Algebraic Techniques for the
Analysis of Concurrent Systems

George S. Avrunin*
Jack C. Wileden**

COINS Technical Report 81-11
May 1981

*Department of Mathematics and Statistics
University of Massachusetts
Amherst, Massachusetts 01003

**Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

Note: Submitted for publication.
Please do not distribute in this form.

.

Abstract

We have developed algebraic techniques for the analysis
of certain special classes of concurrent systems based on a
description of the systems in a suitable modelling scheme.
Both the modelling scheme and these analytic techniques have
been specifically tailored for use in the design phase of
concurrent software system development. The modelling scheme
and analytic techniques are described and an illustrative
example is given.

Introduction

It is often very difficult to understand, and hence to
reason abcut, the behavior of a computing system in which
there is concurrent activity. The behavior of even relatively
small and simple concurrent systems is frequently beyond the
comprehension of their designers, as evidenced by the
appearance of such incorrect concurrent programs as [HYMAG6].
Yet the trend is clearly toward large and complex concurrent
systems. In particular, the declining cost of computer
hardware, the proliferation of distributed computing systems,
and the demand for increasingly sophisticated applications all
portend a dramatic increase in the development of large,
complex, concurrent software systems. New aids for
understanding and analyzing concurrent systems must be found
if there is to be any hope of preducing reliable and robust
concurrent software.

Although improved techniques for analyzing completed
concurrent programs could certainly prove useful, approaches
to pre-implementation analysis, especially analysis during the
design phase of a concurrent software system's development,
offer even more promise. The majority of software faults can
be traced to design errors [BOEH731, and correcting a faulty
design prior to implementation is much more economical than
attempting to compensate for it in a completed, erroneous
program. Therefore, techniques for understanding and
analyzing the design of a concurrent software system, prior to
its implementation, could greatly facilitate the concurrent

software development process.

The role that we envision for these techniques in
pre-implementation concurrent software development is
illustrated by the following scenario: A designer, early in
the development of a 1large, complex, concurrent software
system, conceives a modularization for the system. The
modularization is described by identifying the individual
processes comprising the system and specifying how those
processes will interact. Continued development of the system,
eventually culminating in an implementation, will involve a
great deal of time and effort, all of which would be wasted if
any error has been made at this early pre-~implementation
stage. Therefore, before proceeding with the development, the
designer employs analysis techniques expressly tailored for
pre-implementation use to check for design flaws.
Specifically, these techniques can be used to determine
whether or not certain patterns of behavior occur, given the
specified processes and process interactions. The patterns of
interest may represent desirable properties of system
behavior, such as mutually exclusive utilization of a shared
resource, or graceful degradation and continued operation
following the failure of one or more system components.
Alternatively, the patterns might represent pathological
behaviors such as deadlocks. Through use of the appropriate
analysis techniques, the designer could gain confidence in the
suitability of a design before‘proceeding to later stages of
the software development process. Our research is directed at
developing precisely the kind of analytic techniques that

might be used for this purpose.

-2 -

Due to the complexity of large concurrent software
systems, techniques for understanding and analyzing them must
provide both a basis for rigorous reasoning about them and a
means of focusing on their important features while ignoring a
welter of details. An appropriate formalism for describing
concurrent computation would offer the needed rigor and
capability for abstraction. To be appropriate for application
in the concurrent software development process such a
formalism must be relatively easy to wunderstand and use.
Specifically, it must Dbe amenable to use by software
development practitioners who may have little or no training
in advanced mathematics or theoretical computer science.
Ideally, it should be possible to provide an automated version
of the formalism to permit its use in a concurrent software
development environment [CLAR81]. Moreover, an appropriate
formalism for wuse in the development process should bear a
reasonable relationship to standard software specification and
design techniques and should be able to answer the types of
questions that arise most crucially during specification and
design. Finally, a formalism can only be appropriate for use
~during concurrent software development if it is applicable to
a wide range of distributed system organizations.

