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Abstract

A problem of optimal, distributed multi-access control of shared
resources in a network of processing elements is addressed in this
paper. Pareto optimality is used as a notion of optimal, decentralized
resource sharing, and necessary conditions for optimal access control
policies are derived. A simple yet powerful balance principle results
from an interpretation of the optimality conditions. The balance
principle is quite general and covers a number of known rules for
multi-access control of a shared communication channel in a packet radio
network. An adaptive algorithm for achieving and maintaining balance is
also developed, and simulation results are presented.
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2. The original technical report of October 1980 has been
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principle, figures on the theoretical performance of two access control
schemes that use the balance principle, and details (including
simulation results) of an adaptive balancing algorithm.
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1. Introduction

In this paper a problem of optimal, distributed multi-access
control of shared resources in a network of processing elements (PEs) is
addressed. A necessary condition for (Pareto) optimality is applied to
the access control problem and an interpretation results in a general
balance principle for optimal access control. The balance principle is
quite general and is shown to hold for a wide range of utilization
processes. Direct use of the balance principle is discussed, and
theoretical performance figures are presented, comparing two schemes for
which the balance principle was used to obtain Pareto-optimal po}icies
and two standard schemes that do not use the balance principle. An
adaptive "balancing algorithm"™ for achieving and maintaining optimal
control in a quasi-static environment is also developed and simulation
results are presented.

It is assumed that each PE has access to a subset of all resources,
and demand for resources arises in a random manner.3 Use of resources
is assumed to be time-slotted (i.e., use is sunchronized to slots in
time) and a PE requires a single time-slot of all accessible resources

when it has demand.u When two or more PEs attempt to access a shared

3. In an environment where demand for resources is regular, a
pre-determined access control scheme often works well; when demand is
random, however, a scheme which is demand adaptive is often necessary to
avoid a waste of resources.

4, This "greedy" assumption simplifies the analysis, but a
probability distribution may be used to specify probabilistically which
resources accessible to a PE will be needed when demand arises.



resource simultaneously, a collision occurs, and for most applications
the shared resource cannot be properly utilized. Because of this, an

access control scheme that decides which PEsS with need of resources

should have the right to access the resources is desirable. The
objective of an access control scheme is to maximize the expected
utilization of resources. Note that the utilization of resources when a
collision occurs is taken to be zero for many applications, but this
need not be the case.

The research presented in this paper is based on recent
contributions to the field of Communication and Networking by Yechiam
Yemini and Leonard Kleinrock [51,[101,[11] concerning a Dbalance
principle and adaptive algorithms for multi-access control of a shared
communication channel in a packet radio network. This research extends
their work to cover a broad range of objective functions which, in
addition to specifying the utilization of a success (exclusive access to
shared resources), may specify a penalty for collisions and/or
sacrifices (decisions to not attempt access though in need of
resources). A more general balance principle results because an
alternative interpretation of the necessary conditions is found to be
appropriate. A new adaptive balancing algorithm is developed and tested

for the new balance principle.5

5. The new balance principle and adaptive balancing algorithm were
developed to control simultaneous updating of control variables in a
distributed iterative refinement algorithm, This application is
developed in a forthcoming thesis [2].



2. Objective Functions

The major difficdlty in determining an optimal control scheme in a
distributed manner is the lack of a global view of the network. For
this reason, the optimization will be based on a simple relationship
among local, decentralized objective functions rather than on a global
objective function. A network utilization operator mathematically
expresses the expected utilization of resources by each PE; it is
actually a vector of local utilization operators, one for each PE.
These local utilization operators are used as local objective functions.

A number of utilization operators are possible depending, for
instance, on which accessible resources will be needed when demand
arises and how possible outcomes (success, collision, sacrifice, ete.)
are combined. Different applications will call for different operators.
While the balance principle will be developed below using only one
utilization operator, it will later be shown to apply to a broad class
of utilization operators.

t

Formally, let d~ = (3?. a;, cee a;) designate the demand process

for time-slot t.6 That is,

11if PEi requires resources at time-slot t,

0 otherwise.

There is no distinction between resources in this model because it is

6. A random variable and its mean are represented by % and x,
respectively. Vectors are underlined and sets are capitalized.



assumed that when a processing element attempts to access resources, it
attempts to access all resources to which it 'has access. Let nt(g)
designate the distribution of Et. This distribution is not known, and
is assumed to change slowly with time.

Define the resource utilization process of PEi during time~slot t
as

1 if PEi has demand and gains exclusive access
to all shared resources,

u, = -a 1if PEi has demand and one or more PEs
interfere with PEi,

0 if PE1 has demand but does not attempt to access
shared resources, or if PEi has no demand.

