Constraint Management in the ATTEST System
Laura K. Dillon

COINS Technical Report 81-9
May 1981

Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

This work was supported by ¢the Air Force Office
Scientific Research under grant AFOSR 77-3287.

of

Table of Contents

Overview of CONMAN

Representation of the Partial Path Condition
2.1 Path Constraints

2.2 Conceptual Representation

2.3 Constraint Transformation

2.4 Sparse Array Representation

Maintaining the Partial Path Condition
Analysis of the Partial Path Condition
4,1 Overview of TRYPTH

4.2 Description of TRYPTH

Redundancy checking

Reconfiguration

6.1 Equivalence Classes

6.2 The Reconfiguation Algorithm
Reduction of the Constraint Structure

Detecting Possible Program Errors

Appendix A: The BNB structure

14
19
2}
30
38

45

60

64
66
70
T7
83

86

I3

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

1. ITE{%E{-QJ‘_’E E%f Massachusetts 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
COINS Technical Report TR81-9
4. TITLE (and Subtitle)
Constraint Management in the ATTEST System Final

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Laurie K. Dillon AFOSR 77-3287
9. ERFORMING ORGANIZATION NAME AND ADDRES 10. PROGRAM ELEMENT, PROJECT, TASK
omputer an Phformation e{ence bepartment AREA & WORK UNIT NUMBERS
University of Massachusetts
Amherst, Massachusetts 01003
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Office of Scientific Research October 1981
Washington, D.C. 13. NUMBER OF PAGES
91
T4, MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS. (of this report)
Unclassified

15a, DECLASSIFICATION/DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide {f neceasary and identily by block number)

Symbolic Evaluation

20. ABSTRACT (Continue on raverae aide !l necesaary and Identily by block number)
ATTEST is a symbolic execution system designed to be used as a tool for

validating programs. This report describes the constraint management
component (CONMAN) of the ATTEST®system. This compoment maintains a con-
sistent representation of the constraints created during symbolic execution.

DD 5305, 1473

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

-3

Table of Figures

Figure 1 -
Sample FORTRAN Program

Figure 2 -
Graph for the Sample Program of Figure 1

Figure 3 -

The Successive Partial Path Conditions That Are

Generated During Symbolic Execution of P2

Figure 4 -
Matrix Conceptualization of the AND-structure
After Symbolic Execution of P2

Figure 5 -
Matrix Conceptualization of the OR-structure
After Symbolic Execution of P2

Figure 6 -
The AND-constraint Generated by P2 Shown in
Standard Form and After Being Transformed
by CONMAN

Figure 7 -
Conceptualization of the Sparse Array
Representation Used in the AND-structure

Figure 8 -
Sparse Array Representation of the Matrix
of Coefficients of the Transformed
AND-constraints of Figure 6

Figure 9 -
Sparse Array Representation of the OR-matrix
of Figure 5

Figure 10 -
Partitioning of the Constraint Structure
into New and 01d Sections

Figure 11 - v
. Evolution of the Constraint Structure as the
First Four Branch Predicates are Encountered
During Symbolic Execution of P2

Figure 12 -
Constraint Structure Immediately Before (top)
and After (bottom) Detection of an Infeasible
Path '

Figure 13 -
Summary of PROANS' Algorithm

12

16

18

22

25

26

28

33

35

37

47

Table of Figures (continued)

Figure 14 -
Summary of PROGP's Algorithm

Figure 15 -
Analysis of the Path P2

Figure 16 -
Redundancy Table

Figure 17 -
Partition of Constraint Structure
into two Equivalence Classes

Figure 18 -
The Reconfiguration Algorithm

Figure 19 -~
A Sample Reconfiguration

Figure 20 -
Division of the BNB Structure into its
two Components: AND-structure and
Effective OR-clause Structure

52

56

62

68

72

75

87

1. Overview of CONMAN

ATTEST is a symbolic execution system designed to be
used as a tool for validating programs. This report
describes one component of the ATTEST system, CONMAN, which
maintains a consistent representation of the constraints
that are created during symbolic execution. Before an
overview of CONMAN is given, an overview of ATTEST and some
terminology are presented.

Symbolic éxecution is a program validation method that
produces symbolic representations for the computatiods and
domain of a program path. To symbolically execute a program
path, symbolic names are substituted for the input values of
the path and each statement on the path is interpreted using
these symbolic names. The result of symbolically executing
a statement along a path depends on the nature of the
particular statement. For example, symbolically executing a
read statement results in the input variables being assigned
unique symbolic names to represent the input values.
Symbolically executing an assignment statement that assigns
the valde of an arithmetic computation to a variable,
results in the variable being assigned an algebraic
expression that represents the computation. The algebraic
expression generated by an assignment statemgnt is in terms
of the symbolic names that have been assigned to represent
the input values. The symbolic representations of a path's
compufatibns are provided by the algebraic expressions for

the path's output values.

The domain of a program path is determined by the
conditional statements that occur on the path. A symbolic
representation for this domain can be obtained by
symbolically executing these conditional statements as they
occur on the path. Symbolically executing a conditional
statement results in a syﬁbolic representation of the
condition that must be satisfied if execution is to proceed
along the branch specified by the path. This symbolic
representation is a logicél expression of equalities and
inequalities in the symbolic names of the input values and

is called the branch condition. After symbolic execution of

a path, the branch conditions of the executed conditional
statements can be conjoined into one 1logical expression,

called the path condition. The path condition describes, in

terms of the symbolic names of the input values, 'precisely
those input values that would cause execution of the
selected path, thereby providing a symbolic representation
for the domain of the path. If a solution exists to the

path condition, the path condition is said to be consistent

and the path 1s executable or feasible. Conversely, the

path is nonexecutable or infeasible and the path condition

is 1inconsistent if there is no assignment of values to

symbolic names that would satisfy the path condition.

The ATTEST system symbolically executes a program path
and then uses the path condition to determine path
feasibility, to create test data for feasible paths and to
detect certain program errors. ATTEST uses a linear

inequality solver to determine path feasibility and create

test data. ATTEST is therefore limited 1in these
determinations to paths whose path conditions can be
represented by linear equalities and inequalities.

ATTEST constructs the path condition incrementally.
Thus, as it symbolically executes a path, it maintains the

partial path condition for that portion of the path that has

been executed. A partial path condition is defined by the
conjunction of the branch conditions that have been
generated by symbolic execution of an initial segment of a
program path, or, if no branch conditions have been
generated, by the constant logical expression TRUE.

When a branch ;ondition is created, it is checked for
consistency with the partial path condition that already
exists. If consistent, it is conjoined to the existing
partial path condition and symbolic execution of the path
continues. Otherwise, the path is infeasible. In this
case, either symbolic execution is terminated altogether or
the path to be executed is redefined so that symbolic
execution continues down an alternate branch associated with
the conditional statement.

In addition to determining the feasibility of a path
and to generating test data, the ATTEST system determines if
certain program errors can occur along the path. An error
condition, such as array index out of bounds or division by
zero, can be represented symbolically by a logical
expression 6f equalities or inequalities in the symbolic
names of the input values of the path. When the possibility

of one of these program errors is detected during symbolic

execution of the path, a symbolic representation of the

error condition, called a temporary condition, is generated.

The temporary condition is checked for consistency with the
existing partial path condition. If consistent, a warning
message is returned to the user and a data set is generated
that would cause the error. Otherwise, the error cannot
occur. In either case, the temporary condition is not
conjoined to the partial path condition and path execution
is continued.

This report describes the constraint management

component (CONMAN) of the ATTEST system. CONMAN builds and
analyies the path condition of a selected path to determine
if the path is executable. When the path is executable
CONMAN also generates test data that would drive execution
down the path. The partial path condition is maintained in

a data structure, called the constraint structure. CONMAN

checks each new branch condition for redundancies with the
existing partial path condition when it adds a new branch
condition to the constraint structure. It then determines
if the new branch condition is consistent with the existing
partial path condition. 1In some cases, consistency can be
determined from the results of the redundancy check. In
other éases, the inequality solver is used in an attempt to
generate a solution that satisfies the partial path
condition recorded 1in the constraint structure. Based on
these determinations, CONMAN makes appropriate reductions to

the constraint structure.

Section 2 of this report describes how the constraint
structure 1is organized. Section 3 outlines the manner in
which CONMAN maintains the constraint structure to represent
the partial path condition. In section U the procedure by

which the partial path condition is tested for consistency
is described. The process that detects redundancies and
inconsistencies between the equalities and inequalities 1in
the path condition is described in Section 5. The
reconfiguration process, which selects alternative clauses
from disjunctive branch conditions, is described in Section
6. The reducﬁions that CONMAN makes to the constraint
structure are outlined in .section 7. Finally, section 8
describes how temporary conditions are used to detect
possible program errors. The design for CONMAN appears in

COINS Technical Note TN/CS/00047.

2. Representation of the Partial Path Condition

’ CONMAN maintains the conétraint structure to represent
the partial path condition for that portion of the path that
has been symbolically executed. This section describes this
representation. The first subsection defines the
fundamental units, called path constraints, that are used in
this representation. An intermediate conceptualization of
the constraint structure is described in the second
subsection. The transformations that the path constraints
undergo before being represented in the constraint structure
are discussed in the third subsection, and finally, the
actual representation of the path constraints is presented

in the last subsection of this section.

2.1. Path Constraints
To facilitate the analysis, the partial path condition
is maintained in conjunctive normal form. Thus, thé partial
path condition is composed of the conjunction of a finite
number of logical subexpressions, each of which is either a
single equality or 1inequality or the disjunction of
equalities and inequalities. Each subexpression is called a

path constraint. Each path constraint is classified

according to whether it is a disjunction of equalities and
inequalities, called an OR-group, or whether it is a single

equality or inequality, called an AND-constraint. The

individual equalities and inequalities of an OR-group are

called OR-clauses. The conjunction of the path constraints

that are generated by symbolic execution of an initial
segment of a program path defines the domain of the partial
path. Thus, all of the AND-constraints and at least one
OR-clause from each OR-group must be satisfied if the
partial path is to be executed.

Representations for the path constraints are recorded
in the constraint structure as the path constraints are
generated from symbolically executing conditional
statements. A non-empty constraint structure represents the
logical condition obtained by conjoining the path
constraints that are recorded in it, while an empty
constraint structure represents the constant logical
condition TRUE.

Paths from the sample program of Figure 1 are used to

illustrate the representations of path constraints. A graph

for this program is given in Figure 2. Conditional
statements have been represented 1in the program graph by

expressions, called branch predicates, that annotate the

associated edges in the graph that correspond to branches in
the program. Each branch predicate represents the condition
that must be satisfied by the values of the program
variables if the branch associated with the edge is to be
executed.

Nodes in the graph and corresponding'statements of the
program have been numbered for easy reference. A program
path can be specified by the sequence of node numbers that
are encountered along the path. Symbolic execution of this

path can then be viewed as the process of symbolically

PROGRAM MAXMAG

GIVEN A POSITIVE INTEGER N AND A SEQUENCE OF N
REAL NUMBERS, MAXMAG RETURNS THE MAXIMUM
MAGNITUDE OF THE NUMBERS IN THE SEQUENCE

10

O O Ul £ W N -

INTEGER N, I
REAL A, M

READ N
IF (N .LE. 0)
+ GOTO 100
M = 0.0
I =1
200 READ A
IF (A .LE. M .AND. -A .LE. M)
+ GOTO 300
IF (A .GT. M)
+ M= A
IF (-A .GT. M)
+ M = =A
300 I =T + 1
IF (I .LE. N)
+ GOTO 200
WRITE M
STOP
100 WRITE "ERROR"
STOP
END

Figure 1

Sample FORTRAN Program

l, 15
2 " N<O Writ
_ Iy "E;ROE" L'_—"—"
N>Ol

3 M=0.0
y I=1
5 {Read A ‘W
[6
(——-ﬂ
(A>M)v(=A>M)
7 A>M | M=A |8
(A<M) ~ (-A<M) J
|L_-A>M | M=-A | 10
J
1
ISN)

13 Write M

Figure 2

Graph for the Sample Program of Figure 1

‘executing the nodes and the edges that join the nodes in
this. sequence. Symbolically executing the nodes generates
the symbolic representations for the program variables.
Symbplically executing the edges generates the logical
expressions that are conjoined into the path condition. A
branch condition is generated by symbolic execution of an
annoéated edge, while the constant logical expression TRUE
is generated by symbolic execution of an edge that is not
annoted with a branch predicate.