We have adopted a formalism that we believe meets these
criteria successfully and have begun to develop techniques for
the analysis of concurrent systems based on this formalism.
Our work relies on a formal modelling scheme that permits the
natural description of concurrent systems with a wide range of

organizations, including those with dynamic structure

-3 -

[WILE80]. 1In addition, the scheme provides a closed form
description of the possible behaviors of a modelled system as
strings over an alphabet of symbols representing events in the
systenm. Our approach to analysis is to first interpret
interesting features of the behavior of the system as patterns
of event symbols in these strings. We then ask whether
strings containing particular patterns actually occur among
those corresponding to the modelled system. To answer these
questions, we use the closed form descriptions of possible
behavior strings to generate algebraic relations involving the
numbers of occurrences of particular symbols in certain
segments of the strings. We then attempt to determine whether
a string satisfying these relations can contain the pattern
under consideration. This can be viewed as a generalization
of the technique employed by Habermann [HABE72] in analyzing a
semaphore solution to a producer-consumer problem.

The remainder of this paper expands upon our approach to
the understanding and analysis of concurrent systems. In the
next section we describe alternative approaches and indicate
why we find them 1less suitable for use in the analysis of
concurrent systems. We then describe the formalism that we
have adopted and outline our approach to the analysis of

concurrent systems.

Related Work

A good deal of work has been done that is relevant to the
problem of understanding concurrent systems. In this section
we briefly survey the major approaches taken in this area and
discuss their applicability to pre-implementation analysis in
concurrent software development. We distinguish three broad
categories of related work: proof techniques, formal
semantiecs, and formal models.

Techniques for proving properties of programs, also known
as verification techniques, have received a great deal of
attention. By attaching logical predicates, called
assertions, to specific points within a program and then using

the program's statements to direct a formal reasoning process,
it is sometimes possible to prove that a given relationship
exists between input values and output values, or that the
program terminates after a bounded number of statements have
been executed [FLOY67,MANNT4]. The formal reasoning process
involved is often guided, for a given programming language, by
a set of proof rules [HOAR69], one for each type of statement
in the language. Particularly when applied to small
sequential programs employing only simple data types, this
proof rule approach 1is very appealing in that it produces
rigorous formal statements about program properties. Adequate
formalizations of the properties of complex data structures,
such as arrays and 1lists, have proven elusive, however.
Moreover, even with the aid of sophisticated and powerful
theorem provers [BOYE75], proofs about realistically 1large

programs remain computationally infeasible.

-5 =

The proof rules approach has been applied to concurrent
programs by Owicki and Gries [OWIC76], Lamport [LAMP77], and
others (e.g., [APT80]). Although it may eventually provide a
useful method for analyzing concurrent programs, we do not
feel that it is an appropriate approach for understanding and
analyzing concurrent system specifications and designs. One
reason for this is the complete dependence of the proof rules
on the specific programming language being wused. More
importantly, we feel that the predicate calculus wunderlying
this approach is not a formalism that software developers will
find easy to work with. Finally, the construction of proofs
in the predicate calculus remains a challenging problem with
no acceptably general or powerful automated aid likely to be
available soon. Although some or all of these shortcomings
may eventually be surmounted, we feel that, taken together,
they warrant the pursuit of alternative approaches.

Formal semantics for programming languages, particularly
the denotational semantics of Scott [TENNT76], attempts to give
a rigorous mathematical statement of the meaning of any
program written in the 1language. Programming language
statements and constructs are mapped to sophisticated
mathematical structures and the result is taken to be a
machine-independent representation of the program's meaning.

Milrer and his colleagues have investigated denotational
semantics for concurrent systems [MiLN79]. They first define
a model of communicating processes, then develop a flow
algebra for describing the individual processes and their

composition into a concurrent system. The solution of a

-6 -

powerdomain equation provides the mathematical basis for their
approach.

Formal semantics does not seem to provide an appropriate
foundation for pre-implementation analysis of concurrent
software systems. The description of even a simple concurrent
system in a formalism such as Milner's is very complicated and
can be understood only with substantial effort. The
mathematical structures underlying such approaches are far too
sophisticated for most software development practitioners to
understand or use. Most importantly, the powerdomain
formalism, while it may be useful as a descriptive device,
seems to offer no provision for analyzing a concurrent system
once its description has been formulated.