Thus, a PE is awarded one unit of utilization for a success and is

penalized a units for a collision; a sacrifice or being idle (having no

7 For the packet broadcast problem

demand) results in no utilization.
examined by Yemini and others [1],[4] a penalty was not used (i.e., a=0)
since a packet whose transmission is interfered with is not lost because
a copy is always held for possible retransmission.

Consider a probabilistic access control scheme8 where a utilization

policy, p = (py, py, ..., Py), is a vector of probabilities, such that
for each time-slot PE; will attempt to access shared resources with

probability Py if it has demand. Assuming that a PE attempts to access

T. A single penalty for a collision with any number of PEs and no
penalty for a sacrifice is used here, but many other utilization
processes are possible.

8. Other control schemes may be used provided the probability a PE
will attempt utilization can be expressed as a function of the policy;
another control scheme, the urn scheme, is described in Section U4,



all resources to which it has access when demand arises the mean

utilization of PE; when policy p is used, conditioned upon g? = d is

Py I-I (1-p.) -api(1 - T-I (1-pj)) if di=1

JjeI;(d) jeI;(d)
;E(g.g) =

0 if dy-=o0,
where Ii(g) = {j ! (j#i)n(dj=1)~(j61(i)) 1,

and I(i) = {j | PEj potentially interferes with PE; }.

Clearly, PE,'s expected utilization given demand d and policy p is zero
if di=0 (i.e., PE; has no demand). If dg=1, however, PE;'s expected
utilization is 1 times the probability that it attempts and no PEs
interfere minus a times the probability that it attempts and some PE
interferes.

Assuming a uniform distribution of demand, the expected utilization
of PE; during time-slot t with policy p is given by the local

utilization operator,

ut(p) = Z n(a) ubd,p).
defo, 11V

To simplify notation, the time index, t, will be eliminated in
expressions where there should be no confusion. The network utilization

operator can now be described by



I:"1 (B) N
u, (p)

up =} . |

uy (p) .

Given a policy, p, the network utilization operator yields the expected

utilization of PEs.



3. Pareto Optimality and a Necessary Condition

Pareto optimality, a concept of mathematical economics and game
theory (61,071,081, is an attractive choice of a decentralized
optimality criterion because it is a weak form of optimality that
' requires minimal coordination of members of a decentralized community.
At a Pareto-optimum it is impossible to increase the utilization of any
PE by changing PEs' policies without decreasing the utilization of some
other PE(s); thus, PEs are not selfish. A Pareto-optimal policy yields
a Pareto-optimal utilization. Formally, a utilization vector, u, is
Pareto-optimal if and only if

1) it is attainable, i.e., u* = U(p*) for feasible policy p*, and

2) it is not dominated by another attainable utilization vector

(i.e., "qu' 1 Vi ui > u¥, with at least one strict inequality).

The concept of Pareto optimality has a simple geometric
interpretation. To see this, consider the case of two PEs that both
have demand for a single, shared resource. If the penalty for a

collision is one (i;e.. a=1), the utilization operator is

51 (_E) P1(1—P2) - p1p2
u(p) =

Po(1-p¢) - PoPq

32(3)

and Figure 1 shows how the space of feasible policies is mapped onto

attainable utilizations.



Pareto-optimal utilizations

feasible policies

attainable utilizations

&
\

N

internal Pareto-optimal policies

extreme Pareto-optimal policies

Figure 1: Utilization Operator
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In this example, feasible policies are probability vectors for
deciding whether to access shared resources when there is demand, so all
components must 1lie between 0.0 and 1.0, inclusive. Each feasible
policy vector has a corresponding utilization vector determined by the
network wutilization operator; these utilizations constitute the
attainable utilizations. Pareto optimal utilizations are all
utilizations on the upper-right boundary of the region of attainable
utilizations because such utilizations are not dominated by any other
attainable utilizations (i.e., there is no other utilization that gives
more to one PE without taking utilization away from another PE).

The set of feasible policies includes internal policies and extreme
policies. A policy, p', is an extreme policy if pizo or pi=1 for some
i. The necessary condition for Pareto-optimality to be derived
characterizes internal Pareto-optimal policies and does not necessarily
hold for extreme policies. This is so because the extremality of U(p')
may be directly caused by the extremality of p'. Extreme Pareto optimal
policies must be found by other means.

Consider an internal Pareto-optimal policy, p*, and let u*=U(p*)
be the resulting Pareto-optimal wutilization. Provided U(p) is
continuous, a small perturbation of p* leads to a small perturbation of
u*, The utilization of these perturbed policies are related to u* by

the following linear approximation:
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where 3!}2)|

P is the Jacobian matrix of U(p) at p*.

p=p*

Because p* is an internal point of the set of feasible policies, it
admits perturbations in all directions. The extremality of u* implies
that the attainable perturbations of u* must not admit perturbations in
all directions. This condition occurs if the Jacobian matrix at p* is
singular, because (according to the linear approximation) when this is
the case there is no perturbation of p* that perturbs u* in the
direction perpendicular to the boundary surface of attainable
utilizations. Note that this condition is necessary but not sufficient
for determining these extrema.