Given a program path, Pk, Pk\n denotes the partial path
determined by the first n nodes in the sequence that
specifies Pk, and Pk\n+ denotes the extension of the partial
path Pk\n to include the edge joining node n and node (n+1)
of the sequence. For example, let P1 specify the program
path (1 2 15 16). Then P1\2 denotes the partial paﬁh (1 2),
and P1\2+ denotes the extension of the path (1 2) to include
the edge (2,15). Note that node 1, edge (1,2) and node 2
are executed during symbolic execution of P1\2, whereas the
path P1\2 and then the edge (2,15) are executed during
symbolic execution of P1\2+. The path condition for P1 is
obtained by conjoining the logical expressions generated by
symbolically executing the edges (1,2), (2,15) and (15,16).
The edges (1,2) and (15,16) both generate the logical
expression TRUE. The edge (2,15) generates a branch
condition that can be represented by the inequality

(S(N) < 0),
where S(N) denotes the symbolic representation of N after

execution of P1\2. Using the notation "variable-name$k" to

- 10 -

denote the kth symbolic name assigned to the variable
"variable-name", the above inequality results in the
following representation for the branch condition:
(N$1 < 0).
Thus, the path condition obtained by symbolically executing
P1 is represented by the logical expression
((TRUE) and (N$1 < 0) and (TRUE)),

which simplifies to (N$1 < 0). Since a path condition
trivially simplifies to the conjunction of the branch
conditions obtained by symbolically executing the annotated
edges in the path, the unannotated edges are not discussed
further.

For a less trivial example consider the path P2 = (1 2
3 4 5 6 7 8 9111256 11125679 10 11 12 13 14).
Symbolic execdtion of the partial path P2\2+ results in the
partial path condition (N$1 > 0). Since edge (6,7)
represents the next conditional statement in P2, the partial
path condition remains constant wuntil this edge 1is
encountered. The branch condition generated by the edge
(6,7) is ((A$1 > 0.0) or (-A$1 > 0.0)). Thus, the partial
path condition for the partial path P2\6+ is:

((N$1 > 0) and ((A$1 > 0.0) or (-A$1 > 0.0))).

This partial path condition consists of two constraints:

one AND-constraint, (N$1 > 0); and one OR-group,

((A$1 > 0.0) or (-A$1 > 0.0)). The table in Figure 3

summarizes the results obtained from symbolically executing
P2. The path condition for P2 is simply the conjunction of

the branch conditions B1 through B11. One path constraint

-11 -

Last

Partial Edge Branch Condition Partial Path
Path Selected Generated Condition
P2\2+ (2,3) B1: (N$1 > 0) B1
P2\6+ - (6,7) B2: (A$1 > 0.0) or (-A$1 > 0.0) B1 & B2
P2\7+ (7,8) B3: (A$1 > 0.0) B1 & B2 & B3
P2\9+ (9,11) B4: (-A$1 < A$1) Bt&......&B4
P2\11+ (12,5) BS: (2 < N$1) B1&......&B5
P2\13+ (6,11) B6: (A$2 < A$1) and (-A$2 < A$1) B1&......&B6
P2\15+ (12,5) B7: (3 < N$1) B1&......&B7
P2\17+ (6,7) B8: (A$3 > A$1) or (-A$3 > A$1) B1&......&B8
P2\18+ (7,9) B9: (A$3 < A$1) Bl&...... &B9
P2\19+ (9,10) B10: (-A$3 > A$1) B1&......&B10
P2\22+ (12,13) B11: (4 > N$1) B1&..... .&B11
7
P2=(1 23 456789111256 1112567 9 10 11 12 13 14)

Figure 3

The Successive Partial Path Conditions That Are
Generated During Symbolic Execution of P2

- 12 -

is defined by each of the branch conditions except B6, which
defines two path constraints. Thus, symbolic execution of
P2 genérates a total of 12 path constraints. The
constraints obtained from B2 and B8 are OR-groups and
consist of two OR-clauses each, while the vremaining ten
constraints are AND-constraints. Any assignment of input
values to the symbolic names, A$1, A$2, A$3, and N$1, that
satisfies the ten AND-constraints and one OR-clause from
each of the OR-groups forces execution down the path P2.
1), (A$2

For example, when (A$1 1), (A$3 = -2) and

(N$1 = 3), P2 is executed. Using this assignment of values
to symbolic names, all of the AND-constraints, the first
OR-clause of the first OR-group and the second OR-clause of
the second OR-group are satisfied.

CONMAN méintains the AND-constraints and the OR-groups

in separate data structures, called the AND-structure and

the OR-structure, respectively. Conceptually, the

representation of the equalities and inequalities in the two
structures is very similar. However, at the implementation
level the representations differ for two reasons. First,
diffefences arise from the need for additional information

in the OR-structure to maintain the proper partitioning of

the OR-clauses into OR-groups. Second, the AND-structure is

passed to the inequality solver to determine a data set that
exercises the path. Since the AND-structure is a component

of the BNB-structure, the data structure that defines the

problem to be solved by the inequality solver, it is

maintained in the form that is required by the inequality

-13 -

soiver (see Appendix A). The next two subsections describe
theavAND-structure and the - OR-structure in more detail.
Examples throughout the remainder of this section wuse the
constraints that are generated by symbolic execution of the

path P2.

2.2, Conceptual Representation

In this subsection a convenient conceptualization of
the constraint structure 1is introduced. Although not
implemented, this abstraction is easier to wunderstand and
manipulate‘ than the representation that is actually used.
Furthermore, the actual representation is best described in
terms of this conceptual representation.

CONMAN puts each linear equality or inequality in a
standérd form in which the lefthand side (LHS) is written as
a linear combination of symbolic names, the righthand side
(RHS) as a‘ constant, and the relation between the LHS and
the RHS as either less than (<), less than or equal (<), or
equal (=). For example, the constraint (-A$3 > A$1) that is
generated by B10 is expressed as (A$1 + A$3 < 0). It is
this standard form of an equality or inequality that is
represented 1in the conceptualization of the constraint
structure.

With suitable conventions to determine the association
between . coefficients and symbolic names, the standard form
of a linear equality or inequality can be represented by é
vector of coefficients, the constant term and the relation

between the LHS and the RHS. This suggests a natural

- 14 -

representation for a group of equalities and inequalities
using matrices and vectors. Thus conceptually, the
AND-structure 1is composed of three components: a matrix,
called the A matrix, in which the coefficients of the
AND-constraints are recorded; a vector, called the B
vector, that records the constants that appear on the RHS of
the AND-constraints; and a vector, called the § vector,
that records the relations involved in the AND-constraints.
Each row of the A matrix records the vector of coefficients
defined by the LHS of one AND-constraint, while the same row
(or entry) in the B and S vectors record, respectively, the
constant term and the relation that appears in the
constraint. As AND-constraints are generated along the
path, they are assigned to rows sequentially. Each column
of the A matrix corresponds to one symbolic name.. Thus, the
symbolie name that is associated with a coefficient
determines the column of the A matrix iﬁ which the
coefficient is recorded. The ATTEST system aésumes a
maximum of 100 symbolic names in each program path. The A
matrix, therefore, contains 100 columns. Symbolic names
that are required to take on integer values are assigned to
the first fifty columns in the order of their first
appearance. in the path constraints. Similarly, éymbolic
names that are required to take on real values are assigned
to the 1last fifty columns in the order of their first
appearance in the path constraints. Figure U4 demonstrates
these data structures using the AND-constraints that are

generated by symbolically executing P2,

- 15 «

Column
number

A matrix

vector vector

...50 51 52 53 54,.100

..0

o

o O O o o o o o N

o ©o O O o o o o

o

Matrix

0 0 O
-1 0 O
-2 0 O

0 0 O
-1 1 0
-1 -1 0

0 0 O
-1 0 1

1 0 1

0 0 O

0....0) (<)
..o | <
0....0] |«
0....0] |«
0....0] |«
0....0] | <
0....0] | <
0....0] | <
0....0] | <
0....0) { <,
Figure 4

S

B

AND-constraint
(standard form)

-N§1 < 0
-A$1 < O

~2A$1 < 0.0
-N$1 < -2
-A$1+A$2 < 0.0
_A$1-482 < 0.0
-N$1 < -3
-A$1+A$3 < 0.0
A$1+A83 < O
N$1 < 4

Conceptualization of the AND-structure

After Symbolic Execution of P2

- 16 -

The conceptualization of the OR-structure parallels the
matrix representation of the AND-structure described above.
Like the AND-structure, the OR-structure can be énvisioned
as consisting of three components: a matrix of
coefficients, called the OR matrix; a vector for the
constant terms, called ORB; and a vector for the relations,
called ORS. An entry in ORB and ORS and a row of the OR
matrix are associated to an OR-clause in the order in which
the clause is encountered along the path. The OR matrix,
like the A matrix, contains one hundred columns. The same
association between symbolic names and columns is maintained
in the OR-matrix as is maintained in the A matrix.
Corresponding columns of the A matrix and the OR matrix are
thereby associated to the same symbolic names. To delimit
individual OR-groups, the OR~structure maintains an
additional vector, called ORGRP. The entries of ORGRP
identify the rows of the OR matrix that contain the first
clause of each OR-group. The OR matrix and the ORB and ORS
vectors record the actual equalities and inequalities
involved in the OR-clauses, while ORGRP maintains the proper
partitioning of the OR-clauses into OR-groups. Figure 5
demonstrates these data structures using the OR-groups that
are generated by symbolically executing P2.

At the implementation level, a sparse array is used to
represent the matrices in the OR structure and the AND
Structure. Since the AND-structure is a component of .the
BNB structure, however, an additional transformation is

required before AND constraints can be put into this sparse

- 17 -

OR-matrix ORS ORB OR-clause
(standard form)

Column

Number 1 2..50 51 52 53 54,.100
fb 0...0 -1 0 O 0...6\ f<\ (6.6\ -A$1 < 0.0
0 0...0 1 0 O O0...0 < 0.0 A$1 < 0.0
0 o0. 0 1 0 -1 0...0 < 0.0 A$1-A%$3 < 0.0
0 0...0 1 0 1 0...0 < 0.0 A$1+A$3 < 0.0
\. J \ J\ J

"~ ORGRP 1131]5

Figure 5

Matrix Conceptualization of the OR-structure
After Symbolic Execution of P2

- 18 -~

array format. This transformation is described in the next

subsection.

2.3. Constraint Transformation

To conform with the standards of the inequality solver,
CONMAN 1is required to transform each AND-constraint. There
are two characteristics of the linear inequality solver that
make such a transformation necessary. First, it cannot
handle strict inequalities; and second, it constrains the
values of its variables to be non-negative. Therefore, the
transformation of an AND-constraint is a two-step process.
The first step, which is omitted for constraints that are
not strict inequalities, addresses the first 1limitation.
The second step, which 1is done for every constraint,
addresses the second.

If the relation between the LHS and the RHS of a
constraint that 1is 1in standard form is <, then the first
step of this transformation consists of subtracting a small
positive constant from the RHS of the constraint and
changing the relation to <. For expositional purposes, e is
used -to denote this small, positive constant. Thus,
(A$1 + A$3 < 0), which is the standard form for the
constraint (-A$3 > A$1) generated by B10, is changed into
(A$1 + A$3 < -e). 1If the relation between the LHS and the
RHS of a constraint in standard form is < or =, this first

step is omitted.

- 19 -

Since the inequality solver constrains all variables to
have non-negative values, the second step in transforming an
AND-constraint consists of expressing each symbolic name as
the difference betweeﬁ two non-negative valued variables and
substituting these expfessions into the constraint in place
of the original symbolic names. For example, consider
(A$1 + A$3 £ -e), which is the partially transformed form of
the constraint (-A%3 > A1) mentioned above, The
expressions (A$1 = A$1' - R) and (A$3 = A$3' - R) are used
to transform this constraint into (A$1' + A$3" - 2R < -e),
with A$1', A$2', and R all constrained to be non-negative.
Note that the expressions that are substituted for the
~original symboliec Names can be used to translate any
solution for the transformed constraint into a solution for
the originial constraint, For example, the solution
(A$1' = 3), (A$3' = 0), and (R = 2) for

(A$1' + A$3' - 2R < -e)
can be translated to give (A$1 = 1) and (A$3 = -2), a
solution for (-A$3 > A$1). Thus for the second step of the
transformation, a constraint is expressed in terms of
non-negative valued variables. One non-negative valued
variable is associated to each gymbolic name and, for
expositional purposes, is marked by a prime ('). Two
additional non-negative valued variables are used to
supplement the primed variables. One, the integer

translation variable, serves as the subtrahend in

expressions for symbolic names that are required to take on

integer values. The other, the real translation variable,

- 20 -

serves as the subtrahend in expressions forlsymbolic names
that are required to take on real values. Thé integer and
real translation variables are denoted by I and R,
respectively. The integer translation variable and the
primed variables associated with integer valued symbolic
names are required to take on non-negative, integer values,
while the real translation variable and the primed variables
associated to real valued symbolic names are required to
take on non-negative, real values.

