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Abstract

In a previous paper we defined the associative search problem and
presented a system capable of solving it under certain conditions. In
this paper we interpret a spatial learning problem as an associative search
task and describe the behavior of an adaptive network capable of solving it.
This example shows how naturally the associative search problem can arise
and permits the search, association, and generalization properties of

the adéptive network to be clearly illustrated.
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In a previous paper (Barto, Sutton, and Brouwer, 1981) we defined

the assoéiative search probiem an& presented a system, called an Associa-
tive Search Network (ASN), capable of solving it under certain conditions.
An ASN incorporates learning rules that have been carefully designed fol-
lowing Klopf's hypothesis that neurons are goal-seeking systems (Klopf,
- 1972, 1979, and 1980). Here we present a simple spatial learning problem .
as an éxamp]e of the associative search task. The ASN contrbls locomotion
in a spatial environment containing various types of "olfactory" gradients.
This interpretation illustrates the task in'an intuitively clear form,
shows how naturally it can arise, and allows the capabilities of a simple
ASN to be c]earTy described. It was not our intention to either model
animal spatial learning behavior or to fully exploit the capabilities of
‘an ASN; réther, we wanted to illustrate its capabilities in as simp]é a
pfoblem as we could construct.

Associative Search

Fig. 1 shows an ASN interacting with an environment E. At each time
t, E provides the ASN with a vector X(t) = (x](t),..., xn(t)), where each
xi(t) is.a positive real number, together with a real valued payoff or
reinforcement signal z(t). The ASN produces an output pattern Y(t) =
(y7(£)5...s v, (t)), where each y;(t) 6'(0, 1}. The ASN's action Y is re-
ceived by E. Each input vector X(t) prdvides information to the ASN about
the sensory situation at time t in which it acts. After performing an ac-
tion, i.e., after producing an output pattern, the ASN receives (1 time

step later) an evaluation from E of the appropriateness of that action for



the situation in which it was made. This evaluation is received by the

ASN as the value of a payoff or reinforcement signal z. The evaluation alone
is not sufficient to determine whether the préceding action was the best
possible in the given context. The associative search task is to learn,

for each input vector, to perfbrm the action which maximizes the.payoff value.
In other words, it must learn to perform the best action in each éensory sit-
uation. Different actions can be optimal in different sensory situations.
This class of problems is mbre completely described in Barto et al., 1981,
where it is distinguished from the simpler pattern récognition tasks that

can be solved by perceptfon-]ike learning rules.

Spatial Learning as Associative Search

-If an ASN is viewed as controlling the Tocomotory behavior of an organ-
ism in a spatial environment, then input vectors are'associated With p]ace$
in space and ASN output patterns control movement. We have created a 'simple
spatial environment in which to illustrate this interpfetation of the asso-
ciative search problem and a simple ASN's behavior. Fig. 2 shows a spatial
environment consisting of a central landmark (shown as a tree) surrounded by
four other landmarks (shown as disks). Thinking of this as an olfactory
environment for a simple organism, we let each landmark possess a distinctive
"odor" which can be sensed at a distance. Accordingly, to each landmark is
associated a spatial distribution, linearly decreasing with distance from
the landmark. The distributions extend as far as the large e111pses shown
in Fig. 2. The aster1sk shows the location of the ASN.

When the ASN is in a partiuclar location, its input pattern fs determined
by its distance from each of the landmarks. We let the central 1andmark act
as an attractant for the ASN by letting its "odor" be the value of the payoff

or reinforcement signa] z. The other landmarks are "neutral" in that broximity



to them is not rewarding to the ASN. Input to the ASN therefore consists of
five values giving the odor concentrations due to the central “tree" and the
north, south, east and west neutral landmarks.

Fig. 3 shows an ASN with f1ve input pathways, labelled vertically on
the left according to the landmarks to which they respond. The shaded input
pathway N indicates that the ASN is near the.north neutral 1andmark. There
~are four.output pathways labelled horizontally at the bottom as controlling
"actions". The manner in which these actions determine locomotion was chosen
solely for the sake of simplicity. There is an output element for each compass
direction.. Each output element produces an output of 0 or 1 at each time
step. For example, if N=0, S=1, E=1, and W=0 (as shown by the shaded output
}e]ements in Fig. 3), the ASN will move a fixed d1stance south and east. We
use a kind of "reciprocal 1nh1b1t1on" between the north and south e]ementé
and between the east and west elements so that at each time step usually
only one of each pair of elements outputs a 1. Clearly, we are not'attempting
to model in any detailed manner the motor control system of an organism (for
example, there is no exp]ioit spatial orientation of the ASN).

