208 NECC 1981

Cognition aand Prolfannxnz

th Your 3tudents write Those .ra?x Projrams

Elliot Soloway, Jeff Bonar, Beverly Woolf,
Paul Bartn, E£ric Rubin, ani Kate Ehrlich

Computer 2n3 Inforwation Science Departament
University of Massachusetts
Anherst, Massachusa2tts 901983

TR# 81-05

Abstract

In this paper, we first arjue tnat thera
is a gJreat need for empirical resaarch
coupleﬂ witn carefully articulated
theories, pPsycholojical claims of
languaje Jesijners and advocates call out
for evaluation. Moreover, conputing
education, to rise above iastructian in
only tn2 syntax and s2nantics of lanjuaje
constructs, needs a Jescription of the
knowledge projramming expects know ani
use. W2 then present a netwdrk wnicn
tepresants tne nhigh-level, plan knowledje
an 2xpert may poOs5sess with = respect to
aspects of loopiny and assijnment. 8ased
sn this knowledje, w2 look at actual
stujeat projrams, ani attempt to
unjerstand the possible misconceptions
students had, which manifested thems2lves
as bug3jy projrams. Finally, we make
sujgestions for computing education which
reflect the insights gained in 3Jeveloping
this knowledge network and in the analysis
of the ougjy projraas.

Ny

This work was supported by the Army
Research Institute for the Behavioral and
Social Sciences, wunder ARI Grant No.
MDAS®3-83-C-0588.

Any opinions, findinjys, conclusions or
racommendations expressed in tnis report
are those of the authors, an3d Jo not
necessarily reflect the views of the U.S.
Government.

I. Introduction

I.1 Introductory Polenic

——

Designers ani advocates of
projramaing languages are continuzlly
makxn; claims that their lanjuajes are
simple, recajaoble, encouraje oetter
projramniaj, >r eacouraje natucal proolem
solving habits.

Th2 development of the lanjguaje
pascal is bas23 on two principle

aims. Tne first 1is to make
available a lanjuage suitanle to
teacn projramning as a

systematic Jiscipline baszd on
certain fundamental concepts
clearly and naturally reflected
by the lanjuaje. e The
syntax of Pascal has oeen kapt
as simple as possiole. N
This property facilitates ootn
the understanding of programs by
numnan readers and the processing
by computers.
Wiren (1377]

If ordinary parsons are to use a

computer, there must be siample

computer lanjuages for tnem.

BASIC caters to tnis need
Kurtz [1978)

Happily, LISP is easy to learn.

A few hours . of study is enough

to understani some amazing

programs. veees One r2asdn

LISP is so easy to learn is that

its syntax is extremely simple.
Winston [198B1}

X

APL is one of the mnost concise,

consistant, ani powar ful
projramnming lanjuajes 2ver
devised.

McCrackan [1975])

Notice that the above claims are
psychological claims and thus are open to
empirical inguiry. where, tnen, is tne
enpirical rescarcn backing up tnease
claims? Moresover, it 1is not =noujzh td
nave data -- on2 needs tneories wnich
explain an3d accouant for tne2 jata. Wwnat
ara naeded, then, are carefully
artizulated thedories wnich sujjest wny
projram construct X should ope morz
reajable, usaful, etc. than , projram
construct y?

Mor zover, in th2 rush ts clainm
reajability, etz., for tneir particulac
projraaming lanjuaje, designers have often
forgottan a key aspact of <cojnition:
learning. Can individuals learn to
understand projram construct x? tow
easily? the extansive use of Pascal,
Basic, Lisp, an3 APL 3oes not nzjate tne
relevance of the Jlearaadility guestion:
humans can ajapt t> most any environmnant.
Ppus, no matter now difficult a particulac
lanjuage * mijnt oe to learn, nany
iniividuals <can and 3o persavere to
conquer it. But at wnat cost? Ani wnat
aoout the ones that don’t succeeld? Do we
want to simply write tnam-off? As we all
know, with tna coming of tne computer aje,
everyone will ne=23d to know how to projram
to some Jejree.

Tne picture is not as bleak as we've
painted it. Fortunately, studies have
been and are bein3y Jonz, which attempt to

understand the relationship petwaen
cojgnition and programming. For example,
Ledjard, et. al. [{198Y) found that a
command lanjuage wnich has a natural

lanjuage scructure, as oppos«d to the
typically barogue constructs, [acilitates
easier and more effective use by humans.
Welty and 3Stemple [1981]) comparad the
per formance of aovice users witn 2
procedural and non-procedural query
langauge and found that novices usiny the
procedural lanjuage il oattar when
formulating moderate to 3ifficult gueries.
punsmore ani Gannon {1978) explored the
factors tnat . contribute to projran
complexity, while Gannon ([1978] catalojuel
buys in student projrams. L. Miller
[1978) has explored a whole ranje of
pehavioral issues in programmini. Among

Computer Science il 207

otnar issues, Meyar [13388) nas explorel
the use of zoncrets models in projzramnaming
ejucation. Finally, 3nneiderman [1384]
cantains a distillation of issues in, 2s
ne puts it, software psycnolozy.

