June 1981

Coggi;ive Factors in Programming:
An Empirical Study of Looping Constructs

Elliot Soloway*
Jeff Bonar*
Kate Ehrlich**

COINS Technical Report 81-10

sLompuLEl guu lnrotméaiivn Science Deporumcnd
University of Massachusetts
Amherst, Massachusetts #1003

**pgychology Department
University of Massachusetts
Amherst, Massachusetts 01003

This work was supported by the Army Research Institute for the

Behavioral and Social Sciences, under ARI Grant No.
MDA9@3-80-C~065088.

Any opinions, findings, conclusions or recommendations expresged
in this report are those of the authors, and do not necessarily
reflect the views of the U.S. Government.

Cognitive Factors in Looping: An Empirical Study of Looping Page 2

Abstract

In this paper, we describe a study which tests the following
hypothesis:

A programming language construct which has a cloger
“cognitive f£it" with individuals ® natural problem solving
strategy will be easier to use effectively.

After analyzing -novice Pascal programs which employed loops,
we identified two distinct looping strategies: (1) on the ith
pass thrbugh the loop the ith element is both read and processed
(the read 1i/process 1 strategy), (2) on the ith pass the ith
element is processed and the next-ith element is read (the
.prqcess i/read next-i strategy). We feel the former to be the
more natural strategy, especially for novices. Moreover, we
argue that the latter strategy is associated with the appropriate
use of the Pascal while construct. In contrast, we feel that the

Ada-like loop...leave...again construct, by allowing an exit from

the middle of the loop, facilitates the former, read i/process i

strategy.

In our experiment, subjects were asked to solve a problem
which required a simple loop program. We sought to identify
people’s natural problem solving strategy and to compare the
above two looping constructs. Our results demonstrate a strong
preference for a read 1i/process i strategy. When writing a

simple looping program, those using the loop...lcave...again were

more often correct then were those using the standard Pascal 1o0p
constructs. These results were obtained for advanced as well as

for novice and intermediate level programmers.

Cognitive Factors in Looping: An Empirical Study of Looping Page 3
Introduction

1.0 Introduction

The need for the public to be literate 1in computing .is
rapidly gaining acceptance. One aspect of such literacy is
programming. While we do not believe that everyone Qeed become a
professional _programmer, it ia increasingly important to be&able‘
to describe how the cbmpuﬁar'is to realixp once’s intcntions. The
characteristics of . the ianguagé' in which novice or casual’
programmers describe their plans are of critical impartance. We
might well expact professional programmers to adapt .to the
constraints and implicit strategies facilitated by a pafticular.
“language. However, if the language does not “cqgnitively fit"
. with noviées'.problem solving skills, them a barrier has been

Cracied Lo Lhc uwe of compuices Ly novice

Concern for finding a better matéh.between a language and an
individual ‘s natural skilis ahd abilities is reflected in some
_ recent empiricai, research. For .example, Ledgard, et. al.
[1980) compared an editing language whose syntax was based on
English with an. a standard notational editing language, and found
that the English based language was preferred by the aubjects and
facilitated 'better performance. Welty and Stemple [1981])
compared a procedural query langaage wiah a non-procedural query
language using novices; they found that subjects pefformed at a
~higher 1level of accuracy with the procedural lanéuaga when
writing moderate to'difficult queries. Millep‘and Becker [1974)
explored individuals’ natural ppab]em solQing strategies in their
study of how subjects expressed a procédure'in natural language.

Shneiderman [1980), in a recent book on the ficld of "software

Cognitive Factors in Looping: An Fmpirical Study of Looping Page 4
Introduction

psychology," presents a cognitive model of the programming
process. We report here on experiments which study the

relationship between the natural problem solving strategies of

individuals and various programming language looping constructs.

2.8 Two Strategies: Read I/Process I Vs. Process I/Read Next-I’

Consider the following problem:
Write a .program which repeatedly reads in integers,
until it reads the integer 99999. After seeing 99999,
it should print out the correct average. That is, 1it
should not count the final 99999. -
This problem is certainly not tricky nor esoteric; one would
think that this problem would be easv for students at the end of

a semester course on Pascal. In fact, students did surprisingly

poor on this and related problems {1l}.

In this problem the loop is dependent on the the variable
which holds the new valucs successively read in. {2} The Pascal
loop construct most appropriate to this type of problem is the
while construct. In Figure 1 we depict the stylistically correct

Pascal solution to this problem.

