A Language to Support
Debugging in Distributed Systems

Peter C. Bates*
Jack C. Wileden¥**
Victor R. Lesser®*

Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

COINS Technical Report 81-07

%*Supported in part by the National Science Foundation under Grant
MCS-8006327 and by the Defense Advanced Research Projects Agency
(DOD), monitored by the Office of Naval Research under Contract
NROU9-0U1T.

%#%sypported in part by the National Aeronautics and Space
Administration under grant NAG1-115.

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the National
Science Foundation, the Defense Advanced Research ProjJects
Agency, the National Aeronautics and Space Administration, or
the U.S. Government.

Abstract

Debugging is a necessary prerequisite to reliable behavior
in any software system. Complex distributed software systems
pose some novel challenges for debugging. In this paper we
describe the approaches we are taking to providing interactive
debugging in a distributed environment based on a 1language for
defining behavioral abstractions, called the Event Definition
Language (EDL). Through the use of EDL, a user can create an
appropriate and comprehensive view of the concurrent activity in
the system to be debugged.

1.0 INTRODUCTION

Debugging is a necessary prerequisite to reliable behavior
in any software system. Complex distributed software systems
pose some novel challenges for debugging. These challenges,
which are not found in more traditional software, arise primarily
from the possibility of concurrent activity in a distributed
computational system. Indeed, managing the complexity introduced
by concurrent activity is the central challenge to developers of
distributed software and hence to the tools intended to aid them.
Concurrency gives rise to subtle interactions among various
components of the software system. Providing the distributed
software system developer with capabilities for coping with
concurrency is a primary objective in the development of tools,
including debugging tools, supporting distributed software
development [Lesser and Wileden 1980].

Distributed computation possesses properties in addition to
concurrency that complicate the problem of developing distributed
software. Computational structures required to maximally exploit
the capabilities of distributed computing are sometimes
significantly different in character from existing structures
used for conventional problem solving. These differences arise
because of the need for fault-tolerance to improve reliability,
the need for 1large, complex and dynamic process structures to
exploit parallelism, and the need for problem solving structures
that minimize inter-node synchronization and communication.
These requirements lead to computational structures that have

many of the characteristics of complex organizational structures

[Lesser 19791].

These new computational structures call for tools, including
debugging tools, that support a global, high-level view of a
distributed system, and also the ability to focus in on specific
local aspects. Moreover, because the range of computational
structures appropriate for distributed computing has yet to be
extensively explored, development tools for distributed software
systems must be highly flexible and non-prescriptive. That is,
they should not enforce nor even strongly suggest a particular
viewpoint on system implementation. Tools that bias developers
toward thinking in terms of some particular computational
organization for distributed systems might inhibit the
exploration of alternatives necessary to the successful
exploitation of distributed computation. In particular, we
believe that tools for debugging distributed systems should be as

flexible and non-prescripive as possible.

1.1 Debugging

Whenever a software system does not behave as expected a
debugging situation has arisen. A software system may behave
poorly for a variety of reasons:

1) inadequate problem definition or an incomplete understanding
of the problem may result in a poorly designed and poorly
constructed system exhibiting unécceptable performance;

2) erroneous system components (statements, algorithms,
subprograms) may fail or may cause a failure in components

they affect;

3) unanticipated or erroneous input data may lead a non-robust
system into states from which it cannot recover.
The term ‘'debugging' generally connotes activities directed
toward discovering and repairing any of the various types of
flaws causing misbehavior in a software system.

Discovering the cause of a software system's misbehavior is
typically the most difficult part of debugging. Simply observing
the system's output is seldom sufficient to permit identification
of flaws. Hence, the user is required to augment the standard
views presented by the software in question. This is done in an
attempt to obtain a more complete understanding of the system's
activity, in hopes of discerning the cause of the system's
misbehavior. To achieve a deeper understanding, the user often
proceeds by focusing on some subset of the program states and
observing when (and where) a deviation from an expected state
occurs. The results may be inconclusive and a new set of
observations may have to be made, possibly because the user's
model of the system's computation is inaccurate and in need of
revision. Alternatively, the results of a set of observations
may provide the user with enough information to attempt to repair
the software. The monitoring capabilities available to help the
user create augmented views of the software system are crucial to
this process.