A word of cautida: this. typ2 of
reszarcn is jifficult to carry out,
gxperiments <can 2always »oe criticized;
tneoretical interpretations can 2always oe
fauleal. rnose in this paper ar2 no
excaption. Mareover, tnz c¢linate in
computer sciznce nas aot always heen
receptiva to, or evan tdlerant of, tnis
type of wdrk. Tne ne2d to stuly sojnitive
factors in computing, nowever, Jrdows 2ver
nor 2 apparent. Thus, we f221 it
inparative tnat sucn res2arch e
encourajed, and tne support mechanisms to
insure its existence arise. :

1.2 3Substantive Iatroduction

This pap2r will serve as 2 projrass
report on tne curraat work of the M2nd
Resa2arch Group at UMass. TIhe 3o0als of our
project ar2 twdfold. First, we are
vuildiny Meno-I1, 2a .run-time supodrt
anvironnent for novice Paszal users; this
system will catcn run-time errors (not
compile-time =2crors (1)), and help tne
student deouj the projram -- ani nis/her
understaniiny -~ by providing tutorini in
tne arcas underlyiny the errors. Tn2
other, conplementary 3joal of tnis project
is to unierstani:

1. . what dna Kkndows when oOne sdlves
proolems of the sort wused in
introductory Pascal courses,

2. wnat projran oujs are typically
malde oy novice projramners,

3. nhow knowing adout what 3houlld D=2
understood can be us23 to esxplain
the mind bugs (misconceptions)
studants nave wnich rasult in
projram bujs.

In this paper, we 3escuribe our efforts to
date on tnis lattar 3oal.

1] we are not concentrating on
compile-time errors, since systemns waich
cope witn such errors already exist. For
exanple, Teitelbaum [1384) nas ouilt a
projramaing environment wnicn helps
2liminate syntax errors by not allowing
projrammars 2ven to enter ill-formel
structures.

208 NECC 1981

Tne perspective we have takzn in tnis
resaarch is based on the fosllowing
ooservation: .as experts, when we write
projrams to solve problems, we us2 lots of
nijh-level Kknowladje. Most of tnis
knowledze is much Jeepzr than the syntax

and semantiis of any 3iven projramming.

lanjuage, In particular, an exp2rt knows
how to dJecompose problems into fairly
standar3d tasks, 2.3., 2accumulate a running
total and s2arch tnroujn tn=2 elenents of
this array. Tnis knowledje 1is nijaly
organized into oundles, or frames (Minsky,
1975), and tne rich faoric of oundles are
knit tojetner oy relatioasnips. Fhe key
role whicn tnis tacit knowledje plays in
tne probolam solvia) benavior of experts in
a wide variety of areas 1is 3aining
increasing attention [Collins, 1978]. The
difficult problem is to ferret out tnis
knowledje and make it e2xplicit, .auch as
Dijkstra [1376], Wwirth (1977}, ani
Friedman [1974] nave attempted to do in
tneir bodoks on programnminjy. Thus, it is
this knowledje, ratnar tnan just th2
syatax and semantics of the particular
projramming lanjuage, that needs to be
taught to the Jrowing numbers of computing
stulents.

In the following section we pres2ant a
first-pass at describing the knowledje an
expart might know aoout aspects >f looping
and assigament. " Section III concentrates
on now this knowledge can be usel to
predict and explain students’ bujys. There

w2 2xamine data =-- bugs =~ collected from
a test we administered to introductory
pPascal programmers. In Section IV we

sunnarize tne key theses of tne paper.

II. Frajments of an Expert’s Knowledje:
'ne Tnedry

We commented above that. an expert
projrammer knows about structures that
help him/her relate problems to projgrams.
These intermediate entlitles raflect a
process of aostraction and condensation.
That 1is, problems, and their solutions,
are 3roupad tojetner basej on various
criteria of similarity and their salient
characteristics are highlighte3d, Wnen
confronted with an ostansibly new proolenm,
the expert calls upon these structures ani
tries to find an old problem (and
solution) wnich 1is similar to the new
problem. Solving the new problem, then,
is based on modifying the solution to the

old ptoblanm. Fhese intarmediata
structures are crucial for tanis type of

problem solviag (Papert, [1989); Rissland
and Soloway, [19484])).

while others have

Jescrioed the
knowledje possessed by

experts in

. matnematics (..3., Polya [1953), Risslani

(1989])) and physics (e.3., Larkin, et
al. (1938¥]), we nave attempted heres to
articulate tne knowledje a proajramming
expart Mijht nave witn respect to a few
problem typas and 2a few ra2lat23d projran
constructs. Wwe hzave borrowa3 from
artificial intellijence a rapczsentation
of knowl23je, called franes, in which ¢to
eacole our efforts. One k2y idsa oehind
this partizular knowledge representation
-- and one consistent with our view of
wnat "an expart amight kaow =-- is thnat
concepts arce not necessarily atownic

“entities; ratner th2y can nave internal

structura, such 2as dJoscriptor types and
descriptor values. rhus, a framne
capresents a template or ooilerplata with
slots wnich can e filled in. Finally,
frames are tied tojether by Jifferent
typzs of ra2lationships, 2.3., A~-KIND-OF,

~or USES. {1}

Fijure 1 depicts a fragmemt Of an
expert’s knowlzldje -- planr -- encoded as
frames. Consilder, 1in pacticular, the
Running Total Plan Frame. TIhis structure
reflects tne opservation that nany
problems, zspecially ones uszd in
introductory courses, require accumulating
a3 total (e.3., tne sum or product of tne
first n intejers). rhus, Jiven tne
ubiquity of this problem type 2n expart
might explicitly represant it in his/her
nemory. From Figure 1, we also see that
this frame is A-KIND-OF Loop Plan, i.e., 2
specialization of tne jencral notion of a
loop plan, and furtner that tne Counter
Loop Plan Frame is 2 specialization of
Ruaninjy rotal Loop Plan. We see that
various specific Pascal 1loop constructs
(repeat, wnile, for) are associated with
e st e —— . ——
tnis plan. finaily, we see that two
variable frames, ' tne Running_total
variable anid tne Na2w Value Variaole are
used to Jescribe tne Running Total Loop

(17 In tnis 3discussion, we have 3lossed

over nany tecnnical distinctions.
However, for our purposes, thes commonsense
notion of "plan” and "frame" are
sufficient. The interested reader can

follow these issues morz carefully in
texts such as Nilsson [19380].

