A Goal-Directed Hearsay-II Architecture:

Unifying Data-Directed and
Goal-Directed Control

Daniel D. Corkill and Victor R. Lesser

Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts, 01003

COINS Technical Report 81-15

June 1981

ABSTRACT

A number of limitations in the purely data-directed approach to
control taken in Hearsay-II have become apparent as the
architecture has been applied to non-speech task domains. These
limitations stem from the inability to plan sequences of knowledge
source (KS) executions and to instantiate KS activity based on
criteria other than data-directed events. By introducing
goal-directed control into the Hearsay-II architecture, more
sophisticated forms of control can be implemented. Goal
processing is introduced into the architecture by splitting the
mapping of data~directed events -> KSs into two mappings:
events -> goals and goals -> KSs. The events -> goals mapping
explicitly represents goals that are implicitly satisfied in the
data-directed system by KS execution. TIn order to process goals,
the Hearsay-II architecture is augmented to include a parallel
blackboard, called the goal blackboard, and a new control
component, the planner. The augmented architecture unifies data-
and goal-directed activity and permits sophisticated forms of
control to be implemented.
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1.0 Introduction

In a retrospective article on the Hearsay-II architecture

[LESST77], a number of limitations in the architecture's
data-directed, hypothesize-and-test control mechanism were
detailed. Specifically, asking for something to be done

(goal-directed control, such as precondition-action backchaining
and subgoaling) 1is not easily accomplished in terms of the

creation or modification of hypotheses. Also, there are no
appropriate control data structures for relating in a detailed way
the cooperative and competitive relationships among

knowledge-source (KS) instantiations. The approach to scheduling
taken in the Hearsay-II1 speech understanding system has a
statistical and instantaneous character; there is no explicit
planning of sequences of KS executions.

These limitations have become increasingly apparent to us and
others as the architecture has been applied to different task
domains. In our work on distributed interpretation (in which each
element in a network of semi-autonomous Hearsay-I1 systems
interprets a different part of the environment), we have found it
difficult to coordinate in a globally coherent way the
problem-solving of individual systems based solely on the use of
data-directed control [LESS801, [LESS81al [11].

Likewise, Nii and Feigenbaum with SU/X [NIT78], Engelmore and
Nii with Su/P [ENGE77], and Balzer, et al., with Hearsay-ITI
[BALZ80] recognized these limitations and consequently enhanced
the control capabilites of the Hearsay-II architecture. These
enhancements permit more control over scheduling by allowing the
KS scheduling queues to be manipulated under program control.
However, these modifications do not explicitly formalize the
relationship between goal- and data-directed control nor the
relationship among KS instantiations [2]. Such relationships are
left to the user to build. We feel these relationships are the
key to implementing sophisticated control regimes in the
multi-level and cooperating KS model of problem-solving posited by
the Hearsay-II architecture.

In this paper, we first review the data-directed scheduling
mechanisms of Hearsay-II and the assumptions behind this approach
to control. Next, we indicate how data-directed and goal-directed
control c¢an be integrated into a single, uniform framework for
control through the generation of goals from data-directed events.

[1] Nilsson in a recent workshop on Distributed AT (DAI) [DAVI8O0a]
has made the case that one of the contributions of work in DAI
is to make apparent the limitations of existing centralized
problem-solving techniques.

[2] There has been work by Nilsson [NILS79] and de Kleer, et al.,
[deKL79] on this problem. Their approaches are, however,
quite different in detail to the approach suggested here due
to the strong differences in the underlylng problem-solving
model that each researcher has used.
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Finally, we discuss some of -the conceptual and implementation
issues that need to be solved within this integrated framework for
control.

2.0 Data-Directed Hearsay-II Scheduling

Figure 1 presents a high-level schematic for data-directed
control in Hearsay-II. The action of executing a knowledge-source
(KS) may result in changes to the blackboard (BB), such as adding
new hypotheses, modifying the ratings of hypotheses, or changing
the structural relationships among hypotheses. Associated with
each type of data-directed event is a set of KSs that potentially
can be executed based on the occurrence of that event type at a
particular level in the BB. The BB event table contains the
mapping between event types/levels and KSs. For each interested
KS, a KS precondition procedure is executed to determine whether
there is sufficient information on the BB for the KS to “be
executed. If so, a KS instantiation is created and placed on the
scheduling queue. :

The KS instantiation includes a description of the KS's
stimulus and response frame. The stimulus frame specifies the
stimulus hypotheses responsible for the creation of the KS
instantiation. The response frame is an abstract description of
the type of the BB events (type of BB modification, its BB 1level
and region, and expected belief value of output hypotheses) that
can result when the KS is executed. The scheduler uses this
stimulus/response frame characterization of the KS instantiation,
together with global state measures in the focus-of-control
database, to calculate a priority rating for executing the KS.
After a KS is executed, the KS instance with the highest priority
rating is executed next.