Stepping backifrom the code, the strategy which this program

{1} Only 38% of the students were able to write a‘correct program
for this problem; this test was given to students on the last
day of classes after a semester course on Pascal programming
[Soloway, et al. 1981}. :

{2] Loops can also be dependent on variables pleying other roles,
e.g., the counter, the running-total. We discuss this issue at
greater length in Section 6.0. See also [Soloway, et al. 1981].

Cognitive Factors in Looping: An Rmpirfcal Study of Looping Page S
Two Strategies: Read I/Process I Vs. Process I/Read Next-I

embodies can be characterized as:

read first-valuc

. while test ith value

process ith value

read next-ith value

Since the loop may not be‘executpd if the first valué read is
199999, a .533g outside the loop is necessary'iﬁ order to gct the
loop started. HoweQer, this results in the loop processing being
one behind 'the read; on the ith pass through the loop, the ith
valﬁe is processed and then the>ith + 1 value 1is ‘read in. We

call this strategy "process i/read next-i".

Intuitively, we felt this coding to be unnc-cpr‘:sari]y awkward
and confusing. ‘A more "nafural" coding strategy would be to read
the ith value and process it on'the.ith pass through the loop;
we call this the "read i/process i" coding st:aﬁegy. Figure‘Z
depicts Paécal pnogfamsuwhicb use while- and fegeat loops and
implement the fead i/proceés' i. strategy. These are actual
student programs produced in édr initial ‘exﬁéfiment. The
.programs in Figures 2a and 2b use an embedded if statement to
effect Ehe.read i/process i strategy. In the former case a
" boolean variable is used to control the outside while loop, while
in the latter case the same test is performed twice. In each
cése the program contains code whiéh is éxtraneous to the actual
probiem. In Figure 2c we see a program in which a repeat loop is
used to impiement the read i/proces; i stfategy; the stop value
is simply spbtracted from the total. All three progrems,

howevér,~ would not be considercd to be in good style. The goto

Cognitive Factors in Looping: An Ewpirical Study of Looping Page 6
Two Strategies: Read 1/Process I Vs. Process I1/Read Next-I
was not taught to students in this class, thus it does not appear

in programs. {3}

Knuth [1974] and Wegner [1979] have also pointed out the-
awkward coding strategy that is required in the above sorts of
problems using the while construct. Knuth suggests that Dahl’s’

e

loop is a better _cohstruet, i.e., loop;y S:; while not B: T;

repeat;, where S and T are zero or more statements and B is the
test condition.' In Ada, the new DOD language, one can use a
similar construct, i.e., loop; §S; exit when B; ° T; end 1loop.

In what follows we shall discuss a syntactic variant of the Ada

loop, namely,-the‘loqp...leave...again construct.

The read i/process i and the ‘process = i/read next-i

strategies can both be encoded 1in the loop...leave...again

construct. If S is empty, then the test is at the top of the-
loop, thereby creating a standard while -loop. However, the

loop...leave...again construct clearly facilitates the read

i/process 1 strategy better than the.standard while construct.
In Figure 3 we depict the prob;em described‘ébove. encoded _usipg.
Pascal-L. Note that unlike ‘the programs in Figure 2, no
extraneous machinery is reqdired.to encode the ;ead i/process i

strategy. In what follows we will refer to Pascal with

loop...leave...again as the only looping construct as Pascal-L.

{3} Almost none of the students, introductory or advanced, tested
to see if count was zero. For the purposes of our experiment, w
did not deduct for this omission. ' .

Cognitive Factors in Looping: An Empirical Study of Looping Page 7
Hypotheses

3.0 Hypotheses

As stated above, we are interested in the strategies that
people naturally use to solve problems.and the degree to which
those strategies are compatible with the constructs of
programming languages. In particular, we hypothesize that people
will find it easier to program when the language facilitates

their natural strategy.

Pascal, with the normal while and repeat constructs, can be

used to implement either the read i/process i strategy or the
process i/read next-i strategy. Moreober, Pascal-L, Pascal with

only the 1loop...leave...age2in construct, can also be used to

ehcode either strategy. However, for problems in which the 1loop
test is- dependent on the values recad in, Pascal’s while construct
facilitates.a process i/read next—i'.strategy ‘whereas Pascal-L
facilitates .a read i/procesé i strategy. Our claim, then, is
that for the t&pe of problems discusséd ébove, people should find
Pascal-L, a -lahguage that facilitates the read i/process i
strategy, easier to program than. Pascal, a language that

facilitates process i/read next-i.
Our hypothesis leads us to ask three éarticular guestions:
Question 1: Which strategy do people naturally use?

