Nesting in Ada Programs
is for the Birds

Lori A. Clarke*
Jack C.Wileden
Alexander L. Wolf*

COINS Technical Report 80-21
December 1980

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

Appeared in
Proceedings of the ACM-SIGPLAN
Symposium on the Ada Programming Language
Boston, Massachusetts
December 1980

* This work was supported in part by the Air Force Office of Scientific Research under grant AFOSR 77-3287.

Nesting in Ada Programs‘
is for the Birds

Lori A. Clarke+
Jack C. Wileden
Alexander L. Wolf+

Department of Computer and Information Science
University of Massachusetts, Amherst
Amherst, Massachusetts 01003

+This work was supported in part by the Air Force Office of
Scientific Research under grant AFUSR 77-3287.

Abstract

Given a data abstraction coustruct 1like the
Ada package and in 1light of current thoughts on
programming methodology, we feel that nesting is an
anachronisa. In this paper we propose a nest-free
program style for Ada that eschews nested program
units and declarations within blocks and instead

heavily utilizes packages and context
specifications as mwmechanisms for controlling
visibility. We view this proposal as a first step

toward the development of programming methods that
exploit the novel language features available in
Ma, Consideration of this proposal's
ramifications for data flow, control flow, and
overall programs structure subutantiates our
contention that a tree structure is seldom 'a
natural representation of a program and that
nesting therefore generally interferes with progran
development and readability.

1. Introduction

The advent of Ada could signal the beginning
of a new era in software development., For the
first time in over a decade 8 new programming

language, intended for production use and
incorporating state-of-the-art language features,
has been proposed . If accompanied by an

appropriate development environment and suitable
progranming methods, the introdustion of Ada could
indced mark a turning point in tLhe history of
software development. A major effort is now being
directed toward the development of a supportive
programming environment specifically tailored to
Ma (2]. We contend that attention should also be
directed toward the development of programming
methods that exploit the. novel 1language features
available in Ada. In this paper we take a first
step toward developing such methods by proposing a

Permission to copy without fee all or part of this material is granted
provided that the copics are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its datc appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requises a fec and/or specific permission.

© 1950 ACM 0-89791-030-3/80/ 1200/0139 $00.75

139

program style that offers guidelines concerning the
way 1in which program units should be organized and
combined in an Ada program.

Historically, the first non-trivial program

organization consisted of a linear collection of
independent units, FORTRAN (1] is a familiar
example of a language using this program
organization. A unit in FORTRAN is either a main

program or a subprogram. Two FORTRAN units are
completely independent of each other unless one
explicitly invokes the other or they reference the
Same COMMON block.

In an effort to improve upon FURTRAN'S weak
mechanisms for data sharing and data type
enforcement, ALGOL 60 (5] 1introduced a more
elaborate program organization. An ALGUL 60
program consists of a collection of units and
blocks organized as a tree .Structure, An ALGOL 60
unit is simply a procedure, while a block is a

Sequence of statements optionally preceded by a
sequence of declarations. The tree structure is
represented by textually enclosing, or nesting,
lower level units and blocks within higher level
units and blocks. While the term nesting is also

commonly used to describe the embedding of
statements within statements, such as nested if
statements or nested loops, nesting of this sort

does not concern us. Rather our concern is with
the embedding of declarations that can result when
units and blocks are nested, and hence we use the
tera nesting only in this sense in the remainder of
this paper.

In ALGOL 6O, nesting is used to conlrol LULhe
scope of visibility of entities within a program.
The scope of an entity's visibility is determined
by the location of thut entity's declaraLion in Lhe

program's tree structure. Access to an entity is
restricted to the unit or block in which it is
declared as well as any units or blocks nested
therein. A declaration of an entity with a:
particular identifier in a given unit or block
renders invisible, or hides, any declaration of
entities with that same identifier appearing in

ancestors of that unit or block. Therefore the
visib.lity of a particular entity is bounded on onc
side by the boundaries of the unit or block in
which it is declared and, potentially, on the other
side by the boundaries of more deeply nested units
or blocks in which its identifier is redeclared.

The entities in an Algol 60 program can be
either procedures, data objects, or labels. When
applied to labels or procedures, scope of

visibility imposes restrictions on the possible

control flow in a program. When applied to data
objects, it levies restrictions on data flow.

