T IR T e G, B 8 O g T ———— % W W eh——

5|6\

A Close Look at Domain Testing+

Lori A. Clarke*
Johnette Hassell#*
Debra J.Richardson#*

January 1981

*Department of Computer and Information Science
University of Massachusetts, Amherst
Amherst, Massachusetts 01003

¥*Computer Science Department
Tulane University
New Orleans, Louisiana 70118

This work was supported in part by the National Science
Foundation wunder grants NSFMCS-77-02101 and SPI-79-16639,
the Air Force Office of Scientific Research under grant
AFOSR 77-3287, and the 1IBM Computer Science Graduate
Fellowship Program.

+This paper will appear in IEEE Transactions on Software
Engineering, July 1982. = — = =




Abstract

White and Cohen have proposed the domain testing
method, which attempts to uncover errors in a path domain by
selecting test data on and near the boundary of the path
domain. The goal of domain testing is to demonstrate that
the boundary is correct within an acceptable error bound.
Domain testing is intuitively appealing in that it provides
a method for satisfying the often suggested guideline that
boundary conditions should be tested.

In addition to proposing the domain testing method,
Wnite and Cohen have developed a test data selection
strategy, which attempts to satisfy this method. Further,
they have described two error iumeasures for evaluating douwain

testing strategies. Tnis paper takes a close look at their

strategzy and their proposed error measures. It is shown
that inordinately large domain errors may remain undetected
by the White and Cohen strategy. Two alternative domain
testing strategies, which improve on the error bound, are
then proposed and the complexity of each of the three
strategies is analyzed. Finally, several other issues that
must be addressed by domain testing are presented and the
Zeneral applicability of this method is discussed.



ry

1. Introduction

A testing method should provide guidance in the
selection of test data for a prcgram. Ideally, executing
the prozram on this data reveals errors in the program or
provides confidence in its correctness. Several testing
metnods have been developed that assist in the detection of
either data flow or control flow errors. White and Cohen

have developed a uwethod called domain testing [WHI80], which

focuses on the Jdetection of controsl flow errors. Domain
testing atteapts to uncover errors in a path domain by
selecting test data on and near the boundaries of the path
domain. This method appeals to our intuition in that it
proviies a formal approach for satisfying the often
sugiested guideline that boundary conditions be tested. In
addition to the general method, White and Cohen have
proposed a specific domain testing strategy that selects
points to test the boundary of a path domain. They have
also defined two error measures for evaluating domain
testing strategies [WHI78,WHISO].

In attempting to apply the White and Cohen domain
testing strategy to some programs, we encountered several
problems. This l2d us to examine this strategy and the
associated error measures more closely. This paper
describes some of the problems we encountered, proposes two
alternative domain testing strategies that improve on the
error bound, and discusses the general applicability of the
domain testing method. Section two presents some general

testing terminology and an overvisw of some of the ore



formal approaches to program testing. The third section
describes the general domain testing wmethod, some related
terminolozy, and the White and Cohen domain testing
strategy. The restrictions on domain testing that are
assumed and the notation that is used throughout this paper
are presented. The fourth section introduces the two error
measures proposed for domain testing and analyzes th2 White
and Cohen strategzy. In section five, we propose two
alternative domain testing strategies and show that these
strategies improve on the error bound. In comparing all
three strategies, trade-offs between the size of the error
bound, the necessary number of test points, and the amount
of effort that must be expended to find the test points are
all considered. The sixth section describes several
additional issues that must be addressed by domain testing

and discusses the general applicability of this method.



2. Testing Terminology and Related Work

The domain testing method is a modification of a more

general testing method called path analysis testing

[HOW76al, wnich constructs test data sets for selected paths
in a program. A path througzh a program corresponds to somne
possible flow of control. Associated with each path is the

path domain, the subset of the program's domain that causes

execution of the path, and the path computation, the

function that is computed by the execution of the statements
along the path. Path analysis testiang strategzies typically

use symbolic execution [CLA76] to provide a symbolic

representation of a path. Symbolic execution assigans
symbolic names to a program's input values and "executes" a
path through the program. Throughout this execution,
variables are maintained as algebraic expressions in terms
of these symbolic names. The algebraic expressions for the
output values provide a symbolic representation of the path
computation. The conditional branches cencountered along a
path are represented as constraints 1ia terms of the
algebraic expressions of the variables referenced within the
condition. The z2onjunction of these constraints provides a
symbolic representation of the patn dJomain. The symbolic
representations of the path computation and path domain are
used by path analysis testing strategies to direct the
selection of 1ata to test a particular path. The
appropriate selection of test data for a path can 1increase

the probability of detecting errors in that path.



Program errors can be considered from two perspectives

- cause and effect. Program testing detects errors by
discovering the effects, while debugging searches for the
associated cause. It is possible, however, that an error on
an executed path may not produce erroneous results, thus
complicating the testing process. When an error exists on a
path, but execution of the path produces correct output for

some selected test data, coincidental correctness is said to

occur. The effects, if any, of an error on a path can be
related to 1its affects on the path dowain and path

computation [idOW75a,G0076]. A computation error is

reflected by an incorrect path computation. Such an error
may be caused, for example, by the execution of an
inappropriate assignment statement that affects the function

computed by the path. A domain error is reflected by an

incorrect path domain. This type of error may‘occur, for
instance, when a branch predicate is expressed incorrectly
or an assignment statement that affects a branch predicate
is wrong, thus affecting the conditions under which the path
is executed. Domain errors can be further divided into path

selection errors and missing path srrors. A path selzactioan

error occurs when a program recognizes the need for a path
but incorrectly determines the condition under which thae

path 1s selected. A missing path error occurs when a

special case requires a unique sequence of actions, but taz
program does not contain a corresponding path. Missing path
errors are particularly insidious. If only one point in a

patn domain should be in the missing domain, the missing



T T T it SRSty Bl

path error will not be detected unless that point happens to
be selected for testing.