When the second step of the transformation is applied
to the path P2, the following substitutions are made for the

symbolic names.

N$1 = N$1'-1
A$1 = A$1'-R
A$2 = A$2'-R
A$3 = A$3'-R

Figure 6 gives the result of transforming each of the
AND-constraints involved 1in this path. The solution,
(A$1' = 3), (A$2' = 1), (A$3' = 0), (N$1' = 3), (R = 2) oand

(I =0), for the transformed constraints in this example,

would result in (A$1

1), (A$2 = -1), (A$3 = -2) and
(N$1 = 3) being generated to solve the original constraints.

Conceptually, the transformed constraints can be
represented by a matrix of coefficients and by vectors for
the relations and constant terms in the same way that the
original ' constraints are. Thus, the S and B vectors
represent, respectively, the relations and the constant

terms in the transformed constraints. Since the transformed

- 2] -

AND-constraints

Standard form Transformed form
-N$1 < 0 -N$1'+I < -e

-A$1 <O -A$1'+R < -e

-2A%$1 € 0.0 -2A$1'+2R < 0.0
-N$1 < -2 -N$1+I < -2
-A$1+A82 < 0.0 -A$1'+A82"' < 0.9
-A$1-A8$2 < 0.0 -A$1'-A$2'+2R < 0.0
-N$1 < -3 ~N$1'+I < -3
-A$1+A8$3 < 0.0 -A$1'+A83' < 0.0
A$1+A$3 < 0.0 A$1'+A$3'-2R £ -e
N$1 < 4 N$1'-I < lU-e

Figure 6

The AND-constraints Generated by P2, Shown in Standard
Form and After Being Transformed by CONMAN

- 22 -

constraints involve a primed variable for each of the
symbolic names and may involve the integer translation
variable or the real translation variable, or both, the
matrix of coefficients for the transformed constraints
contains 102 columns. The 101st column corresponds to the
integer translation variable, I, and the 102nd column
corresponds to the real translation variable, R. The first
100 columns correspond to the primed variables in a natural
way. The same column that is used for a symbolic name in
the A matrix, is used for the associated primed variable in
the matrix of coefficients for the transformed constraints.
Therefore, since the coefficient of a symbolic name in a
constraint and the coefficient of the associated primed
variable in the transformed constraint are identical, the A
- matrix is embedded in the matrix of coefficients for the
transformed constraints. It occupies the first one hundred

columns of that matrix.

- 23 -

2.4, Sparse Array Representation

For most purposes the AND structure can be envisioned
as consisting of the A matrix and the S and B vectors, while
the QR structure consists of the OR matrix and the ORS and
ORB vectors. In actuality, however, the AND structure
consists of the S and B vectors, and of a sparse array
roprésentation of the matrix of coefficients for the
transformed AND-constraints, while the OR structﬁre consists
of the ORS and ORB vectors, and of a sparse array
representation of the OR matrix. This subsection describes
the sparse array representations.

The sparse array representation that CONMAN uses for
the matrix of coefficients for the transformed
AND-constraints conforms to the standards of the inequality
solver. The non-zero elements of the matrix are stored row
by row in a one-dimensional array, called the AA array. A
second array, called JCOL, records the number of the column
in the coefficient matrix of each entry of the. AA array.
Successive entries of a third array, called IROW, record the
index of the entry in the AA array that contains the first
coefficient of successive rows of the coefficient matrix.
Thus, the entries of IROW point into the AA array to the
beginning of the rows of the coefficient matrix. The number
of AND-constraints in the AND-structure is specified by the
value of NEWAN. Figure 7 provides a conceptualization of
this data structure. Figure 8 shows the sparse array
representation for the matrix of coefficients for the

transformed AND-constraints that would be generated by

- 24 -

Non-zero coefficients
AA . . . of row i of
matrix of coefficients

Actual columns in matrix
JCOL « e e of coefficients of the
entries of the AA array

! c

IROW .« e e ! !

1 i i+1
NEWAN

Figure 7

Conceptualization of the Sparse Array Representation
Used in the AND-structure

- 758 -

AA array [-1[1 |=1[1 |«2f 2 [<1] 1 |-1] 1|-1]=1]2 |-1] 1 |-1

-2

-1

JCOL 1 115215152 [102] 1[101]51

53

51

53

102

101

01|51 ho2{51{102] 1|101]5
A
e o 9
3(5|7(9]11]14]16]1821

IROW 1 23

NEWAN
Figure 8

Sparse Array Representation of the Matrix of Coefficients
of the Transformed AND-constraints of Figure 6

- 26 -

: symbolic execution of P2. Note that the coefficient matrix
is completely characterized by the AA, JCOL, and TROW
arrays.

The OR matrix is represented in the OR-structure as a
sparse array 1in the same manner that the matrix of
coefficients for the transformed constraints is represented
in the AND-structure. The non-zero elements of the OR

matrix are stored in the ORAA array, row by row. ORCOL

signifies to which column of the OR matrix each entry of the
ORAA array belongs, and ORROW signifies in which element of
the ORAA array each row of ﬁhe OR matrix begins. The value
6f NEWOR indicates the number of OR-groups that are recorded
in the OR structure. Figure 9 shows the sparse array
representation of the OR matrix of Figure 5. Note that the
OR clauses have not had the two translation steps performed
on them. This is because the BNB strugture, which defines
the problem to be solved by the inequality solver, does not
use the OR-structure. When a solution 1is required to
satisfy a particular OR-clause, CONMAN translates the
OR-clause before representing it inithe BNB structure (see
Appendix A).

This section has described how the constraints that are
generéted when a program path is symbolically executed are
represented in the constraint structure. CONMAN does not
record these constraints in one indivisible step. Instead,
it begins with an empty constraint structure and, as long as
the partial path condition is conéistent, it enters each

-constraint as it is generated during the symboliec execution

- 27 -

ORAA

ORCOL

ORROW

ORGRP

Sparse Array Representation of the OR-matrix of Figure 5

-1

51 51 51 53 51 53
)
1 2 3 5 7
—W*
1 3 5
NEWOR
Figure 9

- 28 -

process. Therefore, at any point during this process the

constraint structure represents the partial path condition
of that portion of the path that has been symbolically
executed. The next section describes the process by which

the partial path condition is maintained.

- 79 o

3. Maintaining the Partial Path Condition

CONMAN builds the path condition of a specified program
path in an incremental fashion. This section describes the
algarithm it uses and develops some terminology that is
needed later in this report. Two examples are presented.
One illustrates the manner in which the path condition for
P2 is constructed. The other demonstrates the steps
involved in detecting an infeasible path.

As ATTEST sequentially executes the nodes and edges in
a path, CONMAN maintains the constraint structure to
represent the partial path condition for that portion of the
path that has been executed. The partial path condition is
the conjunction of the branch conditions that have been
generated so far. Each time ATTEST symbolically exgcutes an
edge that is annotated with a branch predicate, CONMAN
determines if the branch condition generated by symbolically
executing that branch predicate is consistent 'with the
partial path condition that is currently in the constraint
~Structure and updates the constraint structure accordingly.
CONMAN accomplishes this in three steps. First, it adds the
constraints in the branch condition. to the constraint
structure. Second, it determines if this new constraint
stfucture is consistent. And third, it updates the
constraint structure according to the results obtained in
the second step. Each of these steps is described in more

detail below.

- 30 -

-~

To simplify the description, assume the following
situation. During symbolic execution of a program path, Pk,
the partial path, Pk\n, has been executed and the extension
of this partial path to Pk\n+ generates a branch condition.
At this point, the constraint structure contains the partial
path condition for Pk\n, which 1is referred to as the

existing partial path. This condition 1is called the

existing condition. The AND-constraints involved in the

existing condition are called old AND-constraints, while the

‘ OR-groups are called old OR-groups. Collectively, all of

the constraints in the existing condition are called the old

constraints. CONMAN maintains two pointers, OLDAN and

OLDOR, which point to the last old AND-constaint in the AND
structure and the 1last old OR-group in the OR-structure,
respectively. NEWAN and NEWOR, as described in the previous
section, point to the 1last AND-constraint and last
OR-constraint in the constraint structure. After
symbolically executing Pk\n the old constraints are the only
constraints in the constraint structure so that the values
of OLDAN and OLDOR coincide with the values of NEWAN and
NEWOR.

After symbolically executing the nth edge, CONMAN adds
the new branch condition to the constraint structure. The

constraints that define this branch condition are called the

new constraints. CONMAN adds new AND-constraints to the

AND-structure directly below the old AND-constraints and new

OR-groups to the OR-structure directly below the old
OR-groups. After this addition OLDAN and NEWAN delimit the

- 11 -

old and new sections of the AND structure, while OLDOR and
NEWOR delimit the old and new sections of the OR-structure.
The division of the constraint structure into new and old
sections after the application of this first step is
depicted in Figure 10. The conjunction of all the
con#traints in the constraint structure, called the

augmented condition, defines the partial path condition for

Pk\n+.

After creating the augmented condition, CONMAN analyzes
it to determine if it is consistent. A detailed description
of how CONMAN analyzes the augmented condition is deferred
to the next section. The partitioning of the constraint
structure into old and new sections is maintained during
this analysis. The constraint structure is then updated
according to the results obtained in the analysis étep. If
the augmented condition is consistent, the new branch
condition is incorporporated into the existing condition 'by4
repositioning the pointers OLDAN and OLDOR to NEWAN and
NEWOR, respectively. Thus, the constraint structure is
updated to represent the partial path conditioa for Pk\n+
and symbolic execution proceeds along the program path Pk,
If the augmented condition 1is inconsistent, thé branch
condition is removed from the constraint structure by
repositioning NEWAN and NEWOR to OLDAN and OLDOR,
respectively. Thus, the constraint structure is returned to
representing the partial path condition for Pk\n. 1In this
later case, the original path, Pk, is infeasible. Symbolic

execution of Pk must be abandoned, but a different path can

- 32 -

01d 101d

And-constraints|OR-groups <~ OLDOR
New
OR-groups <{- NEWOR
OLDAN =->
New

NEWAN ->{AND-constraints

Figure 10

Partitioning of the Constraint Structure into
New and 0Old Sections

be symbolically executed, beginning at its nth edge. The
new path must extend Pk\n by selecting an edge that is not
associated with the offending branéh predicate.

; The process of maintaining the path condition is
illustrated wusing the path P2. The diagram in Figure 11
shoés the constraint structure after each of the first four
branch predicates have been encountered during symbblic
execution of this path and before each augmented condition
has been analyzed. Initially the constraint structure,
which is empty, represents the constant 1logical condition
TRUE. As this is the partial path condition for P2\2, the
old section of the constraint structure represents the
partial path condition for P2\2, which is the existing
partial path prior to analysis of P2\2+. The constraint
(N$1 > 0) defines the branch condition generated by symbolic
execution of the edge (2,3), the first annotated edge in P2.
Thus, this is the only constraint in the new section of the
constraint structure in the first diagram, and the augmented
condition is the partial path condition for P2\2+. Since
this augmented condition is consistent, the above branch
condition 1is part of the existing condition in the diagram
for P2\6+. The new section of the constraint structure in
this diagram consists of the single OR-group, ((A$1 > 0.0)
or (-A$1 > 0;0)), which defines the branch condition
generated by symbolic execution of the next annotated edge‘
along the path. The old section represents the partial path
condition for P2\6. The augmented condition is the partial

path condition for P2\6+. Again, the augmented condition is

- 34 -

Partial Path

OLDAN
NEWAN
P2\2+
OLDAN, NEWAN
P2\6 +
OLDAN
P2\T+ 1
NEWAN
OLDAN
P2/9+
NEWAN

Evolution of
Branch Predicates

AND-structure

OR-structure

->
->| N$1 >0
->] N$1 > 0 A$1 > 0.0 or -A$1 > 0.0
->| N$1 > 0 A$1 > 0.0 or -A$1 > 0.0
->| A$1 > 0.0

N$1 > 0 A$1 > 0.0 or -A%$1 > 0.0
->| A$1 > 0.0
=>|-A31 < A$1

Figure 11

<=

(=

<

<

OLDOR, NEWOR

OLDOR
NEWOR

OLDOR, NEWOR

OLDOR, NEWOR

the Constraint Structure as the First Four
are Encountered during Symbolic Execution of P2

- 35 -

consistent. Similarly, the diagrams for P2\7+ and P2\9+
show the constraint structure after the next two branch
predicates have been encountered and before the structure
has peen updated.

