adaptation" of Widrow et al., 1973 .

The Associative Search Problem

Fig. 1 shows an ASN interacting with an environment E. At each time t,
E provides the ASN with a vector X(t)=(x](t),...,xn(t)), where each xi(t) is
a positive real number, together with a real valued payoff or reinforcement
signal z(t). The ASN produces an output pattern_Y(t)=(y](t),...;ym(t)), where
each yi(t)e{O,l}, which is received by E. The problem the ASN is designed to
solve can be stated informally as follows. Each vector X(t) provides in-
formation to the ASN about the condition or stéte of its environment at time
t, or, viewed in another way, provides information ﬁbout the sensory context

in which the ASN should act. We call each X(t) a context vector. Different

actions, or output patterns, are éppropriate in different contexts. As a
consequence of performing an action in a particular context, the ASN receives
from its environment, in the form of a payoff or reinforcement signal, an
evaluation of the appropriateness of that action in that context. The

ASN's task is to act in each context so as to maximize this payoff.

More formally, we assume that X(t) belongs to a finite set X=(X1,...Xk)
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Figure 1. An ASN interacting with an environment E. The ASN receives

context signals Xpoeees X and 2 payoff or reinforcement signal z from E and

transmits actions to E via output signals Yyseees Yy




of context vectors and that to each XaeX there corresponds a payoff or rein- -
forcement function Za. Assuming that E always evaluates an output vector
in one time step, if X(t)=Xo, then z(t+1)=Za(Y(t)). We say that E provides

a training sequences over X if it implements an infinite sequence of payoff

functions and emits the corresponding sequence of context vectors

Xi], x12,..., Xiz,-..

such that each Xizex and each element of X occurs infinitely often (Nilsson,
1965). The associative search problem is solved if, after some finite por-
tion of a training sequence, the ASN responds to each XaeX with the output
pattern Ya=(y?,...,y;) which maximizes Za. Generalizations of this problem
are discussed below.

The Basic Adaptive Element

An ASN consists of a number of identical adaptive elements each deter-
mining a component of the system's actions. It is useful to describe first
a single element which can be regarded as the simplest ASN (m=1). Fig. 2
shows an adaptive element interacting with an environmenf E. The element
has n context input pathways X i=1,...,n, one payoff or‘reinforcement
pathway z, and one output y. Associated with each context pathway X; is a
real valued weight W, with value wi(t) at time t. Let W(t) denote the
weight vector at time t. Let s(t) denote the weighted sum at time t of
the context inputs. That is,

n
s(t) = 151 wi(t)x,(t) = W(t) - X(t).

The output y(t) is determined from s(t) as follows:
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Figure 2. The simplest ASN: A single adaptive element interacting with an
environment E.



| 1 1f s(t) + NOISE(t)>0 |
y(t) = (1)

0 otherwise,

where NOISE is a random variable with mean zero normal distribution. The
sum s thereforé biases the element's output (cf. Harth and Tzanakou, 1974):
positive s making it more 1ikely to be 1 and negative s making it more
likely to be 0.

i i=1,...,n, change according to a discrete time

jterative process. At each time step, each weight is updated according

~ The weights w

to the following equation: for i=1,...,n,

wy (641)=w, (£)+cl2(£)-2(£-1) 1Ty (t-1)-y(£-2) Ix; (£-1) (2)
where ¢ is a constant determining the rate of Tearning. Other rules also
work, but this is one of the simplest. Also for simplicity the response
latency for the element is zero; that is, there is no delay between input
and output. This causes no difficultites here because we do not consider
recurrent connections within a network. In other variants, the inpdts need
not be positive, and the noise need not be normally distributed. If the
context term xi(t—l) were removed from (2), the resulting learning rule
would be essentially that used by Harth and his colleagues in the ALOPEX
system (Harth and Tzanakou, 1974).