Path analysis testing does not assure the detection of
any of these types of errors, although certain techniques
can be applied to reveal some types of domain and
computation errors. Symbolic testing [CLA76,H0W77] attempts
to detect errors by the examination of the symbolic
represeantations of the path domains and computations. These
repre2sentations can also be used to guide in the selection
of test data that are sensitive to the path and likely to
€xpose errors. More rigorous techniques, which detect or
verify the absence of computation or domain errors under
rigidly defined conditions, have been proposed. When the
path computation can pe correctly specified by multinomial
functions, the correct execution of a path on an appropriate
number of test points demonstrates that no computation
errors exist on that path [HOW75b]. The number of such test
points depends on the degree of the multinomial functions
and may be quite large. Probabilistic arguments have also
been made for detecting computation errors for such
functions using fewer test points [DEMT77]. The domain
testing method [WHISO] attempts to uncover errors in a path
domain by selectinz test data on and near the boundary of
the path domain. This method attempts to demonstrate that
the bouadary either is in error or is correct within an
acceptable error bound. Domain testing does not address
missing path errors but concentrates solely on detecting

path selection errors.



3. The Domain Testing ¢zthod
and the Cohen and White Strategy

The domain testing method guides in the selection of
test data by analyzing the boundary of a path domain. The
program is tested with this data in order to reveal domain
errors or provide confidence in the correctness of the path
domain. A domain error is manifested by a shift 1in some
section of the path domain boundary. Domain testing
exploits the often observed fact that points near the
boundary of a dowmain are most sensitive to domain errors.
The method proposes the selection of test data on and

slightly off the domain boundary of each path to be tested.

~If the program yields correct results for the chosen test

data, domain testing concludes that the path domain boundary
is correct within a quantifiable error bound.

The boundary of a path domain is determined by the
conditional branches that are taken along the path.
Associated with each conditional branch is a predicate, a
logical combination of relational expressions. Wdhen a
conditional branch is taken during symbolic execution, the
corresponding predicate is evaluated and simplified

providing a predicate interpretation, a 1logical expression

in terms of the symbolic names for the input values.

The section of the path domain boundary determined by a
single predicate interpretation is a border. Each border of
a path domain is either closed or open, with respect to that

domain. A closed border is in the path domain and is formed

by a relational expression with a <=, >z, or = operator. An



open border is not 1in the path domain and results from a

relational expression with a <, >, or /= operator. S3Since an
open border of a path domain 1is a closed border of an
adjacent path domain, oanly the closed borders of a path
domain need be tested by the domain testing method.

The border being tested is called the given border.

Although the domain testing method does not require
knowledge about the correct program, it 1is convenient to
refer to the border that results from the associated
predicate interpretation in a correct program as the correct
borier. dhen the given border differs from the correct

border, a border shift is said to occur, causing a domain

error. The displaced domain is the set of elements that are

placed in the wrong path domain by a border shift.

The goal of the domain testing method is to select test
points that either lead to the detection of a border shift
or provide a limit on the maximum displaced domain. The
strategies discussed 1in this paper Jdirect the selection of
test data on and slightly off each of the closed bordasrs of

the path domain. An ON test point lies on the given border

and thus in the path domain being tested. An OFF test point
lies on the open side of the given border and thus in some
other path domain. The analysis presented in this paper
assumes that coincidental correctness does not occur. Under
this assumption, if the program produces correct results for
all of the chosen ON and OFF test points, then the given
bord=r is considered "close"™ to the correct border. An

undetacted Dborder shift can only occur when the ON test




points and the OFF test points lie on opposite sides of the
correct border. The undetectable border shifts are kept
"small" by choosing the OFF test points as close to the
given Dborder as possible. The strategies discussed here
select the OFF test points within some distance d of the
given border. For continuous input space, the ideal choice
for 4 is the machine tolerance. This, however, may cause
underflow problems when computing the test points. Further
problems can occur when the size of the given border is
comparable to d. These are complz2x problems, requiring
additional investigation. For now, the assumption is made
that d is not so small as to cause underflow, but small
compared to the size of the borders. The discussion of
domain testing tnat follows also assumes that the input
space is continuous. This restriction is not a 'limitation
inherent to the domain testing method, but allon OFF test
points to be selected arbitrarily closz to the given border
and thus simplifies the ensuing discussion.

If the predicate interpretations are 1linear in the
symbolic names, the path domain boundary consists of linear
borders. In addition, if each of the predicates is a single
inequality, the path domain is a linear convex polyhedron.
In two dimensions, such a path dJdomain is a convex plane
segment, whose ©borders are straight line segments. In N
dimensions, such a path domain is a convex N-dimensional
ayperplane segment - the generalization of a plane - with
(N-1)-dimensional hyperplane segments as borders. The

doinain testing method 1is simplified considerably when the

-3 -



path domains are linear convex polyhedra; this occurs when
the evaluation of any predicate results in a single linear
inequality. In practice many pro3zrams satisfy this
restriction, and the domain testing strategzies discussed in
this paper first address those programs. Section 6
considers the applicabilty of the domain testing method to
programs with unrestricted predicate interpretations
(including equality, nonequality, nonlinear, and complex
predicate interpretations) as well as to programs with
discrate input space and in which coincidental correctness
might occur.

