To appear in: Directions in Human-Computer Interactions

B. Shneiderman and A. Badre, Editors.

Ablex Publishing Co., 1982

What Do Novices Know About Programming?
January 1982
%%%Regearch Report #218 (Yale)

Elliot Soloway*
Kate Ehrlich#*
Jeffrey Bonark*
Judith Greenspan®*
*%%Substitute for COINS Tech Report #81-18

B

* Department of Computer Science
Yale University
P.O. Box 2158

New Haven, Connecticut 06520

** Computer and Information Science Department
University of Massachusetts

Amherst, Massachusetts 01003

This work was supported by the Army Research Institute for the Behavioral
and Social Sciences, under ARI Grant No. MDA903-80-C-0508.

This work was also supported by the National Science Foundation, under
NSF Grant SED-81-12403.

Any opinions, findings, conclusions or recommendations expressed in this
report are those of the authors, and do not necessarily reflect the views

of the U.S. Government.

What Do Novices Know About Programming? Page 1

Table of Contents

l. Introduction 1
2. An Example 2
3. Using Expert Knowledge As A Guide 4
4. A Description of The Empirical Study 10
5. Overall Performance 15
6. Bugs and Misconceptions: Looping 16
6.1. The Looping Constructs In Pascal 16
6.2. Choosing the Appropriate Loop Construct: Predictor of Success? 20
No

6.3. Choosing the Appropriate Looping Strategy: Predictor of 21
Success? Yes

7. Bugs and Misconceptions: Variables 25
7.1. Counter Variable vs. Running Total Variable: Update Problems 25
7.2. The Read Variable 28
7.3. Mushed Variables - 30
8. Related Work 31
9. Concluding Remarks 32

10. Bibliography 33

What Do Novices Know About Programming? Page 1

1. Introduction

In a recent book, Shneiderman (1980) points out that:

“For "every professional programmer there are probably ten
occ981on§1 programmers who write programs for scientific research,
engineering development, marketing research, business applications,
etc.. And finally there are a rapidly growing number of programmer
hobbyists working on small business, personal and home computing
applications.’

In other words, there will be a great number of people who will program
computers in carrying out their daily activities. For such casual programmers,
initial difficulties in learning a programming language may become a permanent -
barrier to their continuing interaction with computers. Clearly, programming
languages, text editors, command languages, and other applications programs
can be designed to better facilitate human interaction. However, in order to
build such systems tailored to the needs of the non-professional, we must
identify the needs of such individuals. In this volume, there are papers that

address themselves to just this issue, e.g., Dumais and Landauer (this volume)

explore the factors involved in learnable command languages. Our focus is on

programming: what difficulties do non-professional programmers have in

learning to program, and what are the sources of these difficulties.

In this paper we will present the results of an exploratory study we
conducted with non-professinal programmers wh6 were asked to write programs as
solutions to a set of problems. The objective was to study the bugs -—-
errors in programs --- and misconceptions --- misunderstandings in the minds
of the novice programmers. We study bugs because they serve to expose the
specific knowledge deficiences and/or confusions which people have [Brown and !
Burton 1978]. The key to understanding the misconceptions of mnon-
professionals is a theory of programming knowledge, i.e., the knowledge which
expert programmers have about programming. We assume that misconceptions are
some variant of such expert knowledge. As we will soon see, we have developed

a preliminary theory of the high level, plan knowledge which expert

What Do Novices Know About Programming? Page 2

programmers appear to have and use. We will describe how this theory guided
us in the design of the study reported here, and how it provided the basis for
interpreting the bugs in non-professionals” programs. In this study, then, we
attempt to identify the needs of novice programmers by understanding the

source of their difficulties. While not the focus of this paper, we do make

suggestions as to how these difficulties might be overcome.

2. An Example

Consider the following problem:

Write a program which repeatedly reads in integers until their sum
is greater than 100. After reaching 100, the program should print out
the average of the integers read in.

A program that solves this problem would need a number of components:

1. a way of reading a new integer
2. a way of accumulating a running total

3. a way of counting the number of integers read, in order to compute
the average

4. a loop which repeatedly performs the above operations, and in
addition has a terminating condition to prevent numbers being read
in indefinitely

5. a way to calculate the average after the appropriate number of
integers have been read in

6. a way to print out the final answer.