The third category of previous work relevant to
understanding concurrent syétems can be loosely classified as
formal models. This includes such things as Petri nets
(PETE77], dataflow models [ADAM68,KAHN74], and many other
automata-theoretic models. These models, particularly Petri
nets, have been extensively studied in an effort to lecarn more
about fundamental properties of concurrent computation.
Typically, each type of model corresponds to one particular
organization for concurrent computing systems. In some
instances, attempts have been made to provide analysis
techniques applicable to these models. The primary example of
this is the use of vector addition system analysis in studying

Petri nets and related models.

Despite some efforts to employ these various formal
models in analyzing concurrent software (e.g., [KELL761), we
have not found any of these models to be truly satisfactory
for use in formulating analysis capabilities appropriate to
pre-implementation software development. Some simply do not
allow the description of a suitébly wide range of system
organizations. For instance, dataflow models cannot be
conveniently used to represent the sharing of data objects,
and Petri nets and related models cannot sucecinectly represent
systems with dynamic structure. In particular, these
limitations make these models ill-suited for analyzing the
survivability of a distributed system, i.e., its behavior when
certain shared components cease to operate correctly.
Moreover, most such models describe concurrent systems in
terms that do not naturally correspond to software system
features, and thus are not well suited for software
specification and analysis. For example, a Petri net would
not normally appear in a top-down development of a software
system. For these reasons, we have based our work on the
Dynamic Process Modelling Scheme (DPMS) [WILE78], a formal
model that provides more natural descriptions for a wide range

of system crganizations.

-

The Dynamic Process Modelling Scheme

One component of DPMS is a modelling language, called
DYMOL, that can be used to formulate precise, high-level,
procedural descriptions of constituent processes in a
concurrent system [WILES8O]. A second component of the

modelling scheme, called constrained expressions, is a closed

form, non-procedural, representation for all the possible
behaviors that could be realized by some concurrent systen.
For an important subset of dynamically-structured concurrent
systems these two components of DPMS are related by an
effective procedure for deriving the constrained expressions
describing the potential behavior of any given DYMOL
description of a system. In previous work the Dynamic Process
Modelling Scheme has been used as a basis for concurrent
software design methods, including informal analysis of the
potential behavior represented by a design [WILE79,WILE80],
and has been employed in studying formal properties, such as
decidability questions, regarding the <class of concurrent
systems with dynamic structure ([WILE78]. Our most recent
efforts have been aimed at increasing the usefulness of DPMS
as an aid to software system developers by strengthening and
formalizing the analysis capabilities associated with the
scheme. In the remainder of this section we summarize the
relevant features of the Dynamic Proéess Modelling Scheme. We
first describe the computational model on which DPMS is based,

then discuss the DYMOL language and constrained expressions.

N

In DPMS, a dynamically-structured concurrent system 1is
considered to be composed of individual sequential processes,
communicating with one another by means of message
transmission. Each individual process is an instance of one
of a finite number of distinct classes of potential processes.
Each class is described by a template, i.e., a generic program
written in DYMOL. This DYMOL template precisely specifies the
ways 1in which processes of the class may interact with other
processes, through message transmission or by creating or
destroying processes, but only abstractly describes the local,
internal activities of the process itself. Thus, DPMS
descriptions focus on process organization and interaction,
which is the appropriate orientation for design description
and analysis, rather than on internal process activity.

Message transmission as modelled in DPMS is both a
communication and a synchronization mechanism. A process may,
using an appropriate DYMOL instruction, send a message through
an outbound port into a link assoc:iated with that port. The
link is essentially an unbounded, unordered repository that is
used to mediate the asynchronous message transmission activity
of DPMS processes. Having sent a message, the sending process
may continue with subsequent activities as described by its
DYMOL program. The message will reside in the link until some
process requests receipt of a message, using another DYMOL
instruction, through one of its inbound ports that currently
is connected to the 1link by a channel. At that point,
assuming no competing requests have been 1lodged in the

interim, the message will be removed from the link and placed

- 10 -

. Ay

into the buffer of the requesting process. If no messages are
currently residing in any of the links currently connected to
the designated inbound port when a receive request is 1lodged,
the requesting process simply waits. The wait continues at
least until a message becomes available in a link connected to
the designated inbound port, or wuntil a link containing a
message is connected to the designated port by a newly
established channel. (Both of these obviously must result
from activities of processes other than the waiting process.)
Neither the appearance of a message nor the opening of a
channel will necessarily end a wait, however, since competing
requests might be lodged in the interim and requests need not
be serviced in the order in which they were made. Clearly, a
process could wait for receipt of a message indefinitely.