The singularity of the Jacobian at p* implies that there is a
non-zero linear combination of rows of the Jacobian at p* which yields a
zero vector. If ¢ = (c1, Coy eenn cN) are the non-zero coefficients of
such a linear combination, the necessary condition for Pareto optimality

of an internal policy can be stated as

ou.(p)
i e R
v J=§.N °3 dp; °
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4, The Balance Principle

For the utilization operator defined in Section 1, the elements of

the Jacobian at p are

o;(p if iz

du,(p) .
op; 4y if izd,
where (bi(_E) = Z m(d) bui(ﬂvﬂ),
de{o, 1}V oPy

b 5(p) = Z m(d) du,(d,p)

defo, 1N op;

n (1-pk) - a(1- TT (1-pk)) if di=1

keI, (d) keI, (d)

it= i*=

au:(g._g) _
bpi
0 if di=0.
keI, (d)~k#J keI, (d)~k#J
du,(d,p) _
bpj
0 otherwise.

Obviously these expressions are the marginal expected utilizations for

Pl’:!i given an incremental change in p; or Pji but, these expressions also
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have another meaning. To see the alternative interpretations for ¢i(B)
and wij(g) it is necessary to look at the expressions by themselves
(i.e., not as derivatives).

If PE; has demand, ¢1(B) is 1 times the probability that no PEs
with demand that may interfere with PEi attempt to access shared
resources minus a times the probability that some PE with demand that
may interfere with PEi does attempt (and hence collides with PEi). If
PEi does not have demand, ¢i(E) is 0. Thus, ¢i(B) can be interpreted as
PE;'s expected ﬁtilization with policy p given that it attempts to
access shared resources if it has demand. Note that if a=0, ¢i(B) may
alternatively be interpreted (as Yemini did) as the probability that
shared resources to which PE; has access will not be utilized given that
PEi does not attempt to access them if it has demand.

To interpret wij(ﬁ)' note that

Xy (R + 2y () if  jeI(i)
U 5(p) =
0 otherwise,
Xy y(p) = Z m(d) ;13(9'3"
defo, 1N

z—_ m(d) Eij(g,g).

where Zij(E)
de{o, 1N
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p ﬂ (1-p,) -ap,(1- ‘I-T (1-p,)) if d.=d.=1
i k i k i77)

JeI, (d) ~k#J Jel, (d) ~k#J
xy5dep) = o Py ﬂ (1-p,) -ap, (1- TT (1-p,) if dy=1ads=0
keI, (d) keI (d)
\ 0 if d;-0.
—apy n (1-p,) -ap, (1- n (1-p,)) if dy=d;=1
JET, (d) ~k# ] JEI; (d) ke J
zij(g'B) = P; I-I (1-pk) -api(1- ]-I (1-pk)) if di=1‘dj=0
kel (d) keI, (d)
0 if d,=0,

through the addition of some dummy terms. For jer(i), xij(B) can be
interpreted as PEi's expected utilization with policy p given PEj does
not attempt to access shared resources if it has demand. And, for
jeI(i), Zij(E) can be interpreted as PE;'s expected utilization with
policy p given PEj does attempt to access shared resources if it has
demand. Note that ;ij(g‘E) = -apy after a little algebraic manipulation
for di=dj=1 as it should since PE; attempts to access shared resources
with probability p; and will suffer a collision for sure if it attempts

(because it is given that PEj will attempt to access shared resources

and PEj interferes with PEi).
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The Jacobian of the utilization operator at p can now be stated as

T G U Uy3()... Uqy(p)
Us(p)  o(p) '«'23(_2)... Uon(p)

WP | Uz(p Usp(p)  d3(p) ... Ugy(p)

Lum(g) byo(@) Uyspde.. Oy |

And, the necessary condition for Pareto optimality of an internal policy
(that there exist a non-zero linear combination of rows of the Jacobian

at p that yields a zero vector) can be stated as

et ¢7(0,0,...0) ~¥i=1,2,...,N

ci0,(p) + Z °jzj1(2)= Z °jxji(2) .

JjeI(i) jeI(i)

For convenience, a PE which may interfere with PE; will be called a

neighbor of PE;, and a PE and 1its neighbors form a neighborhood.