A Pascal program which correctly solves this problem is given in Figure 1.
Although this simple example illustrates many basic notions of programming,
such as looping, testing and operating on variables, and reading/writing, the
above problem should not be difficult, even for novices. It requires no
esoteric language constructs, nor does it require particularly clever code.
However, when we gave this and similar problems to students in an introductory

Pascal programming class, only 44% of them were able to write correct

programs.

What Do Novices Know About Programming? Page 3

pxogram Example;
var Count, Sum, Next : integer;
Average : real;
begin
Count := 0;
Sum := 0;

repeat
Read (Next);

Sum := Sum + Next;
Count := Count + 1
until Sum > 100;
Average := Sum / Count;
Writeln (“The average is : ~, Average)
end.

Figure 1: A Sample Program

The above is a program which calculates the average of numbers
which are repeatedly read until their sum exceeds 100.

To get some idea of where students were going wrong, we broke the program
down into its component parts and scored a subject’s program with respect to
the correctness of each component part. We then generated a profile of the
typical program by integrating the code fragments most commonly written by the
subjects for each of the components in the program. The resulting —— and
correct —-- program was the one shown in Figure 1. Insofar as this method of
analysis gives an accurate composite picture of a novice programmer, it
suggests that there is no single component of a Pascal program that 1is

troublesome for the majority of students.

The errors in the students’ programs stemmed from two sources: students had
difficulty with the syntax and semantics of the various programming language§
constructs, and fhey had difficulty determining which constructs to use and,
how to coordinate them into a unified whole. Examples of the former type
include: incorrectly forming assignment statements; explicitly --- and
wrongly —- incrementing the index variable in a Pascal for loop, etc.
Examples of the latter type include: using an inappropriate loop comstruct in

a problem; failing to initialize variables properly, etc.

What Do Novices Know About Programming? Page 4

Some attention has been paid to identifying and cataloging errors of the
first sort (see Gannon [1978]). In contrast, this paper deals primarily with
errors of the second sort, i.e., those which reflect a confusion or lack of
knowledge about the pragmatic and functiomal factors involved in using various
programming language comnstructs. In order to identify specific pieces of
knowledge which are lacking or mnot well uﬁderstood, we will compare the
knowledge of expert programmers with that of non-expert programmers.
Shneiderman [1976] and Adelson [1981] have shown that experts seem to use high
level knowledge to understand programs, while novices tend to focus on the
specific statements employed in a program. Building on this work, it is our
goal to identify specific knowledge differences between experts and non-
experts, and examine how different levels of knowledge affect the performance
of non-experts; To this end, we have identified a number of experts” high
level plans, and have used them to guide our empirical work with non-experts;

the study described in this paper is the first result of that enterprise.

3. Using Expert Knowledge As A Guide

We believe that experts use more than just knowledge of the syntax and
semantics of a programming language when they write programs to solve
problems. Expert programmers have and use high-level, plan knowledge to
direct their programming activities. A plan is a procedure or strategy in
which the key elements of the process have been abstracted and represented
explicitly.1 Faced with a new problem, an expert retrieves plans from his/her
knowledge base which have proven useful in similar situations, and then weaves

them together to fit the demands of the new problem.

1In this discussion, we will gloss over many technical aspects of the theory
of planning. For our purposes, the commonsense notion of '“plan" is
sufficient. The interested reader can follow these issues more carefully in
texts such as Nilsson [1980].

What Do Novices Know About Programming? Page 5

We have identified2 a set of plans that we believe experts use when solving

problems of the sort typically encountered in introductory programming courses

(see Table 1).

Problem l. Write a program which reads 10 integers and then prints out the
average. Remember, the average of a series of numbers is the
sum of those numbers divided by how many numbers there are in
the series.

Problem 2. Write a program which repeatedly reads in integers until their suq
is greater than 100. After reaching 100, the program should
print out the average of the integers entered. .

Problem 3. Write a program which repeatedly reads in integers until it reads
the integer 99999. After seeing 99999, it should print out
the correct average. That is, is should not count the final
99999.

Table 1: Three Simple Looping Problems

While these problems are relatively simple, their solutions illustrate many of
the basic notions of programming. The problem given at the beginning of
Section 2, uses a few repetitive actions involving simple arithmetic
operations. The plan commonly used to solve this problem, the Running Total
Loop Plan, describes the various components needed in a program in order to

compute a sum.