To answer this-duestion we need to examine which strategy people

adopt when they think about the problem and commit their thoughté

to paper.

Cognitive Factors in Looping: An Empirical Study of Looping Page 8
Hypotheses ‘

Once having determined whether people will adopt a read
i/process i or a process i/read next-i type of strategy when they
" think about the problem, we can go on to ask:

Question 2: Will peoplec write correct programs more

often when using the language that facilitates their

natural stratcgy?
Thus, if people use a read i/process i strategy in their initial
thinking, we would predict that they should write correct
programs more often when wusing Pascal-L, since this 1language

facilitates a read i/process i strategy, as compared with Pascal.

A third question of interest concerns the influence of
programming experience on performance. We expect accuracy to
improve when people have wmnara ayxnarisncn in mains 8 partizelor
language. . It is 1less clear, however, whether this experience
will change the way people think about a problem. We need to
ask:

Question 3: Does natural strategy or program accuracy
vary with experience?

4.0 Experimental Design

In order to gather empirical data on these questions, - we
designed the study described below. Students were given a
"two-part" test; the first part is reproduced in Figure 4. Here
we asked them to write a plan which would solve the stated
problem. The second part of the test is depicted in Figure 5.

Half the students were asked to write a Pascal program which

Cognitive Factors in Looping: An Empirical Study of Looping 'Page 9
Experimental Design :

solved the problem, while the other half were asked to solve the
problem using Pascal-L. Each group was given a 1 page discussion

of the respective loop constructs, i.e., the Pascal-L group was

3

given a one page ‘description of the looE...lcavef..ggai
construct, while the Pascal group was given a one page

description of the for, repeét, and while cdnStructs. The one

.page on the loop..leave...again construct of Pascal-L contained

two examples; we were careful to include instances.of using the
'ii..leavé which branched off the top of :the loop (which is
equivalent to a while) as well as in thc middle. As much time as

needed was given to students taking this test.

This test was administered to three different groups:
navirac intermeéié*oc and - advuancad Nowirae WD'O'E;"AQ“*“
‘curréntly‘taking a first programMing'cqurse in Pascal. The test
was administered after the students had been taught about and had
experience with the while loop; tﬁis occurred 3/4- of the way
through. the:'semester. Intermediatés were students currently
taking a second course in ~§rogrammiﬁg, ve;g., either a data’
structures cour se using Pascél; or an assemblyxlanguage coyrse;
. The advanced group were jhinorS' and seniors .in systems

programming and programming methodology courses.

Cognitive Factors in Looping: An Empiricni Study of Looping Page‘lﬂ
Results ‘ o

5.0 Results

With respect to Question 1 above, let us firsé look at - the
.performaﬁce of our thrce pﬁpulations on the part3of the test in
which we asked people to write down their plans for sblving the
problem. {4} The :results are shown in Table 1 and they clearly
indiéate that all three populations demonstrated a strong
preference for the read i/procgss i strategy, when it was
possible to discern any strategy at all. Across all three
groups, 82% of thé students used the read i/process i strategy,
while only 18% usgd the brocess i/read next~-i strategy in their
plans. Now consider Tablé lb; there we show the strategy choice
of students on the program, irrespective of language. Except for
vthp Advancad aronn, acsin we coe 3 chreng preforerca for the read
i/process i strategy. fhat is, 73% of the subjects used the read
i/process i strategy, while only 27% used the process i/read
next-i stratcgy. Thus, it can be argued that people’s natural
strategy, in terms of our two alternatives, is for read i/process

i rather than process i/read next-i.

Question 2 is addressed by the data in Table 2; there we
depict the accuracy of the program as a function of language. It
can be scen that people are significantly more likely to write a
correct program using Pascal-L, which facilitates a read
i/process i strategy; than using Pascal. {5} Given thet students

were exposed to the loop...leave...again construct of Pascal-L

for only a few minutes, and given that they had much more
familiarity and experience with Pascal’s standard loop

constructs, we were quite impressed with the overall high

gognftive Factors in Looping: An Empirical Study of Looping Page 11
esults

performance with respect to correcctness of the Pascal-L users.

