An earlier version of this paper appeaoved in the

Technical

- Feb. 1980.

Froem Problems to Progyrome via Plans:
The Content and Structuere «ff Knowledge
for Introductory LIS Praurammingk

Elliot M. Suluwy
Beverly Wowl i

COTINS Technical Report 80-~19

Computer and Informastion Gcicnce Department
Bnivercitn ol Macoi hilaeohn

Amherst, Massachvuretlie 01003

Eleventh

ACHM

Symposium on Computer Scicnce Education, Kansas City,

This work was supported by the Army Netearch Institute for
Behavioral and Social Sciences, under ARI Grant

DAHC19-77-6-0012 and MDAR03-80-C-050t.

‘the
Nos.

Ahslracl
When a programming langvage is touwghl, typically the syntax
and the semontics of the languaue e cmphasized, and little

emphasis is placed on the relationship of proeblems to each other,

and to the constructs of the languauwe. UYWe, however, Teport on an
organization of information for teaching | ISP, which puts primary
emphasis on the structure of and wvelationships between: a

problem, a progrem. . and, an intermedintc abstraction, a plan.
This organization is based on an onclysis of the underlying

structure of ostensibly different problems, 'and their program

solutions. ‘We present qualitative ohtervations on the use of this
organization gleaned from actual clacevooem teaching. Finally, we

enernwlste an the wvtilitn nf thie ~Avuvnirh with recoect to other

hrogramming languasges.

1. Introduction .

S o 20 e o

Those doing research into how prople actually understand
varigus fopics, have obsnrvud thi:t traditional sources' of
information, e.gf, textbooks, do neoctl upual]u conveg_'knawledge
which 1is kgg_ to'a correct understonding of that-subgéct matter.
For example, Rissland [91] diccusten o new | structure far
mathematicel kn@wlcdge- which emphiacizes now icategories of

information, e.4., tupes of examples {(viavt—up, reference, etec.).

types of conceptls (basic definitional, culminating, etc.). Brown,
Collins, and Harris [2] use the toerw "deep structure” -—— in
contrast to "surface structure” —-— 1o cmphasize the importance of

the underlying goals, plans, purpose: o entities in a .subJect
domain. From this perspectlva. they au on to proviac 2n analys:is
of 3 subject domains (stories. electrnﬂic circuits, arithmetic):
In this péper{ we describé work dune in fhis vein with
respect to the knowledge underlyinn @ sound upderstanding of
introductory LISP programming. Typicaldly, Qhen .av programming
language is tQaght, the syntax and semantics of const%ucts in the
languagé afe emphasized; besidet i perfunqtoru 'one—line
description, ~1itfle time is given to iscues such as when to use a
construct, how_conétfucts are telatcd, what functional role &
construct plays in a program, or whit the deep, plan structure of
programs are. Similarly, little recognition is :paid ‘to. issues
such as how problems are related to ¢ach other, and how problems
relate to copstructs in a language. v what follows, we ﬁresent a

new structure for informaution obeut intyvoductory LIBE programming.

PAGE 2

which docves infact emphacize the neglecioed issues mentioned above.
The key to this enterprice has bheen the developmernt of:
1. a tasonomy of prollome., R N - a
classification scheme which, gruupe problems
inte classes based on .specilic criteria, and

e, a set of plans, 1i.e.. abetraciions, - each of

which captures the esseniic) Features of a
clasc of problems, and correeponding colubion
proquams.

b=

As we shall attempt to show +he knowledge underiging
introductory LISP probramming is quitce Qiructured.' That.is; while
there are a lot of detailﬁ.that one muct know in order.to program
these details can be highly organized. bmphasié then is placed on
the organization of the knowledge vodher tﬁan the. amount of
bempdngdon |

We begin by deveioping a scheme lfov classifying the problems
usually offered as exercises in introductory LISP courses. We
then oxamiﬁe the LISP programs which wolve problems in the various
classes .and abhstract higﬁer-level stiuctures called ‘plans. ’ Here
we view a‘plan asia.program templaote plus cnmmentsldescribing- the
goals and reasons for the'variouﬂ vxpreésinns in the femplata
Next, we build on the set of plant Lw “include new problems.
Finaliga we zpecﬁlgte briefly on the uiiiitg of Qur taxonomy with
respect to programming in lénguages' LU(L as FORTRAN, APL, or

Pascal.

