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ABSTRACT

This paper describes symbolic evaluation, a program
analysis method that concisely represents a program's
computations and domain by symbolic expressions. The
general concepts are explained and three related methods of
symbolic evaluation are described.

The first method, symbolic execution, 1is a path
analysis method used mainly for program validation. There
are several symbolic execution systems that have been
developed and some of the major distinctions between these
systems are described. The second method, dynamic symbolic
evaluation, is a data-dependent method that provides a
representation of the executed program path. This method is
used primarily as a debugging aid. The third method, global
symbolic evaluation, attempts to provide a  symbelic
representation of the entire program. Although there are
still many unresolved problems with this method, it has some
interesting applications for program validation and
optimization.

For each method, implementation approaches and
applications are described and examples are given. 1In
addition, the status of current research related to symbolic
evaluation is discussed '



1. INTRODUCTION

The ever increasing demand for larger and more complex
programs has created a need for automatic assistance in the
software development process. Software engineéring is
concerned with establishing a more Supportive environment to
aid this process. Such an environment will ~ probably
éncompass a wide variety of tools ranging from knowledgable
text editors to formal program verifiers. Many of the tools
that are being developed are directed toward the validation
of software. These tools detect errors, determine program
consistency, and generally increase confidence in a program.
Several of these validation tools employ a method, called

symbolic evaluation, that creates a symbolic representation

of the program. Symbolic evaluation monitors the
manipulations performed on the input data. Computations are
represented as algebraic expressions over the input data,
thus maintaining the relationship between the input data and
the resulting values. Normal execution computes numeric
values but 1loses information about the way in whichAthese
numeric values were derived, whereas symbolic evaluation
preserves this information. Symbolic evaluation has a wide
range of validation applications, inecluding testing,
debugging, and verification, as well as applications in
program optimization and documentation.

There are three basic methods of symbolic evaluation:
symbolic execution, dynamic symbolic evaluation, and global

symbolic evaluation. Symbolic execution is a path-oriented



evaluation method that describes data dependencie§_ﬁgrxg

path. Dynamic symbolic evaluation produces a trace of@ﬁﬁhé5yi?‘

data dependencies for particular input data. Global
symbolic evaluation represents the data dependencies for all
paths in a program.

This paper first introduces the basic concepts of

symbolic evaluation as well as some terminology that is used

to describe the three methods. More work has been done in - -

the area of symbolic execution, S0 a more detailed
description of symbolic execution is given. The other
symbolic evaluation methods are then described. Examples of
the three methods are given to demonstrate their
corresponding strengths and weaknesses, and several
applications of each method are discussed. The description
of symbolic evaluation is presented for readefs uﬁfamiliqr
with program validation methods, although the comparison .of
these methods is novel and may be of interest to those

knowledgeable on the sub ject.

2. BASIC CONCEPTS

This section presents some concepts fundamental to

symbolic evaluation. Some terminology is introduced and an .

interpretive technique that may be used by the three methods
is described. Initially, the description is restricted to -
single routines and to routines whose input and output are

done only via parameters. These restrictions are made

' merely to simplify the presentation of symbolic evaluation




and are not necessary for the actual analysis performed by
the three methods. The modifications necessary to handle
routine invocations and input and output statements will be
addressed later. The concepts presented in this section
Will be illustrated for the routine TRANSACT, shown in
Figure 1, which handles a transaction for an
interest-bearing checking account.

A routine R can be viewed as a function that maps
elements in a domain X into elements in a range Z. An
element in X is a vector x with sbecific input values,
X = (x1, Xps«++y Xy), and corresponds to a single point in
thefM-dimensional input space X.. Likewise, R(x) in Z is a
vector =z with specific output values, z = (z4, 22,..., zy),
and corresponds to a single point in the N-dimensional
output space Z. A routine's variables, which store input,
intermediate and output values, are represented by a vector
Y= (¥, Vo,..., Yy)? ~note that a distinction is made
between a variable and its value.

Program analysis methods typically represent a routine

by a directed graph, called a control flow graph, that

describes the possible flow of control through the routine.
The nodes in the graph, {ng, np,..., nq}, represent
executable statements. Note that 1in Figure 1, the
statements in TRANSACT are annotated with node numbers. An
edge is specified by an ordered pair of nodes, ("i’ “j)v
which indicates that a transfer of control exists from n; to

1

n Associated with each transfer of control are conditions

J'o
under which such a transfer occurs. The branch predicate

-3 -
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procedure TRANSACT (DAYS:in integer;
AMOUNT:in real;
BALANCE:in out real:;
INTEREST:out real;
BELOWMIN:out boolean:
OVERDRAFT:out boolean) is

~~ TRANSACT computes the INTEREST and new BALANCE for an
~- interest-bearing checking account when a transaction
~~ of AMOUNT dollars is made. The INTEREST is computed

~ == based on the number of DAYS 'since the last transaction.

-- If the transaction causes an overdraft, then it is

~- denied, an overdraft charge 'is made and OVERDRAFT is
-~ returned true. If the transaction causes the new

~- BALANCE to fall below the minimum balance, then a below
-- minimum charge i{s made and BELOWMIN is returned true,

NEWBAL:real; -- new balance

RATE:constant real := 0.06; -~ interest rate
MINBAL:constant real := 100.00; ~- minimum balance
BMCHARGE :constant real := 0,10} -= below minimum charge
ODCHARGE:constant real := 4.00; -- overdraft charge

begin
OVERDRAFT := false;
BELOWMIN := false:
NEWBAL := BALANCE * (14RATE/365) #% DAYS:
INTEREST := NEWBAL - BALANCE:
if AMOUNT > 0.0 then -- process deposit
NEWBAL := NEWBAL + AMOUNT:
endif;
if AMOUNT < 0.0 then -- process check
if -AMOUNT > NEWBAL then
OVERDRAFT := true:
NEWBAL := NEWBAL - ODCHARGE ;
elge
NEWBAL :z NEWBAL + AMOUNT ;
endif;
if NEWBAL < MINBAL then
BELOWMIN := true;
NEWBAL := NEWBAL - BMCHARGE:
endif;
endif;
BALANCE := NEWBAL;

f end TRANSACT:

Figure 1. Routine Transact

———



that governs traversal of the edge (ny, ny) 1is denoted by

bp(ni, nj). For a sequential transfer of control, the

branch predicate has the constant value true and thus need

not be considered. For a binary condition at node n; that

transfers control to either node nJ or n,, the branch

predicate for one edge (ny, nj) is the complement of the
branch predicate for the other edge ("i' n) -- thus,

bp(ny, nJ) = not(bp(ng, ny)).

In TRANSACT, for example, node 8 precedes nodes 9 and 11 and

bp(8,9)

bp(8,11)

(NEWBAL + AMOUNT < 0.0),
(NEWBAL +. AMOUNT >= 0.0).

Note that each IF statement, nested or otherwise, forms a
pair of comﬁlementary branch predicates. Some conditional
statements, such as the FORTRAN computed GO TO or the Ada
CASE statements, may have more than two successor nodes and
each branch predicate must be represented appropriately. To
facilitate analysis, the control flow graph has a single
entry point, the start node ng, and a single exit point, the
final node ny. Without loss of generality, a null node can
be added to a graph for the start node, and likewise for the
final node, to accomplish this single-entry, single-exit
form. Figure 2 shows the control flow graph for TRANSACT.

A subpath in a control flow graph 1is a sequence of

statements, (n yeoos nHt); where for all

n
17 Higg
Jy 1 £ 3 <t, Ny 1is a node in the control flow graph such

that there exists a transfer of control from ny to "Hj X
+
A partial path is a subpath that begins with the start node

and is denoted by P where P = (n n n eeey Ny ).
y Hu’ Hu s!? H17 HZ’ ’ Hu

-5 -
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Hence, for any partial path Py with u > 1,
u

Py = (PH , nHu), where Py = (ns). A path is a partial

u u-1 0
path that ends with the final node and is denoted by P

e
thus Py = (ng, nH1, nHZ,..., nHv, ng). A routine R is
composed of a set of paths {P1, P, ...}; there may be an
infinite number of paths due to program loops. The routine
TRANSACT does not contain any loops, thus the paths can all
be listed and are provided in Figure 3.

There is no guarantee that a sequence of statements
representing a path is executable; a path may be
nonexecutable due to contradictory conditions governing the
transfers of control along the path. The control flow graph
is a representation of all possible paths, both executable
and nonexecutable, through the corresponding routine. The
paths in TRANSACT that are nonexecutable are Piy P3, P5, and
P7.

The path domain corresponding to a path is the set of

all x in X for which that path could be executed. The path
~domain of a nonexecutable path, therefore, 1is empty.

Execution of a path performs a path computation that

provides R(x) = z in Z. For each executable path, the path
domain and the path computation define the funection of the
path. Since the executable paths of a routine divide the
domain X into disjoint subdomains, the function of a routine
R is composed of the set of all functions of the executable

paths in R.
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Symbolic evaluation provides symbolic representations
for the path domains and path computations of a routine.
These symbolic representations describe the data
dependencies for the paths that are analyzed. Symbolic
evaluation methods use symbolic names to represent the input
values. The statements on 3 path are interpreted and the
symbolic values of all variables and branch predicates are
maintained as expressions in terms of these symbolic names.
An overview of an interpretive technique that can be used to
develop these symbolic values follows.,

Before evaluating a path, the symbolic values of the
variables are initialized at the start node. Input
parameters are assigned symbolic names, variables that are
initialized before execution are assigned their
corresponding constant value, and all other variables are
assigned the undefined value "?7n, Figure 4 shows the
initial symbolic values assigned to the variables in
TRANSACT. Note that the convention used in this paper is to
refer to variable names in upper case and symbolic names 1in
lower case, where an input parameter's name in lower case is
assigned for the corresponding input value.