The languages that have succeeded ALGOL 60
have incorporated more sophisticated data
structures and control structures but, for the most
part, have retained the ALGOL 60 concept of tree
structured programs. Recently, CLU, Alphard, and
other experimental languages (6) have emerged with
constructs for supporting data abstraction (4],
Ada has adopted many of the data and control
structures pioneered by ALGOL's successors and
offers the packsge construct for data abstraction,
but Ada has also retained ALGOL'S program structure
of nested program units and blocks. In Ada, a
program unit is a subprogram, a package or a task®,
while the definition (although not the syntax) of a
block is the same as in ALGOL 60. We argue that
given a data abstraction construct such as the Ada
package and in 1light of current thoughts on
programming methodology, nesting is an anachronism.

As an alternative to nesting, we propose a

nest-free program organization, which 1is an
essentially flat organization coupled with
constructs for explicitly associuting identifiers

of program entities with the particular units in
which those entities are accessed., Our objections
to a tree structure for programs are based upon the:
generally unnatural organization that it produces
and its inadequacy for precisely capturing a
program's intended data references and control
flow. Thus we advocate a program style for Ada
that eschews nested program units and declarations
within blocks and instead heavily exploits packages
and context specifications as mechanisas for
controlling visibility.

The remainder of this paper elaborates our’

arguments against a nested program structure and
further details the nest-free Ada program style.

2. Arguments Against Nesting

In Ada, and in its predecessors, nesting has
primarily been employed to govern control flow and
data flow within programs, In this section we
demonstrate the inadequacy of nesting for both of
these uses and discuss how nesting interferes with
progran development and readability. Throughout
this paper we use the program organization
described in Figure 1 as the basis for examples
illustrating our objections to nested program
structure. Although these examples are all stated
in terams of nesting within procedures, they could
also have been phrased in terms of nesting within

procedure declares references invokes

A XeYeuo XeYeoo B,C
B cee cee D.E
Cc oo ces F.G
D oo Y...

Eo

F oo ves

G ‘e Y...

Example Program Organization

Figure 1

*To simplify the presentation, we reatrici our

discussion to subprograms and packages.

140

.ALGOL 60 rules for controlling

packages or blocks. Only where the invocation of 3
procedure is explicitly mentionecy is tne use of
procedures as the nested objects significant.

2.1 Control Flow Arguments

In Ada, as well as other languages that employ
a tree-structured program organization, nesting
affects the flow of control by restricting access
to program units. Ada has essentially adopted the
the invocation of
subprograms. These rules are based upon each
subprogram's location in the tree structure. A
given subprogram within this structure may invoke
its direct descendants as well as invokg anv of its
ancestors and any siblings, either its own or its
ancestors', which textually precede it in the
program listing. While nesting protects a
subprogram from being invoked by any subprograms
above it in the tree structure other than its
parent, the subprogram can be accessed from any of
its own descendants or those of its younger
siblings. Thus, while it may appear that nesting
would precisely capture a calling structure that is

organized as a tree, this is not the case. The
program invocations specified in Figure 1 are
presented in Figure 2 in the form of a call graph,
a graphical representation of the subprogranm
invocations found within a program. Since Lhis
call graph is a tree, it can also serve as the

O& B

Call Graph of the Program
Crganization Specified in Figure 1

Figure 2

progr uin yLrucLuru
organization of a
textual representation

Lree, wnich depiels Lhe fesied
program. Figure s shows tLhe
of the program structure
given by this tree., The program structure tree,
and thus its associated textual representation,
alluws for the possibility of numerous other
patterns of invocations. A potential call graph
shows all possible subprogram invocations permitted
by a particular program structure tree. The
potentiul call graph for our example 15 shown in
Figure 4%, As illustrated by the potential cull
\Vwite, Ll Texlual representation in raigure 3
realizes not only the desired calling pattern of
the example program, but many others us well. in
particular, any program whose calling pattern is a
subgraph of the potential call graph 1n Figure u

*For simplicity, cycles of length one, 1i.e., self

recursive procedure calls, have not been shown.

