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ABSTRACT

Frogs and toads provide interesting parallels to the way in
which humans can see the world about them, and use what they see
in determining their actions. What they lack in subtlety of
visually-guided behavior, they make up for in the amenability of
their behavior andv the underlying neural circuitry to
experimental analysis. This paper presents three specific models
of nevural circuitrd underlying visvally—guided behavior in Pfog
and toad. They form an ‘evolutionary sequence’ in that each
model incorporates its predecessor as a subsystem in such a way
as to explain a wider range of behavioral data in a manner
consistent with current neurophysiology and anatomy. The models
thus form stages in the evolution of Rana compytatrix, an

increasingly sophisticated model of neural circuitry underlying

the behavior of the frog. +

# The research reported in this paper was supported in part by
the National Institutes of Health under grant RO1 NS14971-02. My
special thanks to Rolando Lara of Universidad Nacional Autonoma
de Mexico with whom the recent modelling was conducted during his
stay at the University of Massachusetts., 1978-1980.

+ When both models and experiments are further advanced, the time
will be ripe for the differential analysis of (different species
of) frog and toad. In the present article, however, we conflate
data gathered from both frog and toad studies to lay the
experimental basis for the models that we discuss.
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1. NEURAL SUBSTRATES FOR VISUALLY-GUIDEDP BEHAVIOR

Lettvin, Maturana, McCulloch and Pitts [1959] initiated the
behaviorally-oriented study of the frog visual system with their
classificétion of retinal ganglion cells into four classes each
proJectin§ to a retinotopic map at a different depth in the optic
tectum, the four maps in register. In this spirit, we view the
analysis of interactions between layers of neurons as a major
approach to modelling "the style of the brain". A general view
of cooperative computation between neurons within a layer, and
between layers within the brain is developed in Arbib C[1981bJ;
while the relation of ‘maps as control surfaces’ to the general
study of perceptual structures and distributed motor control is
given in Arbib [1981al. Our aim in the present paper is to
exemplify these general principles in three specific models o#f
cooperative computation in neural circuitry underlying visuvomotor
coordination in frog and toad.

Lettvin et al. found that group 2 rvetinal cells responded
best to the movement of a small object within the receptive
field; while group 3 cells responded best to the passage of a
large object across the receptive field. It became common to
speak of these cells as "bug detectors® (following Barlow [19531)
and "enemy detectors", respectively, though subsequent studies
make it clear that the likelihood of a given frog behavior will
depend on far more than activity of a single class of retinal

ganglion cells (Ewert [1976], and Section 3 below). Given the
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mapping of retinal “feature detectors”™ to the tectum and the Fact'
that tectal stimulation could elicit a snapping response, it
became commonplace to view the tectum as, inter alia, directing
the snapping of the animal at small meving objects - it being
known that the frog would ignore stationary objects, and would
Jump amaqurom large moving obgjects. However, this notion of a
simple stimulus—-response chain via the tectum was vitiated by
Ewert’s observation that after a lesion to PT
(pretectum—thalamus) a toad would snap a% moving objects of all
sizes, even those large enough to elicit escape responses in the
normal animal. More detailed neurophysiological studies support
the inference that the tectum alone will elicit a response to all
(sufficiently) moving objects, and that it is PT-inhibition that
blocks this response when the object is large, since tectal cells
respond to visual presentation of large moving objects in the
PT-lesioned animal [Ingle, 19731.

In this paper, then, we first model local circuitry in the
tectum (a ‘tectal column’) ¢to explain certain facilitation
effects in prey—catching behavior; we then study a linear array
of such columns to model certain data on size-dependence of
prey—catching activity in toads; and, finally, we . add
PT-inhibition to such an array to model the behavior of an animal
confronted with more than one prey-stimuvlus. These models form
three stages in an evolutionary sequence for Rana Computatrix,
our developing model of ¢the neural circuitry underlying

visuvomotor coordination in frog and toad. Tectum and PT are but
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two of the many brain regions to be incorporated into the model

during its further evolution.