Throughout symbolic evaluation, each statement on a
path 1is interpreted by substituting the current symbolic
value of a variable wherever that variable 1is referenced.
Thus, wherever the variable Y1 is referenced, its current
symbolic value, which is denoted. by s(y;), is used. When an
assignment statement, such as Vg i= ¥k » Yy is interpreted,

the algebraic expression s(yK) * s(yL) is generated and

-9 -
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provides the new symbolic value for yg- For the assignment
statement at node 3 in TRANSACT, for example, the current
symbolic values of BALANCE, RATE, and DAYS are substituted
into the expression, resulting in the symbolic value
balance*(1+40.06/365)*%*days,

which is assigned to the variable NEWBAL. When interpreting
a branch predicate, such as bp(ni, nJ) = (yk > y.)s the
conditional expression (s(yK) > s(yL)) is generated and
provides a symbolic value for the branch predicate, which is
denoted by s(bp(ni, nJ)). To interpret bp(8,11) on path P,
in TRANSACT, the ecurrent symbolic values of AMOUNT and
NEWBAL are substituted into the branch predicate, resulting
in the conditional expression

-amount <= balance*(1+0.06/365)**days
The interpretations of all the statements on path P2 in
TRANSACT are shown in Figure 4,

Evaluation of a path provides symbolic representations
of the path computation and’ path domain. The symbolic
representation of the path computation consists of the
symbolic values of the output parameters. These symbolic

values are referred to as path values and denoted by PV,

The symbolic representation of the path domain is provided
by the conjunction of the symbolic values of the branch
predicates. This conjunction is called the path condition

and is denoted by PC. Note that only the input values that
satisfy the PC could cause execution of the path. When it
is necessary to specify a particular path, say PH, the

notation PV[PH] and PC[Py] will be used. 1In TRANSACT, the

- 10 -



statement interpreted interpreted

or edge branch predicates agsigmnments

s true DAYS=days, AMOUNT=&amount ,
BALANCE=balance, INTEREST=?,
BELOWMIN=?, OVERDRAFT=?,
NEWBAL=?, RATE=0.06,
MINBAL=100.0, BMCHARGE=0.1,
ODCHARGE=4.0

1 OVERDRAFT=false

2 BELOWMIN=fal se

3 NEWBAL=balance®*(1+0.06/365) *#days

4 INTEREST=balance®(1+0.06/365) **days-bal ance

(5,7) amount <= 0.0
(7,8) amount < 0.0

(8,11) -amount <=
balance®(1+0.06/365)**days

11 ' - NEWBAL=balance®(140.06/365)#*days+amount

(12,13) balance®(1+0.06/365)**days+
amount < 100.0

13 ‘ BELOWMIN=true

14 NEWBAL=balance®(1+0.06/365) **days+amount-0. 1
15 BALANCE=balance®(140.06/365)**days+amount-0. 1
f

Figure 4., Symbolic Evaluation of Path P2 in TRANSACT

- 11 -
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output parameters are BALANCE, INTEREST, BELOWMIN, and
OVERDRAFT, and thus

PV = (s(BALANCE), s(INTEREST),
s (BELOWMIN), s(OVERDRAFT)).

For path P2 in TRANSACT,

PC[P,] = s(bp(5,¥%

and s(bp(7,8))
s(bp(8, y 1

) nd
)) and s(bp(12 )

a
3)).
Figure 5 shows the PV and PC resulting from symbolic
evaluation of path P2.

Each of the three methods of symbolic evaluation can
use an interpretive technique similar to that described
above to develop symbolic representations of the path
computations and path domains. Symbolic execution is a
path-dependent method of symbolic evaluation that provides
the PV and PC for a given path. The final resﬁlts produced
for a path are similar to those shown for ‘path P2 of
TRANSACT in Figure 5. Dynamic symbolic evaluation is a
data-dependent method that analyzes a path while the routine
is actually being executed for Specific input data. This
method interpets the statements that are executed on the
path. In addition to supplying the numeriec output values
that result from the execution of a path, dynamic symbolic
evaluation provides the PV and PC. If input data

(DAYS=20, AMOUNT=-10.00, BALANCE=100.00)
is supplied for TRANSACT, path P2 is executed. Dynamic
symbolic ‘evaluation would then provide the numeric output

values

(BALANCE=90.23, INTEREST=0.33,
BELOWMIN=true, OVERDRAFT=false),

-12 -



Path Values PV(P,]
BALANCE = bafance'(1+0.06/365)"days + amount - 0.1
INTEREST = balance®(1+0,06/365)*#*days - balance
BELOWMIN = true
OVERDRAFT = false

Path Condition PCIP,)
(amount <= 0.0)and (amount < 0.0) and
(-amount <= balance®(1+0,06/365) ##days) and
(balance®(1+0.06/365)**days + amount < 100.0)

Figure 5. Path Values and Path Condition
for Path P2 in TRANSACT

- 13 -



as well as the PV and PC shown in Figure 5. Both symbolic
execution - and dynamic symbolic evaluation analyze a routine
on a path-by-path basis. Dynamic symbolic evaluation
chooses the paths based on the supplied test data, while
symbolic execution requires some other method for selecting
the paths. Rather than evaluate a routine on a path-by-path
basis, global symbolic evaluation creates a case expression®
that encompasses al1l paths. For a routine that contains no
loops, such as TRANSACT, the results of global symbolic
evaiuation are equivalent to the results produced by
symbolic execution when all paths are analyzed. For such a
routine the case expression consists of a case for each
path, where each case consists of a PC and the associated
PV. Figure 6 shows this expression for the executable paths
in TRANSACT. For a routine that contains a loop, global
symbolic evaluation uses a loop analysis technique to
develop a closed form representation of the effects of the
loop. This allows paths that differ only by their number of
loop iterations to be grouped as a class of paths. Thus, in
general, a case consists of the PC for a class of -.paths and
the PV associated with that class.

Although the symbolic representations provided by each
of the three methods of symbolic evaluation are similiar,
the information that is gathered to achieve these
representations differs significantly and thus affects the
types of program analysis that can be performed. Dynamic

* In the case expression used by global symbolie evaluation,
a case consists of an arbitrary boolean expression followed
by the symbolic values assigned to the variables. -

- 14 -



case
(amount <= 0.0) and (amount < 0.0) and
(-amount <= balance®(1+0,.06/365)**days) and
(balance'(1+0.06/365)"days + amount < 100.0):
BALANCE = balance®(1+0.06/365)*%days + amount - 0.1
INTEREST balance®(1+0,06/365)*#days - balance
BELOWMIN = true
OVERDRAFT = false

(amount <= 0.0) and (amount < 0.0) and
(-amount > balance®(1+0,06/365)**days) and
(balance®(1+0,06/365)%*days - 4,0 < 100.0):
BALANCE = balance®(1+0.06/365)%*days - 4.0 - 0.1
INTEREST = balance®(14+0.06/365)*#%days - balance
BELOWMIN = true
OVERDRAFT = true

(amount <= 0.0) and (amount < 0.0) and

(-amount <= balance®*(140.06/365)**days) and

(balance*(1+0.06/365) *days + amount >= 100.0):
BALANCE = balance*(140.06/365)%%days + amount
INTEREST = balance®(1+0.06/365)%%days - balance
BELOWMIN = false :
OVERDRAFT = false

(amount <= 0.0) and (amount < 0.0) and

(-amount > balance®(1+0.06/365)**days) and

(balance®(1+0,06/365)*%days -~ 4,0 >= 100.0):
BALANCE = balance®(1+0,06/365)%%days - 4.0
INTEREST = balance®(1+0.06/365)#%**days - balance
BELOWMIN = false ‘
OVERDRAFT = true

(amount > 0.0) and (amount >= 0.0):
BALANCE = balance®(1+0.06/365)%**days + amount
INTEREST = balance®(1+0.06/365)#*#days - balance
BELOWMIN = false
OVERDRAFT = false

(amount <= 0.0) and (emount >= 0.0):
BALANCE = balance®*(1+0.06/365)##8days
INTEREST = balance®(140,06/365)%%days - balance

BELOWMIN false
OVERDRAFT = false
endcase

Figure 6. Global Symbolic Evaluation of TRANSACT

- 15 -



symbolic evaluation maintains only the information required
to develop the final symbolic representations and its
applications are wusually restricted to program debugging.
Symbolic execution maintains more general information about
a path and thus has a more extensive range of applications,
including test data generation and error detection. Global
symbolic evaluation analyzes all paths and maintains a
global representation of a routine and thereby has
applications to program optimization and verification in
addition to the applications of symbolic execution. It is
not surprising that the more powerful the method, the more
costly its implementation. All three methods of symbolic
evaluation, basic approaches for their implementation and
their primary applications, will be explained and compared

in the sections that follow.

3. SYMBOLIC EXECUTION

Symbolic execution analyzes distinct paths. In
general, symbolic execution is attempted on only a subset of
the paths in a routine since a routine containing a loop may
have an effectively infinite number of paths. The
description of symbolic execution that follows is
independent of the method of path selection; it is assumed
that path selection information is provided externally.
This section first describes and compares several techniques
used in implementing symbolic execution.' Then a discussion

of the applications of symbolic execution is presented and

- 16 -
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several methods for selecting the paths to be analyzed are

described.

3.1. Implementation Approaches

Several symbolic execution systems have been described
[BOYE75,CLAR76b,HOWD77,HUAN75,KING76,MILL75,RAMA76,VOGE80].
These systems employ either of two evaluation techniques,
forward expansion or backward substitution. In addition
some of these systems try to determine PC consistency
[BOYE75,CLAR76b,KING76,RAMAT76], and again two different
techniques, algebraic or axiomatic, have successfully been
applied. This section desecribes the implemenfation approach
taken by ATTEST [CLAR78], which uses forward expansion to
develop the symbolic representations 'ahd, empioys an
algebraic technique to determine the consistency of the PC.
The backward substitution and axiomatic techniques are also

discussed and compared to their respective alternatives.

Forward expansion is the most intuitive approach to
creating the | symbolic representations and is the
interpretive technique outlined in the previous section.
Forward expansion begins with the start node and develops
the symbolic representations as each statement in the path
is interpreted. To facilitate this interpretation, the
ATTEST system first translates the source code into an
intermediate form of binary expressions, each containing an
operator and two operands. During forward expansion, the
binary expressions of the interpreted statements are used to

form an acyeclic directed graph, called the computation

-17 -



graph, which maintains the symbolic values of the variables.
When a variable is assigned a value, it is actually assigned
a pointer into this graph. The node of the computation
graph that is pointed to by a variable ¢can be treated as the
root of a binary expression tree. Traversing this tree in
in-order (i.e., left subtree, root, right subtree) provides
the symbolic value for this variable. The symbolie value of
a branch predicate 1is similarly maintained in the
computation graph as a binary expression tree. Figure 7
shows the computation graph at two stages during symbolic
execution of path P2 in TRANSACT. There is a close
similarity between the forward expansion technique described
here and common subexpression elimination techniques used by
some optimizing compilers [COCK70].

After evaluation of a path, the PV is ‘6btained by
traversing the binary expression trees for the output
parameters. The PC is created by traversing the binary
expression trees for the interpreted branch predicates and
conjoining the resulting symbolic values. In the purest
sense, the PC and PV are all that need be provided by
symbolic execution. To do further énalysis, however, it is
desirable to simplify the symbolic representations and to
determine the consistency of the PC.

Simplification can be done by converting the PC and PV
into canonical forms. There are several available algebraic
manipulation systems [BOGE75,BROW73,RICHT8] that can be used
to accomplish this simplification. A canonical form for the

symbolic value of each output parameter in the PV might be

- 18 -



AMOUNT -
INTEREST —®)

BELOWMIN
Tl

OVERDRAFT

NEWBAL

BALANCE

DAYS —

RATE

MINBAL

BMCHARGE

ODCHARGE

Figure 7a. Computation Graph after Interpretation
of Statements s,1,2,3 in TRANSACT
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Figure 7b.

