Event Defintion Language:
An Aid to Monitoring and Debugging
Complex Software Systems

Peter C. Bates* and Jack C. Wileden¥*#¥

Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

COINS Technical Report 81-17

¥Supported in part by the National Science Foundation under Grant
MCS-8006327 and by the Defense Advanced Research Projects Agency

(DOD), monitored by the Office of Naval Research under Contract
NRO49-041,

¥%Supported in part by the National Aeronautics and Space
Administration under grant NAG1-115.

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the National
Science Foundation, the Defense Advanced Research Projects

Agency, the National Aeronautics and Space Administration, or
the U.S. Government.

Abstract

As part of a broader study of strategies for distributed
computation we have begun developing tools to support the
debugging of distributed systems. Our approach to distributed
system debugging, called behavioral abstraction, and its
realization in the Event Definition Language (EDL) are described
in this paper. We have also begun an implementation of a
debugging system supporting the EDL and providing rudimentary
information gathering, information presentation and intervention

capabilities. These aspects of our work are discussed briefly in
the paper.

1.0 INTRODUCTION

As part of a broader study of strategies for distributed
computation [Less80] we have begun developing tools to support
the debugging of distributed systems. Debugging tools have
traditionally been among the utilities provided by most operating
systems. However, these tools (e.g., [Satt751], [VaﬁT783,
[(Digi81]) have typically offered only 1limited, low-level
debugging aid suitable for debugging sequential programs. Even
with these aids the task of developing an understanding and
keeping a consistent model of what a system is doing, which is

the hardest part of locating non-trivial errors, is left to the

user.

With the use of tens or hundreds of cooperating processors
on problem solving or control applications some new difficulties
in providing working, and preferably error-free, systems arise.

Foremost among these are problems caused by complexity and

concurrency. Complexity has always been a major obstacle to

understanding a program's behavior. However, certain facets of
distributed computation make the complexity obstacle even 1less
tractable thén it was previously. For example, the sheer size of
the software component of a system of tens or hundreds of
processors often result in tremendous complexity making it
practically unmanageable. Furthermore, the use of a
non-homogeneous set of processors will require many
interpretations for similar types of behavior on the differing
processors. Similarly, distributed systems amplify the problems
posed by concurrency. With the 1increase in the number of

1

processors, the number of truly concurrent events that are
possible increases. Using a network of many processors will
require exchanging complete or partial results among them. The
problems introduced by synchronization, bandwidth constraints and
errorful data in the communications pathways will be difficult to

contend with using current debugging technology.

As a first step in meeting the challenge of debugging
distributed systems, we have developed an approach for coping
with the complexity and concurrency of distributed systems. This

approach, called behavioral abstraction, and its realization in

the Event Definition Language (EDL) are described in this paper.

We have also begun an implementation of a debugging system
Supporting the EDL and providing rudimentary information
gathering, information presentation and intervention
capabilities. We discuss this aspect of our work and our
expectations for future work on this project at the end of this

paper.

2.0 BEHAVIORAL ABSTRACTION - WHAT AND WHY

It is our belief that debugging complex distributed systems
fundamentally requires the ability to observe particular aspects
of the system's detailed activity from a suitably abstract
perspective. Such selective observation would permit a user to
focus on suspected problem areas without being overwhelmed by all
of the details of system activity, thus offering some hope that

" causes of failure may be located.

Our approach to selective observation is what we call

behavioral abstraction. It is based upon considering a system's
activity as consisting of a stream of event occurrences.
Behavioral abstraction results from the ability to define a
particular viewpoint, or window, on that event stream. A

viewpoint 1is defined by filtering and clustering events from the

stream. Filtering the stream deletes all but a designated subset
of events from the strean. This serves to highlight those
aspects of system activity that are currently of interest to the
user. Clustering events treats a designated sequence of events
as constituting a single higher-level event. This provides a

means of obtaining an abstract view of system activity.