2. FACILITATION OF PREY-CATCHING BEHAVIOR

Frogs and toads take a surprisingly long time to respong to
a worm. Presenting a worm to a freg for O.é sec may yield no
response, whereas orientation is highly likely to result from a
0.6 sec presentation. Ingle [1975] observed a facilitation
effect: if a worm were presented initially for 0.3 sgec. then
removed, and then restored for only 0.3 sec, the second
presentation would suffice to elicit a response, so long as the
intervening delay was at most a few seconds. 'Ingle observed
tectal cells whose time course of firing accorded well with this
facilitation effect (Fig. 1). This leads us to a model [Lara,
Arbib and Cromarty, to appearl in which the “short-term memory"
is in terms of reverberatory neural activity rather than in terms
of the short-term plastic changes in synaptic efficacy
demonstrated, for example, by Kandel (19781 in Aplygia Our
model is by no means the simplest wmodel of facilitation -—-
rather, it provides a reverberatory mechanism for facilitation
consigtent with Ingle’s neurophysiology and the known local
neuroanatomy of the tectum. Unfortunately, the current knowledge
of tectal circuitry is scanty, and much of the structure of the

tectal column to be postulated below is hypothetical, and is in
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great need of confrontation with new and detailed anatomy and
neurophysiology.

The model described in this section addresses facilitation
at a single locus of tectum. Further developments address the
interaction of a number of columns, and we shall discuss these in
Sections Szand 4,

The anatomical study of frog optic tectum by Szekely and
Lazar [1976]1 provides the basis for our model of the tectal
column (Fig. 2). In the superficial sublayers of tectum we see
the ¢thalamic input (which may also ramify in deeper layers),
below which are the retinal type 1 and 2 inputs, with the retinal
type 3 and 4 inputs deeper in turn. Deeper still, in layer 7,
are the tectal efferents, which come from two cell types, the
pyramidal cells and the so-called tectal ganglion cells. Our
model of prey—catching will wuse only the pyramidal cells as
efferents; we shall ignore the tectal ganglion cells which may
(this is speculative) provide the output path for avoidance
behavior. We incorporate the stellate cells as inhibitory
interneurons, and ignore the amacrine interneurons. The other
major components ¢to be incorporated in our model are the large
and small pear-shaped cells. Little of the anatomical
connectivity of these cells is known, let alone the physiological
parameters of their connections.

The tectal column model (Fig. 3) comprises one pyramidal
cell (PY) as sole output cell, three large pear-shaped cells

(LP), two small pear—-shaped cells (SP), and two stellate
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interneurons (SN), only one of which is shown in the figure.
These numbers are based on the ratios of occurrence of these
cells observed in frog tectum. All cells are modelled as
excitatory, save for the stellates. The retinal input to the
model is 'a lumped "foodness" measure, and activates the column
through gfomeruli with the dendrites of the LP cells. LP axons
return to the glomerulus, providing a positive feedback loop. A
branch of LP axons also goes to the SN cells. There is thus
competition between “runaway positive feedback” and the stellate
inhibition. (For & #full presentation of the differential
equations wvsed in the simulation, see Appendix 1 of Lara, Arbib
and Cromarty [to appearl.)

The role of SN ' in our tectum model is reminiscent of
Purkinge inhibition of the positive feedback between cerebellar
nuclei and reticular nuclei, a basic component of our group’s
model of cerebellar modulation of moter synergies [Boylls, 1974;
Szentagothai and Arbib, 1974, Chapter V). Tsukahara [1972] found
that reverberatory activity was indeed established in this loop
when picrotoxin abolished the Purkinge inhibition #from the
cerebellar cortex. It would be interesting to conduct an
analogous experiment by blocking inhibitory transmitters in the
tectum.

Returning to the tectal model: glomerular activity also
excites the SP cells which also send their axons back to the
glomerulus. The SP cells also excite the LP cell to recruit the

activity of the column. The PY cell is excited by both SP cells
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and LP cells. Clearly, the overall dynamics will depend upon the
actuval choice of excitatory and inhibitory weights and of
membrane time constants. It required considerable computer
experimentation to find <the weights ¢that yielded the neural
patterns discussed below. Further study was devoted to a
sensitivitﬁ analysis of how weighting patterns affect averall
behavior. It is our hope that our hypotheses on the ranges of
the parameters involved in the model will stimulate more detailed
anatomical and physiological studies of tectal activity.

Excitation of the input does not lead to runaway
reverberation between the LP and its glomerulus; rather, this
activity is "chopped” by stellate inhibition and we see a period
of alternating LP ‘and SN activity. The SP cells have a longer
time constant, and are recruited only if this alternating
activity continues long enough.