This approach to scheduling can be characterized as
instantaneous -~ only the immediate effects on the state of
problem-solving, as specified in the response frame, are
considered. There 1is no inference process used to determine the
effects of executing a KS beyond its immediate effects on the
system state. The scheduler wuses a single-shot evaluation
function for determining the KS instance rating (see Hayes-Roth &
Lesser [HAYE77] for details) [3].

Another aspect of this instantaneous approach to scheduling
ocecurs when there 1is insufficient information for the KS
precondition procedure to instantiate the KS. 1In this situation,
the scheduler makes no record of which information is missing, and
therefore has no way of re-evaluating its priority calculation so
a KS ' that can generate the missing information will be rated
higher or instantiated if already not present. (The scheduler
does not wuse any precondition-action backchaining relationships

[3] The KS instance rating is re-evaluated if its stimulus
hypotheses are modified or the relationship between the
response frame and global state measure is changed.
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among KS instantiations.) Rather, it is assumed that if the
information is really important it will eventually be generated
based on normal scheduling considerations.

This instantaneous view of scheduling, which does not use
detailed measures of the cooperative and competitive relationships
among KS instantiations, is based on the following assumptions.
The most fundamental assumption 1is that the errorfulness and
incompleteness of the input data and KS processing make it
impossible to accurately determine the consequences of executing a
sequence of KSs. Thus, the control of processing must be
constantly adapted as data is worked on and new information is
generated. This suggests that a statistical and instantaneous
approach to scheduling is the most pragmatic approach and that
consideration of the details of future KS processing would be
wasted effort.

There is also a set of more subtle assumptions that justified
this approach to scheduling in the Hearsay-I1 speech understanding
system. First, the speech domain did not provide strong
high-level expectations about the types and 1locality of
intermediate hypotheses. Additionally, an attempt to perform the
action of subgoaling through the top-down elaboration of
hypotheses in the speech domain would have resulted in a
combinatorial explosion of hypotheses. Thus, it was unproductive
to either bias the scheduling of K8 activity or restrict KS
processing based on hypotheses elaborated from high-level
expectations., The only expectation-driven KS activity oeccurred
when predicted hypotheses were verified. However, this activity
was based only on the predictions derived from - hypotheses
generated  bottom-up from the data, and the verifying KS had all
the information necessary to perform its calculation. Therefore,
there was no use for any scheduling mechanism based on subgoaling
or precondition-action backchaining.

A second assumption was that the control of redundant KS
processing due to alternative ways of deriving a hypothesis and
the application of highly specialized KSs (e.g., a KS that can
disambiquate between two highly-rated competing hypotheses such as
"sit" and "split") could be handled through the normal
data-directed scheduling mechanisms. It was felt that this could
be accomplished by prioritizing different types of KS activity and .
by having complex KS precondition rules. Therefore, a detailed
analysis of the history of KS activity and the state of processing
was not required by the scheduler.

These assumptions allowed the use of an instantaneous,
statistical scheduler in the Hearsay-II speech-understanding
System. However, these assumptions are not valid in many task
domains in which a Hearsay-II style problem-solving architecture
is appropriate. In fact, the performance problems with the
initial CO configuration of KSs in the Hearsay-I1 speech system
(see Lesser and Erman [LESS77]) stemmed in part from KS
interaction patterns which violated some of these assumptions. 1In
hindsight, the scheduler for the CO configuration should have
implemented some form of precondition-action backchaining and
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subgoaling to permit more detailed control of KS activity.

To remedy these control problems within the basic Hearsay-11
architecture, we next present an augmented version of the
architecture that integrates data- and goal-directed control of KS
activity via the generation of goals from blackboard events.
Within this augmented architecture, a wide range of scheduling
paradigms can be implemented efficiently: from those based on an
instantaneous, statistical and data-directed approach to those
based on complex planning of goal-directed activity. 1In this way,
the system developer can tailor the control to the specifics of
the task domain and KS configuration.