‘For another example, consider the infeasible path P3=(1
2 3 4 5679 111213 14). The top diagram of Figure 12
depicts the constraint structure after the fourth branch
condition has been recorded in the new section of the
constraint structure. At this point the augmented
condition, which is the partial path condition for P3\8+, is
inconsistent. Therefore, as shown in the bottom diagram of
the same figure, the fourth branch condition is deleted from
the constraint structure after analysis of this augmented
condition. Symbolic execution of the original path, P3,
must be abandoned, but symbolic execution may continue along
any path that extends. P3\8 by selecting the edge (9,10).
For example, the path PU=(1 23 456 7 9 10 11 12 13 14)
may be symbolically executed using the results already
obtained from analysis of P3\8, which coincides with PU4\8.

Thus, CONMAN builds the path condition in stages that
correspond to the different partial path conditions that are
generated as the path is symbolically executed. This
section has described how the transition between stages is

made.

- 36 -

AND—strhcture OR-structure

* Partial Path

N$1 > 0 |-A$1 > 0.0 or A$1 < 0.0 |[<- OLDOR,NEWOR
OLDAN ->| A$1 < 0.0 |

P3\8+
NEWAN ->/ -A.1 < 0.0
N$1 > 0 -A$1 > 0.0 or A$1 < 0.0 |<- OLDOR,NEWOR
OLDAN, NEWAN -> A$1 < 0.0
P3\8
~.
Figure 12
Constraint Structure Immediately Before (top) and After (bottom)
Detection qf an Infeasible Path

- 37 -

4, Analysis of the Partial Path Condition

The previous section describes the method by which
CONMAN maintains the partial path condition. This section
discgsses how the partial path is analyzed. The routine
respbnsible for this analysis 1is called TRYPTH. A high
levei overview of the algorithm used in TRYPTH is developed
in the first subsection of this sectibn. First, the
terminology needed for this discussion is presented. Then,
the overview of TRYPTH is developed and a convention that
simplifies this algorithm is discussed. The detailed
description of TRYPTH that 1is presented in the second
. Ssubsection assumes a thorough understanding of this
convention and of the implications that can be drawn from
it., This description is followed by an example that uses

the path P2.

4.1 Overview of TRYPTH

As described in the previous section, CONMAN represents
the augmented condition in the constraint structure before
it calls TRYPTH. TRYPTH then attempts to generate a set of
values that, if assigned to the symbolic names in the path,
would satisfy the augmented condition. If it succeeds, the
augmented condition is consistent and a data set that would
exercise the augmented partial path has been generated. If
it can show that there 1is no assignment of values to
symbolic names that satisfies the augmented condition, the

augmented condition is inconsistent. In this manner TRYPTH

- 38 -

simultaneously determines if the augmented partial path is
consistent and if it 1is, generates test data. The
'terminoloéy that is developed below facilitates a more
precise statement of what is involved in the analysis as it
has been outlined above.

Any assigmment of values to symbolic names that
satisfies the augmented condition must satisfy all of the
AND-constraints and at least one OR-clause from each
OR-group in the aﬁgmented condition. To generate such an
assignment, TRYPTH must first select an OR-clause from each
OR-group so that the conjunction of the selected OR-clauses
and the AND-constraints is satisfiable. An OR-cléuse
selection refers to a choice of one OR-clause from each of
the first K OR-groups, where NEWOR > K > 0. TRYPTQ uses a

1
vector, - called a configuration, to represent a given

OR-clause selection. The OR-groups along the path are
associated to the entries‘of the configuration in the order
in which the.OR-groups are recorded in the OR structure.
Each of the first K entries records the number of the
OR-clause that the OR-clause selection chooses from the
associated OR-group. All other entries are zero, indicatihg
that the OR-clause selection does not select an OR-clause
from those OR-groups. TRYPTH uses a variable called CONF,
.for recording configurations. Since CONMAN assumes a
maximum of 80 OR-groups in a program path, CONF is an
80-dimensional array. A zero is recorded in each entry of
CONF forl which there 1is no OR-group in_ the augmented

condition. In' the process of analyzing the augmented

- 39 -

condition‘ the value of CONF is continually modified. 1Its
value at the beginning of any step in this process is said

to be the starting configuration for that step.

Given a configuration, a second configuration 1is said
to extend the first configuration if the set of OR-clauses
selected by the first configuration is contained in the set
of OR-clauses selected by the second. A configuration is
said to be full {if it selects an OR-clause from each
OR-group in the augmented condition. A configuration and
the OR-clause selection that it represents* are said to be
consistent if the conjunction of the AND-constraints and the
OR-ciauses selected by the configuration is satisfiable.
Thus, if a configuration is consistent, values can be
assigned to the symbolic names in the augmented co?dition 1o}
that each AND-constraint and each OR-clause selectéd by the
configuration is satisfied. Such ah assignment is said to
§gl!§ the conjunction of the AND-constraints and the
OR-clauses selected by the configuration. More simply, it
is called a solution for the configuration. - TRYPTH
maintains a vector, called CFSOL, to represent a solufion
for the configuration recorded in CONF. CFSOL 1is a
100-dimensional array in which the values assigned to the

symbolic names by the solution are recorded. The column iq

¥Here and in the future, the OR-clause Sselection that 'a
configuration represents and the configuration itself, are
used interchangeably. This avoids terminology such as "the
OR-clauses chosen by the OR-clause selection that is
represented by the configuration", which is more simply
stated as "the OR-clauses Selected by the configuration".

- 40 -

the A array that corresponds to a symbolic name determines
the column (entry) of CFSOL that corresponds to the same
symbolic name. By convention, symbolic names that are not
involved in the augmented condition are assigned a zero by
any solution. Thus, any entries of CFSOL for which there
are no symbolic names are zero. As the value of CONF is
modified by TRYPTH, the value of CFSOL 1is updated
accordingly. The value of CFSOL at the beginning of any

step 1in TRYPTH is said to be the starting solution for that

step. Using the terminology developed above, the augmented
condition 1is consistent if there exists a full consistent
configuration -- that is, if there exists a configuration
whose first NEWOR entries are all non-zero and for which
there is a solution.

For example, the configuration [1, 0] selects the first
OR~clause from the first OR-group in the path condition for
P2. When P2\6+ is being analyzed by TRYPTH, this is a full,
consistent configuration (see Figure 3). A Solution for
this configuration is given by (N$1 = 1), (A$1 = 1),
(A$2 = 0) and (A$3 = 0). Thus, the partial path condition
for P2\6+ is consistent. Although [1, 0] is a consistent
configuration during analysis of P2\19+, it is not a full
configurafion since it doesn't select an OR-clause from the
second OR-group in the augmented condition. The
configufation [1, 11 extends the above configuration to a
full configuration. This configuration is not consistent,
however, since the OR-clause that it selects from the second

OR-group, (A$3 > A$1), 1is 1inconsistent with (-A$3 > A$1),

- 41 o

the AND-constraint that was generated by symbolic execution
of the edge (9,10). The partial path condition for P2\19+
is econsistent though, since [1, 2] 1is a full, consistent
configuration. The assignment (N$1 = 3), (A%1 = 1),
(A$? = 0) and (A$3 = -2) is a solution for this
configufation.

The 1inequality solver can be used to test a
configuration for consistency. TRYPTH can 1invoke the
inequality solver to generate a solution for the set of
equalities and inequalities defined by the AND-constraints
and the OR-clauses that are selected by a particular
configuration (see Appendix A). If a solution is returned,
the configuration is consistent. Otherwise, the
configuration is inconsistent. |

It is sometimes more efficient, however, to use the
results obtained from analyzing an earlier partial patﬁ to
determine if a particular configuration is consistent. This
is the case, for example, if the new condition consists only
of AND-constraints and if the new AND-constraints are
implied by old constraints. Then the configuration and the
solution that were generated when the existing condition was
analyzed in an earlier c¢all to TRYPTH represent a full,
consistent configuration and solution for the augmented
partial path. The results of analyzing an earlier partial
path can also be used to conclude that certain
configurations are inconsistent. In particular, a
configuration is inconsistent if it extends a configuration

that was found to be inconsistent in an earlier call to

- 42 -

TRYPTH. It is more efficient to use the results obtained
from the analysis of the earlier partial path than it is to
use the inequality solver 1in situations . such as those
described above.

To avoid unnecessary calls to the inequality solver,
the- configuration and the solution that were obtained when
the existing condition was analyzed by TRYPTH are made
available during the analysis of an augmented condition.

These are referred to as the existing configuration and the

existing solution and are recorded in the variables EXCON

and EXSOL, respectively. After TRYPTH determines if the
augmented condition 1is consistent, it wupdates EXCON and
EXSOL for the next call to TRYPTH. Thus, if analysis of the
augmented condition reveals it to be consistent, TRYPTH
records a fulh, consistent configuration and solution in
EXCON and EXSOL. Otherwise, it does not alter their values.
At the call to TRYPTH, therefore, EXCON and EXSOL contain
the existing configuration and existing solution that are tp
be used during analysis of the current augmented condition.
Note that the existing solution 1is known to solve the
conjunction of the old AND-constraints and the OR-clauses
that are selected by the existing configuration. If it also
satisfies the new AND-constraints and an OR-clause from each
of the new OR-groups, the augmented condition.is consistent

and the inequality solver does not have to be called.

- 43 -

.To avoid unnecessary calls to the inequality soiver,
TRYPTH also adheres to a convention that permits it to use
the éxisting configuration to identify certain inconsistent
configurations. First, the set of all possible
configurations for a given path is considered to be ordered
using the standard lexicographical order relation. Thus, a

configuration is less than those configurations that it

precedes lexicographically. Then, if the augmented
condition is consistent, TRYPTH generates the smallest,
full, consistent configuration and a corresponding solution,
rather than an arbitrary full, consistent configuration and
solution. Because of this convention, any configuration
that is less than the existing configuration extends a
configuration that was found to be inconsistent in an
earlier call to TRYPTH. Thus, the existing configuration
establishes a lower bound on the set of full, consistent
configurations. Only configurations larger than the
existing configuration are considered by TRYPTH when it
analyses the augmented condition. |

In its first attempt to find the smallest, full,
consistent configuration and a corresponding solution,
TRYPTH wuses the existing configuration, the existing
solution, and any redundancies and inconsistencies that it

detects between the new and old constraints. The method for

detecting redundancies and inconsistencies is described in

Section 5. If this attempt fails, TRYPTH uses the
inequality solver to determine if any of the configurations

larger than the existing configuration are consistent.

- 44 -

Reconfiguration, the method for finding the next largest
consistent configuration is described in Section 6. If the
smallest, full, consistent configuration and a corresponding
solution are produced, the augmented condition is consistent
and the solution provides a data set that would exercise the
augmented partial path. CQtherwise, the augmented condition

is inconsistent.

4,2 Description of TRYPTH
CONF is essentially used as a counter by TRYPTH. When
TRYPTH is called, CONF and CFSOL are initialized with EXCON
and EXSOL, respectively. Thus, TRYPTH starts with the
existing configuration and the existing solution. As it
analyzes the augmented condition TRYPTH increments CONF,
updating CFSOL appropriately, until either CONF contains the

~smallest; full, consistent configuration and CFSOL contains

a corresponding solution or the augmented condition is
determined to be infeasible.