Tne arrangement of input and output pathways used in Fig. 3 permits
the. connection weights to be displayed in convenient form as circles centered
on the -intersections of input pathways and the vertical output element "den-
drites".A Positive weights are shown as hollow circles, and negative weights
are shown as solid circles. The sizes of the circles indicate the relative
magnitudes of the corresponding weights. The uppermost "tree" input is the
specialized payoff pathway z which has no associated weights. These connec-
tion weights form an associative matrix which is‘simi1ar to those.uide]y
discussed in the literature (e.g., Anderson et al., 1977, Amari, 1977, and

Kohonen, 1977) but which gathers information by means of the'hore complex
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closed-loop learning rules to be described below.

The ASN's task in this environment is to 1) find the‘cenfra] landmark
by c]imbing the attractant distribution and 2) associate with each place
- that action which causes movement toward}the central landmark. The first
part of this task is a simple hill- -climbing problem which does not require
Tong-term memory. The second part is an example of the associative search
task. Although the payoff signal is derived from a single spatial distribu-
tion (the "odor" of the tree), the optimal action is clearly a function of
the ASN's location. For example, if the ASN is south of thé central land-
-mark, it is best for it to move north; if it is north of the central land-
mark, it is best for it to move south. Consequent]y, the search for the
optimal action in each place requires maximization of functions of ASN actions
which d1ffer from place to place. (A predictor as.discussed,in-Barto et al.,
1981, is not required for this spatial Tlearning task since the functions to
be maximized vary smoothly over time.) As a result of solving the second
part of this problem, the ASN can proceed directly to the central landmark
simply by performing the actions associated with its success1ve locations.
Importantly, th1s direct approach is possible when the attractant distribution

is very noisy, intermittant, or even totally absent (as we demonstrate below).

The Learhing Rule -

The ASN presented here uses the same type of learning rule as discussed
in Barto et al., 1981. Let x](t), xz(t), x3(t), and x4(t) denofe the ‘signals
at time t from the north, south, east, and west Tandmarks respective]y,'and‘
Tet z(t) denote the signal from the central landmark. Each output element
Js 3 =1,..., 4, has a weight w, i3 associated w1th neutral landmark input Xi

i=1,..., 4, and an additional weight w Let wij(t)’ i=0,..., 4, denote

05
the values of these weights at time t. Let
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S (t) = WOJ(t) + E Wi (t)x (t).

The output of element J at time t is
1if sj(t) + NOISEj(t)>0
yi(t) = | | (1)
0 otherwise
where each NOISEJ, J=1,..., 4, is a mean zero normally distributed random
variable (with the same variance for each j). |

At each time step, each weight W, ij° i, J=1,..., 4, is updated accord-

ing to the following equation: o
Wi (t41) = wij(t)+0[2(t)-2(t-1)]y(t-1)X,-(t-l)- | (2)
The weights wOj are updated as follows: | |
Wo;(t+1) = flwg;(t)+eg(2(t)-2(t-1))y(t-1)] - (3)
where
BOUND if x > BOUND
f(x) = 0if x <0
X otherwise
bounds each Woj to the interval [0, BOUND]. The parameters ¢ and Cy are
‘positive real numbers determining rates of learning. In all of the simula--
tions described below, c=0.25 Cg=0.5, BOUND=0.005, and the standard devia-
tion of the random variable: NOISE was 0.01 for j = 1 ees 4.