In one simulation experiment, we graphed the activity of the
pyramidal cell as a function of the time for which a single
stimulus is applied (Fig. 4A, B). There is, as in the
experimental data, a «critical presentation length below which
there is no pyramidal response. Input activity activates the LP,
which re-excites the glomerulus but also excites the SN, which
reduces LP activity. But if input continves, it builds on a
larger base of glomerular activity, and so over time there is a
build-up of LP-8N alternating firing. I# the input is removed
too soon, the reverberation will &ie out without activating the

SP cells enough for their activity to combine with ¢the LP
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activity and trigger the pyramidal output. However, if input is
maintained long enough, the reverberation may continue, though
not at a level sufficiently high to trigger output. However, a
second simulation experiment (Fig. 4C) shows that re-introduction
of inpuf within a short time after cessation of ¢this
"subthresﬁold“ length of input presentation can indeed “ride
upon® the residval reverberatory activity to build up to
pyramidal input after a presentation ¢time too short to yield

output activity on an initial presentétion.

3. A SIMPLE MODEL OF PATTERN RECOGNITION IN THE TOAD

The facilitation model was ‘local’ in that it analyzed
activity in a small patch of tectum rather than activity
distributed across entire brain regions. We now outline Euwert’s
L1976, for a reviewl] study of pattern recognition in the toad,
analyzing what features of a single moving pattern will increase
the animal’s snapping responses. We then show how a
one—~dimensional array of tectal colummns, of the type studied in
the previous section, can model certain of these data. Future
research will explore constraints on a tuo-dimeﬁsional array of
such columns required to model the whole range of Ewert’s data on
pattern recognition.

The toad is placed in a ¢transparent cylinder. An object

moves around a circular track concentric with, and on the #loor
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outside, the cylinder. Some objects elicit no response. Other
objects do elicit an orienting response (though the cylinder wall
prevents the toad from actuvally snapping). S8ince the object
keeps moving along its track, it can elicit a second response,
and a thirﬁ. and so on. Ewert’s suggestion, then., is that the
more ’atfractive’ is the object, the more frequently will the
toad orient to it, so that the response rate is a measure of
foodness. (Note a paradox here. The less attractive the ob ject,
the greater the integration time to a response, and ¢thus the
greater the distance the animal has to move to orient towards the
object if it orients at all.)

Ewert presented three types of rectangular stimuli: a
"worm" subtending 2 degrees in the direction normal to the
motion, and some d degrees in the direction of motion; an
"antiworm" subtending some d degrees in the direction orthogonal
to motion, and 2 degrees in the direction of motion; and a
"square” subtending d degrees in both directions. The prey dummy
was moved at 20 degrees per second at a distance of about 7 cm
from the +toad. Ewert studied the toad’s response rate for each
stimulus for a range of different choices of d degrees (fixed for
each trial) from 2 degrees to 32 degrees. For d = 2, the three
stimuli were, of course, the same. They elicited an orienting
activity of 2 to 3 turning reactions per second. For the “worm",
the orienting activity increased to an asymptote of 35 turns per
minute at d = 16; for the "antiworm®, the orienting activity

decreased rapidly to extinction at d = 8 while for the square
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the orienting activity reached a peak of about 20 turns per
minute at d = 8, and then decreased ¢to zero by d = 32. (The
square gives the impression of & competition between “worm"
excitation and "antiworm" inhibition. }

Ewert‘repeated this series of behavioral experiments in
toads with;PT-lesions. and found that for none of the stimuli was
there decreased response with increased values of d. This more
detailed evidence for PT inhibition of tectally-mediated
orienting was further elaborated by neurophysiological recording
of PT and tectal neurons in the behaving toads. In the intact
toad, PT-neurons had a response rate insensitive to increasing d
for “worms®, but the response increased with d for "antiworms",
and even more rapidly for squares. Tectum type 1 neurons were
insensitive to changing d for "antiworms”, but had a peak of
response at d = 8 for both "worms" and squares; while the firing
rate of tectum type 2 neurons was similar to the oriehting
activity of the intact toad —- monotonically declining with d for
“antiworms®, peaking at d = B for squares, and declining slightly
after d = 8 for "worms". (Note the slight discrepancy here --
one would expect the response to "worms" ¢to be non-decreasing if,
as Ewert does, one takes tectal type 2 activity as the neural
correlate of orienting behavior.)