The DYMOL language is a simple programming-like language
whose syntax 1is based on Algol 60. Among its features are
instructions for message transmission (SEND and RECEIVE), and
a standard set of control flow constructs. Dynamic structure
can be described using DYMOL instructions for communication
channel manipulation (ESTABLISH and CLOSE) and process
creation and destruction (CREATE and DESTROY). Decisions
based upon internal process computation are modelled as
non-deterministic choices (e.g., IF INTERNAL TEST ... or
WHILE INTERNAL TEST DO ...). An example of a DYMOL

description appears below in Figure 1 while further details on

DYMOL can be found in [WILES80].

- 11 -~

[N

Constrained expressions are a closed form, non-procedural
representation of concurrent behavior in the same sense that
regular expressions [KLEE56] are a closed form, non-procedural
representation of the behavior of finite state machines. 1In
fact, the operators used in constrained expressions include
the standard regular expression vperators (concatenation,
alternation, transitive closure) as well as two operators
(interleaving and its transitive closure) used to represent
concurrent activity. A constrained expression is formed by

using these operators to combine symbols from an alphabet of

events in the system being described into a collection of

subexpressions, one subexpression for each process in the
modelled system. The interleave of these subexpressions then
represents the unconstrained set of possible system behaviors,
ignoring such fundamental properties as the necessity of a
message's being sent before it can be received or a channel's
being opened before it can be used in message transmission.
The required fundamental properties are formally described by

a second collection of subexpressions, called the constraint

set. Then the set of behaviors (or, in formal terms, the

language over the event alphabet) described by the overall
constrained expression is Jjust what remains after the
unconstrained set of behaviors is filtered by the constraint
set. (This filtering process can be formally defined as a set
intersection [WILE78].) Although constrained expressions are
a general mechanism for describing concurrent system behavior,
for our purposes we wuse a particular alphabet of events

focusing on message transmission activities, in keeping with

- 12 -

Sl consd

¥

the DYMOL orientation. Specifically, we formulate expressions
in terms of such events as send events (e.g., the sending of a
message through outbound port x, denoted s(x)), receive events
(e.g., the receiving of a message through inbound port y that
was sent through outbound port x, denoted r(x,y)), and wait
events, where the wait event w(y) occurs when a process waits
indefinitely to receive a message through its inbound port y.
Examples of constrained expressions appear both in [WILETS8]
and later in this paper.

Since DYMOL bears a strong resemblance to a programming
language, DPMS models are easy to understand and have a
natural relationship to standard software specification and
design techniques. Because 1its primitives are message
transmission and the creation and destruction of processes,
DPMS 1is suitable for describing a wide range of concurrent
system organizations. DPMS focuses on process organization
and interaction, and therefore addresses precisely those
issues most crucial during specification and design. For
these reasons we believe that the Dynamic Process Modelling
Scheme 1is an appropriate basis for both describing and

analyzing designs of concurrent software systems.

- 13 -

Analiysis Tachniques

<.

Wwith UPMS, we can formulate questions about &the system
under consideration as questions about thé occurrence of
particular symbols in a behavior. For example, the question
as to whether a particular process can become blocked becomes
the question of whether there is a behavior with a wait at one
of the inbound ports of that process. Similarly, the question
of survivability of the system after a certain process 1is
destroyed can be answered by determining the set of behaviors
that include the appropriate destroy symbol. To answer such
qQuestions, we use the derived expressions corresponding to the
processes to generate a collection of equations and
inequalities involving the number of occurrences of various
symbols in various segments of a behavior. Using these
relations, we attempt to establish whether a behavior with the
specified set of symbols exists.