Recall that when TRYPTH 1is invoked, the branch
conditioﬁ generated by symbolically executing an annotated
edge has been recorded in the constraint structure. At this
point, the constraint structure is divided into old and new
sections. The old section represents the existing
condition, while the new section represents the branch
condition that has just been generated. If the new section
contains | AND-constraints TRYPTH invokes the subroutine
PROANS to process the new AND-constraints. Then, if the new

AND-constraints are found to be consistent with the old

- 45 -

ANDTconstraints and the old OR-groups and if the new section
of the constraint structure contains new OR-groups, TRYPTH
invqkes the subroutine PROGP to process each new OR-group.
PROANS and PROGP are described below.

f PROANS analyzes the constraints in the augmented
‘condition as if there were no new OR-groups to satisfy. It
starts with the existing configuration and the existing
solution and looks for the smallest, consistent
configuration that selects an OR-clause from each o01ld
OR-group, but does not select an OR-clause from any of the
new OR-groups. PROANS" algorithm is summarized in
Figure 13. The five steps in this algorithm, vwhich are
executed sequentially, are described in more detail below.
As soon as a step produces the required configuration or
reveals that the augmented condition is inconsistent, PROANS
returné, bypassing any subsequent steps.

| In the first step, PROANS looks for redundancies and
inconsistencies between the new AND-constraintsAand the old
AND-constraints, The types of redundancies and
inconsistencies that it detects and the algorithm with which
it detects them are described in Section 5. If any
redundancies are detected, the constraint structure is
simplified accordingly. 1In the process of simplifying the
constraint structure, individual AND-constraints may be
killed. The modifications that are made to the constraint

structure for this purpose are described in Section 7.

- 46 -

(1)

(2)

(3)

(4)

(5)

Check new AND-constraints and old AND-constraints for
redundancies
and inconsistencies;

If any inconsistencies are detected then
return (infeasible path);

If the old AND-constraints imply the new ones then
return;

Substitute starting solution into each new
AND-constraint;

If all are satisfied then
return;

Call inequality solver to test the starting
configuration
for consistency;
If consistent then
CFSOL = the solution generated and
return;

Call inequality solver to test just the
AND-constraints for consistency;

If inconsistent then
return (infeasible path);

Reconfigure (OLDOR specifies the last OR-group to
include);

Figure 13

Summary of PROANS' Algorithm

R)

If a new AND-constraint is found to be inconsistent
witq an old AND-constraint, or if all of the hew
AND;constraints_are implied by old AND-constraints, PROANS
returns in the first step. If the former situation occurs,
the;augmented condition 1is inconsistent. If the 1later
situation occurs, éROANS' starting solution, which is
already known to satisfy the old AND-constraints and the old
OR-clauses selected by PROANS' starting configuration, also
sétisfies the new AND-constraints. 1In this situation PROANS
kills the new AND-constraints and returns in this step,
without altering the values of CONF and CFSOL.

In the second step, PROANS determines whether the
starting solution satisfies the new AND-constraints. If it
doeé, PROANS returns in this step with&ut altgring the
values of CONF and CFSOL. |

In the third step, PROANS invokes the inequali;ty
solver to generate a solution for the starting
configuration. If the inequality solver succeeds in
generating a solution, PROANS records the solution in CFSOL
and returns in this step without altering the value of CONF.

In the fourth step, PROANS uses the inequality solver
to determine if the AND-constraints are consistent by
themselves. It returns in this step if they are found to be
inconsistent.

The fifth step of PROANS involves a process known as

reconfiguration. In general, when provided with a positive

integer, N, indicating the number of the last OR-group to be

used, the reconfiguration process looks for the smallest,

- 48 -

consistent configuration that is greater than its starting
configuration and that selects an OR-clause from precisely
the first N OR-groups. 1If it succeeds 16 this endeavor, it
increments CONF to record this configuration and updatés
CFSOL appropriately. The reconfiguration algorithm is
described in more detail in Section 6. In the last step of
PROANS, the reconfiguration process starts with PROANS'
starting configuration and OLDOR is provided to indicate the
last OR-group to be included in the reconfiguration. If one
exists, the smallest consistent configuration that selects
an OR-clause from each o0ld OR-group and a corresponding
solution are recorded in CONF and CFSOL by the
reconfiguration process. Otherwise, the augmented condition"
is inconsistent. In either case, PROANS returns after this
step has been executed.

If there are no new OR-groups 1in the augmented
condition or if PROANS finds the augmented condition to be
inconsistent, TRYPTH is done. Otherwise, TRYPTH continues
the analysis of the augmented condition by processing each
new OR-group sequentially, in seperate. calls to PROGP.
During a call to PROGP, the OR-group that is being processed

is referred to as the focal group. Thus, the first new

OR-group in the augmented condition 1is the focal group
during the first call to PROGP. As long as the augmented
condition 1is not found to be inconsistent in this call,
PROGP is called again with the next new OR-group as the
focal group. Continuing in this manner, PROGP is called

until either all the new OR-groups " are processed or the

- 49 -

augmented condition is found to be inconsistent. TRYPTH
then returns the results of the last call to PROGP.

PROGP analyzes the constraints in the augmented
condition as if only the OR-groups through the focal group
needed to be satisfied. Thus, if the focal group is the Mth
group in the constraint structure, PROGP 1looks for the
smallest, consistent configuration that selects an OR-clause
from precisely = the first M OR-groups. If such a
configuration exists, PROGP records this configuration in
CONF and a solution for it 1in CFSOL. Otherwise, the
augmented condition is inconsistent. |

The first time it is called, PROGP starts with the
configuration and solution produced by PROANS or, if there
are no new AND-constraints in the augmented condition, with
the existing configuration and existing solution.
Subsequently, PROGP starts with the configuration and
solution produced by the previous ecall to PROGP. Thus, when
PROGP is invoked, the conjunction of the AND-constraints
with the OR-groups up to, but not ineluding, the focal group
is known to be consistent. Furthermore, PROGP's starting
configuration and starting solution record, respectively,
the smallest, consistent configuration that selects an
OR-clause from precisely these OR-groups and a corresponding
solution. Since PROGP's starting configuration is less than
every consistent configuration that selects an OR-clause
from each OR-group through the focal group, it provides =2
lower bound for the set of configurations that are

considered by PROGP.

- 50 -

Like PROANS, PROGP consists of five basic steps. The
steps " in PROGP, which parallel the corresponding steps in
PROANS, are summarized in Figure 14, To facilitate the
exposition, the extension of a configuration to the next
OR-group has been indicated in this figure by enclosing the
configuration that is being extended and the OR-clause that
is being selected in square brackets. Thus,

[starting configuration, 2]
denotes the configuration that extends the starting
configuration by selecting the second OR-clause from the
next OR-group. As in PROANS, each subsequent step in PROGP
is executed only if the desired configuration and solution
are not generated in a previous step and the augmented
condition is not found to be inconsistent. The five steps
of PROGP are described in more detail below.

In the first step, the clauses of the focal group are
checked for redundancies and inconsistencies with the
AND-constraints (again, see Section 5). If any redundancies
or inconsistencies are detected in this step, the constraint
structure 4is simplified accordingly. In the process of
simplifying the constraint strﬁcture, individual OR-clauses
of the focal group or the entire focal group may be killed.
The circumstances under which OR-clauses and OR-groups are
. killed and the implementation details are disbussed in

Section 7.

- 51 -

(1) Check OR-clauses of focal group and AND-constraints for
redundancies and inconsistencies;

If all OR-clauses are inconsistent with the
AND-constraints then
return;

If an AND-constraint implies an OR-clause then
kill the focal group and return;

(2) Substitute starting solution into first OR-clause of the
focal group;

If the OR-clause is satisfied then
CONF = [starting configuration,1] and return;

(3) k = number of OR-clauses in the focal group;

For T =1, 2,..., k:
Call the inequality solver to test :
[starting configuration,I] for consistency;

If consistent then
CONF = [starting configuration,I],
CFSOL = solution generated, and
return; '

(4) For 1, 2,..., k:

I - ’ Lo

Call inequality solver to test clause T of the focal
group
for consistency with Just the AND-constraints;

If inconsistent then
kill clause I;

If consistent then
go to step (5);

Return (infeasible path);

(5) Reconfigure (foecal group is last OR-group to include);

‘Figure 14

Summary of PROGP's Algorithm

- 52 -

If each OR-clause in the focal group 1is found to be‘
inconsistent with a constraint in the AND-structure, or if
one of the OR-clauses in the focal group 1is implied by a
consﬁraint in the AND-structure, PROGP returns in this step.
If the former situation occurs, the augmented condition is
inconsistent. If the 1later situation occurs, PROGP kills
the focal group, modifies CONF to reflect the fact that this
OR-group has been killed (see Section 7) and returns,
without altering CFSOL.

In the second step, PROGP's starting solution is
substituted into the first OR-clause in the focal group. 1If
this assignment of values to symbolic names satisfies this
OR-clause, PROGP increments CONF so that it extends PROGP's
starting configuration to the first OR-clause of the focal
group and returns without altering CFSOL.

In the third step, the inequality solver is used to
determine if PROGP's starting configuration can be
consistently extended to the focal group. The
configurations that extend the starting configuration by
selecting an OR-clause from the focal group are tested in an
ascending sequence. If the 1inequality solver returns é
solution for one of these configurations, the testing
sequence is terminated, the configuration and solution are
recorded in CONF and CFSOL, and PROGP returns in this step.

In the fourth step, PROGP determines if any of the
OR-clauses in the focal group are consistent with Just the
AND-constraints. If not, there is no need to perform a

reconfiguration, for the augmented condition is inconsistent

- 8% o

and PROGP returns. If PROGP finds an OR-clause in the focal
group that is consistent with the AND-constraints, it kills
any OR-clauses that it found to be inconsistent with the
AND-constraints and proceeds to the fifth step.

In its final step, PROGP uses the reconfiguration
process. The reconfiguration in this step starts with
PROGF's starting configuration. The number of the foecal
group is provided to indicate the the 1last OR-group tq be
used in the reconfiguration. If the augmented condition 1is
consistent, the required configuration and a corresponding
solution are recorded in CONF and CFSOL by the
reconfiguration process. Otherwise, the augmented condition
is inconsistent. 1In either case, PROGP returns at the end
of this step. |

Analysis of the augmented condition is complete "when
the new AND-constraints and each new OR-group have been
analyzed or when the augmented condition is found to be
infeasible. TRYPTH then updates the‘constraint4structure,
as described in the previous section, and, if necessary,
updates EXCON and EXSOL in preparation for the next call to
TRYPTH. If the augmented condition is consistent, it may be
able to be simplified further. If so, TRYPTH makes the
appropriate modifications to the éonstraint structure at
this time and then returns the solution recorded in CFSOL.
If the augmented condition is inconsistent, TRYPTH restores
any old constraints that were modified in the.first step of
PROANS or in the first step of PROGP. The manner in which

this is done is described in Section 7.

- 54 -

To illustrate this analysis, consider the path P2,
Figure 15 summarizes the results of the eleven calls that
are made to TRYPTH during symbolic execution of this path.
The smallest, full, consistent configuration and the
solution that are returned by each call to TRYPTH have been
indicated, along with the step in which they are generated.
As there are only two OR-groups in the path condition for
P2, only' the first two entries of each configuration are
displayed. All other entries are zero. The value of the
four-tuple (N$1, A$1, A$2, A$3) is used to represent a
solution.

Prior to the first call to TRYPTH, CONMAN 1initializes
the existing configuration and existing solution. Since the
existing condition has the constant value TRUE in the first
call to TRYPTH, the existing configuration is initialized to
be the zero vector, while the existing solution is
initialized to assign a zero to each symbolic name.