Noticing that c can be interpreted as a vector of pay-off coefficients
similar to a vector of Lagrangian multipliers, and discounting the case

where PE; has no demand (since then ¢i(g)=0 and Zji(2)=xji(g)). the

following interpretation, the balance principle, is possible:

At a Pareto-optimal policy there exists a non-zero vector
of payoff coefficients such that for each PE, expected
neighborhood utilization payoff given the PE has demand and
attempts to access shared resources equals expected
neighborhood utilization payoff given the PE has demand but
does not attempt to access shared resources,
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This balance principle differs from Yemini's which, for each PE,
equates expected silence (empty slots) given the PE has demand with
expected utilization by the PE's neighbors given the PE has demand. In
the section following the next section on direct use of the balance
principle, the balance principle developed above is shown to hold for a
wide range of utilization operators which may include a penalty for
collisions and/or sacrifices. Yemini's balance principle is 1less
general as it does not hold for such a wide range of utilization

operators.
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5. Direct Use of the Balance Principle

A direct way of using the balance principle just derived involves
manipulating the balance principle equations into expressions for
optimal policies given the demand, payoff coefficients, and penalty (if
applicable). These expressions are then used with estimates of the
current demand, current payoff coefficients, and estimate of the penalty
(if applicable) to solve for optimal policies.

To understand how this works, consider the case of two PEs that
share a single resource with penalty & for collisions. Assuming that
the probability that each PE has demand for the shared resource is

estimated to be d = (d;,d,), the balance principle states that

for PE

and for PE2: c2((1—d1p1)—ud1p1) + c1(—ud1p1) = c1d1p1.

Here c1((1-d2p2)-¢d2p2) + c2(-qﬂ2p2) is PE1's expected neighborhood
utilization payoff given it has demand and attempts to access the
resource because c1((1-d2p2)-qd2p2) is PE,'s expected utilization payoff
given that it has demand and attempts to access the resources and
¢y (-adop,) 1s PE,'s expected utilization payoff given that PE, has
demand and attempts to access the resource. Also, ¢,d,p, is PE1's
expected neighborhood utilization payoff given it has demand yet does
not attempt to access the resource because PE,'s expected utilization
payoff given that it has demand yet does not access the resoﬁrce is zero

and PE,'s expected utilization payoff given that PE, has demand yet does
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not access the resource is Cydyp,. The situation for P52 is similar.

After some manipulation, the expressions for optimal policies are

Pq

c1/(c1+02)d1(1+a)

and Py c2/(c1+02)d2(1+u).

Thus, if d,=d,=1 (i.e., PE; and PE, are both known or believed to be
busy) and @=1 (i.e., the penalty for collisions is known or believed to
be one) then c,/c,=1 selects the Pareto-optimal policy py=p,=1/4. One
can, in fact, prove that when d1=d2=1 and &=1 (as is the case shown in
Figure 1) all internal Pareto-optimal policies lie on the 1line
Py = =Py + 1/2. To obtain the expected utilization payoffs for PEs one
merely plugs the optimal policies into the network utilization operator.

It should be noted that the vector of payoff coefficients, ¢, which
may be used to select a particular Pareto-optimal solution does not
directly set the relative value of utilization for PEs. For example, if
01/c2=2 for the example just described and depicted in Figure 1, the
policy p,=1/6,p,=1/3 is selected, for which u1/u2=1/4. At an internal
Pareto-optimal policy the ratio of the coefficients that satisfies the
balance principle defines the orientation of the utilization boundary
surface, not the ratio of expected utilizationms. By fixing the
coeffients and then solving for a Pareto-optimal policy, a particular
Pareto-optimal policy can be chosen; however, care must be taken to

choose a vector of coefficients for which a solution exists.



20

6. Proof of Generality

It will now be shown that the general balance principle developed
in the previous section applies for a broad range of utilization
operators. Let E[ﬁj:gnattempt(i)] be PEJ's expected utilization with
policy p given that PEi attempts to access shared resources. Similarly,
let E[ﬁjigpsacrifice(i)] and E[ﬁjignidle(i)] be PEj's expected
utilization with policy p given that PEi has demand but does not attempt
to access shared resources and PEi has no demand, respectively.

From Section 2, the local utilization operator for PEj is

GJ(B)= Z n(g)ﬁj(g_.g).
de{o, 1}V

Now, though,
piE[U i prattempt(1)] + (1-p)E[Gipasacrifice(i)] if d =1

Gj(g'B) =
E[ﬁji_gaidle(i)] if d,=0,

and, provided E[Ejignattempt(i)]. E[ﬁjigasacrifice(i)], and

E(G;ip~idle(1)] are independent of p; for all j (including j=1i)

duyp) . Z m(d) Ouy(p.d)
2Py defo, 1N Py
where
_ Elujiprattempt(i)] - E[U;ip~sacrifice(i)] if dy=1
duj(d,p) .