On this basis, Ewert postulated a simple model: A filter in
PT responds best to an antiworm stimulus; a tectum type 1 cell
responds as a filter tuned to a worm stimuvlus; and a tectum type

2 cell is excited by the tectal type I cell and inhibited by a
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PT-cell. Thus the type 2 cell responds with increased activity
to increasing d for a worm stimulus; with decreased activity to
increasing d for an antiworm stimulus; and with some tradeoff
(dependent upon the actual parameters of the filters and the
connectivifg) for a square. Ewert and von Seelen [1974] fitted
parameteré to a linear formulation of ¢this model to fit (part of)
the response curves observed by Ewert. MNote. however, that the
domain of linearity is strictly limited; and that the model
yields the average firing rate of the neuron: the model is thus
lumped over time. and says nothing about the temporal pattern of
neuronal interactions. Arbib and tara [te appear] have studied a
one~dimensional array of tectal columns (without PT interaction)
to provide a model of spatiotemporal neural interactions possibly
underlying Ewert’s ‘“worm" phenomena. For example, in the Ewert
study of the toad’s. response to an object moving along a track,
we may regard the object’s movement at one position as
facilitating the animal’s orientation to the object in a later
position. The key question here is "How does the facilitation
build up in the right place?" Part of the answer lies in noting
the large receptive fields of the tectal columns; and analyzing
how activity in a population of tectal columns can yield
orientation in a particular direction. Thus, rather than
analyzing activity in a single column, Arbib and Lara [to appearl
study the evolution of a waveform of activity in a
one-dimensional array of columns (Fig. S). The columns of ¢this

array are somewhat simpler than that of Figure 3, having only one
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neuron of each cell type. We show in Figs. 6, 7 and 8 the
response to a moving stimulus of various lengths. These
reproduce Ewert’s observations on the increasing attraction of a
‘worm’ with increasing length; Arbib and Lara also report a
number of-other computational experiments. The elaboration of
this modél to a two-dimensional arvay of columns will, in our
future research, be integrated with our model (Section‘ 4) o¢f
tectal-pretectal interactions in prey—selection to yield a model
that should be rich enough to extend an explanation of Ewert’s
data on pattern recognition into the temporal domain in a way

which addresses the antiworm and square data, as well as the worm

data.

4. A MODEL OF PREY-SELECTION

Ingle [1968]1 had studied the response of frogs to pairs of
fly~like stimuli, each of which was such that when presented
alone it would elicit a snapping response. He found that, under
differing conditions, the animal would snap at one of the
stimuli, snap between them: or not snap at all. We now turn to a
model of such prey-selection. The model is a refinement of one
developed by Didday ([1970; 19761 while working with me at
S8tanford, but differs in that -— in view of Ewert’s study of
PT-lesions —-- it uses PT-tectal interactions. rather than

positing that all the necessary circuvitry is embedded in the
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tectum. Moreover, the new model extends ¢the ‘array of tectal
columns’ model to provide yet a third stage in the evolution of
Rana Computatrix. @Given that a pair of stimuli may fail to
elicit a response even when either stimulus alone would have
produced 6ne. we conceptualized prey—selection in terms of
"competitibn" between the neural representations of the stimuli.
(We cannot here be content with a simple program to search for
the maximum from a list of stimulus strengths; our task in Brain
Theory is to distribute prey—-selection over a neural network
conforming to the available constraints from anatomy and
neurophysiology. )

The Didday model started from two postulates: (i) There is
available as input a retinotopic array of activity which encodes
the loci of "food-like” movements in the environment. (In ¢this
simple exposition, we ignore the possible role of visval
accomodation and stereopsis in providing a third dimension to
this representation.) This “foodness layer" corresponds to the
glomervlar input to a spatial array of the tectal columns
modelled in Section 2. (ii) The output of the tectum is again a
retinotopic array, and sufficient activity in this array will,
when played down through efferent structures, cause the animal td
snap at the spatial locus corresponding to the ‘“center ot
gravity” of activity in this output array. This output layer was
referred to as the “relative foodness layger”, since high activity
there should, in general. represent relatively high activity in

the foodness layer. Thus, this activity corresponds to the
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pyramidal activity (PY) in our spatial array of tectal columns.
We seek to explain, then, how competition amongst multiple peaks
in the +foodness array (input to the glomeruli) can lead to the
suppression of all but one of them in the output array (PY
activitg)-Awith consequent snapping at but one of the “prey”.