Some interesting findihgs also emerge when we conéider the
performahce for each of ﬁhé‘three groups of éubjects (QuestionA
- 3). As’expected, accuracy improves: from 19% for the novice to
493 for the intermediate group t6 85% for the advanced group.
However, sohe changes in the way people think abou£ fthe problem
can also be éetected. Iﬁ Table 1 it-can be seen that the novices
have many more miécellangohs responses relative to the
intermediate éroup; ‘that is, typically their plans were too:
sketchy to-identify a strategy. The advanced~group, however, had
a@ Jgreater proportion of plans using a process i/read.ncxt~i
strategy compared with the intermecdiate groupl This observatiod
suggests thot xpliisnee wight be influciolii, Lhe way people
naturally tﬁink(about the problem. Morcover, the reason that the
advanced group did not ‘seem to 'prefer the read ‘i/process i
strategy on their pfograms (Table 1b), can be seen by examining
Table 3, where the strategy chbices are'showq broken down by
langéuge. The advanced group. preferrecd a read i/process i
~strategy when wusing Pascal-~L, and. a pfocess i/read next-i
strategy‘ﬁheﬁ usiﬁg Pascal. Apparently, they seemed to'recognizg'
which 'stratégy .a language facilitated. It should be streésed
however, that for all groups, a read i/proceés i strategy did
{4} Half of the intermediate éroup were asked to writeA a plan,
and half were asked to write a flowchart. We found no
'significance difference in their choice of . strategies, however,.

For reporting purposcs, we have thus combined the results of
these two groups.

{5} Although the novices show the same effect as the .other
groups, the difference in their performance is not statistically
significant due to the large number of incorrect programs. :

Cognitive Factors in Looping: An Fmpirical Study of Looping Page 12
Resulte :
predominate in their plans. Morcover, all groups were more
accurate when asked to write a program.in the language (Pascal-L)

that facilitated this sfrategy.

6.0 Pervasivencss Of Process I/Read Next-i Strateéy

We shall now ecoxtend the foregoing analysis .aléng . two
dimensions: a cqgnitive dhc, and a programming one. .First, .why
do people secm to prefer the read i/process”i strategy over the
proéesé' i/read. next-i ﬂétré;eqy? We ,spéculate that it is a
question of synchrony. In the recad i/process - i étrategy, one
gets an entity and acts Qn,it in the same pass;. iﬁ the process
i/read next-i strategy, onc acts on the entity which was gotten
on the previous pass. In otherwords, the latter strategy forces
processing to be "out of sync" with the fetching action, while
the former strategy allows the ‘fetching qnd the proéessing to be

"in sync."

Secbna, Qevfcel that read i/process i (and process i/read
next-i) can be generalized to "get a value/process a value" (and
"process a valﬁe/get next-Qaiue"). That is, read functions as a
way to "get: a new Qalue",'andlthere are other ways to achieve.
this goal, e.q., i :¥ i+l also gecnerates a "new value" for a.

variable acting as a counter or index.

COgnit§ve Factors in Looping: An Empirical Study of Looping Page 13
Pervasiveness Of Process I/Rcad Next-i Strategy

Consider, then, the following program fragment:

l. sum := 0

2. 1 :=1 o

3. while af[i] < =1 do

4. egin

5. sum := sum .4+ ali]

6. i 1= i+l

7. end
This program fragment sums up the numbers in an array until it

reaches the number -1;

note that the number -1 is not included

in the sum. We claim that this program too embodies the process

i/read next-i

strategy.

However, instead of read, we have the

assignment statement in line (6) which repeatedly gencrates a new

value for the
(5).

value."

In the above examples,

index variable 1i;

the process component is line

Thus, the notion of a “read" can be generalized to a "get a

the process i/get next-i strategqgy has

always been associated with a while 1loop program. Is this
necessarily so? We believe so; in fact we claim that:
by -its very nature, the appropriate use of the while

loop construct will
a value/get a value

This is a strong claim;

always be associated with a process
strategy.

it rests on understanding the contexts

in which the while loop is the appropriate loop construct.

We feel that textbooks typically give a "sur facy"
distinction between the while and repcat loops. For example,
The principle difference 1is this: in the WHILE

statement, the

loop
loop.