>y

e T R 7 A e b P I YY P 49 VTS

P R s

. mmer—

209

Computer Science il

sstejgdes jle uy dae sa3pjjiuapg

[2astd Patpue S °PIsn D48 SIWTU €1 UM PAYJISUT IQ IsAn jeys

SAUIT 0 SuGlWlIadTIp due S1IMOC4q U] SWIYL C (SIUTY pansep)

5241 ,SoSN. PUB (SIUI] PIILS) SOue LJo-puPi-y, Kq Jaakuy

Pley a4c SRUAYDd eyl *Saawwadosd PISuITIAdxd 0Y F(q2(12aC

Apa1Acuy JO SRUMID qUeEIadad £,0wW3ad, YL °Yedsed uf se=s8ead

. Burdoot arduls Jo Ldooyyr @ Bujquesaudod jaemjau ¥y) e4nBiy

V193G TIunel Teeay tac 1388, "{01v 1) “ae
v
o361 Pu o

1IN 1) “1eeg “ e
1Pelerime oty
cnjeeaon

NI T PR T o0 oot (13 Butuungs “Caaieneds

R L R L R R 19261 Butvuny a3 Je Mjes
a1 $C S{lvniumd §) WOII0IIL daowr W1 dQ BA104Ie0d 31 WUTICIN it
3001 10101 Butuwns o eCiHIONR , 3wt 1ere) Defuwns ¢ iuCi TIN5
w iy 4 OALL Pulveng $SLLCAAVE) se O] Cowrl) iy 6v) L0i0) Bulueny PO110IINs 00 iemw]
Velitians 4T entwssie
. ¢ Conimidieam. , 3amg
‘ . . [PU TP
1ot “Juney “pesy) . ~ . ceduasg) Jo Sopmy peag H ..sr.c_n.-.-m. .

{so1001 e A ST . $0008 oy o obets wh ous Cesiwind

(3 ey & .

% -

e qlei0) Wjuwagy * .
sucty “wisesdee
A Setienes dige 1 & ® B210T108 Nalwn Jesmeie we sip

19363 Nlewns @ PLind ot Wiao0ag .

iy 400y (016 Julveng jees)
- \\ ’ /
- i
- 4
- - - ’
- ”~
- < ’
— Ve
- - 7~ /
-—
- s
- P
-~

[o o weis

.
tegntea aoey, 293 . . \ I(netblet g o
Geontesacnri avie : . . . Hharsssiemn) T
eoly @ ye tave Mool gryg d1n . L B
e ALes 0 an Ea11G Twet i Tiasag e— * eoto oue ¢ 300 1WG V12T o 16 00 320 $1wred Slederle $ALI0a @) Shuind g BetAp en(es & BBl
01601402 10204 Puineny ioetag 1401408 o) 2w ieeI] Slaetian a0 iy seee] 2ROL0 saivlwg KOsy iimTy 2100300 dmales temsy

staviaey ieems)

ve emmiios 8 reuRe 4 Thres aeiwmama g N s eSS aga eet sest T T Las 2 susc e N M
T T N i L T R Sl Rl i R e b
O U O Dol o it - - N R 3

. 5 i At et A BAAIACEEL o2

210 NECC 1981

Plan.

From a syntax ani semantics viaw; the
distinctions made in Fijure 1 would
disapp2ar. For example, the Runniaj Iotal
variaole and the Countacr Variable are the
same at tnose levals. However, at the
functional, prajmatic level we se2
differences in the roles whicn variables
and constructs play. Figure 1l nijhlijghts
tnose functional Jifferences. Moreover,
as we shall see in our Jdiscussion of
projram bujs (next section), stuijents
performed differently on constructs, wnich
on the syantax and semantics level, are tne
sama.

wWwe Jdo not mean to sug3jest tnat the
knowledje incorporated into Fijure 1 is
the final word. In fact, other experts
nave proposed alternative schem2s (e.3.,
waters [1979]; Soloway and woolf (1934];
Miller, M. [1978]); Goldstzin [1974)).
Regardless of the 3details, 2xperts 3o have
and use structures similar to those in
Fijure 1, and we should o2 teaching
students vased on this view.

Besides usiny such knowleije for
teachinj, we se2e anothar important use for
it. It can help us t> understand bu3zs,
projram bujs and mind bujys, coOmmitted by
novice projrammers. First,. we subscribe
to the theory of lzarningy that states that
stujents understani something by
coastructing thair own knowledge
frameworks. A nind bug, tnen, is a
®"faulty" knowledge net, when compared with
an expert’s. That is, "bug" is only a3 bug
because it does not agree with some
standard. Moreover, a1 3ood teacher, who
also has a good knowledge net, can use the
student’s bujy as a
student’s knowledje net. 8rown and Burton
[1978] use tnis approach in their analysis
of students’ buggy suotraction algorithms.
Remeiiation can then be developed which is
tuned specifically to the subtleties of
the student’s bugyy model.