To understand how (2) works, consider a simple example. Suppose a
positive context signal was present on pathway Xy at some time t-1, signal-
ling some condition of the environment. Suppose also that y(t-1)=1 while
y(t-2)=0 (that is, the element “turned on" at time t-1), perhaps due to an
excitatory effect of signal Xy or perhaps by chance. Then, if the payoff
signal z increases from time t-1 to t (possibly as a result of the element's
action), Wy will increase. Since wi(t)xi(t) js used to compute y(t), the

increased weight W will make it more 1ikely (other things being equal) that



y will be 1 when signal X; occurs in the future. Similarly, if z decreases
following the element's action, Wy will decrease thereby decreasing the prob-
ability that y will be 1 when signal X; occurs again. Consequently, if turn-
ing on in a specific context is followed by an increase in payoff, the ele-
ment will be more 1ikely to turn on (or stay on) in that context in the fu-
ture. Other cases can be analysed similarly: if going off in a context
leads to a payoff increase, then the probability of being off in that con-
text increases. Of course, a pathway can participate in signalling a 1arge
number of different contexts. This is where the associative memory proper-
ties become relevant.

For an ASN consisting of a single adaptive element, the search for the
optimal action for each context vector is not very difficult since the ASN
has only two actions. However, a property of the adaptive element that is
essential for its use as a component in a larger ASN is that it is capable
of operating effectively in environments with random payoff response charac-
teristics. If for each context the output of the adaptive element only dé-
termines a probability for the payoff value, the adaptive element is capa-
ble of acting so as to increase its expected payoff value. It is beyond the
scope of the present paper to thoroughly discuss these aspects of the adap-
tive element's behavior. The relevant theory is that of stochastic auto-
maton learning algorithms, and the reader is referred to the review by
Narendra and Thathachar, 1974.

The Problem of Context Transitions

According to (2), the adaptive element uses the change in the payoff
signal z as a factor determining weight changes. However, when the context
vector changes, the change in the value of z is due to the change in payoff
function as well as the adaptive element's action. The difficulty this

creates can be clearly appreciated by considering the worst case in which
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the payoff function changes at every time step. Consecutive values of z
in this case result from evaluating different functions rather than the
same function twice and hence do not provide usefq] gradient information
about any single payoff function. Unless the payoff functions implemented
by E vary smoothly over time, one would not expect an adaptive e]ement‘op-
erating according to (1) and (2) to be capable of solving an associative
search problem.

Two methods of solving the problem of context transitions are used in
the examples which follow. One is to require E to implement each payoff
function, and emit the corresponding context vector, for at least two con-
secutive time steps and, when transitions do occur, to set the 1earning
constant c to zero so that the change in payoff due to the transition has
no effect. This procedure requires either a priori knowledge about when
transitions occur or a méchanism for detecting transitions. Such mechan-
isms can be devised (Didday, 1976, and Grossberg, 1976, discuss this problem
and propose neurally plausible methods). For simplicity in some of the ex-
amples to follow we set c to zero “"manually" when a transition occurs.

In other examples, however, we use a method that does not require
transitions to be known or detected. Suppose the adaptive element produced
action y(t-1) in response to context vector X(t-1). Instead of comparing
the resulting payoff z(t) with z(t-1) which may have been determined by a
different payoff function, we compare it with the payoff “expected" for act-
ing in context X(t-1). If a higher thai expected value is obtained, then
the action which produced it is made more 1ikely to occur in that context
again. In this way, the gradient of each payoff function can be estimated
from samples which do not occur consecutively in time. Instead of compufing

weight values according to (2), we use the following rule:
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w; (t+1)=w; (t)+clz(t)-p(t-1)IDy(t-1)-y(t-2) Ix,(t-1) ' (3)
which differs from (2) by the substitution for z(t-]) the value p(t-1) pre-
dicted for z(t) given X(t-1).