Findlay and Watt

loop
iteration of the loop;
condition is

condition 1is tested before cach
in the REPEAT statement, the
tested after cach iteration of the

(1978])

[

Cogn
Perv

or,

test

dist

In t

itive Factors in Looping: An Empirical Study of Looping
asiveness Of Process I/Read Next-1i Strategy

from the Pascal User’s Manual,

1f the number of repetitions is known beforehand, i.e.,
before the repetitions are started, the £g£ statement
is the appropriate construct to express thils situation;
otherwise the while or repeat should be used. ... The
statement [in @ while ~body] 1is repeatedly executed
until the expression becomes false. If its value is
false at the beginning, the statement is not executed
at all. N The sequence of statements between the
symbols repeat and until is repeatedly executed (at
least once) until the expression becomes true.
Jensen and Wirth [1974]

The deeper distinction, however, revolves around when

variable can reasonébly be - tested. Thus, we
inguish bétween the two loop constructs by saying:

If the test variable will have a meaningful value as

1o \ Y e~ - - - o ea gy = an de
tha darm . smbsend 1 2., 2 valuo that -ould grevont

the lqopkfrom being exeéuted even once, then a while

loop is appropriate. If, however, the first meaningful
value of the test variable is assigned to it during the

Page 14

the

_would

loop, then a repeat loop is the appropriate iteration

construct.

he above problems, the New_Value Variable (e.g., the

read

variable, or- the index wvariable) had meaningful values as the

loop was entered; 'thus a while'loop was the most approp

cont

rol structure.

riate

COgnit@ve Factors in Looping: An Empirical Study of Looping Page 15
Pervasiveness Of Process I/Read Next=i Strategy _)

Now consider the following program, which adds up “the

_integers until their. sum is greater than 100.

"1, -sum := @
2. i :=29
3. while sum < 160 do
4. begin T
5. T = i+l
6. sum := sum+i
7. end

a—

This program looks like a couhtef—example to the above claim,
since it contains a while loop ahd it abpears to employ a get
i/process i stratégy (line 5 is the get i component, while line 6
is the process i component). {6} However, we feei that the use

of the while construct, though not.incorrect, is inappropriate.

Crreoigtent with ~er Aiacussion of the diffsronce Lelwoen o
while 1loop. and a repeat loop, a better solution to this problem

would be:

um 8

1= 0
epea
1 ¢= i1
sum := sum+l
until sum > 100

0

i

We call ﬁhis'type of loop a "Running—TotaL Controlled Loop",
since Ehe test wvariable is a running-total variable, i.e., the
variable sum accuﬁulafes a to£31 [Séloway} et al, 1981). A
repeat loop 1is the appropriate construct here, since the test
variable in this type of problém is assignced a meaningful value.
.inside the 1loop, 'and thus the test should be made after the
{6} This problem sums up the natural numbers in order, until the

sum is greater than 100. The same analysis would apply to a
program in which the numbers wervrec read in. ' '

Cognitive Factors in Looping: An- Empirical Study of Looping Page 16
Pervasiveness Of Process I/Read Next-1i Strategy

assignment.

The above'disdussion gives rise to a dilemma. ‘On the "one
hand, if one argqes.that our.distinction between the while and
repeat lodps is i&iosyncratic, and thus that the above program
should be coded using a while loop, one thereby throws grave
doubt on the status of the repeat construct. Either the repeat
construct is appropriaté in certain cases, which are'difﬁergnt
than those when £he while is appropriate, or these two .constructs
are redundant and interchangable{ If the lattér; this'aéparently.
flies in the facé of the design goal of Pascal, namel?:

"keeping the number of fundamental concepts reasonably
small" (Abstract, Wirth [1971))

Also, one wonders why so much emphasis is placed on teacﬁing both

constructs, if in fact, one will do.

On the other.hand;fif the while loop has -uses distinct from
the repeat 1loop, then our data suggest that both novices and
intermediates Qill'havé-Significant difficulty 1earniﬁg to use
the while construct, since it is associated with the~apparent1y.

unnatural process a valué/get a value strétegy.

7.6 Implications

The design of a programhing language - is influenced by a
myriad of factors. Our work. suggests that cogﬂitivé factors need
to receive more attention; if one wants to design a lénguage
which novices and casual programmers caﬁ 1éarn to use, one needs

to take their natural problem solving skills and strategies into

Cognitive Factors in L.ooping: 53 e ; ' i

: e Pz S «00ping: An Empirical Study of Loopi 3
Implications R, ° y ping Fage 17
consideration. A mismatch betwecen the language s constructs and

people’s natural abilities can create a barrier t0'learnihg}

' We are- not claiming that ‘prqgrémming "languages for
professionals should necessafily catér to tﬁe needs of .the
novice.' In factfv one nmight 'evén want to claim. that the
difference between a professional and a novice is tﬁat the
professional -has learnéd to constraiﬁ his 6r her naturéi
tendencies, and it is the goal of programming languages to aid in
this re-training process. If so, then it is still important to
identify explicitly the specific " tendencies which need to be
re-trained. Moreover, one needs to then 'éee -- by empirical
testing -- if a particuler programming language_con$truct does in

fucl cunsiiain: Lhe Lcu\;cllcy in (]Ut:StiU‘Il.