Rule (2) implies that if the firing of an output element in a given
place is fo]]éwed by a movement toward higher attractant concentration z,
then the element will become more Tikely to fire in that place in the future.
If firing is followed by a movement toward lower values of z, firing w111

become Tess Tikely in that place. See Barto et al., 1981, for a more de-



tailed discussion of this class of learning rules.*

The weights w0j changinglaccording to (3) permit the ASN to climb the
attractant distribution in the absence of Tandmark information. Rule (3)
is similar to (2) applied to a constant signal from a universally present
- Tandmark (xo(t)=1 for all t). If Co is sufficiently large compared to
BOUND (as it was in our simulations), then complete learning will occur in
a single trial so that a movement in an up-gradient direction will tend tb
be fo1lbwed by a movement in the same direction. This straight line trajec-
tory will tend to continue until it takes the ASN down-gradient. Down-
gradient moves<w111 drive WOj to zero so that the.random component will dom-
inate. The bound function f is necessary to insure that down-gradient moves
can return the weight to zero. The resulting hill-climbing strategy is simi-
lar to that used by certain types of bacteria to climb nutrient gradients
(Kosh]and;v1979). Fraenkel and Gunn, 1961, call this strategy klino-kinesis
and Se]fridge,A]978,>¢alls it "Run and Twiddle" (if things are improving,
keep doing what you are doing; if things get worse, do something else).

Learning in"a Noiseless Environment

If the attractant concentration can be reliably sensed; then the hill-
climbing part of thé ASN's task can be accomplished easily. Fig. 4 shows
-the ASN's trajectory'for'the.case in which there are no neutral Tandmarks.
The central landmark is approached due to the action'of (3). Since no associa-
tions are fbrmed in this case, that is, since no long-term memory traces are
formed, later attempts to climb the same hill will proceed at.essentially the

same rate as.thg first attempt.

*The rule (2) is identical to that presented in Barto et al., 1981, except
that the term y(t-1) is used here instead of y(t-1)-y(t-2). 'In the previous
study, changes in z were attributable to changes in y. Here, y itself deter-
mines the change in z because it causes a change in spatial location rather
than movement\to a particular place.




F1g 5 111ustrates the ASN behav1or in the presence of the neutra]
landmarks. F1g 5A1 shows the ASN behavior for 35 time steps Fig. 5A2
shows the state of the ASN as a result of this behavior. Non-zero weights
have appeared associated with the north and east landmark input pathways
since the ASN has remained in the;vicinity of these landmarks (énd hence
only these paﬁhways were e]igib]ekfor modification). Since movements north
and south were correlated respective]y with decreases and increases in ﬁhe
attractant level, weights have formed so that the north and east landmark
"odofS",inhibit movement northsand excite movement south. Weights associated
with the east landmark pathway are smaller in magnitude than those for the
north landmark since the ASN remained closer to the north landmark. Simi-
larly, the nbfth and east 1andmafk inputs inhibit movement west. Weights
for the east output element are too small to be visible éince the ASN only
infreqﬁently moved east.

Fig. 5A3 shows the results of learning in a vivid form. A vector is
shown at each point in a grid covering the entire space. Each vector is the
resuit of computing the values Sj’ Jj= ],.;., 4, from the ASN input vector
associated with the place at which the vector appears. The resulting 4-tuple
is displayed as a vector in the oby1ous way. The direction of the'vector at
each location gives the direction of the ASN's most probable first step if
it were to start at that 1ocat1on:i The vector's magnitude is related to the
probability that the ASN will takg¥this step. It is important to note that
.the attractant distribution of the.central landmark is not used to determine
the vecfor fields. The vectors represeht information stored in the ASN's
memory - not information d1rect]y present in the environment. The vectors

show how the ASN would tend to move even if the central landmark and its

attractant distribution were not present. The generalization capability of



8

the ASN is clearly shown by the vectors assoc1ated with p]aces never visited
by the ASN.

Fig. 5B shows how the ASN behaves for about 800 time steps. It climbs
the attractant distribution and remains in the v1c1n1ty of the central land-
mark (Fig. 5B1). The resultant associative matrix values (Flg 5B2) show that
the north landmark signal inhibits the north output element and excites the
south output element. Consequently, when the ASN is in the v1c1n1ty of the
north landmark, it will tend to move south. Similarly, a strong signal from
the south landmark will cause the ASN to move north. The weights associated
with the east and west Tandmarks similarly affect the east and west output
elements. The resultant hovement tendencies are shown as a vector field in
Fig. 5B3. This form of learning is not dependent on the central location of
the attracting landmark. Fig. 6 shows a vector field determined from the
contents of the ASN's memory after about 800 t1me steps of ]earn1ng with the
attracting landmark located off-center. The importance of this 111ustrat1on
is that it shows that the learning rule is capable of not only determining
the correct signs for the weights but also their correct magnitudes.,"

The information stored in the association matrix fermed during explora-
tion of this spatial'environment can be used by the ASN to guide movement
even in the absence of the attractant gradient. In Fig. 7 is shown the be-
hav1or of the ASN after learning by exploration of the environment with the
attractant landmark in the center. The central 1andmark and its attractant
4 distribution have been removed from the environﬁeht; and the ASN starts at
a place it has never before visited. The ASN takes a direct route to the
former location of the central landmark. This occurs because the context
vector assoc1ated with each place "keys out" the appropriate act1on The

~ ASN remains near the central landmark's former location.