PACE 3

2. PREDICATE Tupq.ProbLth aend Progiziung.

In order to teach & "simple”" type of recursion {13, one ofton
vses the following two problems:

Write & program which réturns TR 4 f and only if

all the elements in the input liei ore atoms. '
The LISP code.for this problem could hi:

(IS-LIST-OF-ATOMS (LST)
(COND _
{ (MULL LST) 1)
{ (NDOT (ATOM (CAR L5T))) NIL)
(T (IS-LIST-OF-ATOMS (CDR LSTY)) M)
Next,

‘Write a program which returns TRUI- §if and only if

+hr £ipgt a-pgurr,pp'!' b h 3e oap st om) Se o memb o

of the second argument (which i o Jist).

The code for this problem covuld be:
(.MEMBER (LST AR®)

(COND

¢ (NULL LS7T) NIL.)

{ (EQ (CAR LST)Y ARG) T)

{ T (MEMBER (CDR.LST) ARG))))

If we step back from the pérticulnrs of the problems and the
programs, we notice first that both pyublems belong to the”cléss
of PREDICATES, i.e., preoblems which requive True or False for an,
answer,. Moreover, the First' problicm is‘an‘AND—PREDICATE type,
since it requires that ALL the element: «f the input list have the
desitred property. while the secomd jprvoblem is an DR-PREDICATE
type, since it requires only that onvbdf the eclements have the

desired property. Next, if care is taken in writing the programs,

‘this similarity of function con be veflected in the programs.

Below we 1list o templite which caplures the commonalities and

differences in the above two program:. {(ix

(predicate (LST ARG1 ARG ...)

(COND-
¢ (MULL LBT) T, NIL>)
{ (test (CAR LBT)Y ARGL ... J<NIL, 1)

(T (predicate (CDR LST) ARGE ARt L. 0)))))

Note that the lowercase names rﬁpre;vnt variables or sglots that
are filled in. for pariticular problems, e.g.. in MEMBER ‘test’
would be replaced by “EQ’. The anglc byrackets and the comma.
e.qg.,» <«T, NIL>» in clause lé, represcut «choices, one of which must

“be chosen.

A naked .template is not encugh; in order understand the

relationchips abstracted in the template, one ‘needs to add

explanatory comments to the clauses aff the template. Thus, we

define a plan tp be a template plus y*planatorg comments. - The
intuition is that a plan répresents actions to be perFofmed and
reasons and goals for those actione. lor example, & kegAgoal inv
LISP programming is the feduction of & problem into "smaller"”

prohlems: recursion is at the heortl n this process. Comments

reflecting this poiﬁt could be:

PACE B

TEMPLATE EXPLANATORY

CLAUSE COMMENT
ip Is the list empty? Are we douue processing?
2p Do it to the first: test the "hcod” of the list.
3e Do it to the rest; continue prnceséinj

TheAgoals'oF the different tuype:w of VﬁEDICATES must also be
Teflected in this ﬁemplate and i thu.comments.A For example,
since IS-LIST-OF-ATOMS is an AND*PRED?CAWL,‘ it must"Visit each
member oFA the 1list bePoré it can rvespoud Trues hence only wheﬁ
the empty list is detected in iIp is IH-LJHT~OF—ATDM345 work really
dene. Note that an AND-PREDICATE ¢ L{up.procesging.iF it finds
1 element which does not meet - the specified criteria.
Alternatively, if -an 0R~PREDICATE; tuch as MEMRBER, has visitéd
each element in the list and has not uurceéded in‘-Finding the
desired propertg, it will return faloe (MIL in LISP). Explanatofg

concepts in the plan which describe llicte goals could be:

PAGE &

TENMPLATE: EXE) ANATOILY
CLLAVSE ¥

Sob A

ie Return a truth wvelue atier o1l clements have been

visitud: . :
ﬁﬂDwPRﬁQECATE — if this point i reached then all the
elements muet have passtd the test in Rp. thus return

True:

OR-PREDPICATE -~ if thie poini i reached then no element

which satisfies the tesi 3w 2p has been found., thus
return False. .

2e Return o truth value when & povticular element has heen

found: .