procedure A is
X.Y : INTEGER;
érocedure Bis
procedure D 13
begin
~- sequence of statements of D
- (referencing Y)
end D;
procedure E i3
Z : INTEGER;
begin
~= sequence of statements of E
- (referencing 2)
end E;
begin
-= sequence of statements of B
— (invoking D and E)
end B;
procedure C is
procedure F is
begin
-- Ssequence of statements of F
end F;
procedure G is
begin
-- sequence of statements of G
-~ (referencing Y)
end G;
begin
-~ Sequence of statements of C
-=- (invoking F and G)
end C;
begin
-~ sequence of statements of A

— (referencing X and Y, invoking B and C)
end A;

A Textuual Hepresentation of the Progranm
Organization Specified in Figure 1

Figure 3

may be textually represented by the organization ot
Figure 3. In general, a given control flow
organization may be represented by several
different nested structures and a given nested
Sstructure may permit numerous distinct calling
patterns. Hence, at best, nesting offers an
imprecise representation of the intended calling
structure of a program.

The example discussed above illustrates the
limitations of nesting as a means fon describing an
intended calling structure that is organized as a
tree. Nesting is even less suitable for
representing a more general calling structure. For
instance, suppose that the program organization

Potential Call Graph of the Program in Figure 3

Figure 4

shown in Figure 1 is modified so that procedure E
invokes procedure F. The resulting call graph is
presented in Figure 5. Since this c¢all graph is
wot a tree, it cannot be used as a program
structure tree. Therefore, constructing a nested

Call Graph of the Modified
Figure 1 Program Organization

Figure S

program to realize the calling structure requires
the additional effort of finding a suitable program
structure tree. In general there are several such
trees, CUne possible program structure tree that
supports the pattern of 1nvocations shown i1n Figure
5 is given in Figure 6. The potential call graph

o

A Progrzm Structure Tree for the
Call Graph of Figure 5

Figure 6

derived from this program structure tree does
indeed subsume the call graph of Figure 5. 1In
general , however, the translation from an {ntended
calling structure to a suitable program structure
tree is not a particularly natural operation. In
practice, programmers usually discover a suitable
program structure by moving procedures invoked by
nany other procedures to successively higher
aescing levels in their programs. For example, the
textual representation given in Figure 3 can be
nodified to support the call graph of Figure 5 by
moving procedure F up to the point just ahead of
procedure B, which results in the program structure
tree of Figure 6. Thus, in general, one
coasequence of nesting 1is that large programs
frequently begin with a long 1ist of low level
utility procedures.

The problem of finding a suitable program
Structure tree is even more complicated when two
progran entities have the same identifier, since
hiding can then lead to unexpected results. For
instance, suppose that the program organization of
Figure 1 is modified by adding A to the list of
procedures invoked by B. Suppose further that, at
scme later date, a progremmer identifies a segment
of code common to procedures D and E and decides to
make the common segment into a new procedure,
invoked by both D and E. Should the programmer
choose to give that new procedure the identifier A,
perhaps being unaware that that identifier has
already been used, the resulting call graph would
be the one shown in Figure 7. Applying the usual
technique of moving the shared procedure to a
higher nesting level would result in the program
atructure tree shown in Figure 8. This tree, and
its corresponding textual representation, seemingly
permits all the intended invocations indicated in

the call graph. In this program structure,
however, the old procedure A i3 no 1longer
accessible to procedure B, since it is hidden by

the new procedure A. As a result, B's invocation
of A will now be invoking a different procedure A,
with potentially disasterous results.

2.2 Data Flow Arguments

‘Nesting affects data flow in Ada programs in
essentially the same way that it affects control
flow, by restricting access to program entities,
In the case of data flow, the entities in question
include variables, constants, and types. To

"N
() (2

Call Graph of Another lodified
Figure 1 Program Crganization

GS (e

- Figure 7

142

A Program Structure Tree for the
Call Graph of Figure-7

Figure 8

simplify the presentation we restrict the ensuing
discussion to variables, although similar arguments
can be made for constants and types.

We contend that, as was true for control flow,
a8 nested program structure provides an imprecise
representation of intended data flow.
Specifically, nesting permits unintended access to
variables, and hiding can leau to wunanticipated
resuylts. Both of these difficulties are
illustrated by the example program organization of

Figure 1 and the textual representation of Figure
3. According to Figure 1, variable X is intended
to be referenced only by procedure A, while

variable Y is to be referenced by procedurces A, D,
und G, However, being declared in procedure A, a3
they must be to permit the intended references,
these variables can, In fact, be referenced from
any of the seven procedures included :in
program, Horeover, should ° a programmer
subsequenlly inaert a declaration for a new
variable with ldentifier Y into procedure B, this
new Y would hide the one declared in A from
procedure D. D's references to Y would then affect
the new Y rather than the old Y, with unpredictable
consequences.