The partial path condition for P2\2+, (N$1 > 0), is
analyzed in a single call to PROANS. The first two steps of
PROANS fail to generate the required configuration or to
detect an 1inconsistent augmented condition. In the third
step the inequality solver returns the solution (N$1 = 1),
Thus, PROANS records this solution in CFSOL, with all other
symbolic names assumed to be zero, and returns. At this
point, analysis of the augmented condition is complete. The
augmented condition cannot be simplified. Thus, TRYPTH
incorporates the new condition into the existing condition,

records the configuration and solution that it generated in

- K88 -

i
) « N : 4
R
j \ v 4
}
. R
~ ¢ ™ f: 4 SR [N I T S B
§ Vo v
4 L
. ., . RN \ SN
$
1t
B t H >
¥ T “ 1 ¢ ¥ i ey
MEARE] “o ¢ N
. ‘ RO cooreY, Lo HAR A B N
- ¢ IS IR SIS I B IE IR Pl AN oA * K

Partial Path New Constraints -Valye .generated. - ;. Value:generated ifor =’ ‘Step im
analyzed by ~° " for CONF CFSOL) ., Wwhich "
TRYPTH e E e e ey e ne bt (N$, ASY A$2,0R$3) Vit generated

Py

. , . 'ii‘;'\;'_' . . (. f‘.,;‘-"!‘ [T

P2\2+ % "N$1°>°0°7 """ U tg,0] (1, 0.000, 0.000, 0.000) PROANS ,step 3
P2\6+ (A$1 > 0.0) or. .. [1,0] ::(1, 0.001, 0:000,"0.000)" “PROGP, step 3

£ (A8 v 0.0) - ' | .
P2\7+ A$1 >0 (1,03 (1, 0.001, 0.000, 0.000)"7‘~P§6Aus ,step 2
P2\9+ -A$1 < A$1 [1,0] (1, 0.001, 0.000, 0.000) PROANS,step 1
P2\11+ 2L N$1 FAMEC ;01401 - :(2,, 05001, 102000, 7 0.,000) < £ ' PROANS, step 3
P2\13+ 7 Y (A$2 ¢ Ag$TY and ' [1 01 (2 o 001, 0.000, o 000) PROANS ystep 2

. (-A%2 SA$D. L sroimyae rak

P2\15+- "' "3 CN$T T " [1 0] (3, o 001, 0.000, o 000) PROANS, step 3
P2\17+ . (A$3.> A$1).or: a1 20 €3, 00015 504 000, 03002) “"PROGP,step 3 -

TR A3 S ke1) w
P2\18+ A$3 < A$1. . .. [1,2) 55 434.0.001; =001, -.ooz) " "PROANS,step 5
P2\19+ - **-A$3 2.A$1 TN, 23 (3, 0.001, -.001, -.002) PROANS, step 2
P2\22+ B > Ng1 01,2300 (3;10u001w*&;00¥ﬂ -.002)" “PROANS,step 2

- B LT S S S L =
oo DV aneipre o phas e ERRECEIVAREE SRS SV P P v
! .. r A R
LN s nodorrbhrian fddsy e ldreg
Figure 15
SN NN . - o - '
. NI - SHANYES ot Flgo =g e oa ok .
Goyomnany Dl !
= Analysis of the Path P2
P - N oeg e e Ho
2 5 Leat Ry LT RTENIEC IV e ERE SR
[y T3 AR
§ o
)“ v [¢ 14 N s oo ot .]
N
oo T S
. S AP ,..4.},,.‘.Au-_- LU ;,—7“)'“__)“}‘ SRR PR
EEeTN el e [A Y AR S R
‘ ! 7 FaRe R B
; oy e R R PRt
“y T e ey v Uena w sty mheeyeney SR ARTHEY RAVRREN: .
~ e 0 PO R 35!
) wRC R
s o
- £ { & f L LR
} e
. o ! i TN (R R RN S35 el e
[P ! SR H
. o A b m ey bl .
! ' V] ! 7 PR A G z E R -
’ o/
ok s B SRS IR R =
O i 30 PA 54 G “

EXCON and EXSOL, and returns the solution.

The partial path condition for P2\6+ is analyzed in the
next call to TRYPTH. For this call, the existing
configuration is the zero vector and the existing solution,
the solution for P2\2+ given above, is a solution for P2\6.
Since the new condition consists of the single OR-group,
((A$1 > 0.0) or (-A%$1 > 0.0)), analysis of the augmented
condition requires a single call to PROGP. The existing
configuration and existing solution provide the starting
configuration and starting solution for this call. Since
the first two steps of PROGP fail to generate a desired
éonfiguration, the configuration [1, 0], which extends
PROGP's starting configuration to select the first OR-clause
from the first OR-group, is tested for consistency in the
third step of PROGP. The 1inequality solver returns the
solution (N$1 = 1) and (A$1 = .001) for this configuration.
'Thus; PROGP increments CONF to contain this configuration,
records thié solution in CFSOL, with a}l other symbolic
names assumed to be zero, and returns, After updating the
constraint strucuture, EXCON and EXSOL, TRYPTH returns the
solution generated by the call to PROGP.

The above configuration and solution define the
existing configuration and existing solution when TRYPTH is
called to analyze P2\T+. This analysis terminates
success%ully .in the second step of PROANS, when PROANS'
starting solution 1is found to satisfy the single new
AND-constraint, (A$1 > 0.0). TRYPTH is invoked to analyze

P2\9+, with the same existing configuration and existing

- 57 -

solution as before. This time, the single new
AND-constraint,, (-A$1 < A$1), is found to be implied by the
old AND-constraint, (A$1 > 0.0), in the first step of
PROANS. Therefore, PROANS returns in this step. TRYPTH
then simplifies the augmented condition by eliminating the
representation of this new constraint from the constraint
structure (see Section 7). Finally, TRYPTH updates EXCON
and EXSOL and returns,

The configuration [1, 0] and the solution (N$1 = 2) and
(A$1 = .001) are generated by analysis of P2\11+. This
solution is obtained in the third step of PROANS when the
inequality solver returns a solution for PROANS' starting
configuration. The same configuration and solution are
returned by TRYPTH during analysis of P2\13+, when PROANS'
starting solution is found to satisfy the new
AND-constraints in the second step of PROANS. Analysis of
P2\15+ terminates successfully in the third step of PROANS
when the inequality solver generates the solution (N$1 = 3)§
(A$1 = .001) and (A$2 = 0.0) for the configuration [1, 0].
When the augmented condition is simplified in this call to
TRYPTH, the new constraint, (3 < N$1), completely replaces
the old constraint, (2 < N$1), generated at P2\11+ (see
Section 7). During analysis of the path, P2\17+, CONF is
incremented to [1, 11 in the third step of PROGP. The
solution (N$1 = 3), (A$1 = ,001), (A$2 = 0.0) and
(A$3 = .002) 1is generated for this configuration by the

inequality solver and is recorded in CFSOL in this step.

- 58 -

The analysis of P2\18+ differs from the analysis of
earlier partial paths. When PROANS' starting configuration
[1, 1], is found to be 1inconsistent, the fourth step of
PROANS 1is executed. Thus, the inequality solver is used to
test the AND-constraints for consistency by themselves.
Since they are consistent PROANS proceeds to the fifth step
of its algorithm, 1in which the réconfiguration process
produces the smallest, full, consistent configuration,
[1, 2], and the solution, (N$1 = 3), (A$1 = .001),
(A$2 = -.001), (A$3 = -.002).

Analysis of P2\19+ terminates successfully 1in the
second step of PROANS, when PROANS' starting solution is
found to satisfy the single new AND-constraint. Finally,
the 1last call to TRYPTH, which analyzes P2\22+, returns in
the second step of PROANS with the solution (N$1 =3),
(A$1 = .001), (A$2 = -.001), and (A$3 = -.002) for the
configuration [1, 2]. Therefore, the path P2 is feasible
and the above assignment of values to symbolic names would

result in its execution.

- 59 -

5. Reduﬁdancy checking
In the first step of PROANS the new AND-constraints are
compared ~ to the old AND-constraints to determine if any of
the expressions in the two sets are redundant or
inconsistent. Similarly, in the first step of PROGP the
OR-clauses of the focal group are compared to all of the
AND-constraints to detect redundancies and inconsistencies.

In both cases, by repeatedly invoking the subroutine REDCK,

~each new equality or inequality is compared sequentially to

each of the AND-constraints in the appropriate set. ~ This
section describes ‘both the kind of redundancies that REDCK
detects and the algorithm that it uses.

When REDCK is called it 1is pHovided with two
expressions. One represents the new equality or inequality.
The other represents the equality or inequality against
which the new expression is to be compared. To faéilitate
the discussion these are denoted by In and Io, respectively.
In and TIo may be redundant, inconsistent, or neither. If
redundant, they can be fedundant in one of the following
three ways: In may imply Io, in which case In is said to
gominate To; In may be implied by To, in which case In is
said to be dominated by To; or the conjunction of In and Io
may be equivalent to the equality that is obtained by
replacing <, the relational operator in Io, by =, in which

case In and Io are said to be replaceable by an equality.

REDCK, therefore, determines if In and Io are inconsistent
or redundant, and if they are redundant, it also determines

which of the above three redundancy relationships applies}

- 60 -

REDCK first determines if the coefficient vector of 1In
is a scalar multiple of the coefficient vector of Io. If it
is not, In and Io are neither redundant nor inconsistent,
If it 1is, the coefficient vector of In can be obtained by
multiplying the coefficient vector of Io by a non-zero
scalar, K. In this case REDCK calculates K and four
additional values, Rn, Ro, R and SIGNK. Rn denotes the
relational operator in the set { =, <, < } that appears in
In, and Ro denotes the relational opérator in the set
{ =, <} that appears in Io. R denotes the relational
operator in the set { ¢, >, =} that makes the following
statement true:

bn R (K * bo),

where bn and bo represent the constant terms of In and To.
Finally, SiGNK denotes the sign of the scalar K. The value
of the four-tuple (Rn, Ro, R, SIGNK) is then used to
determine whether or not In and Io are inconsistent or
redundant. In addition, if they are redundant it determines
| the type of the redundancy between them. The table in
Figure 16 summarizes how relationships between In and Io are
deduced from the thirty-six staies of this four-tuple.

For example, assume that In represents the inequality,
(2A%1 - A$2 < 1). If Io represents (6A$1 - 3A%$2 < 15),
kEDCK obtains the four-tuple, (< ,<, <, +). Thus, 1In is
found to dominate Io. 1If Io represents (-6A$1 + 3A$2 < 15),
REDCK obtains (£, £, >, =), which indicates that In and To
are neither redundant nor 1inconsistent. Finally, if Io

represents (-6A$1 + 3A$2 < 3), In and Io are replaceable by

- 61 -

(Rn,Ro,R, SIGNK)

AA/\’\/‘\AAAf\’\)\AAAAAAAAAA’\AAAAAAAAAAAAAf'\

zZ,=,=,+)
=’=7=7-)
z,z2,<,+)
=7=a<9‘)
z,=,>,+)
=s=1>v‘)
:,S,=,+)
=v$'=")
=9$,<y+)
='%v§9";
2,8, 7,
=1Zr>!')
£1=s=v+;
<y=y3,-
Zv=y<v+)
$,=v<v')
$7=’>:+)
£1=:>9’)
$1£l=’+)
£)$!=’-)
<)
$1$1<9“;
{,$,>,+
?1£1>9-)
zs=’=9f)
<,=,=,-)
< z,<,+)
<!=1<!-)
<’=)>v*)
<1=’>’°)
<v$v=r+)
<1$7=1‘)
<,4,4,+)
<r$r<r')
<,$,>,+)
<:S;>1-)

In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
" In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In

Relation

is dominated by Io

is dominated by Io

and Io are inconsistent
and Io are inconsistent
and Io are inconsistent
and Io are inconsistent
dominates Io

dominates Io

dominates Io

and Io are inconsistent
and Io are inconsistent
dominates Io

is dominated by Io

is dominated by Io

and Io are inconsistent
and Io are inconsistent
is dominated by Io

is dominated by Io

is dominated by Io

and Io are replaceable by an equality

dominates Io
and Io inconsistent
is dominated by Io

and Io
and Io
and Io
and Io
and Io

are
are
are
are
are

not redundant nor inconsistent
inconsistent
inconsistent
inconsistent
inconsistent

is dominated by Io

is dominated by Io
dominates Io

and Io are inconsistent
dominates Io

and Io are inconsistent
is dominated by Io

and Io are not redundant nor inconsistent

Figure 16

Redundancy Table

- 62 -

an equality. Note that in this final case, the conjunction

of In and Io is equivalent to the

equality,
(6881 + 3882 = 3).

- 63 -

6. Reconfiguration

The reconfiguration process, RECON, is invoked in the
fifth step of PROANS and the fifth step of PROGP. At its
invocation it is provided with a positive integer to
indicate the number of OR-clauses to use in the
reconfiguration. This integer is denoted by N throughout
this section. If there is a consistent configuration that
is greater than RECON's starting configuration and that
selects an OR-clause from the first N OR-groups, RECON
increments CONF to the smallest .such configuration and
records a solution for it in CFSOL. Otherwise, RECON
returns a flag indicating that all such configurations are
inconsistent. Essentially, the reconfiguration algorithm
consists of alternately incrementing CONF and invéking the
inequality solver to test CONF for consistency, until a
consistent configuration that selects an OR-clause from each
of the first N OR-groups is found or all such configurations
are discovered to be inconsistent.