In the next =major section of this
paper, we shall wuse aspects of the
knowledge in Figure 1 to analyze program
bugs we collected from novice projrammers.
Wwe found that witnout this type of,
high-level knowledge, wmany of the bujjy
projrams seamed anomalous at best, but
with the 3development of knowledje of the
sort Jepicted in Fijure 1, these bizarre
projrans became unlerstandable to a larje
degree.

window into the

III. Understanding Program 3u3s and Mind
Bujs: Ine Data

II1f.1 [Ine Context 2f the Test and the
Test Iastrumneat

Table 1 contains three of the
problems we asked 31 introductory Pascal
projraanminj students to solve. The course
was 3Jivean in the summar session of 133y;
the test was administer2d on tn2 last 3Jay

of <classes. Tne stuldents ranjed fron
frzshman to jraduate students. Taple]
depicts the overall perfornancs of
students on thase questions; the

percentajes are surprisinyly low, jivea
tn2 ostansidly sinpl2 nature of the
proolens and tne advanc2i state of tne
class. Even if one ignocrss wnat mijznt De
called weasily Jetectaole mistakes (2.3.,
no initialization of a1 wvariaole), the
percentajes Jo not rise appraciably.

A reason for tnhis low performance,
and an iaportant criticism of projramnaming
tests jiven where students dJo not have
access to a computer is that introductory
projrammingy students almnost never write a
projram _ corractly right off tne bat.
Ratner, thay 30 to the terminal an3, oJver
possibly saveral sessions, evolve a
corractly running progyram.

Nonetneless, 3ata gJatnared from written
tests does sujjest trouole spots, waicn if

resolved mijat lead to wmore eoffective
problem solution/projram
Jevelopment., (1}

1 We -are also collecting on-line
protocols; as a student sits at a

terminal and submits a run to the Pascal
system, our system makes a copy df the
stuident’ s projram ani saves it. - Thus, we
have a record of the student’s
interactions. So far, we have data on 3
introductory Pascal eclasses, We are
analyzinjy these 3Jata now. We als?

interviaw students individually, recordiaj
these sessions on audio tape (we hope to
soon go to video tape). Thnesa type of
data is particularly illuminating;
whereas the on-line data and the tasst 3Jata
are simply ‘tecorids of output, of
performance, the ‘interview data proviies
us witn a window into the student's
thoujht processes. 1n related research,
we have found this technique to be a
source of jenuine insignts (Clement,
Lochhead, Soloway {1984}).

B i il i I S s——

cemes e ey - pram e 8 g«

—— -

B N R

SR

B i R T e bl

bl s

e

. 2 .m
e Db e o b St S b

Computer Science il

0

Probler 1. Wr:ite & program which reads 1C integers anc¢ then

prints

Sut the average. Rememdar, the average of o series of numbers is
the sum of tnose humbers divided by how many numbers there are in

the series,

Prcblem 2. wWrite a program which repeatecly reacs {n integers

until

their 'sum ts greater than 100. After reacning 100, the program

should print out the average of the integers entered.

Problem 2. Write a program which repeatédly recads {n integers

until

Tt “resds the integer 99999, After seeing 39999, it should print

cut the correct average. That {s, is should not count the

99999.

final

Table 1. Prchlems used in our test {nstrument. These problems were given
to an intrciuctory programming class on the last day of the course., They
are designed 0 test student knowledge of key differences between different

loop constructs ia Pascal.

Problem 1 Prohlem 2
Percentage of Students Whirh: The for loop problem The repeat foop problem
Used for op 162 -
Used repeat loop . 35.5% $3.6%
Used while loop 35.5% 39,32
Used other constructions 12.9% .22
Ansvered problem corractly 9.7% 252
AND chose appropriate
loop construct
Ansvered problem % 432
correctly

Table 2

Problem 3
The while loop problem

45.8%
41.72
12,62

20,82

82

.
The problems reforred to in thil'tnhla are Yisted in Table 1. The ahove dats is based on a sample

size of J1 students.

pregream Studentd Problem3:

var Count, Sun, Mumber @ integer; Average : repl; .
begin

Count iz 0}

Sum i 0

Read (Nuamber);

while Number <> 99999 do
begin
Sum s Sum + Number;
Count := Count « 13
Read (Number)
eng:

Average :z Sum / Count;

¥Writeln (Average)

g,

Figure 2. A stylistically correct solution to problem 3 in table
1. Mote the need for tw> Resd calls ana the curious "process the
1ast value, read the next value® semuntics of the loop bogy.

3%) 1 Ogrom was minimally edited for presentation hereo.
Stugents wrote these progrins in a classroom, They were - never
sutmitteo to a tranalator.

211

-

212 NECC 1981

III.2 p2rforaance Analysis: se of
Appropciite LJOD Construct -

In this course stuients
anl wused all 3 vpascal loop constructs:
while, repeat, ani for. gach of tnese
constructs 1s appropriate in 3Jiffecrent
situations (e.j., see Fijure 1), D>
novice progjrammers, in fact, Jistinjuisn
oetween tnem an3i use tham in the
appropriate conatext? Answer, oased on our
data: no.

wer2 taught

Table 2 1lists tna percentage of
students using 2ach particular loop
construct on each proolen; also listed
ar2 tnhe percentaje of stujents wno usei
tne appropriate loop con'struct ani jot the
problem corract. The Jdata on problemn 1
are surprisingy. Tnis problen is clearly a
for loop proolem, since the variaole oeing

tested is the counter variaole, Howaver,
only 16% wused a for loop; 35.5% us2d a
repeat loop ani 35.5% used a wnhile loop,

even tnoujn these constructs required the
students to 3> mora work by having to make
explicit tnose operatisns done inplicitly
by tne for loop (initialize countar, tost
counter for stoppingy, increnent zountar).
Moreover, of tne 38% wno jot the problem 1

correct, only 27% wused tnz for loop.
Clearly, cnoosiny the aporopriate loop
construct Jid not contributa ts correctly

solving the problem.