bpi 0 if d;=0.
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Using the necessary conditions for Pareto optimality and discounting the

case where di=0 (since 0=0), the general balance principle results:

dc | Yi=1,2,...N

CiE[Gi:gnattempt(i)] + Z CjE[aj!BAattempt(i)] =
jeI(i)

ciE[ﬁi}_p_nsacrif‘ice(i)] + z: Cjz[ﬁjignsacrif‘ice(i)].
jeI(i)

This balance principle is valid for a wide range of utilization
processes and operators; however, for some applications a special case
of the balance principle is appropriate. This case arises when a PE's
utilization of one shared resource is not dependent on the PE gaining
exclusive access to other shared resources. When this condition holds,
a PE's neighbors' utilization of resources not shared with the PE is
independent of the PE's actions, and neighbors' conditional expected

utilization payoff of resources shared with the PE may be used in place

of neighbors' conditional expected utilization payoff of all shared

resources.
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7. The Urn Scheme and Some Performance Measures

An interesting alternative to the probabilistic decision mechanism
described above is the urn scheme [5]1,[10],(12]. Under the urn scheme,
each PE; draws k; mumbers from identical pseudo-random number generators
using a common seed to determine which PEs may attempt utilization of
shared resources. The probability of drawing a particular number from a
pseudo-random number generator in a sample of k numbers is similar to
the probability of drawing a ball of a particular color from an urn
containing varibus colored balls in a sample of k balls; hence.'the name
"urn" scheme. The use of a common seed and identical pseudo-random
number generators coordinates the decisions of PEs without
communication,

Actually, a variety of urn schemes are possible, depending upon how
numbers (colors) are assigned to PEs and what numbers can be drawn from
a pseudo-random number generator (how many balls of each color are in an
urn). Perhaps the simplest urn scheme assigns a unique number to each
PE, and has PEs draw numbers from identical, randomly ordered lists of
the assigned numbers. A better urn scheme, though, assigns the fewest
numbers to PEs such that each PE is assigned a number yet in each
neighborhood no PE has the same number, and has PEs draw numbers from
identical, randomly ordered lists of the (fewer) assigned numbers. Note
that when each PE may interfere with all PEs, the schemes are
equivalent. The use of multiple urns has been proposed [12] which

produces a scheme similar to the tree scheme [3].
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The techniques used to derive the balance principle for the
probabilistic scheme may also be used to determine an optimal k for an
urn scheme. The urn scheme, as Kleinrock and Yemini showed in [5] and
will be shown below, achieves a utilization similar to the probabilistic
scheme when demand is light, and significantly better utilization when
demand is heavy.

Figures 2 and 3 show the theoretical performance of the
probabilistic and urn schemes, and compare their performance with a
serial scheme (which gives access rights to one PE each iteration in a
fixed order) and a perfect scheme (which gives access rights to one PE
with demand each iteration if there is such a PE). These figures depict
the case where a single resource is shared by a number of PEs, and each
PE has demand each time-slot, independent of other PEs and other
time-slots. Expected global utilization vs. demand for two, four, and
eight identical PEs at a Pareto optimum assuming no penalty for
collisions is shown in Figure 2. Figure 3 shows expected global
utilization vs. demand for two identical PEs at a Pareto optimum
assuming a range of penalties for collisions.

The effectiveness of the probabilistic scheme is clearly limited
with moderate and high demand. The urn scheme performs better than the
probabilistic scheme, but requires a common seed for the identical
pseudo-random number generators. Note that the urn scheme performs like
the probabilistic scheme for low demand, and like the serial scheme for

high demand.
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A perfect scheme (implemented with a central processor or global
negotiation) is, of course, more effective; but, the communication costs
of the perfect scheme can be prohibitivé. The benefits of a perfect
scheme are greatest for large N and low demand, but communication costs
are high for large N since communication costs are geometrically related
to N.

Figure 3 shows that a penalty for collisions forces the
probabilistic and urn schemes to adopt more conservative policies; thus,
they become less effective as the penalty increases. A penalty of
a=1/2, for example, cuts utilization in half. A negative penalty

(actually a reward) causes the policies to be more optimistic.
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8. An Adaptive Balancing Algorithm

It is possible for the balance principle developed in the previous
section to serve as the basis for an adaptive, distributed access
control algorithm that is quasi-static (i.e., appropriate for slowly
changing environments) and entirely decentralized. The algorithm
implements a decentralized, iterative process that estimates and
balances PEs' conditional expected neighborhood utilization payoffs
(expected neighborhood utilization payoff given the PE has demand and
attempts to access shared resources, and expected neighborhood
utilization payoff given the PE has demand but sacrifices). While a
detailed analysis of the algorithm is beyond the scope of this paper, a
description and some simulation results are included below.