Using the clustering and filtering techniques a window on
the event stream can be constructed that gives a view of the
system relevant to the particular monitoring task being
performed. The higher-level events created through clustering
may themselves be incorporated into subsequent event clustering
definitions. By repeatedly wusing clustering to build higher
level events and then using these new events to create a still
higher level view, a set of abstractions of the system can be
obtained that will allow an observer to view the system at
various 1levels as well as observe specific kinds of behaviors.
Filtering of the event stream removes those event instances that
are not considered relevant to the monitoring task being
performed. Filtering is accomplished by considering the specific
properties of each particular occurrence of an event. Depending

upon those specific properties, a given occurrence may or may not

be judged relevant to the particular viewpoint being defined. By
employing an appropriate behavioral abstraction, the developer of
a complex distributed software system can monitor those aspects
of the system's behavior that are relevant to the specific
questions presently under investigation without being distracted

by other, less relevant details of the system's behavior.

Naturally, the particular behavioral abstraction that will
be appropriate when searching for a given failure will vary, and
no behavioral abstraction can be expected to be appropriate for
all problems. Therefore, our approach is founded upon a flexible
mechanism for defining behavioral abstractions. This mechanism
is embodied in a language called the Event Definition Language or
EDL. Using EDL, a user can specify the particular high 1level
viewpoint on detailed system activity that seems suitable for
understanding a particular problem with a distributed system's
behavior. In the next two sections we outline a few fundamental
EDL concepts and then survey some related work. Section five 1is
a more detailed explaination of the EDL notation, followed by an
example to illustrate its use. Issues concerning the
implementation of EDL as a tool to aid. in the interactive
debugging of distributed systems are briefly considered in the

final section of this paper.

3.0 EDL - A MECHANISM FOR BEHAVIORAL ABSTRACTION

The Event Definition Language provides users with a means of
both filtering and clustering a system's event stream to obtain a

behavioral abstraction. As its name suggests, EDL supports these

M

capabilities by allowing the user to define events. Event
definitions in EDL are formulated by combining previously defined
events wusing a set of event formation operators (clustering) and
by stipulating the properties of the constituent events
(filtering). We discuss these operations in more detail below.
This constructive approach to viewpoint definition depends upon
the existence of an initial set of events from which additional

events can be constructed. We refer to this set of events as

primitive events. The primitive event set for a given system is
a characteristic feature of that system and determines the 10Qest
level, most detailed, view of the system that can be obtained.
Experience supports our belief that, in general, the number of

distinct primitive event types for a given system will be small.

Given a collection of previously defined events, which may
be primitive or the result of clustering, the features of the
Event Definition Language can be used to define new events in
-terms of those already defined. This serves to give the user a
different viewpoint on the system's actiQity, seeing it in terms

of the newly defined events rather than their constituents.

An EDL event definition does not actually describe a

specific individual event, but rather an entire event class or

type of event. A specific individual occurrence of an event from
some event class 1is referred to as an instance of that event
class. Different instances of event classes are distinguished by

a set of attributes that each instance of the class possesses.

Depending upon its particular attributes, a given instance of an
event may or may not be relevant to a given viewpoint or system

5

behavior as defined by (in general, higher 1level) EDL event

definitions.

4.0 RELATED WORK

The expression-based description mechanism underlying EDL is
related to a variety of similar techniques, including Campbell's
Path Expressions [Camp74], Shaw's Flow Expressions [Shaw781],
Riddle's Event Expressions [Ridd79] and Wileden's Constrained
Expressions [WileT78]. (See [Shaw80] for a survey of
specification 1languages based on regular expressions.) All of
these formalisms, as well as 1languages based on Petri Nets
[(Pete77], have been wused in describing and studying concurrent
systems. They differ from each other, and from EDL, primarily in

the details of their notation and in their intended application.