Problem 2 (see Taole 1) was a repneat
loop problem; the wvariaole tnat
coantrolled the loop, "sum,"” neceded to be
assigned a value in ths loop beforas it
would be reasonable to test it, Wwoile

more students Jij in fact cnoose the most
appropriate loop construct, the 3ifference
between those choosing the repeat anid
those choosing the while was not
statistically significant. Moreover, as
in the above case, choosing the
appropriate loop construct iid not
correlate with solving the problem
correctly,

For problen 3 (Table 1), the
appropriate loop construct is wnile; the
loop must not be executead 1 the

controlling variable has a specifiel value
and therefore the test must dbe placed at
the head of the 1loop. (This, in turn,
requires a curious codingy structure which
we examine in the na2xt section.) flere
ajain, we see that the difference
those choosiny a repeat

choosing a while loop

loop and those
was not

between .

statistically significant. Nor a3ain wig
th2 cnoice »of the appropriate 19237
construct a predictor of tne corractaess
of tne solution,

Based oa tnis simple test, it appears
that novices Jdo not Jistiaguisn Detwean
tne Pascal loop structures as aa expert
aignt., A quote from a student e
intarviewed is appropriate nece. "
asked why ne «cnose t> wuse tna2 whj
construct ratner than one of tne 3Jtaer
two, ne responded: “When I Jon’t kaow
wnat is joinj on, I use a wnile loop."

At first, we found the rasults on tna
for 1loop proolem (rable 2, oproolam 1)
counter-intuitive, After all, since tna
for loop does so .nuch work automatically,
we thoujynt it would ode tne easiest ¢ts
understand and use. On saconi thoujat,
nowaver, we decided that the automatic,
implicit aspects >f the for loop anignt bde
tne sticky point. That i3, since tne far
loop doss 45 a aumber of acti3n:
automnatically, stulents might be uacectain

adout all tne Jetails of th2 for loop’s
actions. Thus, in order to nave sJmne
control over the beasty, studants aignt

choos2 a rapeat or wnile loop anl do taa
extra work tO all the requira2d looping
macninery tnemselves. {1}

Quite simply, thne Jifference betweean
the repeat and wnile loops 1is suotle.
Moreover, since witn th2 appropriate extra
machinery ona <¢onstruct can sinulatz tne
otner, tne Jdistinction is har3d to eonforca.
Howaver, we fael that L2XtD00Ks
sijnificantly contribute to the confusion.
For example:

The principle difference 1is tnis:
in the WHILE statament, the loop
condition is tested before =2ach
itaration of the loop; in th2
REPEAT statement, the 1000
condition is tested - after each

iteration of the loop.
Findlay and Watt (1973)

{IT Some support for this interpretation
cones from the following fact: students
in this class were not taujyht the gJoto,
and never <construct2d loops out of Ene
basic constructs. Thus, these students
may be uasure of the ingredients 2f a loop
and might not be comfortapble witnh all the
majic implicit in a for loop.

vam — e T

%
§

i

e o o anar

re i mmeeeriames e o BAwe n A=

cite v wv

e

VAR o

P —

det v APt teane®

e

If the numoer of repetitions is
known beforenani, i.e., oefore the
repetitions are started, the for
statement is the appropriate
construct to express this
situation; otherwise tne while or
repeat should be used. e The
statement [(in a wnile body] Iis
repeateily executeld until the
expression vecomes false. If its
value is false at the ©bejinning,

tne statement 1is
all. .o The
statemants oetwaen
repeat dnid wuwntil is
exacuted (at least once)
axpression becomas true.
Jensen and wirtn (1974)

Aot executed at
sequence ~of
the symools
repeatedly
until the

1)

Wwe fe2l that this is 2a syntax level
description. wWhat snould pe ampnasizeil is
tne deep structure of this construction:

Use a trep2at loop if the
controlling variaole requires
tnat it de assigneld a wvalue in
tne loop vefore it can

reasonaosly be testai.

The frames and slots in Figure 1 reflect
the close connection petwa2n tne test in
the loop and the loop construct, and the

connaction petween the test and the
problen.

A final comment; the reader might
feel tnat the distinction between the

tnree loop types is not important for a
novice. To some extent, we ajree. we
wonder then why textbooks teach all 3.

IIT.3

I performance Analysis: Read
1/Process i vs. Process i/Rcad Next-i

Let us now take a closer 1look at
problem 3, the wnile loop problem. The

stylistically correct solutinn requires a
curious coding structure:

read first-value
. while (test ith value)
process ith value
read next-itn value

The loop must not be executel if the test
variable has the specified value, and this
value could turn up on the first recad;
thus, a read outside the loop is necessary
in order to get the lo0p started.
However, this results in the loop

Computer Science llI 213

processing beinj bshind the read; it
prozess2s tne ith input ani then fetches
the next-i. Wwe call this structure
“process i/read naxt-i."

Intuitively we felt this coding
stratejy to be unnecessarily awkwar3d and
downriynt confusing. A mote "natural®
coding stratejy would de to read the itn
value ani tnen process it; we call this
tne "real i/process i" codinz stratejy.
Do novice projranmers us2 the
stylistically correct codiny strategy
{process i/read naxt-i), or do tney adil

extra macninery to a wnile or repzat loop
(e.3., an empbedded if test tied to a2
boolean wvariaole) in order to force the

code into a read i/process i structure?

Taple 3 1lists the performance ‘of
tnose stuients who attempted the problem
witn either a while or repeat loop. Of
the nine who sdlved it correctly, only 2
used the stylistically correct process
i/read next-i coding strategy. (See
Figure 2 for a solution usinjy this <coding
stratejy.) To correctly solve th2 problem

usiny either a rep=at or while 1loop and
the read i/process i codiny strategy
requiras extra macninery; Figure 3 shows

studant pro3jrams which use this strategy.
Nonatneless, the vast majority of stulants
attenpted this solution; given the extra
complexity needed for a corract sdlution,
it is not surprisingy that many failed.