These algebraic relations are generated in the following
way. Certain fundamental properties of the underlying
computational model, including those expressed by the
constraint set, can be regarded as conditions on the
collection of events preceding the occurrence of a given
event. In terms of behavior strings, these cénditions produce
a set of equations and inequalities involving the naumbers of
oceurrences of various symbols in the segment of the string
preceding a given symbol. To determine whether there 1is a
behavior containing a specified qutern of symbols, we begin
by assuming that these symbols occur in- a string, and then

generate the relations for the segments that would precede

- 14 -

them. These relativas in turn involve occurrences of other
sympols, and we generate new relations on the segments
‘preceding these. Continuing in this fashion, we attempt ﬁo
determine whether the relations are inconsistent, in which
case no behavior contains the specified pattern. If the
relations zre consistent, we use them in an attempt to produce
a behavior containing the pattern.

To make this procedure clearer, we describe below how the
equations and inequalities are generated in a restricted
version of the modelling scheme, and use them to determine the
possible behavior of a particular system. For simplicity, we
will assume that there is no dynamic structure and that the
only control construct is WHILE INTERNAL TEST DO. 1In this
case the derived expressions corresponding to the system's
processes are themselves made up of subexpressions of the form
Al or (A1 A2...An)*, where the elements Ai are either send,
receive, or wait symbols, or unions of these symbols. We

refer to subexpressions of the first type as simple phrases

and those of the second as compouns phrases, and we speak of

the occurrence of any symbol from Ai in a string as an
occurrence of the element Ai.

Now consider the collection of derived expressions
cor?esponding to the processes of .a given system. A.behavior
is a string composed of occurrences of elements from the
phrases in those derived expressions. We focus our attention
upon an (arbitrarily selectedi'occurrence within the Dbehavior

of the ith element from 'the jth phrase in some derived

expression. The properties of the computational model

- 15 -

underiying DPMS lead to the following counditions on the
symbols appearing in the segment of the string preceding this

occurrence,

(1) Simple phrases in this derived expression preceding
the jth phrase must appear exactly once.

(2) All elements in a compound phrase in this derived
expression preceding the Jth phrase must appear the
same number of times. (ThIs number can, of course,
be zero.)

(3) No symbol from a phrase in this derived expression
following the Jth pbrase can appear.

(4) If the jth phrase is (Al...An)*, Ai,Ai+1, ..., An
must each appear exactly k times and A1, ..., Ai-1
must each appear exactly k+1 times for some k>0.

(5) No w(y) or STOP from this derived expression ' can
appear.

(6) If the symbol occurring is an r(x,y), y must be
connected to x and the number of appearances of
s(x) must be greater than the total of the number
of appearances of symbols r(x,z) as z ranges over
the inbound ports connected to x.

(7) If the symbol occurring is a w(y), the total number
of appearances of symbols s(x), where x ranges over
the outbound ports connected to y, must equal the
total number of appearances of symbols r(x,z),
where x ranges over the cutbound ports connected to
y and z ranges over all the inbound ports.

The behavior must also satisfy the conditions
(8) If a w(y) occurs in the behavior, the equality of
(7) must hold for the behavior considered as a
. whole.
and

(9) Exactly one of the symbols w(y) and STOP from each
derived expression appears.

The first five conditions insure that symbols in the

behavior are taken in the appropriate order from each

derived expression, and no further symbols are taken if the

correspending process becomes blocked. Condition (6) is

- 16 -

'

L

simply the requirement that tnere be a message to be
received when an r(x,y) appears. Condition (7) says that a
process may not become blocked if there are messages it can
receive, while the eighth condition requires that there be
no messages left at the end of a behavior which could be
received by a blocked process. The last condition says that
a process must be blocked or terminate nofmally.

Now consider the system of Figure 1.. The derived
expressions are (s(x) (r(x,y) u r(b,y) u w(y)) s(z))* STOP1
and t(r(x,a) u w(a)) (r(z,e) u w(e)) s(b))* STOP2.
Conceivably, this system could reach a deadlock state where
process 1 is attempting to receive at y before sending at =z
and process 2 is attempting to receive a message from z at c
before sending at b. We will use conditions (1)-(9) to see
that this can only occur in the behaviors s(x)r(x,a)wl(ydw(e)
and s(x)r(x,a)w(c)w(y). In fact, we show that this is the
only way the second process can become blocked waiting for a
message through its inbound port c.