ﬁﬂp~PRﬁQlCATE - Aha, found ou element which does not
meet the condition in 2p; ihue AND could never be true,
g0 stop procecoing and retuy lbalse. ' '

OR-PREDICATE — Ahé; found ou clement that satisfies the
desired condition in 2pi uuit processing early and
return True. B

Throughout the rTest Uy Lhis papsio Ul 1211 hp prnaned in " the
enterprise exemplified ahove, namcly, looking for commonalities
among problems, among ggggigmg. and ebeiracting plans based on
these observations. Before proccediug however. three comments are
in order. First, -in the classroom. wt hisve no objections "when
students argue aﬁaut our particulor classification scheme, OT
encoding of the progrvams ov tempiateb. 1 fact, we encourage them
to de soJ sincé' s discussion abouti atternative abstractionsAis
precisely tﬁe act?vitg we are trging'to Fmster.‘ Second, we do not
view a template as a tgpe' of cquntion iﬁto which numbers or'
functiong can be.plugged blindlg.i “he misuse of equations by
students in this manner in fields surh as physics and engineering
has been documented previously {cf. P4, We " stress that a

template without explanatoery commente cxplaining the why is not

PAGE 7

all that useful: .in fact, blind subciitutioen can Tesult in MaJor

eTTOTS.

A third issvue is the level of nﬂbtréctidn of the plans
deccribed here. One could imagivwe plans which do pok have as
strong a procedural componeﬁt as ours du, i.e., one could describe
MEMBER without a commitment tq either rr(ursinﬁ or 5teratién. The
development of more abgtract plans is wnot inconsistent with ouw
ms yor teaching goals; ﬁaméIgL ivpchinﬁ S students about
constructing abstractions. The major dinger we sees however, is
that without an explicit procedural c(omponent, plans will tend to
loock more like algebraic equations. Givnce @ discussion of the
mornsde r*P:. this iSﬁ!”’ aTe hepond Lhi- srape nf this PF!D(-"I“‘ {cf.
[81), we onlg point out that receul empirieal studies -have
indicated .thét programming . can enh&nce proﬁlem solving'abilitg.
when comparedl‘with using algebraic equations as a solution
language [43. With this caveat in mind, we encourage the search
- for even more general abstractions. (W return‘ﬁo this point in

~section 9.)

2.1 Attackind a Problem: Using Plawpt 1o Ask Questions

Another way to look at the knowledye surrounding a plan isiin
ferms of gggétiong which need to be uncwered in order to develop a
correct prbgram solution, For‘ example, if the student can
determine that the problem is in the I'REDICATE class, then he/she

can ask:

PAGE 8

1. Is the pruoblem an OR-PIA-DICATE or an
AND-T"REDICATE™ :

Which of the -argumonts will he examined,
Ci.e., what is the CDNing variohle?

nJ

3. What property or test must be.applied to the
head (typical) element? ’ :

Ansmers to these questions detnfminv which components of the
PHEﬁICATE ‘templaté are selected for the desired final prdgram and
determine how the clots are to be filled. For example, an ansuwer
£0 'questiun 2 will determine bhow the tlot in clause &p will be
instantioted. {3% In effect, the'qupﬂtfnns serve as a systematic

sitrategy for attacking problems.

3. BUILLDER Tupe Problems and Proaram:

In order to developv a more Cumplete and sophisticated
‘understanding of recursion, problems imd programs of the following
sort might be presented.

Write a program which deletes an atem equal to

ARG from the input list.

The code for this program RENDVE—MEMU%{, might be:
{ REMDVE-MEMBER (LST ARG)

(COND

((NULL LST) ()) '

((EQ (CAR LST) ARG) (CDR LST)) R : ~

(T (CONS (CAR LST) (REMOVE-MEMMII (CDR LST) ARG I YD
We call problems and programs of thic vort BUILDERS; the defining
characteristic of the DBUILDER prohlem class is that a list is