Furthermore, as was the case for control flow,
nesting of'ten leads to an unnatural program
organization when variables are shared. Again
referring to Figures 1 and 3, suppose that variable
Z, declared and refcrenced in procedure E, i3 Lo be

shared with procedure F. In some instances, a
modification of this kind can be accomplished by
mo.ing one of the procedures involved. In this

example, making procedure E the outermost procedure
of the program will both preserve the inteuded
calling structure and permit E and F to reference
Z. As was previously pointed out, however, mov ing,
3 procedure can often introduce further problems
and typically results in an unnatural progran
organization. Another alternative for sermitting E
and F to share Z is to move the geclaration of Z up

to the point in nrocedure A where X and Y arc
declared. The principal disadvantages of this
alternative are that Z 1is now declared 1n a

procedure wnose body contains no reference Lo 2 and

that the declaration i3 now far ftrum Lhe aclual
points ol reference. Moreover, 4L can now e
accessed by prccedures other than E and F, and &

declaration of another variable with identifier 2
in procedure B or C would hide the shared variahle
from E or F, respectively.

the,

2.3 Program Development and Readability Arguments

Our primary motivation for proposing a program
style for Ada is to foster a more natural program
structure that facilitates development and enhances
readability. A major impediment to program
development and readability is the artificial
ordering of units imposed by nesting. As noted
above, maintaining a nested progras structure
during the development phase often requires that
program units be repeatedly shuffled from 1location
to location. This movement of code disrupts
logical program development and, as pointed out in
the above examples, may introduce subtle program
errors. Furthermore, nesting leads to a program
text in which the bodies of lower level units
appear before the bodies of higher level units ana
hence prior to the context in which they are used.
Moreover, in a nested program, variable
declarations may be encountered well before their
use due to intervening unit declarations. Host
notably, the main procedure's variable declarations
typically appear at the very beginning of the
program text while its body appears at the very
end. In addition, the use of blocks to declare
variables at intermediate locations within a
program unit is generally considered a . poor
programming practice that hinders readability.
confining all declarations of variables to the
declarative part of a program unit precisely
votudlishes ine entities in use within the unit and
provides a common point of refercnce for the unit's
name dpace. ln sum, the program structure
resulting from nesting interferes with the logical
ecxposition of the program text, thereby hindering
both development and maintenance.

Ada's designers evidently recognized the
limitations that nesting imposes on program
development and readability, and attempted Lo

overcome them by proposing the subunit facility.
This fucility permits the body of o program unit
embedded in the declarative part of another unit to
be removed from that decclarative part and made
textually distinect from the enclosing unit.
Instead of the entire unit, only a stub need appear
in the declarative part of the enclosing unit. The
subunit facility appears to overcome the najor
Jdrawbacks of a nested program structure. In
particular, the text of programs developed 1in a
top-down fashion can be organized in a
Lop-to-bottom manner, as illustrated in the Ada
reference manual (3, p.10-7), with only the stubs
of referenced subunils uppearing prior to the
«¢lual reference. However, the subunit facility in
fact preserves nesting and hence some of its
assocrated shortcomings with respect to
readability. According to the AMa language
definition, the textually separate subunit body is
still considered to be logically located at the
point where the stub appears, that is, nested
within the declarative part of another unit, it is
the location of this stub that determines the
context, i.e., the visibility of other program
units and data objects, within which this subunit
1S to be understood. Since the subunit is
textually distinet frem the stub whose location
Getermines its logical context, this can make both
writing and wunderstanding the subunit extremely
difficult,

143

.potential

3. A ilest-Free Program Style For Ada

Having discussed the c¢rawbacks of a nested
program structure, we now direct our attention to
the manner in which an Ada program would be
constructed using our nest-free program style. In
this section we detail the overall program
structure implied by our proposal, justify that
structure in terms of programming methodology
considerations, and discuss how our proposal fits
within the framework of the ida language design.