Computation Graph after Interpretation
of Statements s,1,2,3,4,5,7 of TRANSACT
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one 1in which like terms are grouped together and terms are
ordered lexically. For example, the simplified symbolic
value for BALANCE for path P2 might be

amount + 1.00016%*days*balance - 0.1.
The PC might be put into conjunctive normal form and each
relational expression put into a canonical form. This
canonical form might be one in which the constant term is on
the right-hand-side of the relational operator and, on the
left-hand-side, like terms are grouped together and terms
are ordered lexically.

In most cases, only a subset of the paths in a program
are executable and, therefore; it is desirable to determine
whether or not the PC is consistent. One approach to this
problem employs a theorem proving system. We refer to this
as the axiomatic technique since it is based upon the axioms
of predicate caleculus. Another approach, referred to as the
algebraic technique, treats the PC as a system of
constraints and wuses one of several algebraic methods --
such as a gradient hill-climbing or a 1linear programming
algorithm -~ to solve this system of constraints. The
ATTEST system uses a linear programming aléorithm [LAND73]
and thus employs the algebraic technique. The advantage of
choosing this technique is that a solution is provided when
the PC is determined to be consistent. This solution
provides test daia to execute the path. Both the axiomatic
and algebraic techniques work well on the simple constraints
that are generally created during symbolic execution

[CLART6a]. No method, however, can solve all arbitrary
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systems of constraints [DAVI73]. In some instances, PC
consistency can not be determined; the symbolic
representations for such a path can be provided, but whether
or not the path can be executed is unknown.

During symbolic execution it is desirable not only to .
recognize nonexecutable paths but ~to recognize the
inconsistency as soon as possible. Early detection of a
nonexecutable path prevents worthless, yet costly, symbolic
execution. The ATTEST system attempts to detect a
nonexecutable path as soon as possibe by examining the
evolving PC as each branch predicate is interpreted. ATTEST
develops the PC as the statements on a path are interpreted.
Thus at any point in this interpretat%on, there is a
Symbolic representation of the domain for the‘partial path

that has been evaluated so far. For partial path

PHu = (ng, “H1""' nHu), the path condition is denoted

PC[PHu]. When a node nHu+1 is considered as an extension to
the partial path PHu, the interpreted branch predicate
s(bp(nHu, nHu+1)) is first simplified and then examined for
consistency with PC[PHu]. Unless inconsistency is
determined, the interpreted branch predicate is conjoined to
PC[PHUJ, creating
PC[PH 1] = PC[PH 1 and s(bp(nH » PH )).

Consistency or inconsistency may possibly be determined by
performing simple reductions [DEUT73,DILL81] on the PC. On
the one hand, it may be possible to determine that

s(bp(nH » Ny 1) i1s dominated by relational expressions in
u+

PC[PHu], in which case PC[PHu+1] must be consistent, since
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PC[PHu] 1s consistent. In the evaluation of path Py, for
example, s(bp(7,15)) = (amount >= 0.0) is dominated by
s(bp(5,6)) = (amount > 0.0), thus PC[s,1,2,3,4,5,6,7,15] is
consistent. On the other hand, s(bp(nHu, nHu+1)) may be
contradicted by a relational expression in PC[PHu], in which
case PC[PHu+1J is inconsistent. In the evaluation of path
Py, for example, s(bp(7,8)) = (amount < 0.0) is contradicted
by s(bp(5,6)) = (amount > 0.0), thus PC(s,1,2,3,4,5,6,7,8)
is inconsistent. While such reductions are sometimes
applicable, it is often necessary to rely on more costly
techniques, such as the axiomatic or algebraic techniques
mentioned above.

In addition to detecting nonexecutable paths early in
the symbolic execution process, the incremental development
of the PC as implemented by ATTEST allows an alternative
edge to be selected on a partial path when an inconsistent
branch predicate is initially encountered. Thus, the
evaluation of the partial path up to an inconsistent branch
predicate can usually be salvaged. For example, the
nonexecutable partial path (s,1,2,3,4,5,6,7,8) in TRANSACT,
shown in Figure 8, was terminated as soon as the
inconsistent PC was discovered. The symbolic value of the
branch predicate for the edge (7,8), where the inconsistency
occurred, 1is replaced by the symbolic value of the branch

Predicate for the alternative edge (7,15), and analysis

continues.
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Statement simplified,
or edge evolving PC

8 true

(5,6) true and amount0.0
=amount>0.0

(7,8) amount > 0.0 and
amount < 0.0
#8%¥inconsistentsas
delete amount < 0.0

alternative edge
(7,15) amount > 0.0 and
amount >= 0.0
= amount > 0.0

15

simplified, interpreted
assigrents

DAYSadays, AMOUNT=zamount ,
BALANCE=balance, INTEREST=?,
BELOWMIN=?, OVERDRAFT=?,
NEWBAL=?, RATE=0.06,

MINBAL=100.0, BMCHARGE=0.1,
ODCHARGE=4.0 '

OVERDRAFT=false
BELOWMIN=fal se

NEWBAL=balance®(1+0.06/365) ##*days
=1.00016%%days*bal ance

" INTEREST=1.00016%*days*bal ance-bal ance
=(1.00016%*days~1,0) *balance

NEWBAL=1.00016%*days*balance+amount
=amount+1.00016**days*balance

BALANCE=amount+1.00016##%days¥*balance

Figure 8. Detection of an Inconsistent PC in TRANSACT

and Continuation with Executable Path P

5
e

&

9
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In general, when there is more than one successor node
to the last node on the partial path, each may be considered
as an alternative extension of the existing partial path.
Note that the alternative branch predicates ei;her all
evaluate to constant boolean values or all evaluate to
symbolic expressions over the input values. If the branch
predicate for a selected edge evaluates to a boolean
constant then consistency determination is trivial.
Otherwise, the techniques described above may be employed to
determine the consistency of the interpreted branch
predicate with the existing PC. When determining
consistency, there are three possible outcomes: 1) none of
the alternatives 1is consistent; 2) only one of the
alternatives is consistent; and 3) more than one of the
alternatives are consistent. Note that the first case
implies a program error and can only occur for
multi-conditional statements without an otherwise clause,
like the Pascal CASE statement. The graph shown in Figure 9
demonstrates all three cases. When all of the branch
predicates evaluate to symbolic expressions, any of the
three cases can occur. When they all evaluate to boolean
constants, at most one of the alternatives can evaluate to
true, and thus only case 1 or 2 can occur.

Thus far symbolic execution has been described in terms
of the forward expansion technique. Backward substitution
[HOWD75,HUANT5] is an alternative technique that has been
proposed for systems concerned with creating only the PC and

not the PV. While the forward expansion technique begins
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case 3

case 3 .

case 2

case 1

L4
o
®

Figure 9. Examples of the 3 Cases that Can Occur
During Consistency Determination
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with the start node and works toward the final node, the
backward substitution technique begins with the final node
and works toward the start node. During backward
substitution, each encountered branch predicate is recorded.
When an assignment to a variable referenced in any of the
recorded branch predicates is encountered, the assignment
expression is substituted for all occurences of that
variable in the recorded branch predicates. For example, if
the branch predicate (yJ > 5) were traversed, and thus
recorded, and then the assignment Yy i=yg + 1 were
encountered, the recorded branch predicate would be modified
to (yK + 1 >05), Note that with backward substitution
symbolic names are not assigned until the start node is
encountered. After the start node is reached, the PC is
formed by conjoining all of the recorded, and duly modified,
branch predicates for the path. An example of backward
substitution for path P2 in TRANSACT is shown in Figure 10.
In this figure, the evolving symbolic values of the recorded
branch predicates are listed at each modification point.
Note that when only the PC is desired, many of the
assignment statements, specifically those that do not modify
variables referenced in the recorded branch predicates, can
be ignored. In the example of Figure 10, assignment
statements 15, 14, 13, 4, 2, and 1 are ignored. In a
general symbolic execution system, where both the PC and PV
are desired, the two approaches interpret each statement and

produce equivalent symbolic representations.
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statement

or edge

f£,15,14,13
(12,13)
1"

(8,11)

(7,8)

(5,7

' Figure 10,

recorded
branch predicates

no effect
NEWBAL < MINBAL
NEWBAL + AMOUNT < MINBAL

NEWBAL + AMOUNT < MINBAL
~AMOUNT <= NEWBAL

NEWBAL + AMOUNT < MINBAL
~AMOUNT <= NEWBAL
AMOUNT < 0.0

NEWBAL + AMOUNT < MINBAL
~AMOUNT <= NEWBAL
AMOUNT < 0.0

AMOUNT <= 0.0

no effect

BALANCE® (1+RATE/365) ##DAYS + AMOUNT < MINBAL

—AMOUNT <= BALANCE"(1+RATE/365)*¥DAYS

AMOUNT < 0.0
AMOUNT <= 0.0

no effect

balance®(1+0.06/365) *#*days + amount < 100.0
-amount <= balance®(1+0.06/365) *#days
emount < 0,0

amount <= 0.0

Backward Substitution for Path p in TRANSACT

2
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Forward expansion is a more efficient technique of
symbolic execution than backward substitution when early
detection of nonexecutable paths is supported. When a
branch predicate is encountered during forward expansion, it
can be interpreted, simplified, and checked for consistency
with the existing PC. In backward substitution, the
recorded branch predicates can be conjoined and treated as
the evolving PC of the subpath. To check for consistency
when a branch predicate is encountered, a process similar to
that used by forward expansion could be employed.
Additional processing of the PC, however, must be done
whenever an assignment is made to any variable referenced in
the PC. When this occurs, each modified branch predicaté
must be resimplified and PC consistency determined. 1In
Figure 10, note that at every modification point,
resimplification and PC consistency determination is
required. This additional processing during backward
substitution is costly. Further, when the PC is found to be
inconsistent, there is no efficient approach to salvaging
the subpath that has been evaluated so far. Since an
assignment may modify any of the recorded branch predicates,
a branch predicate recorded much earlier on the subpath may
become inconsistent. Finding the source (or sources) of an
inconsistent PC and backing up to an appropriate point in
the evaluation is usually not cost effective. The control
flow graph in Figure 11 illustrates this problem. When A is
assigned the value 10, the recorded branch predicate (A > 0)

becomes inconsistent. Since node 20 is the only node on the

- 29 -



Figure 11, Detection of an Inconsistent PC
during Backward Substitution
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subpath with more than one predecessor node, the evaluation
of all assignments and branch predicates for nodes 12
through 19 must be removed if any of the evaluated subpath
is to be salvaged. A similar problem occurs when a branch
predicate is recorded and the evolving PC becomes
inconsistent. In general, to salvage any of the evaluation
once an inconsistency in the evolving PC is detected
requires the backward substitution technique to undo all the
assignments and branch predicates up to the most recently
evaluated node with more than one predecessor node. Because
of this excessive overhead, the backward substitution
technique should discard a subpath with an inconsistent PC
and start anew. Thus, the inability to efficiently salvage
part of the evaluation of a sSubpath with an inconsistent PC,
as well as the additional processing required to determine
PC consistency, makes the backward substitution technique

less desirable than the forward expansion technique.