3.0 Goal-Directed Hearsay-TT Scheduling

Figure 2 presents a high-level schemantic of Hearsay-IT as
modified to accomodate goal-directed scheduling. A second
blackboard, the goal BB, is added that mirrors the original (data)
BB in dimensionality. The goal BB contains goals, each
representing a request to create a particular state of hypotheses
on the data BB in the (corresponding) area covered by the goal.
For example, a simple goal would be a request for the creation of
a hypothesis above a given belief in a specified area of the data
BB.

The integration of data-directed and goal-directed control
into a single framework is based on the following observation:

The stimulation of a KS precondition process in the
data-directed architecture not only indicates that it
may be possible to execute the KS, but that it may be
desirable to do so in order to achieve the goal implicit
in the KS response frame.

In order to make these implicit goals explicit, we split the
event -> KSs mapping into two steps: event -> goals and
goals -> KSs. The BB monitor watches for the occurrence of a data
BB event, but 1instead of placing KS instantiations on the
scheduling queue (if the KS preconditions are satisfied), it uses
the event -> goals mapping to determine the appropriate goals to
generate from the event and inserts them onto the goal BB. These
goals represent the implicit goals contained in the event -> KSs
mapping used by the original BB monitor.

Goals may also be placed on the goal BB from external

sources. In a centralized system, it may be desirable to place a
high-level goal onto the goal BB to bias the system towards
developing a solution in a particular way. In our work on

distributed interpretation [LESS80], [LESS81al, the exchange of
goals between goal-directed Hearsay-II systems provides an
effective means of coordination.

A new control component, the planner, is also added to the
architecture, The planner responds to the insertion of goals on
the goal BB by developing plans for their achievement. The
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goal -> KSs mapping is used by the planner to instantiate one or
more KSs which can potentially satisfy the goals. The scheduler
then wuses the relationships between the KS instantiations and the
goals on the goal BB as a basis for its scheduling decisions. In
this way we have made explicit the relationship among BB events,
goals, and KS instantiations, and thus can treat data-directed and
goal-directed control within the same framework.

Figure 3 illustrates how a simple bottom-up synthesis
sequence looks in the goal-directed architecture. For simplicity,
we assume that each event triggers only one goal and only one KS
can satisfy each goal. Hypothesis HA is inserted onto the data BB
on level LDA (Figure 3a). That event causes the BB monitor to
create goal GB onto the goal BB level LGB (Figure 3b). GB is a
request to create a hypothesis supported by HA on LDB. The
planner then 1looks at GB and instantiates KS KSIB with HA as its
stimulus and places it onto the scheduling queue (Figure 3c¢).
When KSIB executes, it creates hypothesis HB. The BB monitor
responds to this event and creates goal GC (Figure 3d). Tt also
checks to see 1if hypothesis HB can help to satisfy any goals on
the goal BB. In this case, HB completely satisfies goal GB
(Figure 3e). The planner next instantiates KSIC to achieve GC and
places it onto the scheduling queue (Figure 3f). When KSIC
executes it creates HC and the BB monitor marks GC as satisfied
(Figure 3g).

In the above example, all necessary lower-level hypotheses
exist when each KS is instantiated. Instead, suppose the goal GC
is inserted first before any hypotheses on LDA (Figure 4a). Given
only synthesis KSs, a data-directed system must wait until
low-level hypotheses are inserted on LDA before instantiating KSs.
On the other hand, the planner in the goal-directed system can
immediately go ahead and instantiate KSIC (Figure Ub). The
planner is provided with an inverse operator model
(action -> precondition) of each KS, which it uses to determine
that (precondition) goal GB must be achieved before KSIC can be
executed (Figure UYc). To achieve GB, the planner instantiates
KSIB which requires GA to be satisfied before it can execute
(Figure 4d) [4]. When HA is eventually inserted (Figure Y4e), the
goal/KS instantiation structure is used by the scheduler to
execute KSIB and KSIC as a multiple-KS plan to finally achieve GC
(Figures 4f,g).