For convenience, we adopt a standard notation for
describing the domain testing strategies. The standard

labels of the relevant items are:

G given border

c correct border

DT path domain being testad

Dy path domain adjacent to D
P,Q,R,S,T ON test points

u,v,d4,X,Y OFF test points

d distance from G to an OFF point
L hyperplane segment parallel to G

and a distance d from G on the open side.
For two dimensions, some additional standard labels are:

J extension of border adjacent to G on left
K extension of border adjacent to G on right

Wwhen of interest, the displaced domain in two dimensions 1is
shown as a 8shaded area. An arrow on an adjacent borier
indicates whether the border is closed (pointing into DT) or

open (pointing out of D). Figure 1 1illustrates the
notation for two dimensions.
In testing programs in two dimensions, White and Cohen

propose selecting two ON test points and one OFF test point

-9 -



STANDARS Iﬂfm?“ THS BINZNSIOND

- 10 -



for each closed border of a path domain [WHISO]. Ae refer

to this domain testing strategy as the 2x1 strategy. The

two ON points are selected as close as possible to the ends
of the given Dborder. If G is closed at an end, then the
corresponding endpoint is chosen as an ON point. If G 1is
open at an end, the corresponding endpoint is not included
in D, so an ON point at some small distance from the
endpoint 1is chosen; we assume this distance is no larger
than d. The OFF point is selected a distance d from G and
is chosen so that 1its projection onto G lies strictly
between the two ON points. Further, the OFF point must
satisfy all the inequalities defining DT except the
inequality corresponding to G; thus, it 1lies within the
side extensions J and K. In Figure 1, for instance, the 2x1
strategy might select the ON points P and Q and OFF point Y
to test the given border G.

"Figure 2 illustrates the ability of the 2x1 strategy to
detect border shifts. Disallowing coincidental correctness,
testing the program for a point that lies within the wrong
path domain 1is sufficient to detect the domain error. In
each of the cases in Figure 2, at least one of P, Q, or Y
lies on the wrong side of the correct border, so these types
of border shifts are detected.

The 2x1 strategy, however, is wunable to reveal all
border shifts. Any shift for which the correct border lies
completely between the line segmeat PQ and the point Y will
be undetected, as shown in Figure 3. Note that P, Q, and Y

all lie in their correct path donains. Assuming that the

- 11 -



L4
DORBEA BMIFY MTN BY 2X1 SYRATEGY

Jraﬁﬁ’ﬁ%%%%

F .
BORDER BHIFY m"n BY 2X1 STRATEGY

BORDER su:rr'%rn‘ BY 2X1 SVRATESY

- 12 -



(4
SRR S Meﬂ\ &% Sy ATRRTE BORDER SHIFT M’tcﬁh BY 2X1 STRRATEGY

r FIGURE 3D.
BORDER SHIFT URLITECTED Y 211 sTRATESY BORDER SHIFT UNDETECYED BY 2X1 STRATEGY

- 13 =~



path computations are correct, the program will yield
correct results for each of P, Q, and Y, and thus such
border shifts will not be detected.

The 2x1 strategy has been generalized Lo the

N-dimensional case [WHI80J], resulting in the Nx1 strategy.

In the 2x1 strategy, two points are selected on the border
to Dbe tested, since two points uniquely determine a line.
In general, N 1linearly independent points determine an
(N-1)-dimensional hyperplane, which is precisely what forms
a oorder in N-dimensional space. Thus, to test a border in
N dimensions, the Nx1 strategy selects N independent ON
points and one OFF point. Any N vertices of G are linearly
independent and thus the ON points are selected at, or as
close as possible to, the vertices of G. The OFF point is
selected a distance d from G so that its projecpion onto G
lies within the convex hull of the N ON points and it
satisfies all the inequalities defining DT except the
inequality corresponding to G. Figure 4 shows a
three-dimensional case with given border PQRST, where the
vertices P, R, anl T wmight be selected as the three ON
points, and Y might be selected as the one OFF point.

As currently stated [WHI80], the Nx1 strategy, and
hence the 2x1 strategy, allows undetect2d border shifts that
result in unnecessarily large displaced domains. 1Ia Figure
3D, note that Y is selected near one of the side extensions,
thus allowing a larger displaced domain than if Y had been
selected near the center. A similar situation occurs in N

dimensions, as shown in the 3-dimensional example of Figure

- 14 -



wer sxpanebe i rithee pauexssows

et o1sruaekde OSSR ALt eugpup s sTamnees

- 15 -



5, where the given border is an assymetric pentagon, PQRST.
If P, Q, and R are chosen as ON points, the projection of
the OJFF point Y must lie within the triangle PQR. If th=
correct border is a plane through P, Q, and Z rising from
the base and passing below Y, then the border shift will aot
be detected and a large displaced domain results.

To control this situation, additional constraints must
be placed on the ON and OFF iest points. Two factors
contribute to the large displaced domain in figure 5: the
ON points are clustered close togetner on one side of the
given border, and the OFF point is not near the center. The
strategy can be improved by the addition of two constraints.

These additional constraints are the centroid constraints:

the figure formed by the N ON points must contain the
centroid of the given border, and the OFF point mﬁst be at
the centroid of the hyperplane segment L. In two
dimensions, this requires the OFF point to be at the
midpoint of the ceiling L. Intuitively, these constraints
force the correct border, associated with an undetectable
border shift, to "be closer to" the given border than if the
OFF point is allowed to be far from the center. In most
cases, employing the centroid constraints reduces the
displaced domain associated with an undetectable border
shift. The analysis of the Nx1 strategy, which follows,

assumes the centroid constraints are satisfied.

- 16 =



4. Error Analysis of the Nx1 Domain Testing Strategy

This section Jdescribes two error measures that have
been proposed for domain testing. The characteristics and
usefulness of these measures are discussed. The Nx1
strategy 1is then shown to be inadequate according to the
more useful error measure.