Traditional debugging utilities provide a tool or set of
tools enabling a user to observe the details of a software
system's internal activity. Such tools provide capabilities for
obtaining memory dumps, setting breakpoints, examining variables
and call histories, tracing references and meodifications to

3

Selected variables, and so forth. These tools all offer a very
detailed, low level perspective on the system's activity, leaving
the task of developing a higher level interpretation of that
activity to the tool's user, i.e. the person attemptihg to debug
the system. Similarly, the user with a high level conception (or
model) of how the system works must determine which low level
program objects are relevant to a given view of the system's
activity in order to use these standard tools. Occasionally
tools are provided to study a particular software product from a
more abstract level. For instance, a tool might accumulate
statistics on a system's performance, guiding a user to alter
some system parameters to effect a 'tuning' of the system. In
general, however, tools of this sort are specialized to operate
only with a specific software system and their output is limited
to a few fixed format displays. Debugging tools providing the
user with an abstract, high level view of selected details of
system activity have been sorely lacking.

The advent of distributed software systems has served to
accentuate our general lack of sophisticated debugging tools,
since distributed systems amplify the traditional difficulties of
debugging while at the same time introducing some new
complications. Monitoring the internal activity in a distributed
system is more difficult than in a centralized system, both
because the amount of relevant information has been multiplied
and because only a fraction of that information is readily
available. In particular, when processing is distributed among
several sites, there is no longer necessarily a single place in
which all interesting activities will occur -- a fundamental

m

assumption in centralized systems, even those that are organized
as multiple process systems. Accessing information from distant
processing sites may be difficult due to bandwidth limitations on
communication channels. Meanwhile, questions involving
concurrency, synchronization and the sequencing and relative
timing of events occurring at various sites are added to the
standard list of issues that must be considered in debugging a
centralized system. All of this suggests that new and more
powerful tools are needed to assist in the debugging of
distributed systems. Of particular importance, as we have
emphasized previously, are tools to support high level, abstract
views of the detailed activity within a distributed software
system.

The remainder of the paper discusses our approach to
distributed debugging, which is based upon the concept of
behavioral abstraction. Behavioral abstraction is a means for
providing the user with an appropriate and comprehensible view of
the complex distributed system that is being debugged. A
language for defining behavioral abstractions, called the Event
Definition Language (EDL), is developed and examples of its use
are discussed. The final section of the paper briefly discusses
how EDL fits into an interactive distributed debugging facility
and some of the major issues that need to be resolved in order to

implement EDL.

2.0 BEHAVIORAL ABSTRACTION AND THE EDL
2.1 Behavioral Abstraction - What And Why

A complex distributed system can be very difficult to
comprehend; it is our belief that debugging such a system
requires the ability to observe particular aspects of the
system's detailed activity from a suitably abstract perspective.
Such selective observation would permit a user to focus on
suspected problem areas without being overwhelmed by all of the
details of system activity, thus offering some hope that sources
of misbehavior could be located.

Our approach to selective observation is what we call

behavioral abstraction. It is based upon viewing a system's

activity as consisting of a stream of event occurrences.
Behavioral abstraction results from the ability to define a
particular viewpoint, or window, on that event stream. A
viewpoint is defined by filtering and clustering events from the
stream. Filtering the stream deletes all but a designated subset
of events from the stream. This serves to highlight those
aspects of system activity that are currently of interest po the
user. Clustering events treats a designated sequence of events
as constituting a single higher-level event. This provides a
means of obtaining an abstract view of system activity. The
iterative combination of filtering and clustering offers a
powerful mechanism for defining viewpoints. By repeatedly
filtering out the events of interest, clustering those into
higher level events, then filtering out only the most interesting
of those higher level events, and so on, the user can define a

6

suitably focused and arbitrarily high level abstraction of the
system's activity. By employing an appropriate behavioral
abstraction, the developer of a complex distributed software
system can monitor those aspects of the system's detailed
internal behavior that are relevant to the system}flaw being
sought without being distracted by other, irrelevant details of
the system's behavior.