returned which contains the result of «ome action (remove, insert,

\

PAGE 2

etc.)' en the elements which satisfied Lhe test criteria, as well
‘as all .the elements which did not. AMother example of a BUILﬂER
_type problem would be: -
Write a program which deletes al)l ithe atoms equal
to ARG from the input list. ’
And the code for this problem might he:
¢ HEMOVEfALLQMEMBERS (LST ARG)
(COND :
{ (NULL LLBT)Y ()) ‘ .
{ (EQ {(CAR LST) ARE) (REMOVE-ALL -MUFHERS (CDR LST) ARG))
{ T (CONS (CAR LST) (REMOVE-ALL-MLMHIIRS (CDR LST) ARG)))))
A number of abstractions can now be made. First, we see that
'BUILDERS have OR-like ond AND-likc Functions.Jﬁst as PREDICATES
do; REMOVE-MEMBER is an OR-BUILDER wince it is satisfied when the
#irst DCCUTTENCE of the desiTea . cJoemehe 1% YUuHu while
REMOVE-ALL~MEMBERS is an AND-BUILDER, since it must visit all the
elements of the list. Second, if we lompare.the code in the above
twe programs, we see that they are the come except for clause 2e.

Also, we. can abstract from the porticular test in clause 2p to

generate the following first pass at a template for BUILDERS.

{ builder (LST ARG1 ARG2 ...)

(COND
{ (NULL LST) ()) '
{ (test (CAR LST) ARGL ...) ,
< (CDR LST), <(buildesr (CHR LST) ARCL ...))

(t (cons (car lst) (builder (CHX 1) ARG ARGE ...)))))

For an OR-BUILDER, such as REMOVE-MEMItG-IK, the first alternétive in
clause e is selected, since the 1ivt need not be traversed

further. However, Fdr an AND-BUITLDENK, «uwe¢h as REMOVE-ALL-MEMBERS,

PAGE 10

the second alternative is rvequirved iu order to continve down the

lint.

Mow, clsuse 2c in the above BUILMLER template is. not quite

general enough to handle other BUILDGK proablems. For example,

Write a program SUBSTITUTE whith 1veplaces the
first occurrence of the atom (4 H with the atom
NEW in the list LBT.

The LISP code for this problem is:

(SUBSTITUTE (LET OLD NEW)
(COMND : ‘
¢ (NULL LETY ()) '
((EQ (CAR LBT) OLD) (CONS NEW (€D 18T))) _
(T (CONG (CAR LST) (SUBSTITUTE (G LST) .OLD NEW))))-

The‘keg issve is that now some action mut be performed on the
desired element. Taking into .concidevation the AND-BUILDERS é

revised BUILDER template would be {4

{ builder - (LST ARG1 ARG2 ...)
(COND
{ (NULL LSTY)
((test (CAR LST) ARG1) :
s (action LST), (COMS (action (CAR 1st))
, (builder (GDR LST) ARGL ...)) >0)
(T (CONS (CAR LST) (builder (Cl¥¢ Li{1) ARGL ARE2 ...)))))

A,

Thus, in the REMOVE-MEMBER case, the ‘“aciion’ slot weuld be filled
by *‘CDR’, while in fhe SUUSTITUTE it it would be filled in by

/{CONS NEW (CDR LSBT ‘.

Comparisons between PREDICATES wut MWUILDERS can also be made.

Fer example. we see that in clauvse ¢ Lhe BUILDER template uses

PAGE 11

the liet building function CONStruct, whereas the FPREDICATES do
not. Also, while NIL and () vepreeent the same object in LISH,
they can have different interpretotice in different contexts.
Thus, thouygh NIL is_returned in clavse le in both teﬁplates. the
NIL in each case means somelhing diflcvent. The plan comments
must explain that the NIL in the PRI:DICAIE case stands for False.
while the NIL in the BUILDER case stowde for the empty list, onto
which elements of the list will be (LinGed. Finallg{ exactly the
same.set of questions which were used in the PREDICATE case caen be

uscd in the BUILDER case. Again, commeunte must peint out that the

interpretation of OR and AND in either tave -is differvent, which

Tresults in different code.

1# we move one more step back, we «an see that underluying
BUILDER problems and pregrams is 1ht notion of copuing. In
particular, consider the program COPY which returns & copy of the
input 1list by actuvally tearing i1 &part end putting it back
together:

(COPY (LBT)
(COND
¢ (NULL LST) ())

(T (CONS (CAR LST) (COPY (CDR LS1)))))

The blank line in the COND expression it there on purpose. It
indicates that DBUILDERS have a basit chell; all thet changes is
the particular test for the desired clements, and the action to be

" performed on such elements.