Path Expressions were originally developed as a
synchronization technique for defining coordination and
cooperation among processes. Using the Path Expression notation,
sequencing and concurrency constraints can be expressed for sets
of procedures that have access to common objects. Flow
Expressions and Event Expressions are both intended for use as
modeling tools, describing the expected or desired behaviors for
a system under study. An important goal of both of these
notations is to support formal analyses that will demonstrate
various properties of the system, defined by a given set of
expressions. The use of the Petri net formalism for modeling

makes it similar 1in application to that of the flow and event

expression notations.

While all of the notations mentioned above are similar in
their formal properties, the intended applications for which they
have been created have influenced their descriptive capabilities,
ease of use and applicablity to other domains. The EDL notation
has been specifically created to allow us to guide recognition of
certain 'interesting' events in a system, based upon both their
ordering relations and relations among the characteristics that
the events exhibit. For this reason, EDL enhances the expression
based notation with capabilities for associating attributes with
symbols as part of the recognition process. These features and

their use are discussed and illustrated in the next two sections.

A framework for debugging based upon viewing program
executions as a series of event occurrences was previously
suggested by Schwartz [Schw70]. However, events in this case
were the results of normal, low level program activities such as
variable settings and procedure calls. Hence, events 1in the
Schwartz approach were essentially states that the program might
achieve. In particular, Schwartz did not employ the event
viewpoint as a mechanism for constructing abstractions of system
behavior. STABDUMP [McGr80], a debugging system based on
Schwartz' ideas, accumulates a trace of program execution and
allows a user to conduct a post-mortem search for patterns of
execution history and variable bindings in an attempt to
understand and locate errors in the program. Once an interesting

point in the history is located, variables may be changed and the

program started up from this point, with the new history.

5.0 AN OVERVIEW OF THE EVENT DEFINITION LANGUAGE

An EDL event definition describes how an instance of an
event might occur and what the attributes of the instance will be
if it does occur. Each event definition is composed from a
heading and three types of defining clause: the 'is' clause,
which defines an event expression over previously defined évents;
the 'cond' clause, which places constraints on the events
mentioned in the 'is' clause; and the 'with' clause, which
defines a set of attributes that each instance of the event class

will have. (The syntax of EDL is detailed in Appendix A.)

The event heading of an event definition associates a name
with the event c¢lass being defined. The name is the means by
which the event class is known and referred to in the system. An
optional parameter 1list provides a means of creating generic
event descriptions that may apply in different contexts with
suitable argument bindings. Actual parameters are substituted
textually (macro parameter substitution) when the event name

appears in an event expression. For example, the following event

heading:
event login(port_number)

introduces a definition for an event named 'login'. There 1is a
single parameter, 'port_number', which may be wused in the

definition body wherever it is valid to use an identifier.

The 'is' clause introduces a regular expression over event
classes that occur in the system. We refer to the 'is' clause

regular expression as an event expression. An event of the class

given by the event name occurs when a string of events occurring
in‘the system matches that described by the event expression.
The event expression is composed from event class names, either
primitive or previously defined, and operators indicating
alternative ways to form strings that are acceptable for this
event definition. The operators consist of the normal set of
formation operators for regular expressions (our notation differs
only slightly from the standard regular expression notation) with
the addition of a shuffle operator to indicate concurrency
[Ridd79, Shaw78, Gins66]. The event expression is the means for
describing aggregates of events and provides the clustering

capability necessary for abstraction of system behavior.

The catenation operator "'" specifies that an event follows
another. As an example consider the following partial event
definition:

event login(portnumber) is
portaccess ' processcreation

end

A login event is determined by the occurrence of a 'portaccess'
event followed by a ‘'processcreation' event. (Note that the
event instances selected from the system event string as

constituents of the defined event will be subjected to any

applicable constraints imposed by the 'cond' clause.)