The pfesent model [Lara and Arbib, in press] interconnects a
one—-dimensional array of simplified tectal columns with a layer
of cells called S-cells, in retinotopic correspondence with the
columns, which represent cells of the pretectum—-thalamus
(Fig. 9). (In the 1970 model, the S-cells were identified with
the sameness cells reported in the tectum by Maturana:. Lettvin et
al. ) Each S-cell is excited by activity in the relative foodness
layer, save for a blind spot centered at the locus corresponding
to that of the S-cell. 1In the Didday model, the S-cell then
provides an inhibitory input to cells within its blind spot on
the relative foodness layer. Lara and Arbib [in pressl, however,
do not make the corresponding assumption that an S-cell must
inhibit the PY cell in the corresponding tectal column. Rather
they conduct a number of experiments on the dynamic consequences
of choosing different sites for pretectal inhibition of columnar
activity. The reader is referred to their paper for details.

The system described so far exhibits hysteresis. S8hould a
new peak be introduced in the input array, it may not affect the
output activity even if it is rather large, for it may not be
able to overcome the considerable inhibition that has built up on

the S—cells. The model thus postulates a further array of
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NE-cells (representing the newness cells of Lettvin et al.) which
register sudden changes in input, and uses these to interrupt the
ongoing computation to enable new input te affect the outcome.
Clearly, the detailed dynamics of the model will depend on
the size of the blind spot, and the relative parameters of
excitation: and inhibition. We weve able to ad just the
coefficients in such a way that with several peaks in the
foodness input array, the activity passed through to the tectal
column would excite the S-cells in such a way that they would
lower the corresponding peaks in tectal activity. However, if
one peak were stronger than the others, it would be less
inhibited, and would begin to recover; in doing so, it would
suppress the other peak more, and thus be inhibited less; the
process continuing until the stronger peak recovered sufficiently
to control a “snap" in the corresponding direction (Fig. 10).
However, there were cases in which the mutual suppression between
two peaks sufficed to hold each below a level sufficient to

release behavior (Fig. 11).
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5. CONCLUSIONS

We have exhibited an evolutionary sequence of models ——
tectal column, one-dimensional array of columns; array with
pretectal inhibition —— which explains an increasingly broad
range of jbehavioral data on visuomotor coordination in frog and
toad. We note three important features of the style of modelling
developed here.

1. New phenomena are addressed not by the creation of ad
hoc models but by the orderly refinement and expansion of models
already created. Of course, we expect that future development
along this line will 1lead ¢to redefinition and refinement o#f
earlier models, rather than simple addition of new circuitry in
each casae. On the other hand, we would expect that the model,
once sufficiently developed, will explain many data beyond those
which specifically entered into its design.

2. Each ’‘model’ presented here is in fact a ‘model~family”’.
We design a family of overall models, and then conduct sumulation
experiments to see which choices -- of connectivity, synaptic
weights, time constants - yield neural dynamics, and
input—output relations, compatible with available data.

3. The choices mentioned above are only loosely constrained
by the experimental data presently available. To carry out
simulations, we make choices which often must, perforce, go
beyond these data. In making such choices, we form explicit

hypotheses (whose details are spelt out in our papers cited
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above) which may serve to stimulate new experiments. These
experiments in turn will stimulate more refined modelling. The
continving cycle will lead to an increasingly sophisticated

understanding of the neuvral mechanisms of visuomotor

coordination.

We close with a brief discussion of future directions for
this modelling effort. We have already mentioned the transition
from a one-dimensional to a two-dimensional array of tectal
columns (and corresponding pretectal elements) as a current
avenue for further development of Rana Computatrix.

The model has nothing to say about the control of avoidance
behavior, nor does the basic version described here address more
than a few of the prey-predator discrimination phenomena
discussed in Section 3. A two-dimensional array of columns will
allow us to study fﬁe full range of these phenomena.

There are further refinements net incorporated into the
basic model. Increased motivation (due, e.g., to food odor or to
hunger) will cause the animal to snap at larger moving objects
than it would otherwise approach. Such an effect might be
modelled by direct excitation of tectal columns, or by diffuse
inhibition of the S-cells, probably under the control of
telencephalic regions. Forebrain mechanisms allow the animal to
learn gimple discriminations. And there are habituation
phenomena which we have begun to model (Fig. 12). Habituation
disappears when there is PT ablation. Moreover, the habituation

is stimulus specific, and it appears that pattern recognition is
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necessary both for habituation and dishabituation to occur. For
example, Ewert has studied habituation of a toad’s snapping
response to simple moving patterns and has discovered a hierarchy
-— an ordering A < B of patterns, such that if the toad habituates
to A it will avtomatically be habituated to B, but not vice
versa. éuch data provide a continuing challenge to the

theory—experiment interaction that will drive the future

evolution of Rana Computatrix.
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FIGURES |