In order to be precise about the plan knowledge which expert programmers
have, we decided to encode this knowledge in a "formal language." That is, we

have borrowed a 1language for representing knowledge from Artificialj

2The authors of this paper have served as the expert programmers in this

enterprise. We are currently conducting group tests and gathering video-taped
protocols with a number of other expert programmers in order to evaluate our
claims. :

What Do Novices Know About Programming? . Page 6

Intelligence called “frames) [(Minsky 1975].3 This style of representing
knowledge has two properties which we find particularly appropriate to our
task:
1. Plans are not represented as atomic entities, but rather are
represented as knowledge packets which have rich internal

structure. A plan is encoded as a frame, which has slot types and
slot fillers.

2. Plans are explicitly linked together by -various types of
relationships; these relationships are encoded as types of arcs.

Below, we will expand on the relevant structural properties of the frame
representation and also, we will describe the specific content of our theory

of programming, which is encoded in the frame representation.

As we indicated above, we have identified and represented a fragment of an
expert”s ptogramming knowledge; the frames used to erreaent this knowledge
are shown in Figure 2. These frame representations of loop plans are composed
of “slot types" (e.g., descriptions, variables) and "slot fillers." The
former delimit general properties or aspects of loop plans, while the latter
are specific values which capture the individual characteristics of a
particular loop plan. For example, both the Running Total Loop Plan and the
"Find_Satisfactory Loop Plan have the slot type '"descriptiom," but the slot
filler for each of these plans is different. Im éffect, a frame represents a
template, which is customized to the particular features of the concept being

represented.

Plans are linked together, a feature that both highlights the commonalities

and differences of plans, and reflects hierachical ordering relations among

3We have implemented a version of this language in LISP on a computer, and
have used the implemented 1language to actually represent the knowledge
described below. This machine readable knowledge base is used by our
intelligent tutoring system, MENO-II [Soloway et al. 198lcl.

nngx Loop Plea
® Rescristion
¢ Yacisblss: .
& Bhgt o unslh
® $¢L UR: ..o

:Mmhlﬂl! oo

W

m Vind Satislectory Valse Loop Plsa .
jos: sesrch tkrough ¢ erray .
lookiog for ee element vhich sstlefies o
Sooiesn espreaslion
© Yagishieg: Arvey_polater, Arrey
* ¥t s feeted?: dsveyldcray_poiater)
tor satisfaction of the Booleso expreseion sad
Array_pointer for {a renge of the arrsy
® foL Op: Arrey_poister :o saslliest Ladex of Arvey
* 2chico 1n Rodxt Arvey_polster i
Seceldrrey_poloter)
® Conciveice: deteraiae which seaditice
saded tde losp

Ixsnr: Totel Controllied Suasing Toze) Losp Plsa

® Beersaplion: o rwaning toteld loop
vhere {terstios is contrelied by tha
velue of the Rummisg total

® Yeriadles: Couster, Bemming tetel, and
Sew_valve

® Wal jp fested?: Bxmslag tetel

® 558 Up: initistlice veriables

® Actic® in kody: Gsed, Cewat, Tetel, Test

l:ﬁx' feuning Total Leop Plen .
* Duscription: Swild sp o vuasisg totel
tn the 1oop, optionsily covnting tho
wx=bes of [teretioce
® %exigblee: Cesctor, Bwomicy tetsl, ead
Bev_vales
© Pag s 1eegedt:
' =t bx‘:.ltultu nrutlu
byt Beod, Couse, Total
: Saaglasiopt ...

Ixs2s: Couster Controlled Rurning Tetsl Lesp M
® Degcrirgliop: s ruseing tetsl loop
wvhere itcratios ie controlled by the
valve of the Covuter vsrishle
® pagisblee: Comstezr, Rumning tetsl, sod
Rer _value
® Bt e teaiedls Cosnter
® 3¢t Up: ieitisline warlsbles
Ouunum; Teot, Beed, Couat, Tetsl

mx 'ul“ll e IR ¢ T

T oeee
C i 1 ese

[I Wt

otep ot @ ll-

1 Bveslog tevol to 8

ohmhm =
® Imat .o

Condine (Raznicg tetsl, Sew valed)