The shuffle operator '#' indicates that its operand events
occur with ‘no preferred ordering between them, opening up the
opportunity for the interleaving of the constituent events. All
of the events connected by the shuffle operator must occur, but

the order of occurrence of the events is not relevant.

In a similar fashion, alternation, denoted "|", indicates
that occurrence of any one of its operand events is an acceptable

string for this operator.

Two unary repetition operators are used to indicate a
possibly unbounded sequence of their operand event. Both the
star '¥' and plus '+' operators are left associative. The plus
operator indicates that one or more occurrences of the operand
are needed. 3tar is the closure of plus with =zero or more
occurrences being a valid string. For example, the (partial)

event definition:

event link_error(port) is
line_allocatation '

(connect_attempt)¥* ' line hangup

end

defines a class of events named 'link_error' related to a failure
to establish a communications 1link through a port in a
communications device. Here the clustered event consists of the

allocation of a line and a series of (possibly zero) attempts to

10

establish the connection followed by a releasing of the 1line
previously allocated. The argument ‘'port' would be used to
indicate a specific port attached to the communication device.
This definition could now be used to detect an event resulting in

a form of isolation of a node from the subnet:

event node_loss is
(link_error(boston) |

link_error(portland))

end

An event class may be used in an event expression more than
one time,. An event index 'provides a local (to the event
definition) qualifier that will distinguish different mentions of
the same event class in the event expression. For example, in

the partial definition:

event paired_error(nodes) is
node_error.1 # node_error.2

end

the indexing convention will distinguish the two instances of
'node_error'! which are necessary for an instance of the
'paired_error' event. The importance of this capability 1is

illustrated in the example given in the next section.

11

The 'with' clause of an event definition introduces the
names for the attributes of the event being defined and indicates
how to determine values for those attributes when an . instance
occurs. The operands of the expressions are taken from the
attributes bound to instances of event expression constituents

and any attributes local to the event being defined.

The 'with' clause 1is an optional part of the event
definition. However, every event instance will carry with it
certain predefined attributes, such as time of occurrence, that

might serve to distinguish various instances of the class.

When an event occurs, each attribute name defined in the
'with' clause is bound to a value determined by its defining
expression. Expressions are composed of the usual relational,
arithmetic and logical operators using operands supplied by local
(defined in the enclosing event definition) or qualified

attributes. The event definition:

event mixer_empty is

pressure_low_warning ' output_valve shut

with

quickness := output_valve_shut.time
- pressure_low _warning.time;
mix_station_type :=
output_valve_shut.id mod 100;
mix_station := output_valve_shut.id div 100

end

12

defines three attributes for each instance of 'mixer_empty':
'quickness', 'mix_station_type' and 'mix_station'. Each of these
attributes is defined in terms of attributes bound to the event

instances of the event expression constituents. Specifically,

'mixer_empty.quickness' is defined in terms of the 'time'
attributes of the events 'output_valve_ shut' and
'pressure_low_warning' while the 'mix_station_type' and

'mix_station' attributes of the 'mixer_empty' event are defined

in terms of the 'id' attribute of the 'output_valve shut' event.

Qualified attributes must be mentioned in the 'with' clause
of the qualifying event name. A form of scoping rule for
qualified names is effected in the following manner: an event
may only examine the attributes of events it explicitly names in

its event expression.
Consider an event Z defined as follows:

event Z is X'(Y # Q)'F

end

with event Q defined as:

event Q is N'MiJ'G

end

then Z can see the attributes of X, Y, Q and F but not the
attributes of N, M, J and G. This latter group can be made
visible, if necessary, by adding more attributes ¢to the 1list

13

defined for Q and simply passing them on.