Physiological behavior of cells related to prey catching
facilitation. (A) shows a brief class 2 burst followed by a
delayed Tesponse of a tectal cell. (B) shows the behavior of
a tectal cell responding to the presentation of the stimulus
and again with a delay. (C) shows a tectal neuron that
produces a delayed response to the presentation of the
stimulus. Finally (D) shows the postimulus histogram of a

tectal cell showing a delayed peak at 3 to 4 seconds (from
Ingle, 1973).
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TECTAL COLUMN

I

Neurons and synaptology of the model of the tectal column.
The numbers at the left indicate the different tectal layers.
The glomerulus is constituted by the LP and SP dendrites and
Tecurrent axons as well as by optic and diencephalic
terminals. The LP excites the PY, the SN, and the GL, and is
inhibited by the SN. The SP excites the LP, and PY cells and
it sends recurrent axons to the glomerulus; it is inhibited
by the SN. The SN is excited by LP neurons and diencephalic
fibres and it inhibits the LP and SP cells. The PY is
activated by ¢the LP, SP, and optic +fibres, and is the
efferent neuron of the tectum.
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(A) Computer simulation of tectal cells response when a brief
stimulus 1is presented. The onset of the stimulus produces a
long lasting depolarization in the glomerulus which then
fires the large—pear shaped cell (LP). This neuron in turn
sends recurrent axons to the glomerulus and the stellate cell
(SN) which acts as the inhibitory neuron in the column. When
the inhibitory effect of SN releases the LP cell, a
rebounding excitation occurs. The small pear—-shaped cell is
integrating the activity of GL and of LP and SN neurons to
give a delayed short response. (B) If in the above situation
we present a stimulus of longer duration. the pyramidal
neuron now fires. In (C) we show that when a second stimulus
of the ‘subthreshold duration’ used in (A) is presented, the
pyramidal cell (PY) reponds. (The frequency of the spikes
are a graphical convention. The spikes are draswn simply ¢to
highlight when the membrane potential of a cell is above

threshold.)
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9. A one-dimensional array of tectal columnms. Each column is
constituted by one GL. (glomerulus), one LP (large
pear—shaped) cell, one SP (small pear—shaped) neuron, one SN
(stellate neuron), and one PY (pyramidal «cell). The
afferents are the optic fibres that arrive at the 6L, LP, SP,
and PY <cells, and the efferents are the PY axons. LP cells
are activated by the GL and the optic input and they send
recurrent axons to their own as well as neighboring
glomeruli. The SN neurons are activated by the LP cells and
they inhibit LP and SP neurons of their own as well as
neighboring columns. The SP receive excitation from GL and
are inhibited by SN; finally PY receives afferents from the
retina, the LP and SP neurons.
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6. Figures &6, 7 and B show the results of a compu?er simulgtion
of tectal response to a moving stimulus of different sizes.
The graphs show the behavicr of the 8 PY neurons of the
tectum to a moving stimulus. Notice that in this case an
alternate response is given in columns 3, 5, and 7 when the
stimulus size only covers one glomerulus.
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Here the stimulus covers 2 glomeruli simul taneously. The
results show that the strength of activation increases when
the size of the object is elongated. The latency of response
is also faster.
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In this figure the stimulus simultaneously covers 3 G6L. It
can be seen that the latency of response is shorter and the
total activity is greater than in Figs. & and 7. Notice that
all columns fire with this stimulus.
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Architecture of the model for the interaction between tectum
and pretectum in prey selection. Each column receives the
afferents from one S (sameness) neuron; each PY (pgramidgl)
neuron excites all pretectal cells except the one whose blind
spot is in its receptive field. The NE (newness) neurons
arrive at the same site as the corresponding optic fibres.
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Computer simulation of the behavior of prey selection to
three stimuli of different intensities. Column 1 is excited
by a stimulus of intensity 2 column 4 by one of intensity
3i and column & by one of value 1. After an initial brief
response of columns 1, 4, and 5 the rebounding excitation
converges to column 4.
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11. Computer simulation of the behavior of PY neurons to 2
equally intense stimuli. The stimuli are presented in column

2 and S. Notice that an alternation of excitation and
inhibition is present without convergence to either of the
stimuli.
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12. Computer simulation when the model is modified to include
habitvation effects on PY activity. We #first present a
stimulus in column 1. After a period of rest, we present 2
equally intense stimuli in column 1 and 4. The reponse
converges to PY activity in column 4, because the pathway of
column 1 is habitvated.