Suppose that process 2 does become blockgd at ¢, i.e.,
that a w(c) appears in a behavior. By (8), we must have the
number of appearances of s(z) in the string equal to the
number of appearances of r(z,c); we write this as
is(z)i=ir(z,c)| and use subscripts on the cardinality
symbols to distinguish counts in different segments of the
behavior where this 1is necessary to avoid confusion.
Conditions 4) and .(9) together imply that

ir(z,c)i=ir(x,a)l-1=is(b)i,. so is(z)i=is(b)i, and that

-17 -

aan

PROCESS 1: PROCESS 2:
WHILE INTERNAL TEST DO WHILE INTERNAL TEST DO
BEGIN BEGIN
SEND x; RECEIVE a;
RECEIVE y; RECEIVE c;
SEND z SEND b
END END

The arrows indicate channels connecting outbound port x
to inbound ports a and y, outbound port z to inbound port c,

and outbound port b to inbound port vy. Square Dboxes
represent links.

Figure 1

- 18 -

-

(1)

is(x}! if no w(y) appears in the

is(z)i=ir(x,y)i+ir(b,y)!= behavior
, is(x){-1 if a w(y) appears in
the behavior
By (6), is(x)i+is(b)i=ir(x,a)i2ir(x,y)i+ir(b,y)i=is(z)}.
Now if w(y) does not appear, we have |s(x)!=!s(z)! so
is(b)i-ir(x,a)i>0. But we saw that is(b)i=ir(x,a)|-1.
Thus, a w(y) must appear in the behavior.

Condition (6) implies that is(x)i=ir(x,a)i>ir(x,y)i.
Since a w(y) occurs, the arguments above show that
ir(x,a)i=-1=is(b)i=is(z)i=}s(x)i-1, whence !r(x,a)l=!s(x)}.
Since all counts are nonnegative, this implies that
ir(x,y)i=0. The occurrence of a w(y) also implies, by (8),
that is(x)i=ir(x,a)i+is(b)i=ir(x,y)i+ir(b,y)}, s0
is(b)i=ir(b,y)i.

Suppose that is(b)i>1. Let :symboli1 denote the number
of occurrences of that symbol in the segment preceding the
first s(b). Condition (4) says that ir(z,e)iq=1, and then
condition (6) says that 18(2)3121. It then follows from (4)
that ir(x,y)iy+ir(b,y)!{121. We have seen that ir(x,y)!=0,
so ir(x;y)i,=0 and ir(b,y)i421. Thus, an r(b,y) occurs in
the segment preceding the first s(b), which violates (6).
We conclude that {s(b)i=0. The possible behaviors are then
s(x)r(x,2)w(ydw(e) and s(x)r(x,a)w(ec)w(y).

This approach extends easily to less restricted
versions of the modelling scheme allowing more than onc

message +vype, certain types of dynamic structure, and

additional control constructs. - In each case, we can give a

- 19 -

QA

general set of conditions which, together with the derived
e#pressions, are used to generate a system of algebraic
relations involving the numbers of appearances of various
symbols in segments of a behavior. These relations are used
in turn to determine the class of behaviors which include

particular sets of symbols.

- 20 -

“v:

Conclusion

We believe that a suitable formalism for describing and
analyzing concurrent systems is a prerequisite to useful
tools supporting the work of concurrent software system
developers. In this paper we have discussed alternative
approaches, indicating why we find them inappropriate, and
then described our approach to concurrent software system
description and analysis. Our descriptive formalism is
based on the Dynamic Process Modelling Scheme, whose DYMOL
language abstractly describes concurrent systems as
collections of sequential processes communicating via
message transmission. Our analysis technique involves
generating a collection of equations and inequalities from a
DYMOL description. These equations and inequalities involve
the number of occurrences of various events in various
segments of a posited behavior, and can be used to establish
whether a Dbehavior consisting of the specified events can
possibly occur. Both the descriptive formalism and the
analysis technique have been chosen for their suitability as
foundations for wuseful concurrent software development
tools.