Our results are also relevant to.computef science eduatién
and computer literécy.' In pafticular, the test pfoblem we used -
is not, by any stretch of the imagination, triéky. or esoteric.
If students can’t write an 8 line program which sums and averages
a sequence of nuﬁbe:s at the end ofvabprogramming_course -—-- oOr
in- the middle of their second course --- then something is
drastically wrong. One possible explanatiqn is that the basic
programming issues are not so simplc;. our results suggest that
'students have significant difficulty"translating their natural
understanding of looping to meet -the const;aints of Pascal.
Possibly, if instruction were to explicitly address itsélf to
this type of problem, 1learning and underséanding would be

facilitated.

Codnitive Factors in Looping: An Empirical Study of Looping Page 18
Implications
Finally, the literature is .repleat with claims for the
readability, debuégability, learnability, etc. of programming
language X (see Soloway, et.al. '[1981].) . Without empirical
_reseérch, of £he sort described here, these -claims -remain on the
same footing as.mysticélly divined truths. Moreover; if we are
going to take seriously'the notion of a computer literate public,
and if, as it éeems, peopLe-are going to need to program to some
degree, then éomputer sciencé'mﬁst.play closer attention to the

cognitive factors involved in programming.

Acknowledpgements

We gratefuily‘acknowledge the contributions of Klaus Schultz
and Chuck Scﬁmidtg-boqh'of whom supggested important improvements
in our experimental design. And we thank Janct TurnBuli, who as
usual helped conquer the va;ious.logistical hurdles involved in.

carrying out this type of research.

Cognitive Factor, in Loouping: An Empirical Study of Loopingy Page 19
References ‘ :

8.9 References

Findlay, William and Watt, David (1978) Pascal: An Introduction

to Methodical Programming, Computer Science Press, 1RcC.,
Potomac, Maryland

Jensen, Kathleen and Wirth, Niklaus (1974) Pascal User's Manual
and Report, Springer-Verlag, New York.

Knuth, Donald- (1974) "Structured Programming with o to
Statements", Computing Surveys, Vol. 6, No. 4, December.

- Ledgard, H., Whiteside, J., Singer, A., Seymour, W. (1986) "The
Natural Language of Interactlve Systems," in CACM, Vol. 23,
No. 10. :

- Miller, L., Becker, C. (1974) "Programming in- Natural English,"
IBM Technical Report RC 5137, November.

Shneiderman, B. (1988) Softwarc Psycholbgy: Human Factors in
Computer and Information Systems, Winthrop Publishers, Inc.,
Cambridge, Mass.

Scloway, ©., Bouar, J., Woolfl, B., Barth, F., Ruibin, E., aud
Ehrlich, K. (1981) "Cognition and Programming: Why Your
Students Write Those Crazy Programs," Proceedings of the
National Educational Computing Conference, Texas, 1981.

Wirth, Niklaus (1971) "The Programming- - Language Pascal," Acta
Informatica 1, 1 pp. 35-63. '

Wegner, Peter (1979) "Programming Languages - Concepts and
Research Directions," in Research Directions in Software
Technologz, P. Wegner (Ed.), MIT Press, Cambrldge.

Welty, C. and Stemple, D.W. (1978). "Human Factors Comparison of
a Procedural and a Nonprocedural Query Language," to appear
in Trans. on Database Systems.

Cognitive Factors in Looping: An Fmpirical Study of Looping
Figures and Tables

program Student6 Problem3

Tvar Count, Sum, Number integer; Average : real;
Pﬁw . . .
Count := 0;
Sum := 0;
Read (Number),)
while Number <> 99999 do
T begin

Sum := Sum + ‘Number;

Count := Count + 1;

Read (Number)

end; a
Average := Sum / Count;
Writeln (Average)
end.

FIGURE 1

A Stylistically Correct Pascal Program

1
i
.
3
H
i
H
|

e

e LR T Y

Program Student?_Problemd;
yar N, Sum, X : intcaer;
Average @ real; ™
Stop : hooT:
begin T
Stop := falsey
N w0 777
Sum :« 0B;
while pot Step do
egin T
Read (X);
1f x = 9599y

glac beygin

Sun e Suim + X;
Nsw N ¢]
end

end;
Average := Sum / Np
Writeln (Average)
end.