It is temptingy to conclude that with
respect to thess types of problems, Pascal

requires that students circumvent tneir
natural proolem solving intuitions.
Before we can actually assert this

conclusion, more research needs to be 3Jone
{l1}. But, since we must live with Pascal
for some time to come, it would only be
tesponsible for teacherss to explicitly
teach their students about this§ peculiar
coding stratejy. Agzain, since hunans are
ajaptive, we probably could learn to Jeal

with this awkward ani confusing
construction. !

©
I1I1I.4 Performance Analysis: Gettingy a
New Value -

i
t

In all 3 problems (Table 1), a
correct solution required that the program

jet a new value with a read. 23% of all
the student written programs d3id not
perform this function correctly. Often

students try to jet the previous or next

214

NECC 1981 |

[R - N

H '
: ' Read 1/Process § Process_i/Read Nexe-{ Other
used used
x=peac loop | uhile lovp | other epeat loop [while loop
Correct 4 2 2 1
Incorrect 3) 4 2
Table 3

The numbers in cthis table refer to the actusl number of studeats,

not perceatagaes.

program Student7 Problem3;

var N, Sum, X : integer:
Averaja : real;
Stop : baclean;

tegin

Stop :a1 false;

N 12 0;

Sum :z2 0}

while not Stop do
begin
Read (X):

if X s 99999
then Stop i3 true
else degin
Sum :z Sum + X
N :s N+
eng
end;
Average 1z Sum / N;
Writeln (Average)
.

grogran Student16_Problem3:

var Ghunt, Sum, Num : integer; Aversge : resl;

begin
Count :z =1;
Sum :3 0%
repeat
Count :s Count + 1}
Read (Num);
Sua :s Sum « Nun
_unul Num s 99999;
Sun :: Sum - 99999:
Average :x Sum / Count
end.

Figure 3. These progroms are attempts at prodblem 3 deseribed in
table 1. They are typical of the contortions students will go
through to make this prodblem fall into 2 "read 3 value, proceas
that value® Frame. These progrems have been minimolly edited for
presentation here. Students wrote these programs in a classrooa.
They vere never submitted to a translator.

SNlma s iy

value of a variable by subtracting or
adiiny one (see Figure 4). {2} We also
found projrams in wnich we falt students
assumed that each use of Next_value
automatically retrieved a new value.

“ As we indicated in Figjure 1, 3Jetting

a new value 1is different tnan, say,
accumulating a total. Thus, pernaps
students committing the apove errors 3id
not understani that reaj is actually just
a special case of assignment. If so, then
a languaje which treated I/0 calls 2s
special values which can be assijyned to or
from mijht be more palatable to beginning
projrammners, €.3..,

New_value := Reai_from_terminal, or,

Write_to_terminal := Running_sum
Count.

Another possidble mind buj wnich could
result in some of the observed errors
would oe that students incorrectly
overjeneralized from tne Counter Variable
Frame. That is, since the next value of a
wvariable functioning 2s a counter can be
retrisved by simply aidiny a 1 to the
variable, wny not Jet the next value of
any variable by simply addiny a 1 to it!
Wnile reasonable, this is incorract. This
type of overgeneralization could be
predicted from the relationship of the

[1] We nave designed an3d pilot-tested the
following experiment: first, we ask all
stujents to write a plan or design for
problen 3 in Table 1 (the same one
examined in this section), in a language
other than a projramminy lanjuaje. We
then ask half the students to write the
program in Pascal. For the other half of
the group, we provide a one page
description of the Ada loop ... exit loop
construct. Wwnile the sample slze was
small (13 students) the Jata are
sugjestive: invariably the plan of the
stujents was worded in terms of a read
i/process i. However, the Pascal versions
were typically coded with a process i/reai
next-i strategy. But, tnose projrams
written wusing the Ada loop ... gxit were
coded using the read i/process 1 strate3y.
Thus, the program coded in Ala aore
closely matched the students’ plans than
di3 those program coded in Pascal. We
plan to run this experiment on a larger
group.

2] "Backing up" may be needed when a
student does the while 1loop problem
(problemn 3) with a repcat loop.

.

Computer Science il 215

frames in Fijure 1.

ITI.5 Performance Analysis: The

Different Role of the ASsijynment Statement

In the Counter and the
Templates

If one chosa to use either a repeat
loop or a while 1loop in any Jne of the
three probleas, one would ne2d to
explicitly keep track of at least two
guantities: (1) tne nunber of numbers
which were read in, and (2) a tally of the
sum of the numbers read in. In both
cases, one would use a pacrticular type of
assijnment statement wnich facilitated a
running sum, e.3.s Running_total :=
Running_total + New_value. In the former
case, New value would be the constant 1,
while in the latter case New_value would
be Jependent on the value read in.

Running Total

Since the underlying projramming
lanjuajge construct is tha same in both
cases, one might think that if a student
used the construct correctly in the
counter case, than the student would
unierstand tne construct and would most
likaly be able to use it correctly in the
analojous case of tallying up the sum.
However, tne performance results in Table
4 portray a different picture. Namely,
significantly more students constructed a
correct assignment statement for the
counter action tnan could 3o so for - the
runningy total action.

Wwhy? The knowledje network in Figure
1 suggests, 1in fact, that the Counter
Template and the Running_Total Template
are distinct, since tne functions they
parform, while similar, are still
different. Moreover, the Runningy_Total is
more complicated since the New_Value
Template needs to be integrated to provide
a correct solution. Thus, one possible
cxplanation of the performance difference
would be that the students 3id not fully
understand how these two functions were
integrated; this added complexity was
responsible, then, for the poorer
per formance.