[——

fgsmn! Rev Value Coutrolled Rwanieg Totel Lecy Ples
® Pragritsion: » resolieg total loep
where (teration ie costrolled by the
value of the Brv_valoe varishle
¢ Y.ziebles: Counter, knlngloul. s
ey _valve
® ¥ogt 1. Sea1241: Bew_volen
® Bt Pp: imitiolise varlobles
® Acrion Ia bodye Beed, Test, Count, Totsl

beaing Tetel Varisbie Pleo
* Degcriptiont beilde wp o valse ¢ma

?\ Rozm! e Vatee Varladle Fieo

Racsrintignt bSolde valeso
prodecsd by geosrolor

. Iaizialisstien:t stert valoo

Tactical Plans

M‘ Coustes Vorfoble Nlea
sZAringt coents esturciecs of

sevly w veriable e setisa
t S2AD (Bow_valee) . s Covator to 0
.hw‘m(lﬂ_nm) ¢ Soy smit: Comnter to Cmpnger ¢ §
L ¢ Inas Jeteger

® Conclvaion: ... T een ® Conclneion: .o
[E ‘ L]

Ixsez: perdeg toop P
® Jeuzwese: Pascel
¢ Deeceipircn: s reseicg totsl locy
where steretion i0 costrelled by tha
valve ol the Dxuuing tetel

¥

Izexa: fsx Leop Plse
¢ Lapgusze: Pescal
* Bxaciistisn: & reasing totsl leoy
where iterstion {9 coutrelled by the
nln ot the Coxater variable

Icamat while toop Ples
® Lingusag: Pescal 11
® Precrintion: o vvening tetsl locy
whete {terstion (s contrelled by the
valse of the Hew_velus varieble

Implementation Plans

® Soger * Coge . m::‘ 0

Couot := @ .d.‘ totsl 10 @ Cosat :=
I-nn;_luul 1® . M.‘: n'.n 32 neppieg-valve fn Ianq_l::.:.:- L]
Iseesd s Scaéibev.

:‘:h_nl-) . h.;..‘u...n;.,) \ . lﬂh.::: _velus test-conditisn stepptcy-weler £3

st 1= Cosnt o Rresisg total te Cwsnizg tetol ¢ Dew_velss

Rensisg tetal := Buza otal + Bev_veluo = - Covut := Cooat ¢ | R oy

2241 (Bewsing tetsl test-conditice n."ln.-ulu) 7 A l.:::;:t::::.w Ecugisg Setal ¢ Bug_ve!
] od -
. 7
~ = |
~ -

-~

-~ g
~ Reamt Beod/Process Locoiag B

T spoeifies um of
‘Bunnl lecp 1o

Figure 2.

"Frame"s represent chunks of knowledge
available to experienced programmers.

These chunks are held together by "A-Kind-

Of" arcs (solid lines) and "Uses" arcs
(dashed lines).
are in all capitals.

Note: In order to minimize crossovers,
we have not shown Variable Plans being
used by Looping Plans.

A network representing a theory
of simple looping programs in Pascal. The

Standard Pascal identifiers

ﬁﬁ!‘ Process/Reed Losping Strateny
3 speeilies structere of loxp
' t get & valve
Towp

precess the walcy
get o vales

™ Leoping nmm

Strategic Plans

Legend

—===2 Usges Link

——-) A-KIN-OF LINK

What Do Novices Know About Programming? Page 8

the plans. Curfently, there are two relationship links in our frame network:
' A_KIND_OF and USES. For example, the hierarchical A _KIND_OF relation connects
both the Running Total Loop Plan and the Find_Satisfactory_Value Loop Plan to
the Loop_Plan, since the two former plans are specializations of the latter

plan.

In addition to identifying abstract programming plans, we sought to
understand the roles variables play in programs. Just as actors take on
different roles in a play, variables take on different functions in a program.
We have again uﬁed a frame representation to describe the knowledge associated
with variable plans. Figure 2 depicts a number. of roles which variables
commonly play in simple looping problems. For example, one variable, the
Counter, is used to count the number of elements being accumulated, e.g.;
Count :=Count+l. Similarly, the Running_Total Variable is used to accumulate a
total, e.g., Sum:=Sum+Nu_Value. While both variables are updated using an
assignment statement, they do not seem to be perceived, at least by experts,
as "simply) variables. That is, a variable can be perceived as simply
containing an arbitrary value or it can be perceived as containing values
which have a specific purpose. The roles which we have described reflect the
special purposes which values, and their variables, play in programs. In
fact, the data we will present suggests that even novices perceive a Counter

Variable as different from a Rumning Total Variable.