3.2. Applications

Symbolic execution systems have several interesting
program validation applications. This section considers
three applications: certification and documentation, error
detection, and test data generation. 1In addition, the last
part of this section considers methods of path selection.

The symbolic representations that are generated for a
path can quite naturally be used for certification and
documentation. The PV often provides a concise functional

representation of the output for the entire path domain.
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Normal execution, on the other hand, only provides
particular output values (Z4y000, zy) for particular input
values (x1,..., xM). It is possible for the numeric output
values to be correct while the path is incorrect. This is

referred to as coinecidental correctness. As an example,

Suppose the exponent operator in statement 3 of TRANSACT is
erroneously replaced by a multiply operator. This causes
the symbolic value for BALANCE after execution of path P2 in
TRANSACT to be
balance®(1+0.06/365)*days + amount - 0.10

rather than the intended computation, which is shown in
Figure 5, If the path is always executed for days = 1.0,
then the actual resulting value and the intended value
agree. While this is a contrived example,}coincidental
correctness is a common phenomenon of testing. Examination
of the PV as well as the PC is often useful in uncovering
program errors [HOWD76]. This is é particularly beneficial
feature for scientific applications, where it 1is often
extremely difficult to manually compute the intended result
accurately due to the complexity of the computation as well
as the number of significant digits required for the input
values. This method of certifying the PV and the PC is

referred to as symbolic testing.

Symbolic execution can also be actively applied to the
detection of program errors. At appropriate points in »
routine, expressions describing error conditions can be
interpreted and checked for consistency with the PC Just as

branch predicates are interpreted. Consistency implies the
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existence of input values 1in the path domain that would
cause the described error. Inconsistency implies that the
error condition could not occur for any element in the path
domain. This demonstrates another advantage of symbolic
execution over normal execution. Normal execution of a path
may not uncover a potential run-time error, while symbolic
execution of a path can detect the presence or guarantee the
absence of some errors,

The ATTEST system automatically generates expressions
for predefined error conditions whenever it encounters the
corresponding program constructs. For example, whenever a
nonconstant divisor is encountered, a relational expression
comparing the symbolic value of the divisor 'to zero 1is
created, This expression is then temporarily conjoined to
the PC. 1If the resulting PC is consistent, then input
values exist that would cause a division by zero error and
an error report 1is 1issued. If the resulting PC is
inconsistent, then this potential run-time error could not
occur on this path. After checking for consistency, the
expression for the error condition is removed from the PC
béfore symbolic execution continues.

Path verification of assertions is another method of
error - detection. Instead of predefining the error
conditions, user-created assertions define conditions that
should be true at designated points in the routine. An
érror exists if an assertion is not true for all elements of
the path domain. When an assertion is encountered during

Symbolic execution, the complement of the assertion is
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interpreted and conjoined to the PC. Inconsistency of the
resulting PC implies that the assertion is valid for the
path, while consistency implies that the assertion is
invalid for the routine.

Test data generation is another natural application of
symbolic execution. The PC can be examined to determine a
solution -~ that is, test data to execute the path.
Symbolic execution, 1like most other methods of program
validation, does not actually execute a routine in its
natural environment. Evaluation of the PV for particular
input values returns numeric results, but because the
environment has been changed, these results may not always
agree with those from normal execution. Errors in the
hardware, operating system, compiler, or symbélic execution
system may cause an erroneous result. In addition, testing
a routine demonstrates its run-time performance
characteristics.{ SELECT [BOYE75] and ATTEST are two
symbolic execution systems that- attempt to generate test
data. Since an actual solution to the PC is desired and not

just PC consistency, these two systems employ an algebraic

technique.

The symboliec representations provided by symbolic -

execution can also be used to guide in astutely selecting

test data. Error sensitive testing [FOST80,MEYE79,WEYU80]

examines the statements or intent of a routine and selects
test data to detect likely errors. Error Sensitive testing
is enhanced by considering the symbolic representations

created by symbolic execution. This strategy selects data

-3 -



for which the PC and PV appear sensitive to errors.
Functional testing [HOWDSO) further modifies this strategy
by decomposing a routine into small sections before applying
symbolic execution and eérror sensitive testing. Although
error sensitive testing, for the most part, has been
intuitive, there have been Some theoretical results showing
that more rigorous applications of these ideas can guarantee
the absence of certain types of errors. For example, if the
symbolic value for an output parameter is a polynomial, its
degree can be used to determine the number of test data
points needed to guarantee the correctness of this
polynomial [HOWD78b]. This polynomial testing strategy and
testing strategies that focus on the selection of
computationally sensitive data values are collectively

referred to as computational testing. Further, it has been

argued that the selection of boundary points of the path
domain can guarantee the correcﬁness of the interpreted
branch predicates within a quantifiable error ‘bound
[HASSSO,VHITSO]. This test data selection strategy is

called domain testing. A recent extension to domain testing

requires that the symbolic values of a branch predicate over
the paths already tested be examined to determine when yet
another path is needed to sufficiently test the predicate
[(ZEIL81]. 1In general, the symbolic representations ‘created
by symbolic execution provide valuable guidance in selecting

test data, but further work in this area is needed.
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This section assumed that the paths to be analyzed by
symbolic execution are provided. These paths can be either
chosen by the user or selected automatically by a component
of the symbolic execution system. Most symbolic execution
systems support an interactive path selection facility that
allows the 'user to "walk through" a program, statement by
statement. This feature is useful for debugging since the
evolﬁtion of the PC and PV can be observed. More extensive
program coverage can be expedited by .an automated path
selection facility for choosing a set of paths based on some
criterioﬁ,}which 1s dependent on the intended application of
symbolic execution,

Three criteria for selecting paths that are often used
for program testing are statement, branch, and path
coverage. Statemént coverage requires that each statement
in the program occurs at 1eas£ once on one of the selected
paths. Testing the program on a set of paths satisfying

this criterion is called statement testing. Likewise,

branch coverage requires that each branch pfedicate occurs
at least once on one of the selected paths and testing such

a set of paths is called branch testing. Path coverage

requires that all paths be selected; this is referred to as

path testing. Branch coverage implies statement coverage,

while path coverage implies branch coverage. Path coverage,
in fact, implies the selection of all feasible combinations
of branch predicates, which may require an infinlte number
of paths. Because of the impracticality of path coverage,

alternative criteria have been proposed that limit loop
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iterations: the EFFIGY system [KING76] puts Aan arbitrary
bound on the number of loop iterations; an approximate path
coverage criterion proposed by Howden requires 0, 1, and 2
iterations of al1 loops; and the ATTEST system tries to
select paths that traverse each loop a minimum and maximum
number of times.

Automatically selecting a set of paths to satisfyv any
one of these criteria is nontrivial since nonexecutable
paths must be excluded [GABOT761]. The ATTEST system, for
example, uses a dynamic, goal-oriented approach to path
selection. 1In this system, a path is selected, statement by
statement, as symbolic execution proceeds. A statement is
selected based on its potential for satisfying the path
selection criterion, which can be statement, branch, or'path
coverage, As described above, ‘when an infeasible path is
encountered, ATTEST chooses one of the alternative
statements. When there 1is more than one consistent
alternative, this choice is based on the selection
criterion. A more complete description of path selection
methods for symbolic execution systems can be found in

[wooD80].

4. DYNAMIC SYMBOLIC EVALUATION

Dynamic symbolic evaluation 1is one of the features
provided by some dynamic testing systems [BALZ69,FAIR75].
Using test data to determine the path, dynamic symbolic

evaluation systems provide symbolic representations of the
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path computation. This section gives a brief overview of
dynamic testing systems and then describes dynamic symbolic
evaluation, including a possible implementation approach and

primary applications.

4.1. Implementation Approach

Dynamic testing systems monitor a routine's behavior
during execution creating a profile of that execution. Some
of the types of information in a profile include the number
of times each statement was executed, the number of times
each edge was traversed, the minimum and maximum number of
times each 1loop was traversed, the minimum and maximum
values assigned to variables, and the path that was
executed. In addition, some of these systems create an
accumulated profile of all execution runs.

To collect the information in a profile, dynamic
testing systems usually insert calls to analysis procedures
at appropriate places in the code. This process, which is
referred to as instrumentation [HUAN78], is generally done
by a preprocessor. Dynamic testing systems also provide a
driver program, or test harness, to initialize the
parémeters and global variables of the instrumented routine
to values supplied by the user.

The dynamic symbolic evaluation component of dynamic
testing systems provides a symbolic representation of the
computation of each executed path. In addition to the
user-supplied values, symbolic names are associated with the

input values. Throughout the execution, dynamic symbolic
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evaluation maintains the symbolic values of all variables as
well as their numeric values. As with symbolic execution,
the symbolic values are represented as algebraic expressions
in terms of the symbolic names. Since dynamic testing
systems monitor the normal execution process, the forward
expansion technique described for symbolic execution is a
natural approach for creating these symbolic values. These
expressions can be maintained internally as a computation
graph' similar to that shown for symbolic execution. The
computation graph would be augmented, however, to include
the numeric value computed for each node.

After executing path Py, the symbolie value for each
output parameter 1is shown, providing PV[PH]. With dynamic
symbolic evaluation, these expressions generally are
displayed ' as trees instead of as algebraic expressions,
although both or either form could be displayed. The
computation trees that would be created for the specified
input values to TRANSACT are shown in Figure 12. Note that
these input values cause path P2 to be executed.

Existing dynamic symbolic evaluation systems are only
concerned with providing the PV. Since the input values are
known, each interpreted branch predicate evaluates to the
constant value true (or a run-time error is encountered).
The PC is, therefore, equal to true and thus it is not
‘necessary to check for PC consistency. It would be easy to
extend dynamic symbolic evaluation to provide a symbolic
representation of the path domain. Note that the numeriec

value is known for each output parameter, but the symbolic

-39 -



PO

Input Variable Symbolic Value Numeric Value

DAYS
AMOUNT
BALANCE

Statements

days 20
amount -10.00

balance 100.00

Executed

(s,1,2,3,4,5,7,8,11,12,13, 14, 15, f)

Output Variable Computation Trees

BALANCE

-3(- )(90.229)

INTEREST

(100.0)

BELOWMIN

OVERDRAFT

Figure 12,

> FalzeD

Final Results of Dynamic Symbolic
Evaluation for One Test Run of TRANSACT
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representation of the path computation is still provided.
Examination of the PC, 1like examination of the PV, is
helpful in uncovering errors in the routine. An erroneous
PC would imply an erroneous branch predicate or erroneous
calculation affecting a branch predicate. Thus, providing
the PC would be a useful and natural enhancement to dynamic

symbolic evaluation.