Based on the manner in which the symbolic names are
distributed among the equality and inequality expressions in
the constraint structure, it is possible to determine that
certain configurations are inconsistent without using the
inequality solver. For example, assume that there is a
single new AND-constraint and that this new constraint is
consistent with the existing AND-constraints but is
inconsistent with the existing configuration. Thus, the new
AND-constraint added some information that made the existing

configuration inconsistent. Changes to the configuration

- 64 -

Sugn

that have no affect on the symbolic names in the new
AND-constraint will not alter the configuration's
inconsistent state. Thus, instead of enumerating CONF over
all configurations that are larger than the starting
configuration, RECON skips over configurations that are
known to be inconsistent. To determine which equality and
inequality expressioﬁs in the constraint structure can
influence which symbolic names, the expressions are
partitioned into equivalence classes. Essentially, the
equivalence classes partition the expressions so that the
symbolic names that appear in the expressions in different
equivalence classes are distinect. Thus, an expression in
one equivalence class in no way constrains the values that
can be assigned to the symbolic names that appear in the
expressions ih another equivalence class.

The equivalence classes are created by CONMAN as the
constraints are recorded in the constraint structure. When
an inconsistent configuration is generated, the equivalence
classes of the OR-clauses that are causing the inconsistency
can often be identified. Only the OR-clauses that are
actually selected by CONF need be considered; and these are
called the active OR-clauses. RECON skips over
configuraﬁions that do not effect the active OR-clauses in
the appropriate equivalence classes.

This section discusses the reconfiguration algorithm in
detail. The first subsection describes the manner in which
CONMAN maintains the equivalence classes and the role that

they play in determining which configurations are to be

- 65 -

skipped. The second subseétion describes the full algorithm

and then illustrates it with an example.

6.1. Equivalence Classes

RECON is often required to determine if the need to
satisfy a particular expression in the constraint strucﬁure
can affect the solutions that can be chosen for another
expression in the constraint structure. This can happen
directly, if the same symbolic name appears in both of the
expressions, or indirectly, if there is a third expression
in the constraint structure that can affect the solutions
that can be chosen for both of the expressions. To
facilitate this determination, CONMAN partitions the
expressions in the constraint structure so that expressions
in different equivalence classes cannot affect one another
in this manner, but expressions in the same equivalence
class can. Thus the symbolic names that occur in the
expressions in different equivalence classes of this
partition are distinct. Furthermore, this is the coarsest
partition with this property. In general, if any set of
equality and 1inequality expressions is partitioned into
equivalence classes of this nature, a solution for the full
set of expressions can be obtained by generating a solution
for each partition individually.

To realize this partition of the expressions in the
constraint structure, CONMAN first partitions the symbolie
names that occur in the expressions. Then the equivalence

class of an expression 1is determined by the equivalence

- 66 -

class of the symbolic names that occur in that expression,
Since the set of symbolic names is empty before the first
branch condition is generated, the partition of the symbolic
names in the constraint structure is initially empty.
Whenever CONMAN records an equality or inequality expression
in the constraint structure it notes the symbolic names that
occur in the new expression. If none of the symbolic names
in the new expression appear in expressions that are already
recorded in the constraint structure, CONMAN creates a new
equivalence class consisting of the new symbolic names.
Otherwise, CONMAN merges the set of symbolic names in the
new expression with all existing equivalence classes that
intersect this set to form one equivalence class.

To demonstrate how equivalence class information can be
used to identify the active clauses that are causing an
inconsistency, it is easiest to consider an example. Assume
that Figure 17 represents the constraint structure during
analysis of an augmented condition. Ai has been used to
represent the ith AND-constraint and Cij to represent the
. Jth OR-clause of the ith OR-group. Assume that the symbolic
names in the augmented condition belong to one of two
equivalence classes, E1 or E2. The equivalence classes to
which the AND-constraints and-OR-clauses belong have been
-indicated in the diagram. Thus, E1 is

{A1, A3, Ab4, A5, C11, Cc21, €22, c31}
and E2 is
{A2, c12, c32, €33, cu1, cua2}.
Assume that RECON has been called from PROANS and that

- 67 -

AND-structure

OR-structure

A1/E1 C11/E1 or C12/E2
A2/E2 C21/E1 or C22/E1
A3/E1 C31/E1 or C32/E2 or C33/E2
OLDAN->| Al/E1 CU1/E2 or CU2/E2
NEWAN->| AS5/E1
Figure 17

<~-OLDOR,NEWOR *

Partition of Constraint Structure into two Equivalence Classes

- 68 -

1, 1, 2, 11, 1its starting configuration, is inconsistent.
Then the set of expressions involved in this configuration,
S = {A1, A2, A3, Ab, a5, c11, C21, c32, cu1},
1s inconsistent. This set can be divided according to the
equivalence classes to which 1its expressions belong to

obtain the following two subsets:

S1 = {A1, A3, A4, A5, C11, C21}
and
S2 = {a2, C32, c41}.

Since S1 and S2 are in different equivalence classes, the
symbolic names that are involved in the expressions in S1
and S2 are distinct. Thus, if S1 and S2 are both consistent
a solution for S could be obtained by combining a solution
for S1 with a solution for S2. Either S1 or S2, therefore,
must be inconsistent. But 32 1is consistent since the
conjunction of the old AND-coﬁstraints and the OR-clauses
'thét are selected by RECON's starting configuration is
satisfiable. Thus S1 must be 1inconsistent, which implies
that all configurations that select both C11 and C21 are
inconsistent. The AND-constraints and the active OR-clauses
that belong to the same equivalence class as the new
 AND-constraint are causing the 1inconsistency. In this
example, therefore, RECON would increment CONF to
(1, 2, 0, 0], the smallest configuration that is larger than
the starting configuration and that does not select both C11
and C21. In general, whenever CONF is found to be
inconsistent and a consistent subset of the expressions

involved in the inconsistent configuration is known from

- 69 -

previous results, equivalence class information can be used
to skip over inconsistent configurations. The active
OR—c;auses that are causing the inconsistency must belong to
the same equivalence classes as the expressions involved in
the Einconsistent configuration that do not appear in the

known, consistent subset.

6.2. The Reconfiguration Algorithm

During reconfiguration CONF is alternately incremented
and tested, until either a consistent configuration that
selects an OR-clause from each of the first N OR-groups is
found or all such configurations are determined to be
inconsistent. This subsection describes this algorithm ‘in
more detail. To facilitate this description, J is used to
denote the number of the 1last OR-group from which CONF
selects an OR-clause. Initially, J = N if the call to RECON
is from PROANS, and J = N-1 if the call to RECON 1is from
PROGP.

RECON maintains a set of equivalence classes, called

the marking- set, which consisté of the equivalence classes
of the active OR-clauses that could possibly be causing the
inconsistency. Those OR-clauses that are active and that
belong to equivalence élasses in the marking set are said to
be marked. In the example in Figure 17, the marking set
would contain E1, marking C11 and C21 as the only OR—élausés
that could possibly be causing the inconsistency. RECON
initializes the marking set to consist of the equiyalenge '

classes of the new AND-constraints if the call to RECON is

- 70 -

from PROANS, or to consist of the equivalence classes of the
OR-clauses in the focal group if the call to RECON is from
PROGP.

The reconfiguration algorithm consists of three steps:

a back up step, 2 testing step and an extension step. These

steps are summarized in Figure 18. The back up step is used
to skip over configurations that, with the help of
equivalence class information, can be shown to be
inconsistent. The testing step 1is used to test CONF for
consistency'once it has been incremented. The extension
step is used to extend CONF to the next OR-group after it is
found to be consistent. These steps are described in more
detail below.

The reconfiguration algorithm begins with an
application of the back up step. The back up step
increments CONF until the set of active clauses no longer
contains the set of marked clauses. If all configurations
that are larger than the starting configuration select the
set of marked clauses or if the set of marked clauses is
empty, the reconfiguration algorithm terminates
unsuccessfully in this step. CONF selects OR-clauses from
either the same or a smaller number of OR-groups after it
has been incremented in the back up step than it did before
it was incremented. Thus J, the number of OR-groups from
which CONF selects an OR-clause, may be "backed up" in this

step.

- 71 -

(1) Back up step:

]
If possible, increment CONF to the smallest
configuration for which the set of active clauses
- does not contain the set of marked clauses,
.d=index of last OR-group with non-zero CONF entry,
and proceed to the testing step (2);
Qtherwise, terminate unsuccessfully;

(2) Testing step: call the inequality solver to test CONF
for consistency;

If CONF is consistent then
record the solution in CFSOL;

If CONF is consistent and J < N then
marking set = the empty set and
proceed to the extension step (3);

If CONF is consistent and J = N then
terminate successfully;

If CONF is inconsistent and CONF(J) is not the last
OR-clause in the Jth OR-group then

increment CONF to select the next OR-clause from the
Jth OR-group and _ '

prdceed to the testing step (2);

If CONF is inconsistent and CONF(J) is the last
OR-clause in the Jth OR-group then

add the equivalence classes of the clauses in the
Jth OR-group to the marking set,

record a zero in the Jth entry of CONF, and
- proceed to the back up step (1);
(3) Extension step: increment CONF to select the first

OR-clause from the (J+1)th OR-group and proceed to the
testing step (2);

The Reconfiguration Algorithm
Figure 18

- 72 -

After CONF has been incremented, it may be able to be

consistently extended to the first N OR-groups. Before an

'attempt to extend it is made, however, it is tested for

consistency. Thus, RECON executes the testing step next.
In the testing step-the inequality solver is 1invoked to
generate a solution for CONF. If it obtains a solution
CFSOL is updated. Otherwise CONF is inconsistent.

After an application of the testing step, 1if CONF 1is
consistent and J = N, the reconfiguration algorithm
terminates successfully. Otherwise, the marking set is
updated and CONF 1is reincrémented. The result of the
consistency test and the value of CONF determine how the
marking set is wupdated and the value to which CONF is
incremented. If CONF 1is inconsistent and the active
OR-clause from the Jth OR-group is not the last OR-clause in
that OR-group, the marking set is left unchanged and CONF is
incremented to select the next OR-clause from the Jth
OR-group. If CONF is inconsistent and the active OR-clause
from the Jth OR-group 1is the 1last OR-clause in that
OR-group, the equivalence classes of the OR-clauses in the
Jth OR-group are added to the marking set, a zero is
recprded in the Jth entry of CONF, and CONF is incremented
by reépplying the back up step. If CONF is consistent and
J < N, the marking set is emptied and CONF is incremented by
applying the extension step, which increments CONF to select
the first OR-clause from the (J+1)st OR-group. Once the
marking set has been updated and CONF has been incremented,

the testing step 1is reapplied. This 1incrementing and

-73 -

tesging cycle continues'~as described above until the
algérithm terminates, either successfully after the testing
steé or unsuccessfully in the back up step. To illustrate
this process, assume that RECON is called from PROANS with N
equél to 5 and a starting configuration of [1, 1, 2, 1, 1].
The:constréint structure that is to be assumed is depicted
in Figure 19, using the same notation as Figure 17. _In this
‘example there are three distinct equivalence classes, E1, E2
and E3. To summarize the reconfiguration, the steps that
are executed and the configuration and marking set that each
step starts with have been indicated in Figure 19. 1In
addition, the marked clauses for each backup have been
listed. The consistency status that is t& be assumed for
the configurations that are tested is indicated by‘a "C" for
a consistent configuration and an "I" for an inéonsistent
configuration.

Since the new AﬁD-constraints belong to E1, the marking
set is initialized to consist of this single equivalence
class. At the beginning of the first step, therefore, C11
and C21 are marked, causing CONF to be incremented to
(1, 2, o, o0, 01. As indicated by the consistency status;
this configuration is found to be consistent in the testing
step, and thus, the marking set is emptied and the algorithm
goes into the extension step. 1In three iterations of the
extension and testing steps, CONF is extended until both
(1, 2, 1, 1, 11 and 11, 2, 1, 1, 21 are found to be
inconsistent. E2 and E3 are then added to the marking set,

CONF is set back to [1, 2, 1, 1, 01, and the algorithm

-7 -

OLDAN->| A1/E1 C11/E1 or C12/E2 or C13/E1
A2/E1 C21/E1 or C22/E2

NEWAN->| A3/E1 C31/E3 or C32/E2

CH1/E2 or CH2/E1 or CU43/E1

C51/E2 or C52/E3 K-OLDOR, NEWOR

Starting Initial Marking Marked Consistency
Step Configuration Value of J Set Clauses Status
(1 (1121 1) 5 {E1} c11,C24
(2) (1200 0) 2 {E1} C
(3) (1200 0) 2 empty
(2) (1210 0) 3 empty C
(3) (12 100) 3 empty
(2) (12110) 4 empty C
(3) (12110) [} empty
2) (12111) 5 empty I
2) (1 2112) 5 empty 1
(1) (121 10) y {E2,E3} c22,C31,cC41
2) (1 2120) 4 {E2,E3} I
(2) (121 30) y {E2,E3} I
(1) (1 2100) 3 {E1,E2,E3} C11,C22,C31
(2) (1220 0) 3 (E1,E2,E3} C
(3) (1220 0) 3 empty
(2) (122 10) y empty C
3) (1 2210) 4y empty
(2) (1 2211) 5 empty C
Figure 19

A Sample Reconfiguration

- 75 -

returns to the back up step. This time C22, €21, and Ci1
are marked. Thus, CONF is incremented to {1, 2, 1, 2, 0].
In the next two applications of the testing step
(1, 2, 1, 2, 0] and rh, 2, 1, 2, 0l are found to be
inconsistent. Thus, E1 and E2 are added to the marking set,
the counter is set back to [1, 2, 1, 0, 0], and the back up
step is re-executed. This time CONF 1is incremented to
r, 2, 2, 0, 01, which is found to be consistent in the
testing step. Thus, the marking set is emptied and the
algorithm begins another extension phase. CONF is extended
in this phase one group at a time, to obtain
[1, 2, 2, 1, 1], the smallest consistent configuration that

selects an OR-clause from 211 five OR-groups.