PAGE 12

4. GELECTOR Tupe Prohlems and Proarim

The third class of problems aud programs which we shall
consider here can be called SELECTURSG e.g.. assuming we have a
built-in predicate, LGT, which is Lecicwgraphically Greater Than,
the following proeblcm would be o SELHNg:

wrife a program which returns the Fivet atem in.

the input list which is Lexicourchirally Greater

Than the given atom.

The cade for this function might be:
{ SELECT-LOT (L8T. ARG)

{ COND ‘

((MULL LST)Y))

{ (LET (CAR LBT) ARG) . (CAR LST))

(T (SELECT-LGT (CDR LST) ARG))))
Dy this time, one can predict that inv thie class also there will
be OR-SELECTORS and AND-SELECTORS. The above problem is an
OR~-SCLECTOR; vreplacing neirst” with "all" " will make it an
AND-SELECTOR.

The template for this type of probloem is: {5%

(selector (LST ARGI ARG ...)

(COND
{ (RULL LST) ())
{ (test (CAR LST)Y ARGL ...)
<O(CDR LST), : " :
(CONS (CAR LST) (selector (Chie LST) ARGL ...)) =)
(T (selector (CDR LST) ARGL ARG ...)))))

As evidenced by a comporison of the RUIIDER plan and the SELECTOR
‘plan, the key difference between iheee two types of problems is
‘that SELECTORS do NOT return elements which do not meet the test

requirements, while BUILDIIRS do, i.¢., tompare clauses 3e and. 2e

PA&GE §3

in each template. Cleorly, comporisonc 10 the PREDICATE plan can

also be made.

5. A Toxonomy of Prablems

The taxonumy described in the pretceding sections con be
neatly depicted in a tree structuvre {(see Figure 1) there arc
three classes of problems, easch clasc having a similar structure.
We do mnot «claim that the scheme depicted above is unique,
canonicel, or complete. As we note v iLhe cnncluding remarks, we
feel that other problems and other tonguages might suggyest or
- require other classification chnwnrtvristics. i.e.. other
dimensions along which a problem taxonomy cen be based.
Nonetheless, the key point is thaet looking for abstrections 185 a
powerful idea, and the tree in Iliguwre 1 is presented to the
students as one cencrete example of {hic enterprise to follow.
Moreover, finding exceptions (see next scction). and developing new
structures to accommodate the inconcictencies is a powerful

learning technique.

The basis for the sbove taxonomy c¢on be traced to the work of
McCarthy [7], in developing LISP, to Lrirdman.ESJ, who has written
a self—-teaching text for LIBP, and tu llady [61, who uses the
template idea in a progrem synthewie cystem. Allen [11, Burge
[23, and Winston [101, in their analysce of recursive programming
in general, and LISP in particuliy, develop pregram structures

larger than unit expressions which they foe proceed to evolve.

PROBLEMS

SELECTORS -

PREDICATLES "BUILDERS
OR . AND ’ OR . AND) OR AND
- i : o ' . i '
MEMBER . ISLAY REMOVE- REMOVE-ALIL~- SELECT-LGT SELECT-ALL
MEMBER MEMBERS : : L.GT

Figure 1.

A taxonomy of problems.

PAGCE 14

6. QCeneralizing the Plans to Handle i -xception

The probloem,

Write & program which takes the wvnion of two
lists.

is an AND-BUILDLCR; it is actually gued o "generalized" version of

REMOVE-ALL-MEMBERS, with MEMBER replecing EQ. However, the code

{ UNION (SET1 SET2)
(COND
((NULL SET1) SET2)
((MEMBER (CAR SET1) SETa) (UNIDM (Chit SET1) BETI))
{ T (CONS (CAR SET1) (UNION (CDR Lb1r) SET2)))))
does not completely follow the templale for AND-BUTLDERS. That

is, in clavse le UNION returns the second list, while the template

sugogests that NIL, the empty list, be veiurned.

Clearly, what needs to be done i1¢ o geheralize the BUILDER
plan (and most probably, the other plnns‘too). However, what is
‘most interesting about this apparent inconéistencg is not the
specific change to the plan, bLul rather, the process of
recogni?ing a conflict between an cxiemple and an abstraction.
Becoming aware that abstractions admiil of exceptions is precisely

the kind of problem solving skill thail one wants to encourage.