The planner is also provided with domain knowledge in the
form of a goal -> subgoal mapping for decomposing high-level goals
into lower-level ones. This allows it to determine GB directly
from GC and GA from GB (Figures 5a,b). Tn this case, KSIB and
KSIC are not instantiated by the planner wuntil their respective
goals (GB and GC) have their subgoals satisfied (Figures 5c-g).
In fact, the intermediate goal GB can be omitted; the planner can
directly determine the 1lowest level subgoals of the high-level

[4] If level LDA hypotheses are produced by a controllable sensor,
GA can be wused to request the insertion of hypotheses which
satisfy GA.
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goal. Once HA is satisfied, the intervening goals can be created
bottom-up, using the high-level to low-level subgoal relationship
as a guide. In a multilevel system, this "level-hopping" can
significantly reduce the overhead required to determine which
low-level hypotheses can be driven up to satisfy a particular
high-level goal (see Section 4). -

\ ~
inserted ' me
\@

LSC (a) subgoal (b)

Figure 5: Subgoaling

The goal-directed approach permits all three of these
goal-processing activities to be performed in an opportunistic way
by the planner. Highly rated low-level hypotheses can be driven
up in a data-directed fashion while high-level goals generated
from strong expectations can be subgoaled downward to control
low-level synthesis activities. Similarly, processing in low
rated areas can be stimulated if a highly rated KS requires the
creation of a precondition goal in that area.

Control decisions in the goal-directed architecture can be
made or deferred at a number of points in the data BB event to KS
execution process, based on the availablity and relisbility of
control information. When a goal is created by the BB monitor, it
is assigned an initial rating of the goal's importance that is
based on the belief of its stimulus hypotheses, the rating of any
KS instances which require satisfaction of the goal as a
precondition, the rating of any goals which have the goal as a
subgoal, and on any externally supplied priority (for externally
inserted goals). These ratings are used to direct planning
activity to higher rated goals. The BB monitor also serves as a
"goal filter" by placing only those goals with a priority rating
above a specified goal-threshold onto the goal BB.

Similarly, the planner can use a second dynamic threshold
value to ignore goals placed onto the goal BB which are rated
below its threshold. The distinction between the two is that the
planner can eventually reconsider goals on the goal BB which are
currently below the planning-threshold, but goals which are not

re
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inserted by the BB monitor are lost and must be recreated by the
planner from other planning activities.

The goal-directed architecture also provides the scheduler
with additional information for selecting which competing KS
instantiations to execute. The comparison among alternative KSs
which achieve the same goal is explicitly available. Figure 6
shows two highly rated goals, each of which can be satisfied by a
moderately expensive KS or a more expensive KS. However, the more
expensive KS can satisfy both goals. Due to the 1lack of this
information in the data-directed system, the. single-shot scheduler
would select the two moderately expensive KSs rather than the
shared KS which satisfies both goals for a lower total cost.

cost: 1 cost: 1.5 cost: 1

Figure 6: Choosing between Alternative KS Instantiations

The explicit goal structure also allows the planner to construct
alternative strategies consisting of multi-step sequences of KS
execution and goal satisfaction. The competitive and cooperative
relationships between KSs and goals developed by the planner are
then made available to the scheduler, which can use these
relationships to forgo the execution of other KSs in a strategy
which has failed, to eliminate redundant KS processing, and to
effectively control the application of highly specialized KSs.

Two generalizations in the model of a KS are also important
in the goal-directed approach. In the data-directed system, a KS
uses 1its stimulus hypotheses as an input context for the
generation of its output. In the goal-directed system, the
planner can elect to supply a KS with only stimulus hypotheses,
only goals, or both stimulus hypotheses and goals. 1In the first
case, the KS functions as in the data-directed system. In the
Second case, the KS itself determines the input context (by
searching for appropriate input hypotheses on- the data BB) in
order to best achieve the supplied goals. TIn the third case, the
stimulus hypotheses are used as the input context (avoiding the
data BB search) and the goals are used as an output filter
(hypothes~s which are outside the scope of the goals are not
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created by the KS).

The second generalization of the KS model is the
establishment of bi-directional communication between each KS and
the planner. While the KS precondition process 1is used by the
planner to determine if the major conditions necessary for the KS
to achieve the goal are present, a KS may still fail due to the
lack of "secondary" preconditions or to detailed incompatabilities
among its input hypotheses. The KS reports the nature of the
problem back to the planner, which can elect to create highly
specific precondition goals for the KS or to choose another KS
that can satisfy the goal in a different manner.