4.2. Applications

The primary application of dynamic testing systems is
program debugging. When an error is uncovered in a routine,
dynamic symbolic evaluation provides a picture of the path
computation, which can be examined to help isolate the cause
of the error. To assist in debugging, these systems provide
a capability for examining the computation trees while they
are being‘constructed statement-by-statement. These systems
also allow the user to stop execution ét any statement and
"unexecute"., In other words, the user can direct the system
to undo part of the preceeding execution. This
"unexecution" would show the reverse evolution of the
computation trees. Observing both the evolution and reverse
evolution of the trees can help the user isolate an error.
Experiments with the dynamic testing system ISMS [FAIRT75]
have shown that both of these features are beneficial for
debugging.

Another feature sometimes provided by dynamic testing
systems is the ability to check user-created assertions at

run time [FAIR75,STUCT3]. Unlike the assertion checking
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done by symbolic execution systems, dynamic assertion
checking is done just for the supplied input values and' not
for the enﬁire path domain. Either the assertion is true
and thus valid for the input values, or the assertion is
false and thus 1invalid for the routine, in which case an
erfor message is issued.

Dynamic symbolic evaluation can assist in statement,
branch, and path testing. The execution profile provided by
dynamic testing systems usually contains statement execution
counts, edge traversal counts, and descriptions of the paths
executed. This information is helpful in determininé when a
program has been  tested sufficiently, based on any one of
these testing strategies. The responsibility of achieving
this coverage, however, falls on the user. |

The symbolic representations provided by dynamic
symbolic evaluation provide valuable guidance in selecting
test data. As with - symboliec execution, these
representations can be used in applying error sensitive
testing strategies. Further, the simplification of the
relational expreséions and determination of PC consistency,
which we argued is a desirable although expensive
enhancement to symbolic execution, 1is not needed to

determine whether or not a path is executable. To provide

| further analysis such as automated error detection, however,

dynamic symbolic evaluation must also include these

capabilities and incur the associated expense.
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5. GLOBAL SYMBOLIC EVALUATION

The goal of global symbolic evaluation [CHEAT9a,PLOET9]
is the derivation of a global representation of a routine ~-
a symbolic representation of the domain and computation for
all paths, rather than along a specific path. This
representation is achieved by classifying paths so that the
paths in a class differ only by their number of loop
iterations. This section describes the interpretive
technique employed by global symbolic evaluation and
explains the loop analysis technique used to classify loops.
Several applications of global symbolic evaluation are also

discussed.

5.1. Implementation Approach

Global symbolic evaluation, 1like symbolic execution,
uses the control flow graph of a routiﬁe to guide
evaluation. Loops are evaluated first by a 1loop analysis
technique. For each loop, this technique attempts to create
a loop expression, which is a closed form representation
encompassing the effects of the loop. Inner loops must be
analyzed before outer 1loops. An analyzed 1loop can be
replaced by the resulting 1loop expression, which can
thereafter be evaluated as a single node. After all loops
have been analyzed, the control flow graph has been reduced
to a directed acyclic graph. Global symbolic evaluation
then selects the order in which the nodes are to be
interpreted so that all predecessors of a node are

interpreted before that node 1is interpreted. In this
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section, the interpretive technique of global symbolic
evaluation 1is first described for routines without loops.
Thgn the loop analysis technique is introduced along with
the technique for 1incorporating 1its results, thereby
describing the application of global symbolic evaluation to
routines with loops.

In global symbolic evaluation, .as in  symbolie
execution, the input values are represented by symbolic
names, and throughout the analysis the symbolic values of
all variables are represented as algebraic expressions in
terms of these symbolic names. Furthermore,'these symbolic
values can be maintained as a computation graph similar to
that described for symbolic execution. The technique used
to interpret a statement is the same as that employed by
symbolic execution. In interpreting a particular node,
however, symbolic execution only considers the evaluation of
one partial path reaching that node, whereas global symbolic
evaluation considers the evaluation of all such partial
paths. For a node in the control flow graph, global
symbolic evaluation maintains a case expression,-where each
case represents one partial path reaching the node. Each
case is composed of the PC for a partial path, as well as
the symbolic values of all the variables computed along that
partial path.

To see how a node is interpreted, consider a particular
node Nk, With predecessor nodes Ngyeeey Ny, which have been

previously interpreted. Control may reach N, via any of the

edges (ny, ny),..., (ny, ng), and the transfer from a
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predecessor node occurs under the conditions of the
corresponding branch predicate. Thus, when n, 1is
interpreted, the case expressions of all predecessor nodes
must be considered. For predecessor node nj, the branch
predicate bp(ni, "k) is evaluated in the context of each
case 1in the case expression, For a particular case,
bp(ni, "k) is interpreted in terms of the symbolic values of
the variables for this predeceséor case. This interpreted
branch predicate is then conjoined to the PC for the
'associated partial path. As with symbolic execution, it is
desirable to check the consistency of the PC. For routines
without loops, the techniques described for symbolic
execution could be applied. If the PC is found to be
incbnsistent, this case 1is discarded. Otherwise, the
.statement at node n, must be interpreted in the context of
the predecessor case. After all the cases for node'ni have
been considered, the same procedﬁre is followed for all
other predecessor nodes. The updated case expressions
associated with the predecessor nodes are combined and the
resulting case expression represents all executable partial
paths reaching node 0.

Figure 13 shows the global symbolic evaluation for
TRANSACT; only the start node, the final node, and the
nodes corresponding to conditional statements are shown.,
For these nodes, each case 1is annotated with the
corresponding partial path. Note that the initial values of
all variables are shown at the start node, but thereafter

the symbolic values are shown only for the variables that
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S case
true:
DAYS = days
AMOUNT = amount
BALANCE = balance

INTEREST = ?
BELOWMIN = 2
OVERDRAFT = ?
NEWBAL = ?
RATE = 0.06
? MINBAL = 100.0
, BMCHARGE = 0.1
ODCHARGE = 4.0
endcase
5 case
- (8,1,2,3,".5)
true:
BALANCE = balance ,
INTEREST = 1,00016%%*days*balance - balance
= (1,00016%#*days~1,0) *balance
BELOWMIN = false

OVERDRAFT = false
NEWBAL = balance®(1+0.06/365)%#days
1.00016%*days#*bal ance

endcase

T case
- (39102t30
(smount > 0.
BALANCE = balance
INTEREST = (1.00016%%days-1,0) *balanc
BELOWMIN = false ‘
OVERDRAFT = false
NEWBAL = 1.00016%%days*balance .+ amount
amount +°'1,00016%%*days®*balance

- (8.1,2.3,4.5,7)
~ (amount <= 0.0):

BALANCE = balance

INTEREST = (1.00016%%days~1.0)%balance
BELOWMIN = false

OVERDRAFT = false

NEWBAL= 1.00016%%*days*balance

endcase

Figure 13. Global Symbolic Evaluation of TRANSACT
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8 case

- (3'192v3-uv5v6v708)

(amount > 0.0) and (amount < 0.0)
false:

"

- (s!1v2'3ouo5'7.8)
(amount <= 0.0) and (amount < 0.0)
= (amount < 0.0):
BALANCE = balance
INTEREST = (1.00016%%days-1,0)*%*balance
BELOWMIN = false
OVERDRAFT = false
NEWBAL= 1,00016*%days#*balance
endcase

12 case
- (s|102'39uv5v7v8'1’012)
(amount < 0.0) and (-amount <= 1.00016**days*balance)
(amount < 0.0) and (amount + 1.00016*#dgys®*balance >= 0.0):
BALANCE = balance '
INTEREST = (1.0016%%days-1,0)*balance
BELOWMIN = false
OVERDRAFT = false
NEWBAL = 1,00016*%*days*balance + amount
amount + 1.00016"*days*balance

- (so1v2o30uv5-7v8'9010v12)
(amount < 0.0) and (-amount > 1.00016#*days*balance)
(amount < 0.0) and (amount + 1.00016%*days#*balance < 0.0):
BALANCE = balance
INTEREST = (1.00016%%*days-1,0)*balance
BELOWMIN = false
OVERDRAFT = true
NEWBAL = 1.00016%*%*days*balance ~ 4.0
endcase

f case
-- (8,1,2,3,4,5,7,8,11,12,13, 14, 15, )
(amount < 0.0) and (amount + 1.00016%%days*balance >= 0.0) and
(amount + 1,0016%%days*balance < 100.0):
BALANCE = amount + 1,00016%%*days*balance - 0.1
INTEREST = (1.0016%%*days-1.0)*%*balance
BELOWMIN true
OVERDRAFT = false
NEWBAL = amount + 1.00016%%days*balance - 0.1

Figure 13. (continued)

- 47 -



- (3.1,2.3.4.5,7.8,9.10.12.13.1“.15.1‘)
(amount < 0.0) and (amount + 1.00016**days*balance < 0.0) and
(1.00016%%*days*balance - 4.0 < 100.0) '
(amount < 0.0) and (amount + 1.00016%%days*balance < 0.0) and
(1.00016%*days*balance < 104,0):

BALANCE = 1.00016%*days#*balance - 4.1

INTEREST = (1,00016%%*days-1,0)¥*balance

BELOWMIN = true

OVERDRAFT = true

NEWBAL = 1,00016%%days*balance - 4.0 - O, 1
1.00016%*#days*balance - 4.1

- (S.1,2.3,u,5.7.8,11.12,15.f)
(amount < 0.0) and (amount + 1.00016%%days*balance >= 0.0) and
(amount + 1,0016%%days*balance >= 100.0):

BALANCE = amount + 1.00016%%days*bal ance

INTEREST = (1.00016%%days-1,0)*balance

BELOWMIN = false

OVERDRAFT = false

NEWBAL = amount + 1.00016%%*days*balance

- (S,1.2.3.u,5.7.8,9.10.12.15,f)
(amount < 0.0) and (amount + 1.00016%*%days*balance < 0.0) and
(1.00016%%days*balance ~ 4.0 >= 100.0)
(amount < 0.0) and (amount + 1.00016%%*days*balance < 0.0) and
(1.00016%*%days*balance >= 104.0):

BALANCE = 1.00016%*days*balance - 4,0

INTEREST = (1.00016#%*days-1,0)%balance

BELOWMIN = false

OVERDRAFT = true

NEWBAL = 1.00016%*days*balance - 4.0

- (8.1.2.3.“,5,6,7,15,f)

(amount > 0.0) and (amount >= 0.0)

(amount > 0.0):
BALANCE = amount + 1.00016#**days®bal ance
INTEREST = (1.0001 6%*%days~1.0) *balance
BELOWMIN = false
OVERDRAFT = false
NEWBAL = amount + 1.00016%*daya®*bal ance

- (8.1.2,3.",5.7.15.f)
(amount <z 0.0) and (amount >= 0.0)
(amount = 0,0):
BALANCE = 1,00016%*days®*balance
INTEREST = (1.00016%%days~1, 0) #*balance
BELOWMIN = false '
OVERDRAFT = false
NEWBAL = 1,00016%*days®balance

endcase

Figure 13. (continued)
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can be modified. Observe that node 7 has two cases in its
casSe expression. Since node 7 is a predecessor to node 8,
both of these' cases are considered in evaluating node 8.
The branch predicate bp(7,8) = (-AMOUNT > NEWBAL) is
interpreted in terms of the symbolic values of the first
case for node 7, providing one case for node 8. This branch
predicate 1is also interpreted in the context of the second
case for node 7, providing the second case for node 8.
However, s(bp(7,8)) 1s inconsistent with the PC associated
with the first case. The resulting inconsistent PC is shown
in the case expression for node 8, but is not carried
further in the analysis.