PAGE 1D

ing the Plans to Handle Mesitd Lists

In the proceding discussion we hive aseumed that the input
liste wouvld be simple (Flat) 1ivte of atoms, e.g.» (A B C).
However, if we want to input nested 1iste, e.g.. (A B (C D) E B),
some additional machinery must be developed. Simply put, & new
line of code weeds te be added to wentch” the peossible list
element before EQ L&) ds encountercd, snd the program must call
itself again on this portion of the Jitt, as well as on the rest
of the 1list. {73 Thus, if we wantud Lo write REMDVE-ALL-MEMBERS
to handle this type of list, the code for this new program
REMOVE -ALL-MEMBERS-# {8Y, might be:

(REMOVE-ALL-MEMBERS—# (LBT ARG)
XTIV :
¢ (NULL LST) MNIL)
((LISTP (CHR LETI
(CONS (REMOVE-ALL~MEMBERS—1 (CAl LET) ARG)
(REMOVE-ALL=-MEMBERS-1 (G2 LST) ARG)))

{ (EQ (CAR LST) ARE) (REMOVE--ALL ML MIERS—# {CDR LST) ARG))

(T (CONS (CAR LET) (REMOVE-—-ALL i MIERS=4# (CDR LST) ARG)))Y))

Two observations car now be madc. First, students notice
- that the above AND--RUIL.DER works exactly like the old
REMOVE-~-ALL-MEMBERSG, 1.e.. REMOVE=-ALL. -H:MIERS~# will delete all
occurrences of the desired atom from ¢ith of the sublists. Based

on this cobservation, students quickluy txoamine the OR-RBUILDER cace

to see if it too con be extended {9).

Gecend, in trying to see how 1o make AND-PREDICATES and

OR-PREDICATES work on nested 1istu, ctudents encounter a snag!

PAGE 164

BUILDERS have & CONS in clause e in order to bind together the
results, but PREDICATES can’t wuse & CONS. To deal with this
preblem they invent the analogue to ihe list builder CONS, namely.
the 1logical builders- AND and OR. {IQ}: That is, Jjust like CONS,
AND and OR "glue tdgether" the result of operating on the head of
the 1list, with -the Tesult oF'opeTating on the tail of the list
Thue, the code for the OR-PREDICATE, ii-F:-R—#, would be
{ MEMBER—%. (LST ARG)
(COND o
¢ (NULL LST) NIL) . .
{ (LISTP (CAR L&T)) (OR (MEMBER-#{CGAlK LST) ARG)
: (MEMBER-1 {Ch¢ LET) ARG)))
((EQ (CAR LST) ARG) T) 7 '
(T (MEMBER-# (CDR LST) ARG))))
Tn hpth nf +he ahave races, key nrowuvam exomsles are used to
make analogies and adjyustments to the plans. Since the plans
serve as aibasis for generating pnew progroms, making this 1little

change in the plsans will actually have foyr-reaching effects!

8. Two Issues: Analegies Between Litts ond Numbers. and Tupes of
Recursion C

We have developed a'great éeal uf michinery in order to cope'
with problems about - lists. It Quu]d .be gquite useful if, in
‘looking a£ 5 new datéitgpe.-ﬁtg.. nuomhers, some of that machinérg
might carry over to thel new domai. While we have not as yet
worked out this aspect in detail, some prelimenary observations

might be thought-provoking.

PAGE 17

Consider the #oliuming pPr.ogyram, I UG, which adds two mnumbers
together:
¢ PLUS (N1 N2
(COND ,
{ (ZEROP N1) N2)
{ T (ADD1I (PLUS (CUBL1 Ni) N22)) D))
Now tecall the list COPRPY program (reprinicd below).
(COorPyY (LST)
{(COND
¢ O(MULL LETY S ()) :
(T (CONS (CAR LET) CORPY (CDR LS13))))
An analogy can be made between the two programs by noting that i#f
PLUS were given two numbers, n' eud zeTo, to add, PLUS would
effectively return a copy eof the origival argument, n. ‘Thus, one
can peint out that in. the number domain, ADDLI (and PLUS) can serve
as a "NUMBER-BUILDER" just as CONS scvved as a LIST-BUILDER and
AND/OR served as LOGICAL-BUILDERS. {rha
Now, tonsider the fellowing code for PLUS,
(PLUS (N1 N2
(COND :
{ (ZEROP W1) N2)
(T (PLUS (SUBL N1) (ADD1 N2)))))
After some thouaht) students come to reislize that this PLUS is
adding "on the way down" while the prvevious PLUS was adding "on
the wég back wup." Two observatiune gquickly follow. =~ First,
students realize that this latter. IlU4 "looks like” a PREDICATE
program, since the answer is actuvally avoilable "at the bottom” in