The unification of data- and goal-directed control provides
the flexibility to implement a wide range of control mechanisms
and eliminates a number of problems caused by a statistical and
instantaneous approach to scheduling. However, the introduction
of goal processing into the architecture also raises a number of
conceptual and implementational issues. In the next section we
discuss in more detail the representation of goals, the wuse of
goals to control combinatorics, the details of goal processing,
and the scheduling of goal processing activity versus KS activity.

4,0 Issues

A number of attributes are associated with each goal. The
satisfaction specification attribute is a declaration of the
desired state of hypotheses on the data BB that the goal
represents. It serves as the basic means of communication between
the BB monitor, the planner, KS precondition processes, and KSs.
A second attribute associated with a goal is the minimum
satisfaction specification, the minimum conditions under which the
goal 1is considered satisfied. The satisfaction specification
states what conditions are desired, and the minimum satisfaction
specification indicates when the goal is sufficiently satisfied to
allow processing to proceed to KS instantiations that require
minimal achievement of the goal.

Another attribute is the rating of the goal's importance,
which is used to direct the planner and to influence the rating of
KS instantiations. 1In some domains the importance of goals may
sharply decline due to time constraints on the resulting
hypotheses. 1In this case it is useful to associate a "time-out"
condition with the rating at which time it is recalculated. An
estimate of the cost of achieving the goal is another useful goal
attribute. Cost estimates can be used by the planner to choose
between alternative strategies based upon the resources which must
be expended in each. Similarly, an estimate of the probability of
satisfying the goal can be used by the planner to choose a
strategy which has the greatest chance of success.

Goals also contain a number of attributes linking them to
other goals, KS instantiations, and hypotheses. These 1link

attributes include: the goal's subgoals, goals which 1include it
as a subgoal (supergoals), goals which are more abstract, goals
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which are more specialized, the hypotheses which stimulated the

creation of the goal, the hypotheses which satisfy the goal, and -

KS instantiations which require the goal to be achieved as a
precondition.

Goals can be used to request a number of different types of
KS processing based on the form of their satisfaction
specification attributes. Specific-hypothesis goals request a
change to be made to a particular (named) hypothesis. "Increase
the belief of hypothesis HA by at least 20 percent" is a
specific-hypothesis goal. Generic-hypothesis goals request the
creation or modification of a single (unnamed) hypothesis which
matches a set of specified attributes. '"Create a hypothesis on
level LBC at time 3 with belief greater than 0.5" is a
generic-hypothesis goal. Area goals request the establishment of
relationships among hypotheses in a specified area of the data BB.
"Create at least 5 hypotheses with belief greater than HB on level
LBC at time 3" is an example of an area goal.

Goals can also be characterized according to their duration.
Single-shot goals remain active (the planner attempts their
satisfaction) only until they are first satisfied. Single-shot
goals may be restimulated by the BB monitor or by the insertion of
external goals, but are distinct from continuous goals which
always remain active. "Every time a hypothesis is created on
level LDC that has a belief greater than 0.9, send it to node 2"
is an example of a continuous goal.

Goals such as "create from stimulus hypothesis HA only those
hypotheses with belief greater than 0.6" naturally implement
‘threshold control of KS$ activity. Threshold control reduces the
number of hypothesis inserted onto the data BB by treating KSs as
generator functions which create only their highest rated output
hypotheses and can be reinvoked later if lower rated hypotheses
are desired.

As mentioned earlier, goal processing can also reduce the
combinatorics associated with the top-down elaboration of
hypotheses. Top-down elaboration 1is generally wused for two
different activities: the generation of the lower-level structure
of a hypothesis (to discover details) and the determination of
which existing low-level hypotheses should be driven-up to verify
a high level hypothesis based on expectations (for focusing).
Top-down elaboration of hypotheses is best suited only to the
first activity -- subgoaling on the goal BB is a more effective
way to perform expectation-based focusing. When hypothesis
elaboration is used as a focusing technique, the elaboration
process has to be conservative in order to reduce the number of
hypotheses generated and to reduce the possibility of generated
low-level hypotheses being used as "real data" by KSs in other
contexts. Because subgoals are distinect from hypotheses, they can
be 1liberally abstracted (such as supplying a range of values for
an attribute) and underspecified (such as supplying a "don't care"
attribute). Therefore, subgoaling the high-level goal of
generating the expectation-based hypothesis (including the use of
"level-hopping") avoids the combinatorial and context confusion
problems associated with the use of top-down hypothesis

10

3
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elaboration for focusing.