The nest-free ida program style would generate
programs that are linear collections of program
units (i.e., subprograms, packages and tasks). No
nesting of orogram units would be permitted and
blocks would not be allowed to have declarative
parts. 3pecifically, subprograms and tasks would
not contain the declarations (or bodies) of other

subprograms, tasks or packages and packages would
not contain the declarations (or bodies) of other
packages. ?ackages may contain subprograms and
tasks, but this is merely a syntactic grouping to
accomodate data 2ncapsulation and information
hiding.

In place of nested program units and embedded

declarations, the nest-{ree program style heavily
exploits the package and context specification
constructs as the foundations for program
organization. desides supporting data

cncapsulation in a fairly natural way, puckages can

be uzed Lo Jdescride variaple visibility and
intended control flow much more precisely than can
be done using nesting. Thé context specification

construct, used in conjunction with compilation
nit. which are packages or subprograms, provides a
means (or explicitly indicating the relationships
among program entities. This approach is not only
more <«xplicit but 2150 more general and more
flexible than a nested program organization, which
relies wupon the textual location of program unils
Lo implicitly define 2 tree structure governing
control flow and variable visibility. Applying our
approach to the program organization depicted in
Figure 1 would result in a textual representation
like that shown in Figure 9.

The ida package and context specification
constructs can be used to describe a program's
desired control flow much more precisely than can
be done using nesting. 1In a nest-free Ada program,
a orogram unit explicitly tndicoles whitcts
subproyrams 1L may directly access by using a
context specilication that lists Lhe compilation
units containing those subprograms. Thls results
1n a auch closer correspondence between a program's
call graph and 1its intended calling
structure Lhan can be obtained using nesting. For
instance, the gpotential call graph of the program

shown in Figure 9 is identical to its call siraph,
which appears in Figure 2. Furthermore, note that
revisions to a program that result :n .aditional
sharing of subprograms only require modafications
Lo Llne conbexu speditacationy of Luose “Eourum
untey newly acceSsing the shared subprograms,

Although noL iliustrated by Luis example, there are
several other . ways 1u which the Ada package
construct can be used to improve the description of
intended control flow. Jpecifically, the logical
relationships among a set of subprograms., often
based on their common use of some cata objeects, can
be expressed by grouping them into a package.
Moreover, the subprograms \n a package are

package Y PACK is
Y : INTEGER:
end'}_PACK;
... — Subprogram specifications for
«es == Subprograms B, C, D, E, F, and G
with Y PACK, B, C; use Y_PACK;
X : INTEGER;
degin
-= sequence of statements of A
— (referencing X and Y, invoking B and C)
end A

procedure A is

with D, E; procedure B is
dbegin
-- 3equence of statements of B .
-= (invoking D and E)
ead B;
with F, G; procedure C.is
begin
— s2quence of statements of C
— (invoking F and G)
end C;
with Y _?ACK; use Y _PACK; procedure D is
begin
-= nequence of sLatcments ol L
-= (referencing Y)
end D;
procedure E is
Z : INTEGER;
begin
-- sequence of statements of %
— (referencing 2)

.

™

end
procedure F 1s
vegin
-- sequence of statements of F
und F3
walh ¥ _PACK; use Y_PACK; procedure G 13
Legan
-~ Sequence of statements of G
— {referencing Y)
ena G;

A Better Textual Sepresentation of the
Progrum Urganization Specificd in Figure 1

Figure ¢
¢xplicitly declared to be visible or aidden Lo
program units outside the packuge. ione of these
control flow relationships cun e satisfactorily

sescribed by nesting. .

Packages and context specilications also 2llow
Tor @ore precise control of variable visibility
than can be obtained using a nested orogram
organization. Local variables, which are used

within only a single program unit, <an simply bHe

declared within that unit. Variavles that ure to
be shared among several program unitc can be placed
in the visible parts of packages und mude drrectly
accessible to the program units sharing them
through the use of context specifications. Figure
9 illustrates how a package, in conjunction with
context specifications, can be used to explictly
describe the sharing of variables -- i1n this case

variable Y. lote that revisions to a program that
result in the sharing of a previously local -
variable only require placing the shared variable

into 2 package and making approoriate modifications
to tne context specifications of those program
units accessing the newly shared variable. Thus,
in a nest-free program organization, unit
2:nelosing all the program units that are to access
iome set of variobles neea t2 found or created and
program units reed not inherit access Lo variables
that <hey do not use simply due to their position
in the nesting structure.