We use another type of adaptive element to compute p(t-1) from X(t-1).
This element is a variant of one described previously in Sutton and Barto,
1980, and proposed as a model of classical conditioning. It learns to anti-
cipate the payoff rather than to maximize it, and we call it a predictor.
The predictor has n context pathways Xy» i=1,...,n, one payoff pathway z,
and one output pathway p. Associated with each context pathway X; is a |

variable weight WP, - The output at time t is
p(t) = 121 wpi(t)wi(t).
The weights change over time according to the following equation: for
i=1,...,0,
wp; (t+1)=wpy (t)+cplz(t)-p(t-1)Ix,(t-1)
where cp is a learning constant determining the rate of learning. This rule

is identical to (3) but with y(t-1)-y(t-2) fixed at the value 1. This ele-

ment impigagﬁfs a gzachastic approximation method for finding weights (if
such weights exist) such that p(t-1)=z(t) for all t. If a linear prediction
is not possible, the predictor will find the best-least-square linear pre-
diction if ¢cp is allowed to decrease over time. See Duda and Hart, 1973, and
Kasyap, Blaydon, and Fu, 1970, for good discussions of these methods.
A Network

Fig. 3 shows an ASN consisting of m adaptive elements and one predictor.
Each context pathway from the environment connects to each adaptive element
and to the predictor, as does the payoff pathway z. The adaptive element
weights form an mxn matrix H=(wij) where "ij is the weight of the i-th adap-
tive element for the j-th context pathway. The random variables NOISE for

each element are independent and identically distributed, and the learning
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Figure 3. An ASN consisting of m adaptive elements and one predictor.

The adaptive element weights form an mxn associative matrix.
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constants are the same for each element. _

While the training sequence is being presented, each adaptive element
comprising the ASN faces the problem discussed above of maximizing each
payoff function. Each element's payoff appears to have a random component
since it depends on the unknown outputs of the other -adaptive elements com-
prising the ASN. As a result of the capability of each adaptive element
to increase its expected payoff when interacting with an environment having
‘random response characteristics, an ASN consisting of any number of adaptive
elements can solve the corresponding associative search problem under cer-
tain conditions.

For each context vector, the ASN search problem is an example of what
is known in the theory of stochastic automata as a cooperative game of learn-
ing automata (Narendra and Thathachar, 1974). Unlike other learning auto-
mata studied, however, the ASN solves such a problem for each context vec-'-
tor. By combining notions from the theory of cooperative games of learn-
ing automata and the theory of pattern recognition, we can formulate a con-
Jecture about the conditions under which the ASN as described here can
solve the associative search problem. For each i, i=1,...,m, let x? =
{Xaexly$=0} and x} = {Xaexly?=1}. That is, x? (x}) is the set of all con-
text vectors in which it is optimal for element i to produce output 0 (1).
The sets x? and x} are linearly separable if there exist; a real vector
N1=(wi],...,w1n) such that
My + X <0if Xeyd

Wy - X>014F Xexj -
We conjecture that for any n, m>0, there exist ASN parameters (c, cp, and
the variance of the random variables) such that it can solve the associative
search problem with as high a probability as desired if 1) each Za is uni-

modal (i.e., does not possess suboptimal “peaks") and 2) x? and x} are
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linearly separéb]e for each i=1,...,m. The performance of learning auto-
mata 1n_opt1mizing multimodal functions {s a topic of current research.

Once this task is solved, the ASN functions as an associative memory
similar to those discussed in the literature. For example, if a degraded
context vector is pregented, then the ASN can still perform an appropriate
action if the degraded context vector is still sufficiently distinctive.
Similarly, the ASN will produce actions in situations never before encount-
ered by acting in a way appropriate in similar situations which it has ex-
perienced in.the past. The ASN also exhibits the same resistance to damage
shown by distributed associative memories (see Wood, 1978). In addition
it is possible to prime the associative matrix with information 1ikely to
be useful for specific problem domains.

We note that if our conjecture is correct, perfect ASN performance

does not require orthogonal context vectors. It is easy to see that if the
0
i
arable for each i=1,...,m. This would imply that the ASN. is an example

context vectors are linearly independent, then x. and x} are linearly sep-

of an orthogonalizing associative4memory (Kohonen, 1977; Amari, 1977).
Examples |

For illustrative purposes we let each payoff function Zo in the fol-
lowing examples be a simple Tinear function of the ASN actions. To each
context vector Xa is associated a vector Ya= “,;..,y;) where y3 e {-1,1}.
We define Za as