Conventional adaptive access control algorithms rely on an estimate
of the number of PEs with demand and an optimality condition similar to
the balance principle to compute an optimal policy [5],[9]. In much the
same way, an estimate of the number of PEs with demand can be used in
conjunction with the balance principle derived in Section 4 to compute
optimal policies. Estimates of the number of PEs with demand can be
maintained by heuristic means [5] or byi recursive estimation [9].
Unfortunately, these schemes are limited to the case where there is a
single resource shared by all PEs; this is not so for the scheme

proposed below.
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The alternative adaptive access control scheme proposed below
incrementally adjusts policies based on estimated conditional expected
utilization payoffs. The estimates of conditional expected utilization
payoffs are maintained through observatibns and/or communicated
information concerning PEs' actual utilizations, and may be supplemented
by inferences of PEs' conditional expected utilizations. Note that
estimates of PEs' demand need not be maintained, and a precise model of
the utilization process need not be known if actual utilizations are
observed or communicated. Furtheremore, the algorithm is appropriate
for arbitrary network topologies.

For reasons soon to be explained, it is actually best that each PE
maintain separate estimates of conditional expected utilization payoffs
for itself and each of its neighbors. This usually involves obtaining
neighbors' wutilizations via communication each iteration a PE has
demand. With utilization processes for which the special case of the
balance principle discussed briefly at the end of Section 5 holds, only
a PE's neighbors' utilization of resources shared with the PE are needed
to update the PE's estimates; this can be obtained without communication
if utilization of resourceé to which a PE has access is observable by
the PE.

The payoff coefficients, ¢, determine the particular Pareto-optimal
policy and utilization that is obtained when balance is achieved. Thus,
the adaptive balancing algorithm does not strive to find some random
Pareto-optimum, it strives to find the particular Pareto-optimum

selected by the coefficients, c. These coefficients may be preset or
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manipulated, via a central processor, a hierarchy, or a second level of
adaptation, to distribute wutilization among PEs of the network.
Unfortunately, for irregular networks _g:(1.1....1) does not give equal
utilization to all PEs. Although a PE need not keep separate estimates
because of this, a PE must distinguish between neighbors when observing
utilizations if e¢=(1,1,...1) so that the utilization payoffs can be
multiplied by the appropriate payoff coefficients.

Given a particular vector of payoff coefficients, ¢, let PEi's
estimate of its expected neighborhood utilization payoff (nup) given

policy p and that I’Ei attempts to access shared resources be

E[nupi ip~attempt(i)] =

CiE[TJj{BAattempt(i)] + Z CjE[ﬁjignattempt(i)]
JeI(i)
and, let PEi's estimate of its expected neighborhood utilization payoff

given PEZi sacrifices be

E[nupi:_gnsacrifice(i)] =

CiE[Bj:_Ensacrif‘ice(i)] + Z ch[uJ-l_Easacrifice(i)].
jel(i)
Furthermore, assuming a probabilistic scheme, let PE;'s estimate of a

neighbor's expected utilization payoff (given PE; has demand) be

E[upj:Eademand( i)l =

Pich[ﬁj{_QAattempt( )] + (1-—pi)cJE[Gj}B~sacrifice( i)].
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Note that E[upj:gademand(i)] is a good estimate of a neighbor's expected
utilization pay-off.

Now, if Elnup;ip~attempt(i)] < Elnup;ipssacrifice(i)] then PE;
knows that its neighbors are over-utilizing shared resources and are
interfering with its attempts to access shared resources. For this
reason, PEi should notify its neighbors to decrease their attempts to
access shared resources. It is important to note that changes in PEi's
policy will not directly affect the imbalance seen by PEi, but chahges
to neighbors' policies will. For this reason, changes to a PE's policy
are, for the most part, "neighbor-directed" rather than self-directed.

If E[nupizgfattempt(i)] > Elnup,ip~sacrifice(i)] then PE; knows
that its neighbors are under-utilizing shared resources and are wasting
PE;'s sacrifices. It is tempting to say that PE; should notify
neighbors with low E[upJ:Bndemand(i)] to increase their attempts to
access shared resources; however, under-utilization of shared resources
by neighbors may be due to neighbors' attempting too much (and
colliding) as well as attempting too little.

Two approaches to resolving this uncertainty are for a PE to try to
determine if neighbors are under-utilizing because they are attempting
too much or too little, or for a PE to let the neighbors determine that.
For a PE to determine why neighbors are under-utilizing shared resources
it might look at its own expected utilization payoff given it attempts
to access shared resources; if this is low then neighbors are attempting
too much, and if high then neighbors are attempting too little. For a

neighbor to determine if it is attempting too much or too little, the
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neighbor need only look at its policy or note whether or not it just
collided or sacrificed; if its policy is high or it just collidéd then
it is attempting too much, and if its policy is low or it Jjust
sacrificed then it is attempting too little.