The first error measure, called the domain error
magnitude, attempts to quantify the distance between the
given and correct borders [WHI80]. 1In two dimensions, when
an undetected border shift occurs, the correct border must
intersect each of the two ON-OFF line segments formed by the
three test points, where the points of intersection are

called H and I. The domain error magnitude (DEM) of an

undetected border shift is the maximum of the distances from
il to G and from I to G. Clearly, in all cases, the DEM is
strictly less than 4. Figure 6 illustrates the construction
of the domain error magnitude.

We argue that the DEM 1is inadequate as an error
measure. Its wuse is 1limited because one must know the
correct border in order to evaluate the DEM. Furthermore,
the DEM fails to reflect how much of the program domain is
processed incorrectly. Consider Figure 7, in which two
given borders result from two incorrect versions of a
program in which C is the correct border. The DEM and
displaced domain have been computed in arbitrary units to
show their relative size. The DEM in TA is slightly larger
than the DEM in 7B, but the displaced domain in 7A is much

smaller than the displaced domain in 7B. Our 1intuition

- 17 -



P 8
COMSTRUCTION OF 3‘”;" LRROR WAGNITUDE (DEMW)

oo rit Hhevune 15 302 RPN SERER Khekbvunr. 15 3,00

= 18 =



tells wus that there is more error in 7B, since the progran
corresponding to 7B processes more of the program domain
incorrectly than the program for TA. We contend that the
concept of area is more appropriate as an error measure than
the distance measure given by the DEM; thus, the DEM is not
discussed further.

The second error measure, which we <call the border
shift error, models the maximum displaced domain that could
result from an undetectable border shift [WHI78]. To define
this error measure, it is convenient to consider the border

shift contour, which is the shape of the figure formed by

the given and correct borders and the side extensions, when
an uadetected border shift exists. wWhen a correct border

does not intersect both side extensions, an open border

shift contour occurs, as shown in Figure 8. When both ON

points are endpoints of G, three types of closed border

shift contours - a border shift trapezoid, a border shift

triangle, and a border shift quadrilateral - can occur. If

one or more of the ON points are not endpoints of G, these
three types of closed border shift contours and a fourth

type - a border shift double-triangle - can occur. A border

shift double-triuangle i3 a pair of vertical triangles. The
undetected border shifts in Figure 3 show the four types of
closed border shift contours - border shift trapezoid (34),
border shift gquadrilateral (38), border shift
double-triangle (3C), and border shift triangle (3D). Note
that a border shift trapezoid is a special case of a border

shift quadrilateral, but it is distinguished because it

- 19 -



e Y ek cgeroos

= 20



plays an important role in the analysis that follows.

The consideration of border shift contours was
motivated by displaced domains. Despite the intuitive
appeal of displaced domains, their exact determination is
complicated by many factors, especially the interaction
among borders. The border shift contours are bounded by the
side extensions, rather than some other arbitrary lines,
because the extensions are sensitive to the shape of the
path domain being tested. Moreover, the side extensions
frequently are the borders of the adjacent path domain and
when this occurs, the area of the border shift contour is
likely to be the same as that of the displaced domain. It
is important to note that while a border shift contour may
not correspond exactly to the boundary of a displaced
domain, both the displaced domain and border shift contour
behave the same. If a change to a border increases or
decreases the displaced domain, the area of the border shift
contour increases or decreases accordingly.

In general, the correct border is not known (otherwise
it would be used in the program!) and thus the area of the
corresponding border shift contour cannot be found. It 1is
natural, however, to ask about the area of the largest
contour that could result from an undetectable border shift;

such contours are called the 1limit contours. The limit

trapezoid is the convex hull of the border shift trapezoids

- that is, the smallest trapezoid containing all border
shift trapezoids. Thus, it is the trapezoid with G and L as

bases and the side extensions J and K as sides. Tne two

- 21 -



linit triangles, one with an edge along J and one with an

edge along K, are the convex hulls of the border shift
triangles with an edge along J or K, respectively.

Similarly, the two 1limit double-triangles, are the convex

hulls of the border shift double-triangles with an edge
along J or K. HNote that the limit double-triangle with an
edge along J exists only when the ON point Q is not an
endpoint of G, and 1likewise for P and K. A limit of the
border shift quadrilaterals need not bz considered since we
are concerned with the area of the maximum displaced domain;
it can be shown tnat the maximum area of the border shift
quadrilaterals is bounded by the area of either the limit
trapezoid or one of the 1limit triangles, whichever is
largest. Note that the limit contours are not border shift
contours, because each contains an OFF point, wﬁich would
reveal the corresponding border shift when tested. Limit
contours for the 2x1 strategy are illustrated in Figure 9.
The concepts of border shift contour and limit contour
generalize to N dimensions in a straightforward way. For
instance, the 3-dimensional generalization of a 1limit
trapezoid is a solid with two paralilel plane bases and any
number of plane sides; an example appears in Figure 10.

The limit contours are used Gto model the maxiaum
displaced domain allowed by a domain testing strategy. The

border shift error (BSE) of a tested border is the least

upper bound (if it exists) of the set of (generalized)
volumnes of the border shift contours resulting froa

undetectable shifts of that border: the border shift error

- 22 -



watlTollions,

ot Ty AR g owe

LINIT M"'ﬁiﬁéﬁﬁ‘lﬁ"?ﬁ EDGE ALONWG 4

- 23 -



y gl

LINIT TRAPEROLD tu' YUREE DINEWSIONS

wurzugre oadiSudd e ey stnavecy

- PET



is infinite if the least upper bound does not exist. Thus,
if an open border shift contour can occur the BSE is
infinite, otherwise it is the volume of the largest 1limit
coatour. In absolute terms, it is not <clear how to
interpret the BSE. What does it mean for a border to have a
BSE of 450.0? Nevertheless, the BSE can be wused
comparatively. In general, if one domain testing strategy
always provides a smaller BSE than another strategy, we
conclude the former is better.