PIGURE 2a

Uaing a Bdolean Variable and 3 Hested Conditional
To Effect a read i/process i Strategy

progran Studentld Probleml;
var Num, Sum, K : intcaer:
Avg : real:

begin
un :w @;
N t» 03
Sum = 8;
‘while Num <> 99999 do
begfn

Read™ (Num);
1€ Num <> 99999
then beain
Fum = Sum 4 Numg

N tw i ¢+]
end;
Av? t» Sum / N»
. Hriteln ({Avg)
end.
FIGURE 2b

Using a Nested Conditional and a3 Repéaﬁed Test
' To Effect .a read ji/process i Strategy

proaram Student16_Problemd;

var Count,. Sum, Num : intearr; Average : real:
beain . :
tount := -1
Sum :* 03
repeat
Count :» Count + 1;
Read (Num);
Sum :* Sum + Num
unti]l Num = 99999; -
Sum 1= Sum - 99999;
Average := Sum / Count
end.

FIGURE 2c

Using a !Sfﬁﬁl Loop *nd Backing Values Down
To Effect a read 1/process i Strategy

Cognitive Factors in Looping?

Figures and Tables

program Pascal-lL;

var Count, Sum, Nu_Valuve: intcgor;
o Avg i real;
begin
Count :=
Sum := 0;
loop
“read (Nu_Value);
"if Nu_Value = 99999 then leave;
Sum := Sum + Nu_ Value; .
Count := Count + 1;
again
Avg := Sum/Count;’
Writeln (Avg);
end

0;

FIGURE 3

an Empirical Study of Looping

"The Averaging Problem -using Pascal-L:

Pascal Augmented with the loop...leave Construct

C99nitive Factors in Looping: An Empirical Study of Looping
Figures and Tables

Plgase write a PLAN which solves the problem described below, and
which you would use to guide eventual program development. The plan
should NOT be in a Programiing language; other than that restriction,
the choice of "plan language” is up to you.

PROBLEM

Write a plan for » program which reads in a serics of integers, and
which computes the average of these numbers. The program should stop
reading integers when it has read the number 99999, NOTE: the final
99999 should NOT be reflected in the average you calculote.

FIGURE 4

First Question; Asked of All Subjects

PROLLEY

Write a Pascal proejraa which reads in a series of inthvrs..nnd w?xch
conputes the averane of these numbers, The proaram should ftoy
reading inteqerd when it hasg resd the number 99999, KOTE: the (ina
99699 should NOT be reflected in the averdge you calculace,

REMEMULR, you should ufie standscd Pascal.

(Pleane uwse the program outline provided. DO ROT ERASE ANY WORK, 1f
you want to start fresh, use a new program outline, Turn in all
vork.) —
PROGRAM PRODLEM { INPUT/, OUTPUTI:

VAR

{* BEGIN YOUR STATEMERTS NERE ... *)

Standard Pascal provides three loaping statements: WHILE, REPEAT, and
FOR. . Below is o brief review of these statements. Please read.the
review carefully.

.

WHILE expression
DO statements

ssion s
after cach

e —. =%

troe. In other words, expression 16 tected initially 2n

A WHILE loop repeatedly does the statements while the expres
d

execution of the statements.

REPEAT
statements
UNTIL expression

A REPEAT loop repeatedly does the statements until the expression is
true. That is, stetements are executead inltially and then expression
is tested for each repitition 2€ the loop. .

FOR identificr :» cxpression~alpha TO expression-beta
DO statements

A FOR loop does the statements for each value of the identifier from
exg&gigjggiglggg to expression-heta, First, identifier is set to the
value c¢f expression-alphn and the statements dce exvcuted. ' Then,
identifier” 18 cet to the <wzlue "ol expression-alpha + 1 and the
statemenis are agzin executed. This continues until identifier is
finally et to. the value of expression-heta snd the sratcments are
executsd for the last time.

. FIGURE Sa

R HAalf of Subjects Given Standard Paseal version

PROSLEM

Weite a Pescal-l program which tesds in a seriec of integers, and
which computes the average of theae numbers. The proaram should stop
teading integers when ft has read the number 94999, SOTE: the final
99599 should NOT Le reflected in the average you calcu)ata.