Re-learning in a Modified Environment-

Here we illustrate how théxﬁsg Eéb _st$§xas§6ciative matrix

due to changes in its environmént;«‘we é}jgwédjthe,;su.to learn in the original
I R

environment (Fig. 2) until it was able téméséquﬁﬁte:fﬁe best'movement with

each place. We then‘interchanged the east and west 1andmarks. Fig. 8A

.shows the vector field resulting from eva]uatipg’the ASN's associative matrix
in the altered environment. The central lahdmgéﬁkﬁégation is now a-saddle
point rather than a stable focus. Starting‘frém;azeehtral position, the ASN

is "misled" by its sensory informétionvand f6i1§Q$'fhé vector field away from
the central Tandmark (Fig. 8B1). "Since thjs moVement is down the attractant
gradient, the ASN alters the weights to'thé east and West output elements

from the east neutral 1andmark fhput'(Which"ﬁowbfesbbnds to the landmark to
~the West)! This re-learning rééu]fs in thé ﬁéiﬁark of.Fig. 8B2 and the vector
fie]d_of Fig. 8B3. A similar excursion to the east modifies the weights associ-
ated with the west neutral 1npdt which now responds to the landmark to the
east (Fig. 8C). If the attractant distribution had been absent? no re-learning

would have occurred.

Learning in a Noisy Environmenpjl,t .
Climbing a hill as large aﬁdfkeliably sgﬁéédﬁaSgthé aﬁfracfant distribu-
vtion of the preceding illustrations is no;_aﬁdifficultrtask. When the attrac-
~tant concentration can be sensed éniy'in theipre§enceﬂof noise, the task be-
comes more difficult and more inté?éﬁting. :Tﬁé §éﬁ§itiy1ty of the ASN to
neutral context information permitgiitt043ﬁ§%ovgf3§§uéégférmance in climbing

“a noisy hill with repeated attempts.*

+

*Although we do not illustrate it here, we Wolitd e&ﬁé@t that context informa-
tion would also facilitate the more difficult problem. of higher dimensional
search. T T )
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Fig. 9A shows the ASN performance, starting with all weights zero, as
it climbs the attractant concentration corrupted by édditive noise. The noise
is normally distributed with a standard deviation of 0.02. Comparing Fig. 9A
with Fig. 4 or Fig. 5B1 shows that hill-climbing performance is significantly
degraded. After sufficient experience with the noisy attractant concentration.
‘(1107 time steps), the ASN uses neutral landmark guidance to dikect]y approach
the goal even with the same noise level in the attractant concentratfon (Fig. 9B).
There are other means for improving hill- -climbing performance in the
presence of noise such as direct Tow-pass tempora] filtering of the attractant
signal as it is received by the ASN over time. We have not optimized hi]]-
c]imbfng behavior of the ASN in the absence of landmark guidance. Conse-
quently, Fig. 9 does not compare landmark guided hil]-c]imbin§ with the beét
hill-climbing behavior that can be accomplished without landmark guidance.
- What is important in this comparison, however, is.that the association of
| neutral context information during a search permits the system to improve
its performance with repeated attempts to approach a goal in the same or
simi]ar environments. Even the most highly tuned pure hill-climbing strategy'
does not 1earﬁ from its experience in this manner. This_examp]e'i]lustrates
that the exploitation of neutral sensory information can provide significant .
adapt1ve advantages if the same or similar search prob]ems occur repeatedly.