We are concerned that the Nx1 domain testing strategy
allows open border shift contours and thus an infinite
border shift error. This occurs when a side extension
"tilts outward" so far or the correct border "tilts upward"
so far that they fail to intersect. An infinite BSE results
fron the open border shift contour shown in Figure 3.
Figure 11 illustrates an infinite BSE in three dimensions,
where P, R, and S are the ON points. Note that although the
centroid constraints are used in selecting the test points
in both examples, an infinite BSE still occurs. An infinite
B8SE, however, can be avoided in domain testing. Section 5
presents an alternative domain testing strategy that always

yields a finite error as measured by BSE.

- 25 -



;va\c\'é}" 2

5. Alternative Strategies for Domain Testing

In this section, two alternatives to the Nx1 domain
testing strategy are proposed. Both strategies, when
applied to 2-dimensional space, coincide in the 2x2
strategy, which is presented first. The 2x2 strategy, which
selects two ON and two OFF test points, is shown to have
finite BSE that can be found in a straightforward mannar.
Each of the generalized strategies is described for higher
dimensions, and its associated BSE is discussed.

Recall that in the 2x1 strategy an infinite BSE occurs
when the correct border 1is allowed to tilt upward so far
that it fails to intersect a side extension. The 2x2
strategy proposed here prevents this by selecting two OFF
points, one near each end of the border being tested. These
two OFF points are chosen on the line L, which is parallel
to the given border, thus L forms a "ceiliang" for
undetectable border shifts. Using the standard notation
presented in Section 2, the two ON points, P and Q, are
selected as in the 2x1 strategy, and the two OFF points, U
and V, are selected as vertices where L intersects J and K.
Figure - 12 shows test points that might'be chosen using the
guidelines of the 2x2 strategy, and demonstrates that the
2x2 strategy does not detect all border shifts. Note that
the allowable border shift trapezoids are the same as in the
2x1 strategy. By the selection of test points at the ends
of L, however, the 2x2 strategy disallows the large border
shift triangles, quadrilaterals, and double-triangles

allowed by the 2x1 strategy.

- 26 -



SORDER SNIFY m:‘ih BY 2X2 STRATEGY

aun:ﬁi"ﬁa“h:oau 1

- 27 -



The BSE of the 2x2 strategy is proven, under reasonable

assumptions, to be finite and given by the limit trapezoid.

Because of the importance of the existence of a finite BSE

and

the ease of the technique for finding it, our results

are stated formally.

THEOREM 1. Assuming that |L{ > 2d, the BSE of a border
tested by the 2x2 domain testing strategy is finite and
given by the area of the limit trapezoid.

Proof: Refer to Figure 12, where G is a closed 1line
segment. Both endpoints of G (P and Q) and both
endpoints of L (U and V) are tested. Thus, no . open
border shift contours c¢an occur and all border shift
trapezoids, triangles, and quadrilaterals are contained

in

the 1limit trapezoid, UVQP. The theorem follows

imwediately.

Otherwise, assume at least one end of G 1is open.

Refer to Figure 13, where P/= A, 1It is necessary to
show that the area of the limit double~triangle
(APB,PVQ) does not excead the limit trapezoid UVQA. It
is sufficient to show that Area(APB) < Area(UVPA).
Construct the line segment from F on G to L and parallel
to J; suppose W is the intersection with L. Since L is
parallel to G, angle(WVP) = angle(APB), and thus WVP and

APB

are similar triangles. iLi>2d and (UW =}AP|<d

%mpliis that {WVi>d. Thus, Area(APB) < Area(WVP) < Area
UVPA) ::

the

the

In those cases in which the BSE of a border tested by

2x1 strategy 1is infinite, the 2x2 strategy clearly

yields a better result. Theorem 2 shows that, in t=2rms of

BSE, the 2x2 strategy is always at least as good as the

2x1 strategy.

THEOREM 2. 1In testing any 2-dimensional border, the BSE
resulting from the 2x2 strategy is less than or equal to
the BSE resulting from the 2x1 strategy.

Proof: The BSE resulting from the application of the

2x1

strategy is the least upper bound, if it exists, of

the set of areas of all border shift contours. For the

2x2

strategy, the BSE is the least upper bound of the

set of areas of border shift trapezoids. Since the set
of border shift trapezoids is a proper subset of the set
of all border shift contours, the least upper bound of

the

areas of the former set cannot exceed that of the

latter.

- 28 -



In considering generalizations of the 2x2 strategy ¢to
higner dimensions, two interpretations result. One
interpretation provides the NxN strategy, where N 1is the
dimension of the domain; another provides the VxV strategy,
where V is the nuanber of vertices of the given border.

The NxN strategy arises by interpreting "2" as the
dimension of the domain. In choosing two OFF points, the
2x2 strategy defines the 1line segment L, which forms a
"eceiling" for undetectable border shifts. Thus, for
N-dimensional spaces, the NxN strategy would choose N
linearly independent ON points and N linearly independent
OFF points. The N OFF points are chosen a uniform distance
d from the border G and define the hyperplanz segment L,
which thus forms a "ceiling" for undetectable border shifts.
The ON points are chosen so that their convex hull contains
the centroid of G. Likewise, the convex hull of the OFF
points must contain the centroid of L. This insures that
the test points are not clustered at one end of either the
border or ceiling. Furthermore, selecting ON test points
that are on or near the vertices of G and selecting OFF test
points on the vertices of L guarantees the linear
independence of both sets of points. In Figure 14, for
exanple, S, P, and R might be selected as the ON points. 1If
the side extensions that form the border edges are
perpendicular to 3, then L and G are congruent and X, U, and

W might be chosen as the OFF test points.