The 'cond' clause defines a set of relational expressions
over the attributes of the event expression constituent events.
These relationals place constraints on the attributes of events
that appear in the event expression. This creates the previously
mentioned filtering effect by allowing events having only certain
characteristics to be considered for inclusion in the event
expression of the defihition. For example, the 'login' event
mentioned previously is only valid if the process creation is
related to the port that has been accessed, and the port was

inactive at the time. These constraints might be expressed as

follows:

event login(port) is

lineaccess ' process_creation

cond

line_access.state = "unallocated";
line_access.multiplexor_port = port;
process creation.input_device =

line_access.multiplexor_port

A 'cond' clause does not need to be present in an event
description. In the absence of a 'cond' clause any set of events
of the right class in the order prescribed by the event operators

will constitute an instance of the defined event. The 'cond'

14

clause serves to narrow the focus of the event being described by
allowing only events having certain attributes to be constituents
of the defined event. Several examples of 'cond' clause usage

appear in the following example.

6.0 AN EXAMPLE

In this example, three event definitions are constructed as
a means of developing a high-level abstraction for what may be a
serious failure among a group of four cooperating nodes. These
definitions could provide an appropriate viewpoint for a user
attempting to debug a distributed system with a certain kind of

faulty behavior.

The first definition, 'paired error' is simply an event that
occurs 1if an error occurs in two adjacent nodes within a certain
time period. It is assumed that the topology of the nodes is a
ring structure. The serious failure would be the loss of the
communications link between two adjacent nodes. It 1is further
assumed that the only type of error that is detectable (the
primiﬁive event 'node_error') is related to the maintenance of
the communications 1link. When the event occurs, it has the

attribute 'id' serving to identify the node pair between which

the error has occurred.

15

event paired_error(nodes, epsilon) is

node_error.1 # node error.2

cond

node_error.1.id = nodes;

node_error.2.id

(nodes + 1) mod U4;

abs(node_error.1.time

- node_error.2.time) > epsilon

with

id = nodes

end

The event expression stipulates that two errors must occur, but
that their order 1is irrelevant. In fact, the two errors might
occur simultaneously. The 'cond' clause relations specify that
the instances acceptable for the event expression must be from
adjacent nodes. Further, the maximum time delay is a parameter
of the event definition and hence various invocations of the
event may have different time delay properties. The event
indexing 1is necessary here for an unambiguous statement of the
conditions insuring that the instances used to satisfy the event
expression are not from the same node or from pairs of nodes not

connected with a link.

Using this simple definition a single event class is created
that will indicate an error in any of the four pairs of nodes.
This definition exists mostly as a shorthand notation to indicate
any 'paired_error' and its source. (Note, however, that

16

different maximum time delays are wused for the various node
pairs.) This will greatly simplify the event expression in a more
interesting definition to follow. The inclusion of the 'id'
attribute in this definition recalls the scoping rules mentioned
earlier, Without it, the scoping rules would prevent any
definition wusing the 'multi_error' in its event expression from
examining the 'id' attribute of the ‘'paired error' responsible

for the 'multi_error’'.

event multi_error is

paired_error(0, 3) | paired_error(1, T)

i paired_error(2, 2) | paired_error(3, 18)

with

id := paired_error.id

end

The occurrence of the 'multi_error' may not be serious or
even interesting in the absence of other conditions. The
following definition captures what may be a serious failure 1in

the link between two nodes.

event big_error(threshold) is
multi_error.1 '

restart_attempt+ ' multi_error.2

cond

multi_error.l1.id = multi_error.2.id;
abs(multi_error.1.time

17

- multi_error.2.time) < threshold

with

location := multi error.1.id;

severity errorestimate(threshold)

end

Briefly, 'big_error' is defined as an error in a link followed by
a number of attempts. to reestablish the link (at least one is
necessary) and a subsequent error on the same link. It 1is
assumed that the 'restart_attempt' event is either primitive or
previously defined. The 'cond' clause expressions insure that
the identity of the erroneous 1link is the same in both
constituent 'multi_error' events and that no more than a
designated amount of time elapses between the two errors.
Bindings to the attributes 'location' and ‘'severity' when the
'big_error' occurs would allow an observer to determine both the

location and the approximate severity of the failure.