A Remark on Linearity

The associative search problem posed by the spatial environment of Fig. 2
is simple enough to be solvable by an ASN capable of making only linear asso-
ciations.. The influences of the neutral landmarks merely superimpose to form
the desifed control surface. If this were not the casé, the ASN which.we‘
have.described would not be able to form a stable mapping; Due to its lin-

earity, it is not able to represent arbitrary patterns of location-action
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assoc1at1ons that is, only certa1n types of'vector f1e1ds can be 1earned

In our current research, we are 1nvi_ }methods for extending

1

~ the ASN's capabilities to include.nonlineare: 'Qciatlons ~The first relies
‘on the observation that more var1ed assoc1at10ns can be formed as the number
of landmarks increases. If, for example, there were a landmark at each -
spatial location, then a linear AéN could learg,oroitrary location-action
essociations (this would be similar to the'aporoechitaken in the BOXES system‘
of Michie and Chambers, 1968). This suggestsithet it would be useful for a
system to effectively “create" 1andmarks'where'ﬁeedEd;in order to refine its
representation of space. Such a landmark, whichiwe'call a "virtual landmark",
would be created by the formation‘of an aopropriafe nonlinear combination of
the sensory signals provided by the real 1andmarks. ,

| Another approach to nonlinearity is re]ated to the "Patchwork Map"
theory described by Kuipers, 1977. Here,,the sy;tem § knowledge of space
would consist of several different associative mappings appropriate for guid-
ing Tocomotion in different regions of space;' The system would need to de-
velop nonlinear switching circuits for acceesino’the correct associative
structure when'ehtering each region; Both:of these approaches to nonlinear
learning are applicable to a wide range of spat1a1 and non-spatial problems.

RS R

‘We are finding-that the simple spat1a1 int :f"' ”{fdescr1bed in this

article provides a concrete and generalizable framework for approaching these

very difficult and genera] prob]ems.

Conclusion ﬁ
We have illustrated the behavior of an ASN in a simple spatial ‘learning

task. The spatial problem provides. a vivid way to demonstrate the search

association, and generalization capabilities of an ASN “Although we have illus-

trated these capab111t1es in an extremely simple form, it shoo]d be realized




12

that the methods employed have much wider app]icabiTity The spat1a] learning
problem is an examp]e of a wide class of problems, some of which require paths
to be Tearned through spaces which do not necessarily represent physical
spacé. For example, the space may be the state-space of a dynamical system
~in which case the vector fields developed represent hypothes1zed system dynamics.
- Associative learning capabilities provide a simple means whereby experience in
attempting to solve a problem can be accumulated and used to drastically im-
‘Prove performance in similar problems. The necessity for exp11c1t search is
‘minimized by storing in long-term memory the information gained in previous
searches. ‘

Finally, we wish to comment on the simplicity of the ASN illustrated.
It consists of just four adaptive elements acting in parallel. Since the
adaptive elements themselves embody fairly soph1st1cated learning rules,
utilizing both short-term and Tong-term memory, we did not need to construct
a special purpose network to perform the landmark learning tasks which we
have presented. The behavior illustrated is a very natural consequenCé of
a set of elements operating ascording to a carefully designed closed-1oop

learning rule.
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Figure Captqu"

1, An‘ASN 1nteractianw1th R environment E.  The ASN receives
input signals Xl, s X and a payoff or reinforcement s1gna1 z from E and
transmitts actions to E via. tﬁé output s@gﬂals Yyoeees Yoo

F1gure 2 A spatial env1ronment consist1ng of a central landmark (shown
as a tree) surrounded by four other 1andmarks (shown as disks). Each landmark

- possesses a d1gt1nct1ve "odor" which can be sensed at a d1stance Odor dis-

: ?’glated landmarks and become un-

detectable | at il "'%pses The asteris “the Tocation of the ASN.

Figure 3. The ASN contro!Ti 9‘1"':””ion 1n the spat1a1 env1ronment

The five 1nput pathways are 1abe1ied vertlcally on the 1eft according to the
1andmarks to thCh they respond. The: shaded 1nput pathway N indicates that

| the ASN is. nearthe north neutral 1andmark - The four output pathways contro]—

ling actions are labe]]ed hor1zonta11y at the bottom according to the direction

of movement they cause, The shaded output e]ements 1nd1cate that a southeast

movement is berg.made ‘The assoc1at1ve matr1x we1ghts are d1sp1ayed as

circles centered:on the 1nterseet1on, the herizontal input pathways and

vertical outpt athways; "Pone\&é wéigh v‘ane'shown<as hollow c1rc1es, and

negative weight‘ e ‘shown as sojjd'girg}es

T “ASN 's path'1s shown as it cllmbs the attractant gradient

Figure 4; )
in the abseneegz wiandmark guidance “No 4 gmtevm memory traces are formed,
and later attempts to cllmb the same gradient will proceed at essent1a11y

the same rate.