- 29 -



nLunuatuhumﬁgu‘ams' DIMENSIONS

= 30 =



A troubling characteristic of the NxN strategy, which
is also true of the Nx1 strategy, is its insensitivity to
changes in the shape of the path domain, including those
that affect the shape of the tested border. Many changes
could occur in border shape without raquiring a change in
the test points. For example, changes to the vertices that
do not move the selected test points or the centroid will
not necessitate the selection of new test points. The
number of vertices could even change without requiring a
change 1in test points! This does not happen in two-space
because a line segment has only two vertices, and two test
point are selected near them. It 1is a coincidence of
geometry that two points determine a line and a line segment
has two vertices. On the other hand, a (N-1)-dimensional
hyperplane needs only N points to be defined, but a
hyparplane segment may have any nuamber of vertices. A
strategy more sensitive to path domain shape is desired.

Another disturbing problem with both the Nx1 and NxN
strategies 1is that each allows many sets of acceptable test
points, but neither provides sufficient guidance in choosing
the best set. To minimize the BSE, the test points should
not be clustered but should be scattered with respect ¢to
each other and their associated centroid. There are several
techniques for selecting test points to achieva this
scattering affect, such as wmaximizing the sum of the
distances between the ON points as well as the distances
between the OFF points. There does not appear to be any

technique, however, that guarantees a minimum BSE without

- 31 -



1-‘?.' 3

computing the BSE for all possible sets of test poiats
selected from the vertices. To be effective, therefore, the
NxN strategy requires the consideration of all vertices plus
additional computation to determine the best test point set.

As in two dimensions, the NxN strategy always gives at
least as good as, and often better, BSE than does the Nx1
Strategy. The most serious flaw in the NxN strategy,
nowever, 1is that even the best N test points may fail to
provide a finite BSE. When the number of vertices of a
border is auch greater than the dimensionality of the
domain, some consecutive vertices will go untested. This
may allow a correct border to tilt upward so far that it
fails to intersect a side extension corresponding to the
untested vertices, resulting in an infinite BSE. Thus, we
are led to the VxV strategy.

The VxV stratagy is an alternative way of géneralizing
the 2x2 Strategy, arising from the interpretation of "2" s
the number of vertices of the tested border. Recall that
border vertices are formed by the intersections of side
extensions (hyperplanes) with the given border. If there
are V vertices to the given border, V.ON points are selected
at or as close as possible to each vertex of G and V OJFF
points are chosen at the vertices of L. These V ON and V
OFF points correspond to the ends of the lines G and L 1in
two dimensions. For the example in Figure 14, the VxV
stratzgy would select 5 ON points, P, Q, R, S, and T, and 5
OFF points, U, V, 4, X, and Y.

- 32 -



Although it is difficult to prove since the number of
vertices per border 1is unconstrained, we believe that the
BSE for the VxV strategy is always finite and bounded by the
volume of the generalized limit trapezoid. Moreover, the
VxV strategy is completely sensitive to path domain shape.
Any change in border shape requires a change in test points.
The strategy is even influenced by subtle features, such as
the angles of intersection with adjacent borders, which do
not affect border shape but do change the shape of the path
domain and the tilt of the side extensions. This strategy
captures our intuition about how a path domain should be
tested. Each vertex represents an extremal value for a
border. Thus, arguments for testing extremal values support
a strategy for testing all vertices. In addition to
guaranteeing a finite BSE, the complexity of the VxV
strategy is often less than that of the NxN.

There are a number of ways to measure the complexity of
a testing strategy. Perhaps the most straightforward is to
count the number of test points required. In this 1light,
the NxN strategy does not seem much more costly than the Nx1
strategy, but the cost of the sensitivity provided by the
VxV strategy appears high. The NxN strategy requires 2*N
test points per border and 2*N*B per path domain, where B is
the number of closed borders in tne path dowmain. 1In
contrast, the Nx1 strategy requires N+1 points per border
and (N+1)%*B per path domain. The VxV strategy requires 2%V
test points for each closed border, where V is the number of

vertices of the border. For an entire path domain, the

- 33 -



number of test points required is 121 BZ*VI, where V; is tae
number of vertices of the Ith b;réer. For even a simple
prograin with relatively few variables, this total explodes
quickly.

The number of test points along with information about
the run time of the program, howaver, only provides
information about the time necessary to actually test the
program. Another major contributor to the complexity of a
testing strategy is the time required to select the test
points. Serious concerns arise in considering the
complexity of each of the three domain testing strategies
with respect to this measure. For each strategy,
determnining the OFF points is on the same order of
complexity as determining the ON points and thus only the
latter is described. To select the OJN points; the VxV
strategy requires finding the vertices of the given border,
which involves solving V systems of N equations and requireé
polynomial time, on the order of N3 for each vertex, and
hence, vayn3 for each border. Both the Nx1 and NxN
strategies requirz solving at least N systems of N equations
in order to identify suitable ON points. In fact, in order
to satisfy the centroid coastraints, all vertices must be
found and thus V systems of N equations must be solved.
Thus, to 1locate the ON points, the Nx1 and Nx\N strategies
also require tiime on the order of V*N3 per border. The
dominating factor, however, is the time required to select
the best set of test points for the Nx1 and NxN strategies;

all combinations of vertices must be considered to determine

- 34 -



the minimum BSE, which in general requires nonpolynomial
time.

Clearly, both the time to select the test data and the
time to execute the program on the chosen data should be
considered in m=2asuring the complexity of a testing
strategy. When both are taken into account, the VxV
strategy is wusually cheaper than the Nx1 and the NxN
strategies, since executing the program on additional points
usually takes less time than selecting the best set of
vertices. The improvement in complexity as well as the
guarantee of a finite BSE indicates that the VxV strategy is

the better domain testing strategy.