In writing a program using a particular loop plan, some variables are
needed; they are indicated in the frame for that particular plan in the
"variables" slot. In order to get a more complete description of such a
variable, ome must go to the frame which describes it. Variables are
associated with loop plans via the USES relationship in Figure 2. As with éhe
Plan frames, variable frames comsist of slots and slot fillers which serve to

describe the defining characteristics of each type of variable.

What Do Novices Know About Programming? Page 9

Figure 2 includes three other loop plans which are specializations of the
Running_Total Loop Plan; one major difference among them is the value of the
slot called "what is tested."” For example, the loop plan appropriate to the
problem given in Section 2 is the Total Controlled Running Total Loop Plan;
the termination condition on the 1loop in that problem is when the
Running_Total Variable reaches a certain value (i.e., 100). In contrast,
consider the first problem in Table 1 for which the Counter_Controlled
Running_Total Loop Plan is appropriate; this problem requests that exactly 10

numbers be read in and summed.

There is an additional layer of structure apparent in Figure 2. Namely, we
have classified plans into 3 categories: (1) Strategic Plans and (2) Tactical
Plans, which are both' language independent plans, and (3) Implementation
Plans, which are language specific plans. Strategic Plans specify a global
strategy used in an algorithm. For example, the Read/Process Strategy
specifiea that the actions "read a value, then process it" are nested in a
repetition loop. The program in Figure 1 illustrates the use of this
strategy; the variable Next is first Read, then it is processed in the
statement Sum := Sum+Next. It turns out that the Strategic Plams Read/Process
and Process/Read are very important, and we will discuss them further in

Section 6.3.

Tactical Plans specify a local strategy for solving a problem. For

example, the Counter_Controlled Running Total Loop Plan describes how a sum

can be accumulated. This Loop Plan specifies an algorithm for solving a ;

specific problem. Implementation Plans, on the other hand, specify language
dependent techniques for realizing Tactical and Strategic Plans. Thus, the
for Loop Plan is a technique for implementing the Counter_Controlled

Running_Total Loop Plan in Pascal.

As we stated in the introduction, our goel is to identify the knowledge

o

What Do Novices Know About Programming? ’ Page 10

differences between expert and non-expert programmers. On the basis of the
framework outlined in this section, we have designed and analyzed a broad
study of the behavior of non-expert programmers. While the knowledge base in
Figure 2 is clearly just a beginning, we are pleased and excited by the

leverage it has already given us in understanding programming.

4, A Description of The Empirical Study

We wanted to test whether or not non-experts have the kind of plan
knowledge described above. In particular, we were interested in seeing if
non-experts could distinguish the appropriate context in which to use each of
Pascal’s looping constructs (the for, repeat, and while loops), i.e., do non-
experts know when it is appropriate to use each of the three Pascal
implementationAloop plans. The problems displayed in Table 1 were constructed
spgcifiéallx to test this question. All three problems require that the
average of a set of numbers be computed. However, each problem differs with
respect to the condition for terminating the 1loop. Each of the three
terminating conditions is implemented in Pascal using a different loop
construct. For example, in the Problem 1 (Table 1) the value on which the
loop will terminate is known beforehand; in this type of situation the most
appropriate Pascal loop construct is the for loop [Wirth 1971]. Pascal was
specifically designed to minimize redundant primitive commands.

In view of its intended usage as a convenient basis to teach

programming emphasis was placed on keeping the number of
fundamental concepts reasonably small.

Wirth 1971

Thus, the"” choice of the most appropriate loop comstruct in a given situation
is not merely a matter of individual taste, but rather the choice can be based

quite squarely on reason.

In Problem 1, the student is asked to write a program which reads in a

specific number of integers, 10 in this case, and then computes their average.