Za(Y) =Y « Ya

so that Za is maximized when each adaptive element i, i=1,...,m, is "on"
if y?=+1 or "off" if y?=-]. That is, Za is maximized by Y=(Ya+1)/2. We
use the symbol Ya to denote both the 1, -1 valued vector Ya and the binary
vector (Ya+1)/2 since no confusion is likely to arise. Computing Za in

this manner implies that if an adaptive element "turns on" in a context
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in which it should be on, of if it “turns off" in a context in which it
should be off, then the value of Za will increase by 1 (assuming the other
elements do not change their actions). Similarly, "turning on" when off

is best or "turning off" when on is best decreases Za by 1. We do not
claim that the optimization of such a simple 1inear function is a diffi-
cult task. Our intent here is to illustrate that a search is in fact per-
formed by the ASN. More research is required to delineate the search capa-
bilities of the ASN and related structures. In each of the following ex-
maples, the adaptive element learning constant c=.03 and the standard
deviation of each random variable is .1. In the cases using the predictor,
cp=.1.

Example 1

Fig. 4 shows ASN behavior for the simplest case of two orthogonal
context vectors X1 and X2 with n=8 and m=9. The optimal output patterns
are determined by Y1 and Y2 (Fig. 4a). Notice that Z1(Y1)=6 and Z2(Y2)=5
so that a higher payoff is obtainable in context 1. The contexts were al-
ternately presented, each held constant for 10 time steps. A predictor
was not usgd. In order to prevent the transition from one context to an-
other from providing misleading information, the learning constant c was
momentarily set to zero while the context changed.

The dotted 1ines in Fig. 4b show the payoffs which could be expected
in each context for output patterns generated purely by chance. The pay-
off actually received by the ASN increases over time and attains the op-
timal values for each context, i.e., 6 for context X1, 5 for context X2.
After learning, the presentation of a context vector immediately "keys out"
the pattern optimal for that context. Unlike other associative memory sys-

tems, however, the optimal patterns were never directly available to the
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Figure 4. Example 1. a) Two orthogonal context vectors X1 and X2 and
the corresponding optimal output patterns Y1 and Y2. b) Graph of payoff re-
ceived by the ASN during a training sequence in which contexts were presented
alternately, each held constant for 10 time steps. No predictor was used,
but the learning constant c was set to zero for context transition. The
dotted line represents the average payoff level obtainable if no learning
occurred. The payoff received by the ASN increases oVer time and attains

the optimal values for each context, i.e., 6 for X1, 5 for X2.
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system. Since the context patterns in this case have totally disjoint
regions of non-zero values, the more interesting associative aspects of
fhe system are not demonstrated. The resultant associative matrix simply
stores the separate associations.

Fig. 5 shows the behavior of the ASN for the same problem as illus-
trated in Fig. 4 with the exception that the learning constant ¢ was not
set to zero for context transitions. 'Learning occurs, but the almost per-
fect behavior shown in Fig. 4b is not attained even after 500 time steps.
The reason for this is that the transition from X1 to X2 tends to penalize
elements which may have been correctly responding to Xl since the payoff
tends to decrease at the transition.

Fig. 6 illustrates the behavior of the ASN with a predictor for the
same problem shown in Figs. 4 and 5. The learning curve (Fig. 6a) is com-
parable to that obtained with ¢ set to zero during transitions (Fig. 4b).
AFig. 6b shows the prediction error p(t)-z(t+1) during the training sequence.
The predictor comes to successfully predict that the highést payoffs in
contexts X1 and X2 are respectively 6 and 5. Transitions from X1 to X2 do
" not penalize elements correctly responding to X1 since the paydff drop is
"expected". Notice in Fig. 6 the errors committed approximately at time
steps 400 and 450. Since we use normally distributed random variables to
drive the search, there always remains a non-zero probability that an ele-
ment will perform either action.