To distribute utilization quickly in the manner specified by the
payoff coefficients it is important that PEi direct stronger
notifications to increase/decrease attempts to access shared resources
to neighbors with low/high E[UPjIBAdemand(i)]. This is why separate
estimates of conditional expected utilization payoffs for PEi and its
neighbors should be kept. Note that if ci;rcj for some neighbor, PEj,
then PE; must distinguish between different neighbors' utilization of
resources anyway.

In general a PE should readjust jts likelihood of attempting to
access given demand in accordance with notifications received from
neighbors, by changing its policy. Because of the problem mentioned in
the previous paragraph, though, a PE might be required to decrease its
attempts to access if it has just collided or its policy is high, and
otherwise readjust its attempts to access according to notifications
received from neighbors. PEs' policies are bounded, so a PE cannot
increase its polic& beyond 1.0 or decrease it beyond 0.0 for the

probabilistic scheme; the upper and lowwer limits for the urn scheme are

N and 0.0, respectively.
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Results of a simple adaptive balancing algorithm are included in
the next section. This algorithm can be described by the following

rules:

1) If a PE's expected neighborhood utilization payoff
given it attempts to access resources is greater than its
expected neighborhood utilization payoff given it sacrifices,
then it should notify neighbors with minimal estimated
utilization payoff to increase their policies by two
step-sizes, and should notify other neighbors to increase

their policies by one step-size;

2) 1If a PE's expected neighborhood utilization payoff
given it attempts to access resources is less than its
expected neighborhood utilization payoff given it sacrifices,
then it should notify neighbors with maximal estimated
utilization payoff to increase their policies by two
step-sizes, and should notify other neighbors to increase
their policies by one step-size;

3) Each PE lowers its policy by one step-size if it
suffers a collision; otherwise, it increases its policy by an
amount determined by summing notifications received from
neighbors and normalizing by dividing by the number of
neighbors. Policies are only permitted to take on values
between 0.0 and 1.0 (inclusive) for the probabilistic scheme,

or between 0.0 and N (inclusive) where N is the number of PEs
for the urn scheme.

A step-size specifies the basic magnitude of changes to policies, thus
controlling the reactiveness of the algorithm.

Remember that the balance principle represents a necessary but not
sufficient condition for Pareto-optimality of an internal policy. For
example, the rude policy, p=(1,1,...1), satisfies the balance principle
if a=0 and demand is high, yet is not Pareto-optimal. This does not,
however, appear to present a problem for the adaptive balancing
algorithm just described, which will not remain at the rude policy if
there are any collisions. Other non-Pareto optimal equilibrium have not

been encountered.
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9. Simulation Results

Simulation results of the adaptive balancing algorithm using the
probabilistic and urn schemes to control access to a single shared
resource are presented in this section. Demand is generated randomly
and independently for each PE and iteration. The probability that each
PE has demand can be specified, and initial policies and estimates can
be provided so that transient behavior can be observed.

A simple estimation scheme can be used to maintain estimates of
conditional expected utilizations, from which conditional expected
neighborhood utilization payoffs are calculated. A "window-size" is
specified, and when PE.1 has demand and attempts to access shared
resources (say after time-slot t) it updates E[ﬁjighattempt(i)] using

the rule,

E[ﬁj:BAattempb(i)] 1=

((window_size-1)E[Uiprattempt(1)] + u;) /window_size

for each neighbor. Similar rules are used to update E[Ejigfattempt(i)]
and, when PE; has demand and sacrifices, E[ﬁjlgpsacrifice(i)] for each
neighbor and E[ﬁjtgfsacrifice(i)]. By varying window-size, the amount
of history retained by PEs can be controled. Although the simple
estimation scheme works it can be many iterations Dbetween

attempts/sacrifices if demand is high/low and estimates may get old.
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To obtain the simulation results shown below a more complex
estimation scheme was used with the adaptive balancing algorithm
described in the previous section. This estimation scheme took
advantage of the network topology (a single resource shared by all PEs)
by inferring conditional expected utilization payoffs of PEs from
knowledge of which PEs attempt to access resources. This permitted the
updating of all estimates of conditional expected utilization payoffs
each iteration reguardless of the actions of PEs, and resulted in a more
responsive algorithm.

All simulations involved the case of 4 PEs that share a single
resource with payoff coefficient vector, c=(1,1,1,1). The next 7
figures show the behavior of the adaptive balancing algorithm. For each
figure, PEs' policies are shown in the top half of the figure, and
utilizations are shown in the bottom half. Because utilizations are
discrete events, the average utilization is shown to the right of the
graphs.