The routine TRANSACT does not contain a 1loop, so the
global symbolic evaluation is as described. For routines
with loops, however, a case expression representing all
partial paths 1into a node is only possible because of the
loop analysis technique employed by global symbolic
evaluation. This 1loop analysis technique attempts to
represent each loop by a 1loop expression, a closed form
representation describing the effects of that loop. For
each analyzed loop, a conditional expression 1is created
representing the final iteration count for any arbitrary
execution of the 1loop. The final iteration count is
expressed in terms of the symbolic values of the variables
at entry to the 1loop. In addition, for each variable
modified within the loop, its symbolic value at exit from
the loop is created. These symbolic values are in terms ‘of

the final iteration count and the symbolic values of the
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variables at entry to the loop. The routine TRAP, shown in
Figure 14, contains a loop, and Figure 15 shows the results
from loop analysis. Note that TRAP invokes a routine F with
one parameter. For the discussion that follows, each
invocation of F will be represented symbolically as F(s(X)),
where s(X) 1is the symbolic value of the argument X at the
point of invocation. Alternative approaches for handling
routine invocations are discussed 1later. The global
symbolic evaluation of TRAP 1is explained throughout the
remainder of this section.

Loop analysis proceeds from the inner-most loops
outward. A loop is not analyzed until all its nested loops
have been replaced by their associated loop expression. At
the time of analysis, therefore, each loop¥* contains only
one backward branch and the statements within the 1loop cén
be interpreted by a technique similar to that previously
described for loop-free routines,

To initiate loop analysis, an iteration counter, say k,

is associated with the loop. For each variable Y1, ¥1
0

represents the value of the variable Y1 on entry to the

first iteration of the loop and yIk, k>=1, represents the
value of the variable Y1 after execution of the kth
iteration of the loop. The body of the loop is then
symbolically evaluated to get a representation of a typical
iteration. This evaluation, Suppose it is for the kth
iteration, is identical to the normal global symbolic
evaluation process for a loop-free routine, except that the

% Only single-entry, single-exit loops are considered here.

- 50 -



procedure TRAP( A, B: in real;
N: in integer;:
AREA: out real;
ERROR: out boolean) is

-~ TRAP 13 an implementation of the trapezoidal rule.
—~ TRAP approximates the area between the curve

F(x) and the x-axis from x = A to x = B.

-- The approximation uses N intervals of size (B-A)/N.
ERROR i3 true if N i3 less than 1.

H: real; -- approximation interval
X: real; -- value along x-axis
YOLD: real; -- value of F(X-H)
YNEW: real; -- value of F(X)

s begin '
1 if N < 1 then
2 ERROR := true:
else
3 ERROR := false;
y AREA := 0.0;
5 if A /= B then
6 H ¢= (B-A)/N;
7 X 1= A;
8 YOLD := F(X);
9 while X < B loop
10 X :=2X + H;
11 YNEW := F(X);
12 AREA := AREA + (YOLD + YNEW) / 2.0;
13 YOLD := YNEW;
endloop;
14 AREA := AREA%H;
15 if A > B then
16 AREA := -AREA:;
endif;
endif;
endif;

f end TRAP;

Figure 14, Routine TRAP
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case

true:

AREA, = AREA + (YOL + F(H + X Yy /7 2.0

k:mmf}+N%E1xbgﬁh+¥&%qmm
- ERROR, = ERRBRk_1
' ka5“"'”{ =H . +X
w0Lo £Fey K1y Kyl T ket
lec, "= not TH _, +'% , <B) = (B + Hey + X >=0.0)
endcase

Figure 15a. Simplified Recurrence Relations and
Loop Exit Condition for TRAP (k>=1)

case
true:
AREA(k) = AREAO + F(H +xo)/2.o + YOLD,/2.0 +
sum< i:=2..B ! F((i-1)'ﬂo+x 3/72.0 + F(i*ﬂo+x0)/2.o >
= AREAO + F(k®H +xo)/2.o + YOED0/2.O +
sun<®1:=1. k-9 ¢ FOL8H4X0) >
ERROR (k) = ERRORO
H(k) = H
X(k) = kQH + XO
YOLD(k) = P(R‘H0+x0)
YNEW(k) = F(k®H +X0)
lec(k) = (B + Q-HO + Xy >= 0.0)
endcase
Figure 15b. Solved Recurrence Relations and
Loop Exit Condition for TRAP (k>=1)
case

-~ fall through
(-B + X, >= 0.0):

ERROR = ERROR
0

H = HO

AREA = AREAO

X = XO

YOLD = YOLDo

YNEW = YNEWO

-~ exit after first or Subsequent iteration

(-B + X, < 0.0) and

(ke = min< ki (k >= 1) and (-B + k*H + X, >= 0.0) >):
AREA = AREA, + F(k #H0+X0)/2.0 + 901D, J2.0 +

sum< i:=1,. o ! F(i'ﬂo-o-xo) >
ERROR = ERRORO
H=H [ ]
X =k
YOLD
YNEW
endcase

L] : PR Xo
F(ke'Ho + XO)

H oue o

Figure 15¢. Loop Expression for TRAP
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symbolic name initially assigned to each variable is its
value after execution of iteration k-1 -- that is, the
initial value for Yy is Y1 -1. This provides a recurrence
relation for each yIk, k>=1, which is in terms of the values
of the variables after iteration k-1. Next, the branch
predicate controlling exit from the loop is interpreted in
terms of the values of the variables after execution of the
kth iteration. This provides the 1loop exit condition,
denoted leck, which represents the condition under which the
loop will be exited after the kth iteration. Figure 15a
shows the results of this evaluation for the WHILE loop in
TRAP.

Loop analysis now attempts to find solutions to the
recurrence relations for each variable in terms of the
values of the variables on entry to the loop. The solution
to the recurrence relation for yIk is denoted by yI(k) and
represents the value of the variable yr on exit from the kth
iteration of the loop. Solutions are found first for those
variables that do not reference other variables whose
recurrence relations are as yet.unsolved. Once a solution
is found for a variable, it 1is substituted for all
references to it in the remaining recurrence relations.
This process is repeated, 1if possible, until all recurrence
relations are solved. The loop exit condition leck is then
solved by replacing each_YIk referenced in the condition by
its solution y1(k) and simplifying. This provides lec(k),
the condition under which the 1loop will be exited after

execution of the kth 1iteration. Figure 15b provides the
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solutions to the recurrence relations for the loop in TRAP.
Note that the solution for AREA assumes that
sum<i:=l..mi...> is zero when 1>m. Although not illustrated
in this example, sometimes two cases must be considered
independently: 1) the first iteration of the 1loop (k=1),
where . the recurrence relations and 1loop exit condition
depend on the values of the variables at entry to the loop;
and 2) all subsequent iterations (k>1), where the recurrence
relations and loop exit condition depend on the values
computed by the previous iteration.

After solutions to the recurrence relations have been
determined, the loop expression can be created. The loop
expression for the loop in TRAP appears in Figure 15¢c. Each
case consists of the loop exit condition and ﬁhe values of
the variables at exit from the loop. The first case in this
figure represents the fall-through condition, which must be
included for any while loop or similar loop construct. For
this case, the values at entry to the first iteration of the
loop satisfy the loop exit condition and provide the values
on exit from the loop. The second case represents one or
more iterations of the loop and is derived from the case in
Figure 15b. For this case, the final iteration count, call
it kg, is the minimum k, such that the loop exit condition
is true. Thus, for this case the condition is

not(lec(0)) and (ke = min<k| (k 2 1) and lec(k)>).

and the value for each variable Y1 at exit from the loop is

represented by yI(ke).
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The loop expression is a closed form representation
capturing the effects of the loop. Thus, the nodes in the
loop can be replaced by a single node, annotated by this
loop expression. If the loop body contains nodes ny through
nj, this single node is denoted "(1,J)' When a 1loop is
encountered during symbolic evaluation, each case in the
loop expression must be considered in the context of each
case of each predecessor node.

Consider the evaluation of one case of the loop
expression in the context of one case of a predecessor node.
The results of this evaluation will be a single case for the
evaluated loop node. The symbolic values of the variables
of the predecessor case provide the values of the variables
at entry to the loop. Thus, the case for the evaluated loop
node is obtained by evaluating the loop expression case 1in
terms of these symbolic values. The PC of the evaluated
loop node case is developed by interpreting the condition
from the loop expression case and conjoining it to the PC of
the predecessor case. The symbolic values of the variables
of the evaluated loop node case are developed by
interpreting the assignments specified by the loop
expression case.

The above process is repeated for each case in the loop
expression with each case of each predecessor node. The
resulting cases are then combined to form the case
expression for the evaluated 1loop node. Global symbolic
evaluation can proceed as usual from this point. Figure 16

demonstrates the global symbolic evaluation of TRAP. Here,
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endcase

5 case

bt (301'3"'.5)

(n >= 1):
AREA = 0.0
ERROR = false
H=1?
X=27
YOLD
YNEW

endcase

" n
-~ -

8 case
-~ (8,1,3,4,5,6,7,8)
(n >= 1) and (a /= b)
= (n >=1) and (a - b /= 0.0):
AREA = 0.0
ERROR = false
H = (b-a)/n = ~a/n + b/n

X =za

YOLD = F(a)

YNEW = ?
endcase

‘Figure 16. Global Symbolic Evaluation of TRAP
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(9-13)case
- (301'3’u'5'69708'9)
(n >= 1) and (a - b /= 0.0) and (-b + a >= 0.0)
= (n>=1) and (a = b > 0.0):
AREA = 0.0
ERROR = false
H = -a/n + b/n

X =za
YOLD = F(a)
YNEW = 7

- (S.1.3,u.5.6,7.8.(9,10.11,12,13))
(n >= 1) and (a = b /= 0.0) and (~b + a < 0.0) and
(ke = min< ki (k>=1) and (b + k * (-a/n + b/n) + a >= 0.0) >)
=(n>=1) and (a = b < 0,0) and (x = n):
AREA = 0.0 + F(k_ ® (-a/n + b/R) + 8)/2.0 + F(a)/2.0 +
sum< 1:=1..k -1 | F(1 ® (-a/n + b/n) + a) >
= F(a)/2.0 + F(b)/2.0 + sum< 1:=1..n-1 | F(a - i%a/n + i*b/n) >
ERROR = false
H = -a/n + b/n
X=k # («ca/n+b/n) +az=b

yoLD £ F(k, * (-a/n + b/n) + a) = F(b)
YNEW = F(ke ® (-a/n + b/n) + a) = F(b)
endcase

15 case
- (sv1o3v4'5’607’80901“015)
(n >= 1) and (a - b > 0.0):
AREA = 0.0 ®* (-a/n + b/n) = 0.0
ERROR = false
H = -a/n + b/n

X =a
YOLD = F(a)
YNEW = ?