Yet another interpretation consistent
with the frame organization sujgested by
Figure 1 is the following: students
understand the counter action as a whole,
and do not deccompose I := 1 + 1 into a
left hand variable having its value change
by the right hand expression.

216 NECC 1981

The asaterisks Indicate stactiseically slyntitcant differcnces.

Frogram Student19_Problemi;

Sample Percentage Scatistical
Stze Correct Runntng-Total Correct Counter Update | Significance
Asslgnment Asstipnment
Overall 69 682 81z 019+
(scross all problems)
Problea 1 22 9% 1Y .0424
Problea 2 26 §9% 69T 1.00
Problem 3 21 762 1002 L0214
Table 4

yar kum, Prtv_nua. Count : integer;

begin

Count :s 0;
Read (Num);
Sun :s O}

repeat

Prey_num sz Num - 1]
Sua i3 Num « Prev_num;

Sum iz Sum e 13

Count :3 Count ¢ 1;

until Count s 1

Average :a Sum / Count:

['H

Writeln ('Average of ten integers is equal to

end.

Frogrom Student 30_Problem2;

yar N, Sum, Score : integer;

begin

N :a2 O3

Sum :2 O;
Score s 0;
¥hile (Sum <= 1

begin

Score :3 Score + 1;
Sum :s Sum + Score;

N :a N
end;
Mean :zx Sum / N

00) go

+ 1

Mean : real;

Writeln ('the mesn s ', Moan:10:10)

end.

Figure 4. These prograns are atteapts at the prodblems described
Student problems with getting a

in table 1. They 1llustrate
New_value. These programs have been ninimally odited

presentation here.

for

Students wrote these programs in a classroom.
They wore never submitted to & translator.

Inat is, students Jo not view I := 1 + 1
as an example of an assijnment statement.
. {1} Tnus, when faced with developiny an
assignment statament for the runniny total
function stulents must really confront
their.understanding of the particular type
of assijnment statement needel in this
context; tne poorer performance in tnis
situation reflects a2 amisunderstanding of
now the assijnment statement works.

111.6 Parformance Analysis: The "Dcmon®
in tne wnile loop tes:

3ased on our examination of stulent
projrams, and on an analysis of the
individual interviaw, w2 felt that there
was a jreat deal of confusion surrounding
tn2 time at wnich the terminating test in
the wnile 1loop 3jets evaluated: is it
evaluated once at the top of the loop, ot
is the test continually ecvaluatad Juring
the execution of tne body of the loop?
Tne projram Jiven Dbelow was also on a
written test taken oy the 31 summer school
stulents.

projram Probleand;

var Count : intejer;

bejin

count := 03 .

while Count < 7 do
b23gin
wciteln (“*7);
Count := Count + 1;
writeln (/")
eni

end. T

If the students felt that the
terminating test was 2valuated
continually, then the loop should
terninate before an */° were printed, thus
providing one more “*° and /" .{2) In
otherwords, it 1is as if the test were a

1 Problen 3 suggest some intriguing
corroborating 2vidence. More students 3ot
the count action correct (e.g., I = T +
1) than got the count initialization
correct (e.3., I := 1)! Maybe this was
due to sloppiness. However, if I :=1 + 1
is a unit unto itself, then possibly the
students do not see the need to initialize
the variable.

[2] wWe ware not interested in the actual
numoer of ‘*° and “/’, because we were not
studying the off-by-one bujg in this
Particular problem.

Computer Science lli 217

demon watczhinjy the statements in the loop
body, ani waitiny for its condition o
become true. Of tne 31 stulents, 34% male
the above mistake. Since while |is
comnonly wused in projrams ani 1n the
instruction, and sinc2 it was the end of
tne semester, we falt that this was 2

surprisingly nigh percentaje.

‘’he basis for this confusion is
jrounded in tne mismatcn between the

semantics of while in a projramaning
lanjuaje context, ani the semantics -- the
meaniny -- of ‘wnile in every jay

experience. In the latter case, ‘wnile’
nas a glopal sense: 3Jurinj tne course of
some event. In contrast, the projramming
lanjuag2 wnile requires a local, narcow
interpretation: at a specific point in
tine. Clearly, tne names of projramaming
languaje constructs must rely on real
wor ld semantics of tneir analo3js.
However, care ought to b2 exercised in
tneir selection. Since the likelihood of
renaning the while construct in Pascal is
small, educators must takz note Of this
error, and pay attention to it in their
instruction.

IV. Concluding Remarks

In this papar we first argued for the
need of empirical research coupled with
crisp, detailed theoties of the
projramming process. We tnen went on to
develop an explicit knowledge network
which represznts what programming exparts
mignt know apout looping and assignment.
We argued that since experts apparently
nad knowledge, such as plan types, which
wera structured into oundles, it was only
responsible that we as educators teach our
stulents this type of knowledge. Based on
this knowledge notwork, w2 analyzed bu3jgy
projrams collected from introductory
Pascal students. We expressed the
analysis in terms of mind bugs --
misconceptions -- that resulted in program
buis. In addition, we found that Pascal
construction themselves might be the cause
of some projram bugs, since they trigger
inappropriate and misleading conceptions
in a student’s min3,

Witnhout a doubt, the claims we have
made are controversial -~ in fact, they
may even be incorrect. However, we
stronygly feel that dialogue must be
ercouraged on this type of research, if

218 NECC 1981
computer science aducation, projramming
lanjyuage desijyn, and computer literacy,

are to be advancad,

V. Acknowleijements

We would like to express our

appreciation
to Steven Levitan for his

helpful comnents

and Davii Lee for his diligent support
work.