Example 2

Here n=8, m=25, and four non-orthogonal but linearly independent con-
text vectors are considered (Fig. 7a). The optimal output patterns YI,;..,Y4
are shown as 5x5 arrays, but should be thought of as "actions" and not as

visual images. Again, each context was presented for 10 consecutive time
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Figure 5. The ASN payoff for the training sequence illustrated in Fig.
4 but with the Tearning constant held non-zero throughout. The perfect be-

havior shown in Fig. 4a is not attained.
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steps, with the sequence repeating. No predictor was used. The learning
constant was.set to zero during context transition. After sufficient learn-
ing each context vector causes the retrieval of the optimal output pattern.
This occurs even though the context vectors do not form an orthogonal set.
‘Fig. 7b shows the learning curve for context X1. The ‘abscissa gives cumu-
lative time steps in which context X1 was present. An ASN using a predictor
has essentially the same behavior.
Example 3 '

With the associative matrix W containing the values obtained after
training in Example 2, context vector X1 was corrupted by additive noise
and presented to the ASN (Fig. 8a). As for other associative memories,
keys corrupted by noise cause retrieval of patterns similar to the desired
ones provided the corrupted key remains sufficiently distinguishable from
the others. The pattern retrieved using the corrupted version of X1 resem-
bles the stored pattern Y1. For the ASN, however, the retrieved pattern is

just the initial guess (Fig. 8a) for the optimal pattern and the search re-

sumes. Like most search procedures, the time to convergence for the ASN
is reduced if the initial guess is close to the optimal pattern. Hence,
with the corrupted X1 being presented to the ASN and Y1 still the best output
pattern, the ASN quickly corrects its response (Fig. 8b). At the conclusion
of the search, the corrupted version of X1 is able to cause the immediate
retrieval of Y1.
Example 4

Again with the associative matrix containing the values obtained by
training in the four contexts of Example 2, a fragment of X1 is presented
as a context vector (Fig. 9a). The pattern retrieved again acts as an ini-
tial guess and the ASN corrects it under control of environmental feedback

(Fig. 9b).
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Example 5

Here the sum of the two context signals X1 and X2 of Fig. 7a is pre-
sented as a context vector to the ASN, but the payoff function is the one
previously signalled by X2 (that is, Y2 is best). In this case, the initial
guess is a combination of the patterns Y1 and Y2 (Fig. 10a). Again the search
process brings the initial guess to the optimal pattern (Fig. 10b).

Neural Search

The ASN arose from our investigation of the neural hypothesis of Klopf,
1972, 1979, 1980. He hypothesized that neurons try to maximize their level
of ﬁembrane depolarization by changing synaptic effectiveness in the fol-
- lowing way: Whenever a neuron fires, those synapses that were active dur-
ing the summation of potentials leading to the discharge bécomé eligible
to undergo changes in their transmission effectiveness. If the discharge is
followed by further depolarization, then the eligible excitatory synapses be-
come more excitatory. If the discharge is followed by hyperpolarization,
then eligible inhibitory synapses Become more inhibitory. In this way a neu-
ron will become more 1ikely to fire in a situation in which firing is followed
by further depolarization and less 1ikely to fire in a situation in which
firing leads to hyperpolarization.

The basic adaptive element operating according to (1) and (2) is very
similar to Klopf's model of a neuron. The term xi(t-l) in (2) corresponds
to Klopf's eligibility. A weight can change at time t only if there was
activity on its pathway at t-1, i.e., xi(t-l)fo. More general forms of
eligibility can be implemented by replacing this term with a more prolonged
trace of activity as is discussed by Sutton and Barto, 1980. The restricted
form of eligibility used here is suitable because E always evaluates an out-
put pattern in a single time step. The idea of eligibility is essential for

the search behavior of an adaptive element since it permits the consequences
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Figure 10. Example 5. The sum of X1 and X2 of Fig. 7a was presented
as context to the ASN with the associative matrix obtained after training
in Example 2. E implemented Z2. a) The context vector X1 + X2, the optimal

output pattern Y2, and the ASN's initial guess. b) ASN payoff as the search

continues.
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of actions to influence the probability of these actions in the future.
This cannof be accomplished by a Hebbian-type rule which associates simul-
taneous signals or nearly simultaneous signals with no sensitivity to which
occurred earliest.