The analysis techniques described here cannot yet be
applied to systems whose descriptions require the full
generality of the DPMS scheme; thz creation of processes
presents the major remaining difficulty. Our current work
is directed to a solution of this problem, and to the
efficient implementation of these techniques as a concurrent

software development tool.

- 21 -

Y-,

e

Bibliography

[(ADAM68] D. A. Adams, A Computation Model with Dataflow
Sequencing, Computer Science Department, Stanford
University, Technical Report CS-117 (December 1968).

[(APT80] K. Apt, N. Francez, and W. DeRoever, "A Proof
System for Communicating Sequential Processes, ACM

Transactions on Programmlng Languages and Systems (July
1980), pp. 359-3

[BOEH73] B. Boehm, "Software and Its Impact: A Quantitative
Assessment," Datamation, vol.19, No.5 (May 1973),

pp0 48-59‘
[BOYE75] R. Boyer and J. Moore, "Proving Theorems About LISP
Functions," Journal of the ACM (January 1975),

pp. 129-144,.

[CLAR81] L. Clarke, R. Graham, and J. Wileden, "Thoughts on
the Design Phase of an Integrated Software Development
Environment," Proceedings of the 14th Hawaii
International Conference on Systems Science, Honolulu
(January 1987).

[FLOY67] R. W. Floyd, "Assigning Meaning to Programs,"
Proceedings of Symposia in Applied Mathematlcs,
Mathematical Aspects of Computer Science (1967),

pp. 19-32.

[HABE72] A. N. Habermann, "Synchronization of Communicating
Processes," Communications of the ACM (March 1972),
pp. 171-176.

[HOAR69] C. A. R. Hoare, "An Axiomatic Basis of Computer
Programming," Communications of the ACM (October 1969),
pp. 576-580, 583.

(HYMA66] H. Hyman, "Comment on a Problem in Concurrent
Programming Control," Communications of the ACM
(January 1966), p. 45.

[KAHNT4] G. Kahn, "The Semantics of a Simple Language for
Parallel Processing," Information Processing 74,
Nortn~Holland, Amsterdam, 1974.

[KELL76] R. M. Keller, "Formal Verification of Parallel
Programs," Communications of the ACM (July 1976),
pp. 371-384. -

[KLEE56] S. Kleene, “"Representations of Events in Nerve Nets
and Finite Automata," Automata Studies,
Ann. Math. Studies no.34, Princeton Univer51ty Press,
1956, pp. 3-41.

- 22 -

o<, .

o

2y

[LAMP77] L. Lamport, "Proving the Correctness of
Multiprocess Programs," IEEE Transactions on Software
Engineering (March 1977), pp. 125-143.

[MANN74] Z. Manna, Mathematical Theory of Computation,
MeGraw-Hill, (197%),

[MILN79] G. Milne and R. Milner, "Concurrent Processes and
Their Syntax," Journal of the ACM (April 1979),
pp. 302-321.

[OWIC76] S. Owicki and D. Gries, "Verifying Properties of
Parallel Programs: An Axiomatic Approach,"
Communications of the ACM (May 1976), pp. 279-285.

[PETE77] J. Peterson, "Petri Nets," ACM Computing Surveys
(September 1977), pp. 223-252.

[TENN76] R. Tennent, "The Denotational Semantics of
Programming Languages," Communications of the ACM
(August 1976), pp. 437-453.

[WILE78] J. Wileden, "Modelling Parallel Systems with
Dynamic Structure," Department of Computer and
Information Science, Universicy of Massachusetts, COINS
Technical Report 78-4 (January 1978).

[WILE79] J. Wileden, "Relationships Between Graph Grammars
and the Design and Analysis of Concurrent Software,"
Lecture Notes in Computer Science, vol.73,
Spring-Verlag, Berlin, 1979.

[WILE8O] J. Wileden, "“Techniques for Modelling Parallel
Systems with Dynamic Structure," Journal of Digital
Systems, 4,2 (Summer 1980), pp.177-197.

- 23 -