- 35 -



5. Other Considerations

The domain testing strategies described above are
limited in their scope by certain restrictions. The
Strategies all assume that the predicate interpretations are
simple, 1linear inequalities. Moreover, the input space is
assumed to be continuous and coincidental correctness is
disallowed. With slight modifications to these strategies,
some of these restrictions can be dropped and others
weakened. This section examines these restrictions and
discusses possible modifications. The need for the
integration of domain testing and other path analysis
testing methods into an overall scheme for testing is also
discussed. Finally, an underlying flaw of domain testing,
which is common to all path analysis methods, is addressed.

The domain testing strategies can easily be modified to
handle equality and nonequality predicates. White and Cohen
have proposed such a modification for the NxiI strategy
[WHI30]. This modification leaves the testing of inequality
predicates unchanged, but the testing of equality predicates
requires the selection of two OFF points, one on each side
of the corresponding border. Nonequality predicates form
open borders and thus will be tested in an adjacent path
domain. Similar modifications to the NxN and VxV strategies
require that twice as many OFF points, divided between the
two sides of the border, be chosen for 2quality predicates.

The restriction that borders result from simple
predicates insures that the path domains are convex.

Complex predicates that are the conjunction of inequalities

- 36 -



cause no problems, but the complement of such predicates or
any predicate with a disjunction wmay require special
processing. Again, White and Cohen have proposed a
modification to the Nx1 strategy, which can also be applied
to the NxN and VxV strategies. When a predicate
interpretation contains a disjunction that produces a
nonconvex path domain, the modified strategies divide the
path domain into coanvex subsets and then test each subset
independently. If two of these subsets are adjacent (as is
often the case), there is no need to test the "imaginary"
border between them, since the same function is computed for
both subsets.

The domain testing strategies assume that the predicate
interpretations corresponding to both the given and correct
borders are linear. This assumption is frequently satisfied
[CLAT6], eSpecially for programs solving nonnumeric
problems. To handle a wider range of applications, however,
the linearity restriction must be dropped. An appropriate
modification is dependent on the degree of and number of
terms in the predicate interpretation and requires the
selection of both ON and OFF test points at each of the
local minima and maxima of a nonlinear border.
Unfortunately, this often produces an inordinate number of
test points and requires substantial effort. Moreover, any
modification that does less thanm this allows an inordinate
error bound. This 1is an 1inherent weakness of domain
testing, and thus the practical applicability of the method

is limited to predicate interpretations of low degree.

- 37 -



PSP

The described domain testing strategies assume a
éontinuous input space. This guarantees that ON points can
be selected at or near the edges of the given border and OFF
points can be selected arbitrarily close to the border.
Application of domain testing to discrete space requires
additional analysis [WHIT8] to locate appropriate ON and OFF
test points. 1In pathological cases, the border may not
contain points to select as ON points, or there may not be

any points between the side extensions that are candidates

for OFF points. All the strategies can be extended,

however, to handle discrete space in such a way that they
can successfully test most borders without much additional
effort. |

The domain testing method has an underlying assumption
that a test oracle 1is available, which can détermine if
execution of the program on the chosen test pointé produces
correct results. The restriction that coincidental
correctness cannot occur implies that Qhen correct results
are produced, the correct path was executed. Coincidental
correctness is a strong and perhaps unrealistic restriction
to 1impose, since in most cases its existence cannot be
determined. A weaker and more reasonable restriction is
that the path computation associated with each path domain
surrounding the given border be recognizably different than
the coumputation of the path being tested. Suppose an ON
test point should 1lie in one of the surrounding path
domains, but executing the program for this point produces

correct results. Comparing the path computations associated

- 38 -

e e emm e e e



Wwith this domnain and the domain being tested would
demonstrate that both computations produce the same result
for this point. This would alert the tester to the
possibility of coincidental correctness and to the need to
test additional points on the border.

In general, the ability to examine the path
computations for all surrounding domains allows dismissal of
the coincidental correctness restriction. Surrounding
domains include any path domain containing a selected OFF
‘test point as well as adjacent path domains that do not
contain an OFF test point. Figure 15 shows an example where
it is necessary to know the path computation of an ad jacent
domain containing no OFF test points. (In this example, J
and K are merely side extensions and not borders of any
domain.) Suppose P is coincidentally correct and should lie
in Dp, then the border shift would not be detected wunless
the path computations associated with DA and DT were both
available. For the path domain being tested and surrounding
path domains containing OFF test points, the test points
determine the path and symbolic execution can easily Dbe
employed to provide representations of the associated path
computations. Determining that an adjacent path domain with
no OFF test points exists poses an additional problem. This
problem, however, is more tractable than demonstrating that
coincidental correctness does not occur.

The restrictions that were initially assumed for domain
testing, therefore, can be weakened or dismissed with

appropriate modifications to the strategies. This enables

- 39 -



ST R oo

- 40 -

X o



‘e

the application of domain testing to a larger class of
programs. For domain testing Lo be truly effective,
however, it must be integrated with other testing methods.
The domain testing method concentrates solely on path
selection errors, thus other testing methods must also be
employed to thoroughly test a program. Recall that program
errors were divided into three types - path selection
errors, missing path errors, and computation errors. The

domain testing method focuses on detecting path selection

errors, but may also uncover missing path and computation

errors.

With domain testing, as with most testing methods,
missing path errors are only detected by mere chance. In
fact, missing path errors cannot be found systematically
unless a specification is available. A correct
specification would describe all the cases that would be
handled by the program. The path domains can then be
compared to the specification to determine if any cases have
been neglected. The partition analysis method [RICS1]
provides a technique for comparing a program to its
specification, wnich assists in revealing wmissing path
errors.