In addition to the use of data BB events to create new goals,
these events must also be checked to determine if they can satisfy
existing goals on the blackboard. This checking can be performed
by the BB monitor, the planner, or a combination of both,
depending on characteristics of the task domain. If the checking
requires only simple, syntactic matching of the attributes of
hypotheses with those of goals, then it should be implemented as
part of the BB monitor. This is the approach we have taken in our
implementation. However, if extensive task domain knowledge and
processing resources are required for matching, then the planning
module is the appropriate place to perform the checking. The
philosophy is to keep the BB monitor a simple table-driven
procedure with low processing overhead that is not scheduled, but
executed as required. A combined approach, 1in which a quick
syntactic check is first performed by the BB monitor, can also be
used. If this check results in only partial matches, then the
event and partially matched goals are passed on to the planner for
more extensive analysis. In all of these cases, the parallel
structure of the data and goal BBs facilitates the effective
implementation of event/goal matching.

Goal merging, which involves recognizing that two goals can
be satisfied by the same conditions, can be similarly implemented
in the BB monitor, the planner, or a combination of both. Again
the choice is based on the complexity of the operation required by
the task domain.

Additional @goal-processing operations also need to be
implemented. These operations involve checking newly created
goals for their relationships with existing goals, including the
relationships of: goal/subgoal, goal/precondition-goal,
goal/abstract-goal, and goal/specialized-goal. The need for
determining these relationships depends on the task domain and
planning strategies used in the system and, due to their
complexity, seem best implemented in the planning module.

In order to perform complex goal processing, the planning
module requires a number of basic operations on the goal BB.
These operations are analogous to the basic operations provided
for KS manipulations on the data BB and include: inserting goals
onto the goal BB, accessing and modifying goal attributes,
selective retrieval of goals based on their attributes, creating
structural relationships between goals, and chaining through these
structural relationships.

Complex goal-processing is not without <cost, and as the
overhead of goal processing increases, it is important to balance
planning activities with KS execution. We feel the scheduler
should perform the allocation of processing resources -- both to
the planner and the KSs. The ratings and the relationships
between the goals and KS instantiations provide the scheduler with
the information necessary to determine the best course for
improving the state of the system. Techniques for reasoning about
the balance between planning the consequences of actions versus
performing them to discover the result are needed. The work by
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Feldman and Sproull [FELD77] is a first step in this direction.

Complex goal-processing raises the 1issue of whether the
planner itself should be implemented as a data-directed system
with its own planning KSs and whether that system should be
augmented with a (meta) goal BB and goal-processing mechanisms.
Goals requesting changes on the goal BB can be used to explicitly
represent the problem-solving strategies of the system [HAYE791,
[DAVI8Ob], [STEFR0]. Such meta-level goals would represent
strategies for the planner. Subgoaling a high-level,
expectation-based goal to low-level goals and then driving-up the
appropriate 1low-level hypotheses upward is an example of a useful
strategy which could be represented by a meta-level goal.

If there are a number of meta-level goals, a strategy for
choosing between them is needed. This raises the problem of
controlling the meta-controller, and so on. One approach is to
add control 1layers until the highest level controller becomes a
simple procedure. This is the approach we are currently pursuing.
A second approach is to introduce a controller which can reason
about its own control decisions as well as those it is making for
the 1lower 1levels (while avoiding the problems associated with
self-reference).

5.0 Conclusion and Future Research

We have shown how data- and goal-directed control can be
naturally integrated into a single uniform control framework,
permitting the development of a wide range of different scheduling
and planning strategies for controlling knowledge source (KS)
activity. This framework increases the number of task domains in
which the multi-level, cooperative KS model of problem-solving
(used in the Hearsay-I1 architecture) is an effective approach.

We are currently exploring this integrated control framework
in the task domain of distributed interpretation as a means of
obtaining globally cohesive behavior in a network of
semi-autonomous goal-directed Hearsay-II systems [LESS81b]l. A
preliminary version of this system, with only a rudimentary
planning module, has been implemented. We are currently testing
the power of the integrated control framework by developing a
sophisticated planning module for coordinating KS activity within
a node with the problem-solving requirements of other nodes in the
network. Experiments with this planning module should lead to an
improved understanding of the appropriate balance between data-
and goal-directed activity, the overhead associated with
goal-processing activities, and a number of detailed issues
regarding the mechanisms necessary for implementing complex goal
processing.
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