7.0 SUMMARY AND CONCLUSIONS

We have given an overview of some of the difficulties
involved in debugging distributed software systems and have
described the approach we are taking to overcome some of those
difficulties. We have outlined the concept of behavioral
abstraction and described the Event Definition Language, which is
intended to provide a dgbugging tool supporting behavioral

abstraction, as illustrated by the preceding example.

18

Naturally the 1language alone is of 1limited help in
debugging. To be truly useful, EDL must be implemented as part
of an interactive debugging facility for distributed systems.
Such an implementation must support the detection of occurrences
of primitive events and provide capabilities for monitoring the
stream of events occqrring throughout a distributed system. It
must also accept EDL event definitions and be capable of
discerning when events defined by a user in EDL have occurred.
Further, it must be able to display system activity, in terms of
the current perspective specified by the user via EDL, in a
convenient and comprehensible format (perhaps using color
graphics). Finally, it must provide the user with the ability to
intervene in the distributed system's operation at any time.
Given these capabilities, a user could observe the activity of a
distributed system from any desired perspective, watching for the
occurrence of particular events or event sequences, such as those
described in the example of the previous section, then intervene
to gather further information or to interactively alter the

system's activity. This would greatly facilitate the debugging

of distributed systems.

We are currently working toward the implementation of a
debugging facility providing just these capabilities as part of
our broader study of strategies for distributed computation. In
addition to the definition of EDL, a high-level design for the
monitoring and intervention facility has been completed.
Detailed design and implementation are currently underway. We

anticipate that a prototype version of an EDL-based distributed

19

system debugging wutility will be operational early in 1982.
Future papers will describe the design and implementation of the
facility and report on our experience in using behavioral

abstraction as an aid for debugging distributed systems.

We believe that EDL provides a valuable means for describing
interesting and wuseful viewpoints on a distributed system.
Examples, such as the one presented in this paper, reinforce our
confidence that most abstract perspectives on a distributed
system's behavior that would be of interest in debugging can be
succinetly and comprehensibly described with EDL. Nevertheless,
we anticipate that additional descriptive capabilities will prove
useful, and we therefore view the EDL presented in this paper as
a first version. 1In particular, we have yet .to settle on an
acceptable notation for describing 'negative' events, such as "no
event x occurs between events y and z". 1In some specific cases,
negative events can be descibed quite easily using our present
EDL, but other times the descriptions are complicated and
confusing at Dbest. This difficulty, and others that will
doubtless be uncovered once our prototype debugging utility
becomes available, are among the topics that we expect to address

in future work on this project.

Acknowledgements. We wish to thank Victor Lesser for providing

the original motivation for our study of distributed system
debugging and for numerous contributions to our work on
behavioral abstraction. We rare also happy to acknowledge Roger

Thompson who worked on the preliminary syntax definition for EDL.

20

[CampTi4]

[(Digi81]

[Gins66]

[Less80]

[McGr8o]

[Pete7T7]

[R1dd79]

[Satt75]

[Schw70]

[ShawT78]

[Shaw80]

[VanT78]

Bibliography

R. H. Campbell and A. N. Habermann, "The
Specification of Process Synchronization by Path
Expressions," In G. Goos and K. Hartmanis (ed.),
Lecture Notes in Computer Science, Vol. 16

Languages, McGraw-Hill, New York, 1966.

Springer-Verlag, Berlin, 197%.

VAX-11 Symbolic Debugger Reference Manual, Digital
Equipment Corporation, Maynard, Massachusetts, 1981.

S. Ginsburg, The Mathematical Theor% of Context-Free

V.R. Lesser, P. Bates, R. Brooks, D. Corkill, L.
Lefkowitz, R. Mukunda, J. Pavlin, S. Reed and J. C.
Wileden, "A High Level Simulation Testbed for
Cooperative Distrubuted Problem Solving," Technical
Report TR-81-16, Department of Computer and Information
Sciences, University of Massachusetts, 1981.