both cases, i.e., there is nothing to.do but pass the answer back

PAGE 18

up. Next, students typically ask "well, can’t we make COPY build
on the way doun too, i.e., can’l wi- move CONS inside?" 7The
students go on to modify COPY to include & second argument which
is used to hold the lick bping’built "anu the way downs ™ e.g. .,
{COPY (LST1 LET)

(COND

¢ (NULL LL8T1) LSsT2)

(T (COPY (CDR LSTi) (CONS (CAR 1L&771) L8T2)))))
The students also quickly see how o modify the DBUILDER and
SELECTOR plans to incorporate thie dfupe of list construction.
This exercise makes explicit the diffevent {types of recursion

actually being used.

Q. Concluding Remarks

Once the enterprise of finding abstractions becomes
ingrained, generalizations start to pop up éll over. For example,
the vtility of MAPping functions is readily recognized; MAFPping
functions are, in effect, built—in tumplates.. After the BUILDER
‘MAPCAR’ is introduced, then PREDICA1!: MAl'ping functions such as
MAPOR - and MAPAND follow quite naturallu. Or, when the problem of
REVERSing a list is solved, the studeulse tome te see that working
from the left is not sacred. Thus operators such as RAC, RDC, and
SNOC, which are counterparts to CAR, e, and CONS, but which work
from the rtight, come into being {1i't. HMoreover, one can see how
~these new functiens can systematically replace CAR, CDR, and CONG

in the templates and plans.

PAGE 19

As more and moere examples of pruhlems and programs are
examined, the level of the plans giruwy farther and ferther away
from actval LISP code. Consider thie prablem:

Write a p?égram wich returns Trur 3§ and only if

every other element in the input 1iet is an atom.

In order to accommodate this AND-PREDICATY, we need to generalize
clavse De to permit "bigger chunks" of the list to be consumed in

- the recursion step, 1i.e..
(predicate (CDR (CHR LETY))

Problems which require that clauses Hp imd 2e alsoc be generalized

can be Tteadily .generated. The reculd is that the plans ——— the

templates and the comments ——— become move abstract, For example,
“{ predicate {argument list)
(COMD

{((NULL list) < T, NIL >)

((test clement of CDRing variable) < NIL, T >)

(T (predicate (reduce CDRing variahie)))))
More thought is required to use such plons; students can not
count on making simple substitutions in order to produce correct

solutions. Nonetheless, these abstraclinns provide a context in

which to think about a particular problem or program.

At this point, & valid question Ho ask is: what do the
particular generalizotions discussed in this paper have to do with
programming in BASIC, FORTRAN, APL, o PALCAL? Clearly. one could

use function subprogroms to mimig Lhe functional decomposition

“

"

PAGE 20

used in LISP, but the particular taxonomy of PREDICATES, BUILDERS,
and SELECTDORS may not bhe valid. The magoer types of problems
addrensed by LISP are those which dead with non-numeric entities
structured intoe lists. FORTRAM, At etc. have arrays and
numbers as key date types, e.g.., a BUN DI- might not have a clean
anslogue in the context of arreys. Muuctheless, the search for
problem—program abstractions may prove werthwhile. For example,
in teaching introductory BASIC} we twphitized a clacs of problems
based on the theorem in mathematics which states that functione
can be approximated by a series expansiw. We dubbed the program
structure which captures this set of prehiems the “running-total
template”, e.g..

TOTAL = staring-value, O 1 ... 2

FOR I =1 TO n

TOTAL = TAOTAL {+, %} new term

NEXT I

This paper has emphasized the knowledge which goes beyond the
syntax and semantics of constructs in LISP. Currently, we are
using this same approach to analyze the kuowledge students’ need
in order to understand Pascal jpregramming. Before crisp
generalizations can be made, more of this specific type of
research must be carried ocut. QOur clossyroom experience with LISP,
while admittedly impressionistic, gives uvus confidence that this

enterprise has a great deal of promiuc.