e contend that a nest-free program
organization ulso :improves the readability of Ada
programs und facilitates frogram development.
Using nackages and context specifications to
2xpress a pregram unit's relationships, both to
other pre3zrem units and to data objects, results in

no

A grogram crganization in which program units can
be arranged in any desired order®. Programmers who
2mploy a nest-free program organization are freed

from any neccessity of fitting their programs into a
iree structure and can nence more casSily pursue o
Methouicsl znd structured approach to programming.
In parviculur, the text o!' 3 rcrogram developed
vaimy, o Lupedown approach Can nave o Lopelo=bhotbom
orvanization, with nigher level unils preceding
lower lavel wunits in the program "ext. Allowing
programmers to organize their programs' units into
an ardering better 3uited to their style or
vroyrimmi gy, eahanceys Lheir prowrams' reamtabiiliny
and Lhuy aady Lhoue wno musl read, understond, and
‘erhaos modifly their programs.

‘le recoynlie that our nest-{ree program style
for .da does not grovide {or an absolutely precise
uesgripeion of control flow and data flow, In
warticulur, 1t dces aot of'f'er o weneral facility
or selectively denving access Lo program units or

data cbjects, L 13 ecasy o see, however, Lhat
nesting alco ails in this regard. Indeed,
ccmpletely general control of uccessibility can be
~blalaned waly arouprh wJdditional languase
construcls (e.y., mmport/exporl lihts) or throuph
aRCNENITAYS 1N o sualable progrumminy. caviromuent,
in Lhe cuvsence ol sucn mecnanl Lo, aad busced un the
current desagn off Ma, we believe our aesbt-lree
program style proviges o depree of control over
2ccesslbllity tnat 13 superior Lo Lnal provided oy
nesting . Furtnermore, 1U provides o more readabic
and maintalnadle proyram structure, walcn s @ore

Castiy adapled Lo LOpP=down mcblbodn ol proprim

develiopment

anal'n

ML course, 11 C35eS WICre U proyron Lo,
coes 1oL Lextually precede the 1rsi reicerence wo
that unit, the Ada rules poverning order or
comprlation requlre Lhal 4 vamprlialion aan
consisting of a4 specification ol Lhal unit be
wlaced aneod oY tne relference, S silustlraled an
Sigure 9. Lagle @ 40 DOl sunswder s g
significant l:mitation oM program oryafization,

~2movinyg LhlSs uanecessary restriclion would Le more
in keeping wiin the spirit i our sroposal.

————

4. Coneclusion

ne have proposed a style for programming in
Ada that precludes the use of nesting and thereby
avoids nesting's negative impact on program
organization and readability. The nest-free
program style has been justified by detailing a
number of nesting's shortcomings and by showing how
this program style overcomes them without requiring
@ single change to the Ada language. Aalthough we
believe that a nest-free program organization would
tenefit any programming methodology, 1t La
especially conducive to top-down programming since
it allows the textual ordering of the units in a
program developed in a top-down fashion to more
closely correspond to the order in which they were
generated. Thus, as contrasted with the convoluted
organization imposed by nested program structures,
the nest-free style allows a programmer to directly

record a program's development history and logical
structure within the organization of <the ‘text
itself,

1]

{a2]

(3]

{u)

,-
N
—

(9]

Heferences

ANSI X3.5 - 1966 (USA Standard =.=TRAN).
Buxton, J.N., Requirements for Ada Progrum@ing
Support Environments, ("Stoneman"), United
States Dz2partment of Defense, February 1930.

Ichbiah, v.D., 2t al., .eference Manual for
the /da Programming Language, United States
Department of Lefense, July 1980.

Liskov, 3.4, ind Zilles, S.N., "Specification
Techniques for Data Abstractions", IEEE
Transactions on Software Engineer:nyg, SE-1, 1
(March 1975), gp. 7-i3.

daur, . {ew.i, “Hevisea deport on ine
Agoritnmic Lsnzuage ALGOL 60", Zcmmunications

21" the aCM, 3. i (Jaauary 1663), pp. 1=-i7.
Fortman, 3.,35. .zd.)., "Proceedings of an ACM
lonrerence nzuage Clesign for Reliable
oftwaraY, i Totices, .2, 3 Li4arcn
CT7.