Naturally, the particular behavioral abstraction that will
be appropriate when searching for a given flaw will vary, and no
behavioral abstraction can be expected to be appropriate for all
flaws. Therefore, our approach is founded upon a flexible
mechanism for defining behavioral abstractions. This mechanism
is embodied in a language called the Event Definition Language or
EDL. Using EDL, a user can specify the particular high level
viewpoint on detailed system activity that seems suitable for
understanding a particular flaw in a distributed system's
behavior. 1In the remainder of this section we outline the
features of EDL, then illustrate its use with an example. Issues
concerning the implementation of EDL as a principal tool for

interactive debugging are briefly considered in the next section.

2.2 EDL - How It Provides Behévioral Abstraction

The Event Definition Language provides users with a means of
both filtering and élustering a system's event stream to obtain a
behavioral abstraction. As its name suggests, EDL supports these
capabilities by allowing the user to define events. Event

definitions in EDL are formulated by combining previously defined

events using a set of event formation operators (clustering) and
by stipulating the properties of the constituent events
(filtering). We will discuss these operations in more detail
shortly. First, however, we observe that this approach depends
upon the existence of an initial set of events from which
additional events can be constructed. We refer to these initial

events as primitive events. The primitive event set for a given

system is a characteristic feature of that system and determines
the 1lowest 1level, most detailed view of the system that can be
obtained. We believe that typically thevprimitive event set is
small.

Given a collection of previously defined events, primitive
or otherwise, the features of the Event Definition Language can
be used to define new events in terms of those already defined.
This serves to give the user a different viewpoint on the
system's activity, seeing it in terms of the newly defined events

rather than their constituents.

2.3 EDL -~ Brief View Of The Language

Event definitions are composed from four primary parts, not
all of which are required for every event definition (Table 1).
The event heading (line 2) contains the name to be used for the
class of events defined by the definition. An optional parameter
list provides a means of creating generic event descriptions that
might be used in different contexts with suitable argument
bindings. Actual parameters are substituted textually (macro

parameter substitution) to provide a fully specified event

definition wheﬁ the event name appears in an event expression.

The 'is' clause (line 4) describes a regular expression that
names constituent events for the event and defines the sequencing
dependencies among the constituents. The event names specified
in the event expression must be either primitive events or
previously defined events. Sequencing relations are indicated
through the use of event operators. The possible operators in
event expressions are: Catenation (specified by '), meaning that
the right operand event must follow the left operand event in
time of occurrence; Alternation (|), meaning either the right
operand event occurs or the left operand event occurs, but both
do not occur; Shuffle (#), allowing an interleaving of the
operand events and thus useful in describing concurrent activity;
Plus (+), a unary operator which is left associative and
specifies that at least one occurrence of its operand event must
occur; Star (*), the closure of plus, indicating a possibly
empty sequence. In addition, parentheses may be used to group
sub-sequences allowing the creation of very complex expressions.

The optional 'cond' clause (line 5) constrains the
attributes of the event expression constituent events and enables
filtering of events based upon the attributes they poésess. For
an event occurrence to be considered a constituent of the event
being defined by the event expression, all of the ‘'cond' clause
relational expressions involving attributes of that constituent
event must be true. In other words, the 'cond' clause
expressions form a set of assertions over the constituent events
and their attributes and these assertions must hold (be true) for
an instance of the enclosing definition to be signalled.

9

The 'with' clause (line 7) denotes the names for the visible
attributes of an instance of the event being defined and
indicates how to determine values for those attributes when an
instance occurs. 'with' clause statements are similar to
assignment statements in that they indicate how to bind a value
to a name when supplied with the appropriate operands. The
operands of the expressions are taken from the actual attributes
exported by the event expression ('is' clause) constituents and
any attributes local to the event being defined.