— (s.1.3,”,5,6,7.8.(9,10.11,12,13),1",15)
(n>=1) and (a -~ b < 0,0) and (k = n):
AREA = (F(a)/2.0 + F(b)/2.0 + Sum< 1:=1..n-1 | F(a - i%a/n + i*b/n) >) *
(-a/n + b/n)
= -a®*F(a)/2.0%n + b*F(a)/2.0% - a*F(b)/2.0%n + b*F(b)/2.0%n -
a® sum< i:=1,.n=-1 | F(a - i®a/n + i%b/n) > / n +
b #* sum< £:=1..n-1 | F(a - i%a/n + i*b/n) > / n
ERROR = false
H = -a/n + b/n

X=0D

YOLD = F(b)

YNEW = F(b)
endcase

Figure 16. (continued)
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f case
- (391'3ou9506'7'8'9v1uv15016'f)
(n >= 1) and (a -~ b > 0.0) and (a > b)
(n >= 1) and (a - b > 0.0):
AREA = -0.0 = 0.0
ERROR = false
H =-a/n + b/n

X = a
YOLD = F(a)
YNEW = ?

— (3.1.3,".5.6.7,8.(9.10. 11' 12. 13),1". 15. 16.f)
(n >= 1) and (a - b < 0.0) and (ke = n) and (a > b)
= false:

hnaad (3-1o3ou|5'6n7'8|991uv159f)
(n>=1) and (a - b > 0.0) and (a <= b)
false: '

- (3.1,3.4.5,6,7.8,(9,10.11.12.13),1“.15,f)
(n >= 1) and (a - b < 0.0) and (ke = n) and (a <= b)
(n >= 1) and (a - b < 0.0) and (k° = n):
AREA = -a*F(a)/2.0%n + b¥F(a)/2.0%n - a%F(b)/2.0% + bPF(b)/2. 0% -
a® sum< i:=1..n-1 | F(a - i%a/n + i*/n) > / n +
b * sum< 1:=1..n-1 | F(a - i%a/n + i*b/n) > / n
ERROR = false
H = -a/n + b/n

X=0»0
YOLD = F(b)
YNEW = F(b)

- (3.1,3.u,5,f)

(n >= 1) and (a = b)

(n >= 1) and (a - b = 0.0):
AREA = 0.0
ERROR = false
H=?
X =2
YOLD
YNEW

14

~) ~

- (8,1,2,f)
(n < 1)
AREA ?
ERROR = true
H=2?
X =7
YOLD
YNEW
endcase

0 u
N

Figure 16. (continued)
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only the start node, the final node, the nodes corresponding
to conditional statements, the node preceeding the loop, and
the loop node are shown. Once again, the symbolic values of
variables that cannot be modified are shown only at the
start node. Note that node 8 is the only predecessor node
to the 1loop and node (9,13) provides the case expression
resulting from evaluation of the loop expression. Note that
in evaluating the loop expression, algebraic simplification
techniques are employed to solve for the final loop
iteration count ke - The final output of global symbolic
evaluation of TRAP would be a case expression, 1like that
shown for the final node in figure 16, except that only the
symbolic values for the two output 'parameters, AREA and
ERROR, would be shown and each case with an inconsistent PC
would not appear.

There are several problems associated with loop
analysis. Obtaining the solutions to the recurrence
relations is not always straightforward and sometimes may
not be possible. Complications arise in several situations.
When there are simultaneous recurrence relations, several
variables that may be dependent are modified within the
loop. In particular, the dependence may by cyclic -- yp may
depend on Ygr which depends on yr -- in which case the
recurrence relations cannot be solved. Problems also arise
when conditional execution occurs within the loop body,
causing conditional recurrence relations. This results in a
more complicated loop expression, provided these recurrence

relations can even be solved. Moreover, loops tend to cause
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an explosion in the size and complexity of the global
representation of a routine. Nested loops exacerbate this
problem, In addition, determining consistency of a PC
incorporating a loop exit condition is even more complex
than that discussed for symbolic execution. This is due to
the possible representation of a final loop iteration count
in terms of conditional expressions or a minimum value
expression, or both. Deciding the existence of these
minimum values 1is essentially proving routine termination.
When none of these problems arise, the 1loop analysis
technique employed by global symbolie evaluation provides a
more general evaluation of a 1loop than the techniques
employed by symbolic execution or dynamic evaluation

systems.

5.2. Applications

Global symbolie evaluation has Several applications in
program validation, many of which are similar to those of
symbolic execution. The global representation provides a
concise functional description of a routine, which is often
useful 1in detecting errors. In TRAP, for example,
examination of the PC and the PV for the first case of the
final node in Figure 16 reveals a fairly subtle error. In
implementing the loop, the 1incorrect assumption was made
that (A < B) and thus the loop is not executed when (A > B).
This error 1is uncovered becauée the global representation
states that AREA = 0.0 when (A > B), which is clearly

incorrect. The routine could be corrected by changing the
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while loop condition to
((A>B) and (X>B)) or ((A<B) and (X<B)).

Another natural application of global symbolic evaluation is
test data generation, which could be performed by finding a
solution for each PC associated with the final case
expression in the global representation of a routine. New
methods must be developed, however, for solving a PC that
contains expressions for final loop iteration counts.
Global symbolic evaluation could also be used to
automatically generate and check error conditions as it
analyzes a routine. Similarly, user-provided assertions
could be checked for validity. Checking error conditions or
user-provided assertions would also require enhancements to
the techniques for determining PC consistency. With this
enhancemen%, however, it may be possible to check error
conditions or user-provided assertions for the entire
routine rather than a specific path. Thus, if a routine is
annotated with assertions that specify the intended function
of the routine and these are shown to be valid, the
correctness of the routine has been verified.

Global symbolic evaluation can also be applied to
program specifications. The partition analysis method
[RICH81] applies global symbolic evaluation to a routine, as
well as to its specification, thus creating global
- representations of both. By comparing these two
representations, a partition of the domain is determined.
This partition is then utilized in verifying the routine's

consistency with the specification. Information derived
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from this verification process along with domain and
computation .testing strategies are applied to guide in the
selection of test data. Unlike most testing Strategies,
partition analysis bases test data Sselection on information
derived not only from the routine but also from the
specification.

Global symbolic evaluation also has applications in
program optimization [TOWNT76]. The existence of a
computation graph ([COCK70] makes common subexpression
elimination and constant folding relatively straightforward.
In addition, several types of loop optimizations may often
be performed when the 1loop expressions are obtainable.
Loop-invariant computations may be easily detected since
they are independent of the iteration'count‘of the loop;
these may thus be moved outside of the loop. Loop fusion
can sometimes be performed when the number of iterations
performed by two loops can be determined to be the same 'and
variables referenced in the Second loop are not defined in a
later iteration of the first loop. When variables modified
within the loop have values that form arithmetiec
progressions -~ that is, they are incremented by the same
amount each time through the loop -~ these computations can
sometimes be moved out of the loop and replaced by
eéxpressions in terms of the final loop iteration count.
Optimizations that perform in-line substitution of a routine
may also benefit from global symbolie evaluation, since the
closed form representation of the routine may enable better

determination of when such substitution is useful.
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6. CONCLUSION

Symbolic evaluation has several applications for
program validation. Since it is a relatively new method of
program analysis, there are several unsolved problems and
directions for future research, Initial studies of its
effectiveness have only recently been conducted. This
section describes the results from one such study and sets

forth several areas for future research.

6.1. Effectiveness

A primary use of symbolic evaluation is in program
testing. Howden has 1investigated the effectiveness of
several program testing strategies [HOWD78al, 1including
branch testing, path testing, and symbolic testing, each of
which can be aided by symbolic evaluation. For twenty-eight
errors ocecurring in six programs, the reliability of each
strategy was determined. The evaluation criteria and
results of this study are summarized below.

A testing strategy that involves actual execution is
reliable for an error only if every test data set that
satisfies the criterion of that strategy 1is guaranteed to
reveal the error. The statistics obtained in Howden's study
indicate that the path testing strategy was reliable for
eighteen of the twenty-eight errors. Path testing involved
the testing of every path, which generally is impractical
since a routine may have an infinite number of paths. A
strategy that approximates path testing was found to be

reliable for twelve of the errors. This strategy required
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the execution of all paths with no more than two iterations
of .any; 1loop.: Branch*'testing““ussJ“rEliablem¥orionly six
errors .These. results- indicate’ that the' detection of" errors
1s..often. dependent on':testing particular’ combinations of

branch -predicates.; iAlthough’ the statement testing strategy

Wwas not..analyzed-:in.-this: study, experience has shonn that

this Strategy is, in general;'less’éffective than branch or
path testing. Symbolic testing is considered reliable for
an error if the symbolic representations‘of‘tneﬁgavﬁ and - PC
reveal the presence of the .error in an obvious way that
would catch the attention of the tester.prﬁymbolicw,testing
of" the set of paths chosen to approximate Ppath testing
guaranteed the detection of seventeen of the tuenty—eight
errors, Not surprisingly,' it was alsor observed .: that

combining both symbolic testing and actual testing Was

‘reliable for more errors than either used alone. e et

‘Symbolic evaluation methods can be used . to . assist . .in
each of the testing strategles mentioned above. ~All three
methods of symbolic evaluation canh be, used . to. . .perform

symbolic testing. In addition,‘symbolic éxecution. can. be

'usedi to ‘geherate test data to meet the ,criterionvaof

‘Statement; branch 'or path testing._ Dynamic . symbolic

evaluation does not actively generate test data .but

monitor progress towards meeting the criterion of a. testing
strategy. The output produced ; by ‘ dynamic Symbodic
evaanﬁion‘ shows the results of both Symbolic. and actual
testing. Global symbolic evaluation assistslqin symbolic

tésting for a11 program paths and also classifies paths in a
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way that could be useful in actual testing.