Figure 5.'7A§N;hehavior in the presencemof neutral landmarks. A1) ASN
behavior for 35 time steps. Az}»nﬁhefstategof the ASN as a result of the ex-
perience ‘shown in Al. The north and east landmark "odors" have come to in-

| hibit movement north,and excite movement south since,infthe vicinity of the
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north and east landmarks, movement north was correlated with attractant level
decreases and movement south was correlated with attractant 1eve1 1ncreases
The north and east odors also enhance movement west since movement in this
direction was also correlated with increases in attractant levels.r A3) A
vector field representation of the ASN state shown in A2. The direction of the.
vector at each location gives the direction of the ASN's most probablie  first
step if it were to start at that location. These vectors represent the con-
tents of the assoc1at1ve memory and thus show how the ASN would move even 1n"
the absence of the attractant distribution. A simple form of genera]ization
'is shown by the existence of vectors at places never visited by the ASN.
B1) ASN behavior for about 800 time steps. It climbs the attractant gradient and
remains in the vicinity of the central landmark. B2) The state of the ASN
after about 800 time steps shows that proximity to. the north Tandmark will
make the ASN move south, proximity to the south landmark will make it move
north, and similarly for the east and west 1andmarks. B3) A vector field
rearesentation of the ASN state shown in B2. Again, the vectors show how
the ASN would tend to move even in the absence of the attractant gradient.

F1gure 6. A vector field representation of the ASN's state after about
800 t1me steps in an env1ronment with the attractant landmark located off-
center. The learning ru]e is capable of determining the correct magnitudes
for the weights in addition to the correct signs.

Figure 7. Use of long-term memory. With the ASN state as shown in
Fig. 5B2 and the central.landmark and its attractant gradient removed, the .
ASN takes a direct route to the central landmark's former position from a |
place it has never before visited. Sttmu]us patterns asspciatéd with suc-

cessive positions "key-out" the appropriate actions.

P
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Figure 8. Re-]earning'in a modified environment. After learning in the’
original environment (Fig.'2) we.interchanged the east and west Tandmarks. Now
the landmark to the west causes activity in the input pathway labelled east,

and the landmark to the east causes actiyit& in the -input pathway labelled west.
~ A) The vector field resulting from eva]uating.the ASN's state in the altered en-
vironment. The east and west landmarks now provide misleading information.
B) Re]earning.from a western excursionf B1) Starting from the central position,
- _the ASN is "misleQ"‘by tts sensory:infgrmatjon and goes away from the central
landmark. Since this movement ts‘down the.attractant gradient, the ASN alters
its'weights and relearns as tt climbs the attractant gradient back to the cen-
ter. B2) The ASN state after the excursion west shown in Bl. The 1nf1uence
of the 1nput pathway from the east 1andmark has reversed so that proximity to |
the east,landmark (now to the west) causes the ASN to: move east rather than
west B3) The vector f1e1d representat1on of the ASN's memory contents after
the excursion west shown in B] C) Hav1ng experienced'a western excursion and
appropriately modifying its memory contents, the ASN is similar1y misled by the
information provided by the other re-located landmark. C1) The‘spatiaT path
ot‘an eastern excursion. C2) The.ASN state after the. eastern excurs1on The
influences from the 1nput pathways have been reversed C3) The vector field
representat1on of the ASN's memory contents shows that the appropriate reorgan-
1zat1on has taken place. ‘

Figure 9. Learn1ng in a noisy environment. A) ASN behavxor, starting

*w1th a11 weights zero, as it .climbs the attractant gradient corrupted by
add1t1ye noise. Hill- c]1mb1ng performance is significantly degradedv(cf.
Fig. 4 or Fig. 5B1). B) After sutficient experience with the noisy attractant
gradient (1107 time steps), the ASN uses neutral 1andmarkvguidanCe to direct]y
approach the goal even with the same noise level in the attractant gradient.
Previous experience in the sawe or similar environments can be used to im-

prove performance.
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