- 76 -

7. Reduction of the Constraint Structure

Both during and after analysis of the augmented
condition, reductions are made to the constraint structure
that facilitate the analysis of all subsequent augmented
conditiqns. CONMAN reduces the constraint structure in
three different ways. One, it eliminates the
representations of AND-constraints, OR-clauses and OR-groups
that are no 1longer needed in order to build the path
condition, Two, it solves for certain symbolic names and
symplifies the representations of constraints in the
constraint structure accordingly. Three, it reclaims unused
space when a consolidation of the constraint structure is
warranted. This section describes when and how each of
these reductions are made.

When CONMAN eliminates the representation of an
AND-constraint, OR-clause or OR-group from the constraint
structure, the AND-constraint, OR-clause or OR-group is said
to be killed. In general, elements of the constraint
structure are killed in order to simplify the representation
of the augmented condition. The reasons for killing a
specific eleﬁent, however, along with the implementation
details, depend on whether the element is an AND-constraint,
an OR-clause, or an OR-group.

The augmented condition can be simplified by
eliminating AND-constraints that are found to be implied by
other AND-constraints. Thus, new AND-constraints that are
dominated by o0ld AND-constraints are killed in the first

step of PROANS. At the same time, if a8 new AND-constraint

- 77 -

and an old AND-constraint are found to be replaceable by an
equality, the new AND-constraint is killed and the
rélétional operator in the representation of the o1ld
AND%constrnint is changed from < to =. If the augmented
conéition is found to be inconsistent TRYPTH restores all
re]qtional operators that were changed in the first step of
PROANS back to <, before deleting the new condition from the
constraint structure. If the augmented conditon is
consistent, TRYPTH kills any old AND-constraints that are
dominated by new AND-constraints before incorporating the
new condition into the existing condition.

The manner in which an AND-constraint is killed depends
on its position in the AND structure. If the constraint is
the last constraint in the AND Structure, it is killed by
simply decrementing NEWAN. Otherwise, it is killed by
replacing its coefficient vector with the =zero vector and
its constant term with zero. This effectively replaces the
AND-constraint with a trivial equality or inequality.

If a particular OR-clause can be shown to be
inconsi;tent with the rest of the augmented condition, the
OR-clause can be eliminated from this condition. Thus, any
OR-clauses in the focal group that are found to be
inconsiétent with the AND-constraints are killed in the-
first step of PROGP. Then again, 1in the third step of
PROGP, any OR-clauses in the focal group that are found to
be inconsistent with the set of AND-constraints are killed.
When an OR-clause is killed, it is flagged as '“dead" by

negating its ORROW entry. Thus, a negative ORROW value

- 78 -

indicates that all entries of the ORAA, ORS, ORB and ORCOL
arrays that are associated with the negative ORROW entry are
.n0 longer considered to be a part of thé OR structure.

If an OR-clause is implied by an AND-constraint, the
entire OR-group can be eliminated from the augmented
condition. Thus, if an OR-clause is found to be dominated
by an AND-constraint in the first step of PROGP, the focal
group is killed. When an OR-group is killed it is flagged
as dead by recording the negation of the number of the
déminated OR-clauses in the entry of CONF that corresponds
to the OR-group. Thus,- the non-negative entries of CONF
define the configuration that it represents, while the
negative entries flag portions of the ORAA, ORCOL, ORB and
ORS arrays that are no longer considered to be a part of the
OR structure.

Because OR-clauses in the focal group can be killed in
the first and third steps of PROGP, the number of OR-clzauses
left in the focal group are counted after both of these
steps. If the focal group is found to consist of a single
OR-clause, the group is changed into an _AND-constraint.
Thus, the focal group 1is flagged as dead by negating the
number of its one remaining OR-clause and recording the
result in the focal group's CONF entry. Then, provided that
the equality or inequality that defines the single OR-clause
is not dominated by an AND-constraint, it is added to the

bottom of the AND structure.

- 79 -

When an augmented conéition is found to be consistent,
analysis of the smallest, full, consistent configuration may
indécate that some of the first few OR-groups can be changed
inté AND-constraints. Consider, for example, the following
sitQation. Assume that TRYPTH finds the smallest, full,
congistent configuration for an augmented condition to be
[2,“3, 1, 2] and that the first and second OR-groups in this
condition contain two and three OR-clauses, respectively.
Then, since configurations are ordered lexicographically,
any full configurations that selgct the first OR-clause from
the first OR-group, or the first or second OR=-clause from
the second OR-group are inconsistent. Thus, both of these
OR-groups can be changed into AND-constraints. The first
can be changed into the AND-constraint that consists of the
expression that defines its second OR-clause, while the
second can be changed into the AND-constraint that consists
of the expression that defines 1its third OR-clause. To
change the first OR-group into an AND-constraint, a -2 is
recorded in its CONF entry and, if its second OR-clause is
not dominated by an AND-constraint, the OR-clause is added
to the bottom of the AND structure. Similarly, a =3 is
recorded in the second OR-group's CONF entry and, 1if its
third OR-clause is not dominated by an AND-constraint, tHe
OR-clause is added to the bottom of the AND structure.

Another opportunity for simplifying the constraint
structure arises if the value of a symbolic name is
completely determined by an AND-constraint. If an

AND-constraiht is defined by an equality that involves é

- 80 -

single symbolic name, it can be solved to obtain the single
value that every solution assigns to this syﬁbolic name.
Other constraints that involve this symbolic name can then
be simplified by substituting this value in for the symbolie
name, For example, - if (-24%1 = 3) and
(2481 - A$2 + UA$3 < 9) represent two AND-constraints in the
augmented condition, -3/2 can be substituted for A$1 into
the later constraint to obtain (-A$2 + 4A$3 < 12). Thus, if
the augmented condition is consistent CONMAN inspects the
new AND-constraints for equalities that involve a single
symbolic name. These equalities are used to obtain valdes
for the symbolic names involved. The values are then used
to eliminate these symbolic names from all other equalities
and inequalities in the constraint structure. If this final
step generates other equalities that involve .a single
symbolic name, the cycle is repeated.

Whenever an AND-constraint is replaced by a trivial
equality or inequality or symbolic names are solved for and
eliminated from'expressions in the constraint structure,
zero entries are introduced in the AA array. After the
augmented condition has been analyzed, therefore, if a
significant portion of the AA array contains zero entries,
the array is consolidated by eliminating its zero entries.
As each zero entry is deleted from the AA arréy, the
corresponding entries of JCOL are deleted, subsequent
non-zero entries of the AA array are shifted forward, as are
the corresponding entries of JCOL, and IROW is wupdated
appropriately. After this consolidation, the AA array

- 81 -

records ‘only the non-zero coefficients of _the

AND-ponstraints\in the"simpiified augmentedvcondition.

- 82 -

8. Detecting Possible Program Errors

CONMAN is able to detect possible program errors and
generate test data that would cause thése errors by slightly
modifying the procedure that it uses to maintain the partial
path condition. An error can occur at the nth node of a
path, Pk, if the conjunction of the partial path condition

for Pk\n and a temporary condition, generated -by ATTEST at

node n to represent an error, is consistent. Thus, after
Pk\n has been symbolically executed and before the partial
path is extended, CONMAN determines if the error can occur.

CONMAN first records the temporary condition in the new
section of the constraint structure, " just as " if it
represented a new branch condition. At this point, since
the old section of the constraint structure contains the
partial path condition for Pk\n, the constraint structure
represents the condition under which Pk\n would be executed
and the error would occur.

CONMAN then invokes TRYPTH to analyze the condition
recorded in the constraint structure, thereby determining if
the temporary condition 1is consistent with the existing
condition. TRYPTH analyzes the condition in the constraint
structure exactly as if it represented a partial path
conditioﬁ. Thus, TRYPTH starts with the configuration and
solution that were recorded in EXCON and EXSOL in the
previous call to TRYPTH, and if the temporary condition is
consistent with the existing condition, it records the

smallest, full, consistent configuration and a corresponding

solugion in CONF and CFSOL, as described in Section 4.

CONMAN then updates the constraint structures so that
symbplic execution of the program path may continue. It is
in tpis step that the procedure for maintaining the partial
pathi condition differs from the ' procedure for detecting
program errors. Whereas TRYPTH records the values of CONF
and :CFSOL in EXCON and EXSOL if a partial path condition is
found to be consistent, it does not alter EXCON and EXSOL
after determining if a temporary condition is consistent
with the existing condition. Recall that EXCON and EXSOL
are used in the next call to TRYPTH to initialize CONF and'
CFSOL. Thus, the next time it is called, TRYPTH starts with
the smallest, consistent configuration for Pk\n and a
corresponding solution. After analyzing the condition in
the constraiht structure, if the new conditibn is a
temporary condition TRYPTH restores the constraint structure
to once again represent the existing condition. Thus, the
relational operators of any constraints that were changed
from < to = in the first step of PRCANS are changed back to
£, and NEWAN and NEWOR are repositioned to point to the
bottom of'the old sections of the constraint structure. In
effect, the repositioning of NEWAN and NEWOR deletes the
temporary condition, along with an& consﬁraints that were
added to the bottom of the AND structure in the first step
of PROGP. Since only new AND-constraints and new OR-groups
can be killed in the first steps of PROANS and PROGP, no
further modifications need to be made to the constraint

structure at this time. Recall that, after analyzing a

- 84 -

partial péth condition that 1is found to be consistent,
TRYPTH kills old AND-constraints that are dominated by new
ones. As it does if the partial path 1is found to be
inconsistent, TRYPTH omits this modification when called
with a temporary condition instead of a branch condition.
Finally, if the temporary condition is found to be
consistent with the existing condition, TRYPTH returns the
solution recorded in CFSOL. This provides a data set that
would cause the program error. If the temporary condition
is inconsistent with the existing condition, TRYPTH returns

a flag indicating that the error cannot occur.

- 85 -

Appendix A: The BNB structure
The data structure that defines the problem to be

solved by the inequality solver is called the BNB structure..

When the inequality solver is to be used to test a
configuration for consistency, the BNB structure must
contain the AND-constraints and the OR-clauses that are
selected by thé configuration. Since the AND structure is a
part of the BNB structure, the BNB structure always‘contains
the AND-constraints. The appropriate CR-clauses, hbwever,
have tp be entered into the BNB structure before the
inequality solver is called. OR-clauses are recorded in the

section of the BNB structure that is referred to as the

effective OR-clause structure. The OR-élauses selected by a
configuration are recorded in the effective OR;olause
structure in the order in which the OR- groups to whlch they
belong are recorded in the OR structure. '

The AA, JCOL, IROW, S and B arrays are used‘by'both}the
AND structure and the effective OR-clause structure. The
AND-constraints are recorded as the firsf NEWAN equalities
and 1inequalities in these arrays. The equalities and
inequalities in the effective OR-clause structure are
recorded sequentially in these same arrays, immediately
following the. AND-constraints. The global vaéiable, M,
points ,to the bottom of -the BNB structure. Thus, the
effectlve OR- clause structure consists of the (NEWAN + 1)st
through the Mth equalities and inequalitiés that are
recorded in the AA, JCOL, IROW, S and B arrayg.‘ This

arrangement of the BNB structure is depicted in Figure 20.

- 86 -

BNB Structure

AND-constraints

Effective

OR-clauses

{-NEWAN

<{-M

Figure 20

Division of the BNB Structure into its two Components:
AND-structure and Effective OR-clause Structure

- 87 -