D. R. McGregor and J. R. Malone, "STABDUMP - A Dump
Interpreter Program to Assist Debugging," Software -
Practice and Experience, Vol. 10, pp 309-332, John

Wiley, 1980.

J. L. Peterson, "Petri Nets," Computing Surveys, Vol.
9, 3, September 1977.

W. E. Riddle, "An Approach to Software System Behavior
Description," Computer Languages, Vol. 4, pp. 29 to
47, Pergamon Press Ltd., 1979.

E. H. Satterthwaite, "Source Language Debugging
Tools," Technical Report STAN-CS-75-494, Computer
Science Department, Stanford University, May 1975.

J. T. Schwartz, "An Overview of Bugs," in R. Rustin
(ed.), Debugging Techniques in Large Systems, Courant
Computer Science Symposium 1, Prentice-Hall, 1971.

A. C. Shaw, "Software descriptions with Flow
Expressions'", TIEEE Transactions on Software
Engineering, SE-4, 3, May 1978.

A. C. Shaw, "Software Specification Languages Based on
Regular Expressions," in W. E. Riddle and R. E.
Fairley (ed.), Software Development Tools,
Springer-Verlag, Berlin, 1980.

D. Van Tassel, Program Style, Design, Efficiency,
Debugging and Testing, Prentice-Hall, Englewood Cliffs,
New Jersey, 1973

21

[Wile78] J. Wileden, "Techniques for Modelling Parallel Systems
with Dynamic Structure," Technical Report TR-78-4,
Department of Computer and '~ Information Sciences,
University of Massachusetts, 1978.

22

APPENDIX A

{event_description> ::=
event <event_heading>
<{is_clause>
{cond_clause>
<with_clause>
end

{event_heading> ::=
<{event_name><param list> |
{event name>

<event name> ::= <id>

<id> :t=
<letter> | <id><letter> |
<id><digit> | <id><underscore>

<is_clause> ::= is <event_expression> ;
{event_expression> ::= <re_expr> | primitive

{re_expr> ::=
{re_sexpr> |
{re_expr> <alternation> <re_sexpr>

{re_sexpr> ::=
{re_term> |
{re_sexpr> <catenation> <re_term>

{re_term> ::=
{re_factor> |
{re_term> <shuffle> <re_factor>

{re_factor> ::=
<{event_name><event_index> |
(Kre_expr>) |
<re_factor><repetition>

{event_index> ::= .<number> | <empty>

{catenation> ::= '
<shuffle> ::=
<alternation> ::= |
{repetition> ::= * | +

{with clause> ::= with {attribute_ list> | <empty>
<attribute list> ::=

<attribute> |

attribute> ; <attribute list>

<attribute> ::= <attribute name> := <expression>

{expression> ::= <simple expression> |
<{simpleexpression> <relop> <expression>

{simple_expression> ::=
“<Kterm> |
<term> <addop> {simple_expression> |
{sign> <term>

{term> ::=
{factor> |
{factor> <mulop> <term>

{factor> ::=
(<expression>) |
not <factor> |
{qualified name>

<value>
{value> ::= <number> | <string> | <boolean>
<boolean> ::= true | false
{relop> ::= < | <= | = | <> P >= 1 >
<{mulop> ::= and | / | ¥ | mod
<addop> ::=or | + | -

{sign> ::= + | =

{qualified_name> ::=
{qualified_event_name><dot><attribute_name>

{dot> ::= .

{qualified_event name> ::=
<event name><event index> |
<event name>

{cond_clause> ::= cond <boolean _exprlist> | <empty>
<{boolean _exprlist> ::=z

<boolean_expr> |

{boolean_expr>; <boolean_exprlist>

<boolean_expr> ::= <qualified_name> <relop> <expression>

A-2