V. B8ibliograpny
grown, J.S. and Burton, R.R. (1973)
"Diagnostic Models for, Procedural Bujs in
Mathematics," Cojnitive Science, June,

Clement, J., Lochheai, J. ani Soloway, E.
(19389) "positive Effacts of CTomputer
Projramming on Students’ Uniderstaniiny of
variables and Equations," Proc. of
National ACM Conference, Nashville.

Collins, A. (1978) "Explicating the
Knowledge in Teachiny and Leacrning,”
presented at the Anerican Education
Research Association (also BBN Technical
Report 3849).

r'acit

Dijkstra, E.W. (1378) A Disciplin- of

fro ramming, prentice-dall, inzT,
Eng%ewooi Cliffs, New Jersey.

punsmore, H.E. and Gannon, J.D. (1978)
“programming Factors -~ Lanjuage Features

that Help Explain Projramming Complexity,”
Proc. of National ACM Conference.

Findlay, William and watt, Davii A. (1978)
fascal: An Introduction to Mathalical
Programmingj, Computer Science Press, Inc.,

Potomac, Marylanj

Friedman, Daniel (1974) The Little LISPer,
Science Research Associates, Menlo iark,

Calif.

Gannon, J.D. (1978) "Cnaracteristic Errors
in Programminy Lanjuajes,” Proc. nf 1978
Annual Conferance of tho ACM, Washinjron,
D.C.

Goldstein, I. (1974) “"Undcrstandiny Siaple
Picture Projrams,” Technical Report
AI-TR-294, M.1.T. A.l. Lab, Cambridjc.

Jensen, Kathleen and wWirtn, Niklaus (1974)
pascal Usect Manual ani Repoct,
3prinjer-vacrlay, N3w York.

Kurtz, TP.F., (1978) "BASIC," apoeared in
the Proceedinis of the ACM SIGPLAN History
of Projranming Languajes Confereace,
SIGPLAN Notices vol. 13, num 38, Auj.

Lackin, J., McDecmott, J., Simon, D. anj
Simon, H. (198Jd) "Expert 2and Novice
Perforimance in Solvinj Pnysics Pronleans,”
Science, 208.

Ledjar3, H., Wniteside, J., Singer, A. 2aaj

Seymour, W. (1981) "Report on an
Exparineat on the ©Design of Interactive
Commnani Lanjuages,"” to appear . ia

Comnunications of the ACM.

Mayar, R. (1939) "Contributions sf
Cojnitive Science anid Related Reszarch in
Learningy to tha Design of Comouter
th»raby Cutrxvula, CDﬂfPE°GC° 22

VLr;xnla.

McCracken, Dan (1976) forwar3d td
Interactive Approach, by
anl] AlTen J. Rose, John
New York.

APL: 31
Leonar3d Gila:in
Wiley and 5ons,

Miller, Lance (1978 "Behavioral Studies
of the Progcamminj Process,” I8M Technical
Report RC7367, Yorktown Heights, New York.

Miller, Mark L. (1978) "A Structurs?
Planning and Debu3zjginy Eavironment for
Elorentacy projraaming,"” Int, J.
dan-Machine studies, 11, pp. 79-395.

Minsky, M. (1975) A
Representing hnowledge,“

Framework fo'
in rne Psycholoz

of Computer inlon (P.H. wWinston, o3.),
ACGEIW-HI1I, "N3w vork.,

Nilsson, N. (1939) Princinles of
Artificial Intelligence, TFioja Puolishing
Company, palo Alto, California.

papert, S. , (1980) Mindstorms, Childr:on,

Computers and Powarful 1deo3s, Basic Booxs,

Inc., New York

polya, G. (1973) How To Solve It, 2nd Ed.,
Princeton University Press, New Jarsey.

armm e o et Wl mmem et et s ARG St

AR BT st 5O a7 MY opn T

e, u] TPEEGh S OA L Pot 17D o a0 WS

P

Structures = Pr01:1nb, Prentic

Rissland, (Michener) E. (1978)
“Onderstanding Understaniing Mathamatics,"
Cojnitive Science, vol. 2, no. 4.

Risslanj, E.R. ani Soloway, E.M., (1389)

"seneratiny Examples in LI3SP: Data and
Projrams,” Technical Report 33-07,
Dept., of Computer and Information Science,
gniv. of Mass., Amnherst.

Shneijernan, B. 11980) Software
psycnolo3jy, Human Factors in Conputoc an3
Information Systems, Winthrop Pudblisners,
Inc., Cambridje.

Soloway, E. ani Wooléf, 8. (1980)

“problems, Plans, and Pro3zraams,"” in Proc. .

of Eleventh ACM Technical 3Sympasium on
Computer science Ejucation, Kansas Clty.

Teitelbaumn, T. an3d Reps, T. (198J) “The
Cornell Prograa Synthesizer: A
Syntax-Directed Projyramming Environment,*
Department of Computer Science, Cornell
University, Technical Report 30-421, May.

Waters, R.C. (1979) "A Mothoid for
Analyziny Loop Projrams,” JELE Irans. on
Software Enjineeriny, SE8:3, May.

Welty, C. and Stemple, D.W. (1981) ‘“Human
fFactors Comparison of a Procedural and a
Nonprocedural Query Lanjuage," tOo appear
in Trans. on Database Systems.

Wwinston, P. and Horn, 3.K.P. (1981) LISP,
A3dison-wesley Publisning Co., ReaTing,
Massachusetts.

Wirth, N. (1976) Algorithms + Data
2-Hall,

Inc., Enjlewood CIiits, New Jersey.

Wirth, N. (1977) “The Programmin3 lLanguage
Pascal," Acta Informatica, 1, pp. 35-63.

Computer Science lli

219