It should be noted that an event definition does not denote
a specific event occurrence. It represents an entire class of
events that meet the conditions imposed by the definition.
Further, it 1is assumed that there exists some recognition
mechanism able to detect the occurrence of the primitive events
and also able to detect the clustered events defined by event
defintions. We return to these assumptions briefly in the last

section of this paper.

3.0 EXAMPLES OF EVENT DESCRIPTIONS

Two examples of the use of the Event Definition Language are
presented. The first example (figure 1) illustrates some aspects
of the language and primarily shows how clustering can be used to
create a higher 1level event from a series of primitive events.
This event is later used in a more complex event that forms an
abstraction of a possible errorful situation. Briefly, the event
describes a node receiving a data message, then at some later

time sending out a message based in part on the received data.

10

The second example (figure 2) demonstrates a possible use of
the EDL as a debugging tool. A system debugger might suspect
that a group of nodes are not performing correctly because data
communication among them takes too }long. The NRPS event
established that two nodes are connected because they share a
data history. To describe this connection, NRPS makes use of the
intranode event from the first example. A ‘'cond' clause
constraint over the time the event requires provides the user
with a means of filtering only the communication events requiring

more that a certain time period.

3.1 Example 1 - Intranode

The event begins with the receipt of a message at a node
(processing center) causing the receiving node to initiate one or
more processing tasks based upon the received message. The
executing tasks may use some local information as well as the
data contained in the original message to perform an arbitrary
number of processing steps. The results of one or more of these
processing chains are subsequently sent to other nodes in the
system.

The required event expression constituents in this example
are all primitive events; receive indicates a message reception;
create is the creation of a new data item by a task; send is a
transmission of a message to another node. Observe that the
event expression says nothing about the attributes of the events,

only naming them and indicating their ordering relationships.

1

The filtering of the primitive events required to establish
the needed chain of related data items is accomplished by the
'cond' clause expressions. The notation used to indicate the
attributes of events is the dot operator used in various
programming languages to indicate qualified names. In our usage
the form is:

<event _name> . <attribute name>
where event name is a primitive or previously defined event and
<attribute name> is the name of an attribute given a value by an
instance of the event.

The 'data’ attribute of the send, create and receive is the

data item manipulated by instances of these events. The
'input data set' attribute of the create event is a list of data
jtems that have been used in the processing required for the
create event instance. Lines 4 thru 7 establish inductively that
the data item sent out from the node is indeed related to the
original received message. Finally, the relation over the 'node'

attribute of the constituent send and receive confirm that all of

the processing that we are interested in takes place at the same
node (line 8).

When an instance of RPS occurs, it carrys along with it
three attributes: 'Sent data', naming the data it has sent éo
another node; 'Receiver', the identification of the node in
which all of the activity has taken place; 'receive data', the

data item whose reception at the node was the initial stimulus

for the event.

12

3.2 Example 2 - Internode Communication

The second example (figure 2) uses the event definition of
the first example to define an event whose occurrence Spans a
group of nodes. In this example, some node A sends out a message
to node B; node B does some processing that is‘directed by the
input message and sends it along (this is the first example); at
some later time, a node F receives a message that contains the
original message from A in its input data set. The definition
for event NRPS takes three parameters, i and j, representing the
identities of the original sender of the message and the final
destination node, respecively, and t, the maximum acceptable time
1imit between the first send and the final receive. The event
expression specifies that a send event instance occurs at a
specific node (whose id is bound to i) followed by a string
(possibly of =zero length) of the RPS events defined previously.
Finally, a receive event occurs with the receiving node being the
one indicated by the parameter substitution for j. The 'cond'
clause relations attempt to show that there is a data 1link
between node i and node j established by the sending of messages
-- some of node j's processing activity has been influenced by an

event originating at node i.

4.0 SUMMARY AND CONCLUSIONS

We have given an overview of some of the difficulties
involved in debugging distributed software systems and have
described the approach we are taking to overcome some of those

difficulties. We have outlined the concept of behavioral

13

abstraction and described the Event Definition Language, which is
intended to provide a debugging tool supporting behavioral
abstraction, as illustrated by the preceding examples.