REMEMBEM, you may only use the LOGP ... LEAVE .. ACAIN looping
statement.

(Please use the program outline provided, DO KOT ERASL ANY WORK. 1f
you want to start fresh, use & new program outline. Turn §n all
wvork.) T

PROGRAM PROBLEM (INPUT/, OUTPUT):
VAR
(* BEGIN YOUR STATFMENTS HERE .., ¥)

We have just designcd * new lanquaae called Paseal-L. It is just
like stendard Pascal except that it dees MOT have the WHILE, REPEAT,
and FCR loopina statementsa, Rather, Prscol-L has 3 new kind of
statement: LOOP, .LEAVE..AGAIN,

The following describes how this new locping statement works:

Loop
statements~-alpha
IP expression LEAVE
statements-beta
AGAIN

means:

* execute gtatements-2lpha, which could be zero or more legal

Pascal statements,
¢ then, test expressien,

* If expression is TRUE, skip to the statement AFTER the
AGAIN

¢ {f .expression is FALSE, continve .through the 1loop and
execute statoments-ctets, which could be zero or mor2 legal
Pascal statements, 2°d then do the loop 3!l over again.

In other words, as 1long as the gxnresstgg 5%3ys FALSE, 2]l the
statements between LOOP and ZGAIN will continue %o be executed,

For example, the following Pascel-L programs print cut the
nuanbers 1 through 10 and onriy use the LOOP ... LEAVE ... AGRIN locp
construction:

PROGRAY examplel (output); PROGRAM 2xomple2(output);
VAR i : INTEGER: VAR i : INTEGER:
BEGIN BLGIN
[L ¥ i v 1;

Loorp Loce
writeln(i); IF i > 18 LEAVE;
IF § >= 10 LEAVE; writeln(i):
f to i+) f e +1
AGAIN AGAIN
END, . END.

We would like ynu to wuwse tne LOOP..LEAVE..AGRIN statement in the
progrzm you write (or the zroblem described on the next page, Thank
you for you cooperation,

FIGUREC Sb

Half of Subjeccts Given Pascal-L Versien

Cognitive Factors in Looping:

Figures and Tables
READ/
PROCESS
NOVICES (116) 82%

INTERMEDIATES (112) 91%

An bmpirical Study of Looping

PROCESS/ N

RLEAD

18%
9%
33%

TABLE la

39

90.
48

Strateqy on Plan

MISC. {1}

71
22

ADVANCED (52) 67%
READ/
PROCESS

NOVICES (116) 89%

INTERMEDIATES (112) 72%

ADVANCED (52) ‘ 60%

PROCESS/ N

READ

14%
28%
40%

TABLE 1b

64
90

49

Strategy on Program

{1} This column depiéts the number of individuals for which

MISC. {1}

52
22

not identify a strategy in their plan or program.

under the read i/process i process i/read next-i columns do

this figure into account.

* -~ Statiscally Significant

S1G.

.060 *
.000 *
Ig2 *

SIG.

.000 *
000 *

- .199

we could
The percentages
not . take

Cognitive Factors in
Figures and Tables

Pascal-L

Pascal

Pascal-L

Pascal -

Pascal-L

Pascal

CORRECT INCORRECT N

NOVICES (116)
24% 76% 58
14% 86% 58

INTERMEDIATES (112)
61% 34% _ 59

36% 64% 53

ADVANCED (52)

96% 43 26
69% 31% 26
TABLE 2

Looping: An Empirical Study of Looping

SIG.

155

.668 *

019 *

Program Correctness With Respect Eo Langueage

* -- Statistically Significant

Cognitive Factors in Ldoping: An Empirical Study of Looping !
Figures and Tables

READ/ PROCESS/ N MISC. {1} SIG. :
PROCESS READ - : ;

NOVICES (116) i

Pascal-L 97% 3% 30 28 | ¥
‘ .82 * '
Pascal T7% 23% 34 24
INTERMEDIATES (112)
Pascal-L 86% . 14% 50 -9
. .0008 *
Pascal , 54% 46% 39 14
ADVANCED (52)
Pascal-L 92% 8% 26]
: .0001 *
Pascal 22% 78% 23 3
TABLE 3

Strateay on Program With Respect to-Language

{1} This column depicts the number of individuals for which we could.
not identify a -strategy 1in their plan or program. The percentages’
under the read i/process i process i/read next-i columns do not take
this figqure into account. .

* -~ Statistically Significant