Unlike Klopf's hypothesized neuron, the adaptive element presented
here tends to maximize a specialized payoff or reinforcement signal (z)
rather than what would correspond to membrane potential (s). There are sev-
eral interesting consequences of a rule that tends to maximize s. It per-
mits secondary reinforcement to occur whereby the occurrence of a previously
rewarded context itself is rewarding, and it may permit a single adaptive |
element to perform both the search and prediction tasks, eliminating the
need for a separate predictor element. In this report we have focused only
on the simpler case in which there is a specialized payoff or reinforcement
signal.

The adaptive element presented here is an illustrative example of a
class of adaptive mechanisms, some of which are more closely related to Klopf's
hypothesis, and should not be literally interpreted as a model of a single
neuron. In fact, we have purposefully referred to it as an adaptive element
rather than a neural model. We do wish to suggest, however, that the gen-
eral form of stochastic, closed-loop, reinforcement learning realized by the
adaptive element merits close experimental investigation. Theory has shown
that stochastic search procedures can be very effective means for the opti-
mization of functions about which 1ittle is known. This capability combfned
with pattern recognition capabilities leads to considerable adaptive power.
As a neural hypothesis, the adpative element suggests that the stochastic
component of neural discharge might perform the function of stochastic searct.
A closely related adaptive element is discussed with respect to behavioral

and neurophysiological data in Sutton and Barto, 1980.
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Sensory-Motor Control Surfaces

It has been suggested that associative memories might provide effective
means for the storage of sensory-motor associations required for sensory
guided motor behavior (Albus, 1979). However, in every case there is the
requirement for a signal to be present giving the “desired respohse" in order
to form the correct sensory-motor association. Yet this kind of information
is usually not available to an organism nor easy to obtain. After consid-
erable experience in a given set of sensory contexts, the "desired response"
for each context might become known through a learning process. But the
associative memory structures proposed in the literature are not able to
perform this type of learning. Their structure suggests how associations
might be stored but does not address the very important questions concerning
what information is chosen for storage. The ASN suggests how such questions
might be explored.

Sensory-motor learning tasks provide natural examples of the type of
problem the ASN is capable of solving. Sensory context is provided by ex-

. teroceptive and interocgptive stimulus patterns, and output patterns provide
control signals to motor systems. Global reinforcement systems might pro-
vide information analogous to the ASN payoff signal. The associative matrix
formed would implement a sensory-motor control surface. This interpreta-
tion of the ASN task suggests that research should continue in order to ex-
tend the ASN's capabilities in several different ways. 1) Most complex
control tasks require nonlinear control surfaces. Elaboration of .the ASN

to permit the formation of nonlinear associations can be accomplished in

the same manner as suggested for other associative memories in the literature
(Poggio, 1975). 2) Most sensory-motor tasks have the property that the con-
fext which occurs next is partially a function of the control system's ac-

tion. In the problem discussed in this report the ASN has no control over
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which context occurs. An interesting generalization of the ASN task is to
require the ASN to control not only the payoff signal but also the context
vectors in order to reach a context in which the highest payoff is available.
This is a more general learning control prob]emt 3) The ASN task presented
here is simplified by the occurrence of a payoff signal at every time step.
In actual sensofy-motor learning tasks the reinforcing eveﬁts occur only
occasionally. Secondary reinforcement capabilities would provide a first
step toward the solution of this substantially more difficult problem.
Conclusion

The distributed memory properties of associative memory systems make
them particularly interesting learning systems from both biological and
theoretical perspectives. Although all associative memory systems described
in the literature require the desired response for each key to be provided
by some other source, the interesting properties of associative memory Sys-
tems are not restricted to this form of learning. A more difficult type
of learning, which can occur even if no part of the system or of the environ-
ment knows the desired behavior, is reinforcement learning. In this form of
learning the environment provides only a performance measure of responses
rather than desired responses, making the problem both more difficult for
the learning system and less demanding for the environment. The ASN is an as-
sociative memory system capable of solving reinforcement learning tasks. Our
results illustrate that the important properties of associative memories can
be retained by a system capable of this more general and more difficu]t form

of learning.
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