PAGE 21

Noates

{1F Ny "simple” we mean that the antwer to the problem 1is
avajlable "at the bhottom® of the vecurvion: students often skip
over the fact thot thoe onswer must sLild he "passed bauk up. " We
feel +that the students® misunderstoanding i a fair price to pay
for easing them into recurcions when the next type of problems is
introduced, the notion of TECUTSHIW becomes more refined. In
Sectien 8 we explicitlu contract theee two "types” cf Tecursion.

{2 The neotation we will use tu yeber to clauses in the
COMDitional exprescion 36!
(oo (Lps 1)
(Ap., &)
_ (3p, 3e))
where ‘p’ stands for predicate, and ‘pt ctands for expression.

{3} In order to test the completenese ol these questions, we have
written a compuler program which fiveti gueries a user with the
above questions (plus. two other hookkeeping questions) and
generates a program based on the guestieons. HUCCRSESs with this
pwmmnwmng e be Shek e have ienlated Hhe keuw components of
cetrtain types of problems.

{4Y¥ Counterexamples can reasdily be found to this template, e.g.:
UNIQON. We will address this issue shuvtlu,

{5} Consistent with clause 2e in the MUILDER template, note that
clavse e in the SELECTOR tompliote will probably need to be
generalized as follows:

<{action (CAR LETY).
(CONS (action (CAR LST)) {selectur Codr LST)...)) >

{6y We ossume here that EQ is undefincd i itls arguments are not
atoms.

{7 This observation was pointed out Ly Juhn Lowrance in a cource
he taught on LIGP.

{0 The waming convention of = for procedures which require double
recursion is taken from Fricdman L57. :

{$> In "some senue’ the OR-DBUITLDER—# WP E-HEMBER-% removes the
first occurrence of the desired atom i.e., it Temoves the first
occurrence of the desired atom from cach nested liot, except when
that wnested 1ist is prececded bu the desirecd atom. This TUule
applies to all cublists at the same depth of nesting.

{10 Do not confuse the LIGP functions AND and OR with the

w

PagE ar
abetract notion of AND and OR wiih vespect to PREDICAYES,
BUILDERS, etc.

{11} Also, note that ZERGP amd RNULL oerve analogous functians,
[3]

{12 The names RAC, RDC, and SNOC are oalto tcoken from Friedman
[53.

PAGE 23

Biblionqraphu

[13 Allen, o, 1978, Anstomg ef LI (New Yorh:». McCGraw-Hill
Rook Co.). 4

(21 Brown, J.58., Collins, A and Hariris, 6. 1978,
Artificial Intelligence and Learning Strateagies, H.F. O’Neil
Jr. (Ed), in Learning Strategiet. 114 O‘Neil Jr.. (Ed), (New
York, N.Y.: Academic Press).

L3l Hurge,AH.} 1976, Rurursive Progeimming Technigues, (Reading,
Mass. : Addison-Wecley). :

[41 Clement:. J.,» Lochhead, J.» and Liadauisy. E. 1980, Positive
Effecte of Cemputer Programming ou ludents’ Understanding of
Variblee and Functions, Pnoc. of the National AGCH

Conference, MNashville. '

[51 Friedman, D., 1974, The Little P Yper, - (Menlo Park, Calif.:
Gcience Kesearch Ascociates). o

[61 Hardy, S..» 1975, "Synthesis of 1145 trunctions from Examples,”

Fourth Internaticnsl Jeint Gondierence on Artificial
Intelligqence., Thilisi, U. 8 8 R

(731 MeCarthy, J.» et al., 1965, LI 3.5 Programmen’s Manual,

{Cambridge, Mass.: HMIT Press).

(61 Papert, ©., 1971, "Teaching Childven to be Mathematicians
versus Teaching about Mathematice, ™ MIT AL Lab Memo 249,
Cambridgoe, MA, ' : 4

Rissland (Michener), E., 1978y The HYiructure of Mathematical
Knowledgo, Technical Report Moo 47 M.I.T. Artificial
Intelligence Laeb.., Cambridge. :

101 Winston. P., 1977, ArtiFiEinl Intedtigence, (Reading., Mass.
Addison—-Wesley). '