Naturally the language alone is of little help in debugging.
To be useful, EDL must be implemented as part of an interactive
debugging facility for distributed systems. Such an
implementation must support the detection of occurrences of
primitive events and provide capabilities for monitoring the
stream of events occurring throughout a distributed system. It
must also accept EDL event definitions and be capable of
discerning when events defined by a user in EDL have occurred.
Further, it must be able to display system activity, in terms of
the current perspective specified by the user via EDL, in a
convenient and comprehensible format (perhaps wusing color
graphics). Finally, it must provide the user with the ability to
intervene in the distributed system's operation at any time.
Given these capabilities, a user could observe the activity of a
distributed system from any desired perspective, watching for the
occurrence of particular events or event sequences, then
intervene to gather further information or to interactively alter
the system's activity. This would greatly facilitate the
debugging of distributed systems. |

We are currently working toward the implementation of a
debugging facility providing just these capabilities as part of
the DSN Testbed project [Lesser, et. al. 1981]. 1In addition to
the definition of EDL, a preliminary design for the monitoring
and intervention facility has been completed. Future papers will
describe the design and implementation of the facility and report

14

on our experience in using behavioral abstraction as an aid for

debugging distributed systems.

5.0 REFERENCES

V.R. Lesser and D.D. Corkill, Functionally Accurate Cooperative
Distributive Systems, Proc. International Conference on
Cybernetics and Society, Denver, Colorado, 1979, pp. 346-353

V.R. Lesser and J.C. Wileden, Issues in the Design of tools for
Distributed Software Systems Development, in Software Development
Tools, W.E Riddle and R.E. Fairley, ed., Springer-Verlag,
Berlin, 1980, pp. 22-39

V.R. Lesser, et. al., A High Level Testbed for Cooperative
Distributed Problem Solving, COINS Technical Report 81-5,
University of Massachusetts, Amherst, 1981

15

1)
(2)

(3)
4)
(5)
(6)
(7
(8)

(9)
(10)
11)
(12)

(13)

(1

(2)

(3)
(4)
(5)
(6)
(7
(8)
(9)

(10)
(11)
(12)

(13)

event RPS is
receive' (create)*'send

cond

receive.DATA in createlfirst].INPUT DATA SET;
create[i].DATA in create[i+7].INPUT DATA SET;

create[i] .NODE = receive.NODE;
create[last].DATA = send.DATA;
send.NODE = receive.NODE

with

SENT _DATA := send.DATA
RECEIVER := receive.NODE
RECEIVE_DATA := receive.DATA

end

Figure 1 - Intranode example

event NRPS(i, j, t) is

{ Parameters:
i - send node
J - receive node
t - time interval after which this is too late

send' (RPS)#'receive

cond

send.node = i;

RPS[first].RECEIVE DATA = send.DATA;
RPS[kJ.RECEIVE DATA = RPS[k-1].SENT_DATA;
RPS[last].SENT DATA = receive,DATA;
receive.node = j;

receive . TIME - send.TIME > t

with

SENT_DATA := send.DATA;
TIME := receive.TIME - send.TIME

end

Figure 2 - Internode example

16

(1

(2)

(3)
)
(5)
(6)
(7
(8)
(9)

{event_definition> ::=

<event_heading> ::=

{parameter_list> ::=
<{is_clause> ::=
<cond_clause> ::= cond
<{boolean_expr> ::=
<with_clause> ::=

<assignment> ::=

<attribute name> ::

event
<event_heading>
{is clause>

[<cond clause>]
[<with clause>]
end_event

<event name> |

<event_name><parameter_list>

(<id> {,<id})

is <event_expression>
<boolean expr> {,<boolean expr>}
<attribute_name><relop><expression>
with <assignment> {;<assignment>}
<attribute name> := <expression>

<id>

Table 1 - Language Summary

17