It is important to note that in this study a strategy
was considered reliable for an error only if it guaranteed
the detection of the error for every test data set that
satisfies the testing criterion. 1If this requirement were
relaxed and data sets were astutely selected based on the
information in the symbolic representations, more errors
would be detected. Moreover, the systematic application of
such testing strategies as domain testing and error
sensitive testing, would increase the number of detected

errors.

6.2. Other Considerations

Symbolic evaluation poses several unsolved problems and
opens up 6 several areas for future research. Two of these
areas, loop analysis and PC consistency determination, have
been described previously. This section first addresses two
enhancements to the symbolic evaluation methods described so
far, input and output along a path and routine invocation.
Next, several ongoing research efforts related to symbolic
evaluation are discussed.

This paper has described symbolic evaluation for
routines whose input and output are done only via
parameters. Only minor modifications are necessary to
handle input and output at arbitrary points in a routine.
To handle input along a path, symbolic names representing
the input values are assigned to the input variables

whenever an input statement is encountered. The convention
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previously described for representing input values must be
modified slightly, however, since input may occur more than
once for a variable. To maintain the association between
input values and variables, the symbolic names may be
suffixed with an index notation when necessary. For
example, if a variable, say AMOUNT, is assigned input twice
along a path, the first input value might be represented by
amount.1 and the second by amount.2. To handle output along
a path, the symbolic values of the output variables are
provided whenever an output statement is encountered. With
these extensions, the variables assigned input values, the
variables whose values are output, as well as the number of
inputs and outputs, may vary from path to path because
different‘input and output statements may be encountered on
different paths. Moreover, for global symbolie evaluation,
the number of inputs and outputs may depend on the final
loop 1iteration counts for the routine. Although input and
output along a path requires no substantial changes to the
interpretive techniques originally described, the functional
conceptualization of a routine must allow for an arbitrary,
and perhaps varying, number of inputs and outputs.

Several approaches to routine invocation during
symbolic execution and global symbolic evaluation have been
proposed. During symbolie execution, the simplest approach
is to represent the results of a routine invocation
symbolically. For a procedure, such an approach might
assign unique symbolic names for the output parameters each

time the procedure is called. For a function (with no side
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effects), this approach might represent each invocation by
the function name along with the arguments' symbolic values
aﬁ the point of invocation. The advantage of this approach
is that the calling routine can be evaluated even when the
called routine 1is not available. This approach supports
unit testing, but provides less detailed information than
may be needed to sufficiently analyze the routine.

Another straightforward approach to routine invocation
passes information to and from the called routine via the
parameters and g3 path through the called routine is
symbolically executed. This approach is similar to normal
execution. When a routine invocation is encountered, the
symbolic values of the arguments are passed to the called
routine. Using the implementation approach deseribed for
ATTEST, this merely involves passing a pointer into the
computation graph for each argument and assigning this
pointer to the appropriate parameter, This graph is
independent of any routine ’since it only references
constants and symbolic names. Any branch predicates that
are interpreted within the called routine are conjoined to
the PC in the wusual manner. The symbolic values of the
parameters are updated by the interpretation of assignment
statements on the path in the called routine. When control
returns to the calling routine, a pointer into the
computation graph for each parameter is returned and

assigned to the corresponding argument.
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The problem with the above approach is that it requires
interpretation of the statements on some path through a
routine each time that routine is invoked. A more modular

approach, called subroutine substitution, utilizes

previously created symbolic representations of a routine.
With such an approach, the PC and PV resulting from the
symbolic execution of a path are saved for substitution.
Later, when the routine is invoked, the symbolic values of
the arguments are substituted for the symbolic names that
were assigned to the parameters in the saved PC and PV of
the called routine. The updated PC of the called routine is
conjoined to the existing PC of the calling routine. If
this conjunction is consistent, then the corresponding path
through the called routine eould be executed, and this
conjunction is the PC following return from the called
routine. In addition, the symbolic values of the
parameters, which comprise the PV of the called routine, are
returned to the calling routine. Unfortunately, subroutine
substitution involves expensive reformulation and
simplification of the symbolic representations and may not
always be more efficient than reevaluation of the path
[wooD80]. When arguments are large arrays or functions,
there are additional problems. This approach also assumes a
bottom-up testing environment, where routines must be tested
before those which call them. Moreover, several evaluations

of the called routine must be saved to make this a viable

approach,
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A variation of subroutine substitution allows the
specification of a called routine to be supplied in place of
the source code of that routine. Such a specification would
describe the function of the routine by providing the
intended | path domains and their associated path
computations. This specification could then be substituted
as described for subroutine substitution. Such an approach
still has the drawbacks of subroutine substitution but
allows for top-down testing and incremental development of
software.

Global symbolic evaluation may similarly utilize three
alternative approaches to routine invocation, symbolic
representation of the results of an invocation, continued
evaluation at an invocation, or subroutine substitution of a
global representation. The first approach is the same for
global symbolic evaluation as for symbolic execution. This
approach was used for the global symbolic evaluation of
TRAP, which invokes the function F. The second approach
continues the creation of the global representation
throughout the called routine. The symbolic representations
of the PC and PV are passed from each case expression at the
point of invocation to the called routine and back. This
can be done in a way similar to the approach described for
symbolic execution. The third approach to routine
invocation substitutes the global representation of the
called routine into the global representation of the calling
routine. The representation of the called routine may be

either the results from a previous global symbolic
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evaluation or a user-supplied specification of the routine.
Each case expression of the called routine must be evaluated
in the context of each case expression of the calling

routine . at the point of invocation. For‘-each such

-combination, this evaluation 1is similar to subroutine

substitution during symbolic execution. Since the number of
such combinations may explode,' the need for efficient
techniques is paramount.

Another area of current research is array element
determination. A problem occurs whenever the subscript of
an arnay depends on‘input values, in which case, the element
that is being referenced or defined in the array is unknown.
Although an indeterminate array element can be represented
Symbolically, detérmining PC consistency | may become
extremely complicated when such an occurrence affects the
PC. This problem oceurs frequently during both symbolic
execution and global symbolic evaluation. (It can not occur
during ° dynmaic ‘symbolic evaluation since all values,

including Subsecript values, are known.) Inefficient

solutions éxist, for in the worst case all possible

- subseript values can be enumerated, Though there has been

Some work on this problem [BOYE?S,CLAR76a,RAMA76], the
results are still unsatisfactory. Efficient solutions
requiring a minimal amount of backtracking are still being
explored.

General problems of efficiency plague all three
Symbolic evaluation methods, These methods have only been

implemented 1in experimental Systems; more efficient
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implementations must be explored. Osterweil [OSTES81]
describes a method in which data flow analysis and symboliec
evaluation can be used Jointly to optimize code,
particularly the instrumented code created by dynamic
symbolic evaluation systems. Osterweil emphasizes the need
for integrating analysis methods so that each will be used
where it is most "effective and so that the information
gathered by one method can be used to enhance another. The
coordination of data flow analysis and symbolic evaluation
is an area where this integration may prove fruitful. Data
flow analysis methods can be used to detect paths containing
suspect sequences of events but cannot determine if these
paths are executable. Symbolic execution can often decide
this by determining PC consistency. Both analysis methods
are strengthéned by this pairing. Data flow analysis would
no longer report suspect conditions about nonexecutable
paths, thus decreasing extraneous information, which only
dilutes iés effectiveness. In addition, suspect conditions
on executable paths could now be reported as errors.
Symbolic execution would benefit in that it would be
directed to suspect paths, thus increasing its effec?iveness
for detecting program errors. Osterweil describes several
other interesting prospects for 1integrating symbolic
evaluation with data flow analysis.

In this paper we have focused on the analysis of the
code. Future directions of software validation will be
concerned with all stages of software development. As work

progresses in the areas of requirements, specifications, and
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design, analysis of these stages will also be considered.
Symbolic evaluation methods, which provide an alternative
;epresentation of a routine, should prove useful during
?hese earlier stages of software development [CHEA79b].
Incorporating the analysis of both a routine and a
specification of 1its intended function to determ;ne test
data has been proposed [GOOD75,WEYU8O0]. The partition
analysis method [RICH81] applies symbolic evaluation
techniques to a routine's specifigation and implementation
to form a partition of the domain. There are several
ongoing projects in which the application of symbolic
evaluation to pre-implementation stages is under

investigation.

6.3. Summary

In'this paper, three methods of symbolic evaluation
have been described. Although the methods differ in their
scope of representation, all three methods represent the
path computations and path domains by symbolic expressions
in terms of the input values.

Dynamic symbolic evaluation is the most restrictive
method of the three. Using input data to determine a path,
dynamic symbolic evaluation represents the path computation.
Although the path domain can be représented symbolically,
there is no need to determine the consistency of this
representation. With neither simplification of the PC nor
determination of PC consistency necessary, the

implementation of dynamiec symbolic evaluation is
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straightforward. The major application of this method is
program debugging.

Symbolic execution systems do not depend on input
values to determine the path, as do dynamic symbolic
evaluation systems, but rather analyze a specified path.
Symbolic execution systems represent the path computation
and the path domain. Since many paths are not executable,
some symbolic execution systems try to determine PC
consistency. The most efficient implementation approach is
to use the forward expansion technique and to determine PC
consistency whenever an evaluated branch predicate is
conjoined to the existing PC. 1In general, PC consistency
can not always be determined; 1in practice, consistency can
often be determined using any of several existing
techniques. 1In addition, there is work currently being done
on improving methods of solving systems of constraints.
There are several interesting applications of symbolic
execution in the area of program validation, including
automatic error detection and test data generation.

Global symbolic evaluation has the widest scope of
analysis; it attempts to functionally describe the total
routine by a symbolic representation. Since there may be an
infinite number of paths in a routine, this method requires
more sophisticated analysis than the mere combination of the
symbolic representations fdr each path. Global symbolic
evaluation employs a loop analysis technique, which attempts
to represent each loop in a closed form that is dependent on

a final loop iteration count. While this technique can
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gsuccessfully analyze several types of loops, additional work
is needed in this area. By developing such a closed form
representationfor each loop,'the computation and domain for
é class of paths can be represented. Each such
representation is one case 1in the global representation
provided by global symbolic evaluation. The determination
of PC consistency, which must be done for each case, is
further complicated by the classification of paths. This is
another area 1in need of further research. Global symbolic
evaluation has prospective applications in the areas of
program validation, program optimization, and the
pre-implementation stages of software development.

Dynamic symbolic evaluation' is a well-understood
process that has been implemented in at least two dynamic
testing systems. Symboliec execution has also been
Successfully implemented, although there are still Several
implementation problems to be examined as well as several
areas of research to be explored. Global symbolie
evaluation is g relatively new method and its future
applicability will most 1ike1y.depend on its success in loop

analysis and PC consistency determination.
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