Figures 4 and 5 depict the probabilistic scheme starting at a
Pareto-optimum., Figure U4 shows the policies and utilizations of a
typical PE with various step-sizes and Figure 5 shows the policies and
utilizations of a typical PE with various window-sizes. In both cases,
all PEs have demand each iteration with probability 1.0 (i.e.,
d=(1.0,1.0,1.0,1.0) for all iterations) and there is no penalty for
collisions, so the Pareto-optimal policy is p=(0.25,0.25,0.25,0.25);
each PE's expected utilization payoff should be approximately 0.11.

Note that the algorithm functions well even when the step-size is quite
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high.

Figures 6 and 7 depict the probabilistic scheme coping with a
dramatic change in load. The PEs begin with policies and estimates
appropriate for  d=(0.25,0.25,0.25,0.25), but are faced with
d=(1.0,0.5,0.25,0.1) for all iterations. A window-size of 2 and
step-size of 0.1 are assumed for Figure 6; a window-size of 2 and
step-size of 0.01 are assumed for Figure 7. It took approximately 20
iterations to adapt with a step-size of 0.1, and approximately 120
iterations to adapt with a step-size of 0.01.

The Pareto-optimal policy sought by the network of PEs for runs
depicted in Figures 6 and 7 is an extreme policy, p=(0.25,0.5,1.0,1.0).
Notice that for i=1, 2, and 3 d;p;=0.25, but dyp,=0.1. In this
situation the adaptive balancing algorithm is striving to find a p such
that dipi=0.25 for all PEs. However, balance cannot be achieved with
e=(1,1,1,1). Thus, after an initial transient period PE,, PE,, and PEg
repeatedly send messages to PEu requesting that it increase its attempts
to access shared resources; PE,, though, cannot increase p, beyond 1.0.
This behavior of the adaptive balancing algorithm at such extreme Pareto
optima seems reasonable.

The probabilistic scheme at equilibrium, but with various penalties
for collisions is depicted in Figure 8. The policies and utilizations
are as expected. Note that the particular version of adaptive balancing
algorithm that was simulated has each PE; decrease p; if it is involved
in a collision; this may be inappropriate for negative penalties (i.e.,

when collisions are beneficial).
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Finally, Figures 9 and 10 depict the urn scheme coping with the
same dramatic change in load as the probabilistic scheme faced in Figure
6 and Figure 7. With the urn scheme, policies range from 0.0 to N.
Also, policies are rounded off to integers when used for the urn scheme
because an integral number of numbers are to be drawn from pseudo-random
number generators. Note that PE1 would have a constant policy of 1.0
and utilization of 0.25 if the other PEs also had high demand, but other

PEs' low demand forces PE, to sacrifice some of these slots.
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10. Conclusions

A simple, yet powerful "balance principle" for optimal, distributed
multi-access control has been derived using the concept of Pareto
optimality. The balance principle covers a broad range of objective
functions; the objective function may include penalties for collisions
and other events. The principle states that when PEs are using a
Pareto-optimal policy there exists a vector of payoff coefficients such
that for all PEs expected neighborhood utilization payoff given the PE
has demand and attempts to access shared resources equals expected
neighborhood utilization payoff given the PE has demand but does not
attempt to access shared resources.

Provided that the probability that a PE will attempt to access
shared resources given the PE has demand can be expressed as a function
of the access control policy, the balance principle is appropriate. Two
important access control schemes of this type, the probabilistic and urn
schemes, were examined. The urn scheme is better than the probabilistic
Scheme because it performs better at high demand. A high penalty for
collisions tends to make the probabilistic and urn schemes 1less
effective because PEs must be more cautious to avoid collisions.

The balance principle can be used in a number of ways. Given that
demand is regular and statistics are known, the balance principle can be
used to derive an optimal, fixed policy. When demand varies randomly
over time, the balance principle can be used in a conventional manner to
determine the optimal policy given an estimate of the demand and penalty

statistics. Alternatively, the balance principle can be used in an
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adaptive balancing algorithm as described in Section 5. PEs'
theoretical expected utilization'with a Pareto-optimal policy was shown
in Figures 2 and 3.

The communication requirements of the adaptive balancing algorithm
depends on a number of factors. Most of the communication is involved
in maintaining estimates of conditional expected utilization payoffs,
unless utilization of resources by each PE and its neighbors can be
observed by the PE. The messages transmitted between PEs to adjust
policies are small, and PEs need not send messages to neighbors each
iteration.

Results of simulations of the adaptive balancing algorithm were
discussed in Section 6, and indicate that the adaptive balancing
algorithm does achieve Pareto-optimal utilizations. The algorithm is
effective with a large step-size which makes it reasonably quick to
adapt to changes in demand. Further development and testing of the
adaptive balancing algorithm in a more complex setting appears to be in

order.
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