The domain testing method may inadvertently uncover
computation errors, since the program is executed on several

test points. The execution of the program for a chosen test

point, however, may produce correct results, although the
associated path coaputation is incorrect for other points in

the path domain (allowing coincidental correctness).

- 41 -



Methods that are sensitive to computation errors should
certainly be applied. Some of these computation testing
methods examine the path computation to determine the number
of points required to test a path. Note that the dowmain
testing method may have selected some, and possibly the
required number, of such test points for a path.

It may appear that symbolic representations of the path
domain and computation are adequate to verify the

correctness of the path, but this is done in a postulated

environment. We Dbelieve it 1is imperative to execute the

path on astutely selected test data to actually observe the
program's performance and substantiate the correctness of
the symbolic representations. Domain testing, in
conjunction with these other methods, provides an overall
schene for path analysis testing. |

A majof drawback of path analysis testiﬁg is its
dependence on the number of paths in a program. Programs
often have a large, and possibly infinite, number of }paths
due to program loops. Practical testing methods must be
developed that do not require the analysis of every path in
a progran. One approach to this problem is to analyze the
first few iterations of a loop and then to generalize the
results, Another approach [CHE79,CLA81] is based on'thé
creation of a closaed form representation of a 1loop, thus
allowing paths that differ only by the number of loop
iterations to be analyzed as a single class of paths. Both

of these approaches deteriorate for complicated 1o0ps.

Further research in the area of loop analysis is required

- 42 -

- —



and the applicabiliby of these approaches to domain testing

must be investigated.

- 43 -



LI

7. Conclusion

This paper examines the domain testing method. First,
the general method and the White and Cohen strategy for
selecting test points for domain =cesting are introduced.
Two error measures, DEM and BSE, are evaluated. It is shown
that the DEM does not adequately reflect the size of the
displaced . domain and thus this error measure is rejected.
The BSE is found to be a better error measure in that it
models the maximum displaced domain that could result from
an undetected border shift. The Nx1 strategy is analyzed
with regard to this measure and it 1is shown that this
strategy frequently allows unbounded displaced domains and
thus an infinite BSE.

Two alternative domain testing strategies, which
improve on the error bound, are proposed. In comparing
these strategies, trade-offs between the error bound as
measured by BSE, the necessary number of test points, and
the time required to select the test points are all
considered. The VxV strategy is determined to be better
than both the Nx1 and the NxN, because, although more test
points are required, these points can be selected 1in
polynomial time and a finite BSE is always provided.

Theoretically, polynomial tine is considered
reasonable, but with a 1large number of inputs, domain
testihg may be too impractical to employ. Moreover, domain
testing can only be reasonably applied to paths whose
predicate interpretations arz of low degree. Perhaps the

biggest obstacle that domain testing must overcome, along

- 4y -



with all path analysis methods, is its dependence on testing
individual paths; a breakthrough on loop analysis must be
achieved.

Despite these drawbacks, the domain testing method 1is
intuitively appealing in that it formalizes the notion of
testing the boundary of a path domain. Although further
investigation of domain testing is needed, it appears to be
a powerful path analysis testing method that can effectively
be integrated into an overall testing scheme. Furthermore,
it provides a theoretical basis for evaluating the limits of

testing.

- 45 -



CHET9

CLA76

CLA81

DEMTT

GOOT76

HOWT76a

HOWT76D

HOWTT

RIC81

AHIBZ0

WHIT3

REFERENCES

T.E. Cheatham, G.H. Holloway, and J.A. Townley,
"Symbolic Evaluation and the Analysis of Programs,"
IEEE Transactions on Software Engineering, SE-5, {4,

JUIy I;; g’ §02-% i7'

L.A. Clarke, "A System to Generate Test Data and
Symbolically Execute Programs," IEEE Transactions on
Software Engineering, SE-2, 3, September 1976,
215=222.

L.A. Clarke and D.J. Richardson, "Symbolic
Evaluation Methods for Program Analysis,"™ to appear
in Program Flow Analysis: Theory and Applications,
Prgntice Hall, 1Inc., Englewood CIiffs, New Jersey,
1981.

R.A. DeMillo and R.J. Lipton, A Probabilistic
Remark on Algebraic Program Testing," School of
Information and Computer Science Technical Report,
Georgia Institute of Technology, May 1977.

J.B. Goodenough and S.L. Gerhart, "Toward a Theory
of Test Data Selection," IEEE Transactions on
Software Engineering, SE-1, 2, September 1976,
1 Q= .

W.E. Howden, "Reliability of the Path Analysis
Testing Strategy," IEEE Transactions on Software
Engineering, SE-2, 3, September 1976, 208-215.

W.E. Howden, "Algebraic Program Testing," Department
of Applied Physics and Information Science,
Unizersity of California, San Diego, TR-14, November
1976.

- 4.E. Howden, "Symbolic Testing and the DISSECT

Symbolic Evaluation System," IEEE Transactions on
Software Engineering, SE-3, 4, July 1977, 266-278.

D.J. Richardson and L.A. Clarke, A Partition
Analysis Method to Increase Program Reliability," to
appear in the Proceeding of the Fifth International
Conference on Software %hETneering.

L.J. White and E.I. Cohen, "A Domain Strategy for
Computer Program Testing," IEEE Transactions on
Software Engineering, SE-6, 3, May 1980, 287-257.

L.J. White, F.C. Teng, H. Kuo, and D. Coleman, "An
Error Analysis of the Domain Testing Strategy," Ohio
State University, CISRC-TR-78-2, December 1978.

- 46 -

.
il v ey ——— . L L

——z e

e AT