What Do Novices Know About Programming? Page 11

As argued above, the Pascal loop construct most appropriate for this problem

is the for loop. A correct solution to this problem using this construct is

given in Figure 3.

program Studentl2 Probleml;

var Count, Sum, Next : integer;
Average : real;

begin

Sum := 0;

for Count :=1 to 10 do
begin
Read (Next);
Sum := Sum + Next
end;

Average := Sum / 10;

Writeln (‘The average is : ~, Average)

g Q-
Figure 3: The Appropriate Use of a for Loop

The above is a program which calculates the average of 10 numbers
input by a user. It is a solution to Problem 1 of Table 1. Note that
the above is an actual student’s program which has been only minimally
edited in order to facilitate readability.
While in Problem 1 the termination condition is a specific number of integers
to be read, in Problem 2 it involves the variable which accumulates the sum,
i.e., the program should stop reading when this variable is greater than 100.
The Pascal loop construct most apptopriate4 to this problem is the repeat loop
(see Figure 1). In Problem 3, the loop termination condition is a special
value (99999 in this case) which, when read as one of the integers, signals a

stop. The Pascal loop comstruct most appropriate to this problem is the while

construct (Figure 4).3

41n Section 6.1 we will present more detailed arguments to support this
claim.

5A better version of this program would also test that some data had been
read in, and thus no divsion by zero was occurring. However, very few
students actually included this type of test; the program in Figure &,
generated by a student, is typical of observed programs in this regard.

P T T -

What Do Novices Know About Programming? Page 12

program Student6_Problem3;

var Count, Sum, Number : integer; Average : real;

begin
Count := 0;
Sum := 0;

Read (Number);
while Number <> 99999 do

begin
Sum := Sum + Number;
Count := Count + 1;
Read (Number)
end;
Average := Sum / Count;
Writeln (Average)
end.

Figure 4: The Appropriate Use of a while Loop

The above is a stylistically correct solution to Problem 3 in Table
1. Note that it is an actual student”s program which has been only
minimally edited in order to facxlltate readability.

Even though each Pascal loop construct was designed for a specific ldoping
situation, a correct program can usually be written which does not use the
most appropriate loop comstruct. In particular, the while loop is the most
general construct and can be used to simulate the other two. However, using
an inappropriate loop construct can become quite burdensome. In this case,
the programmer must add extra code in order to compensate for the poor choice
of loop comstruct. For example, Figure 5 shows two programs which correctly
solve Problem 3. Although the while loop is the most appropriate construct
for this problem, the students chose to use the repeat construct; in order to
follow through with this decision, additional code was required (compare the
programs in Figure 4 and Figure 5). The increased complexity of the code
caused by the choice of an inappropriate loop construct would presumably

increase the opportunity for error, and the data bear this out.

We administered the three problems described Table 1 as a non-credit quiz

to two groups of students. The first group, comsisting of 31 students in an

What Do Novices Know About Programming? Page 13

a)

program Studentl46_Problem3;
var Number, Count, Total : integer;
Finished : boolean;
begin
Count := 0;
Total := 0;
repeat .
- Read (Number);
. Finished := (Number = 99999);
if not Finished then
begin
Count := Count + l;
Total := Total + Number
end
until Finished;
Writeln (“The average is ~, Total/Count)
end.

b)

program Studentl6_Problem3;
var Count, Sum, Num : integer; Average : real;
begin
Count := -1;
Sum := 0;
repeat
Count := Count + 1;
Read (Num);
Sum := Sum + Num
until Num = 99999;
Sum := Sum - 99999;
Average := Sum / Count
end.

The above are two solutions to Problem 3, the while loop problem,
of Table 1 Note that they are actual students’ programs which have
been only minimally edited in order to facilitate readability.

Figure 5: Simulating Read/Process with a repeat Loop

introductory Pascal programming class, was tested in the final week of their

summer session course. The second group included 52 students enrolled in a

What Do Novices Know About Programming? ' Page 14

second course in programming (a data structures course which used Pascal);
they were tested in the 10th week of a 16-veek semester. The two groups will
be referred to as "novices" and "intermediates” respectively.6

In using the terms 'novice! and "intermediate', we do not mean to imply
that the two groups necessarily differ either uniformly or consistently in
their ability to program. As Moher and Schneider (1981) point out, people in
the same class may differ considerably in their aptitude for programming and
thus care must be exercised in evaluating experimental results. Our goal in
using people with varying amounts of programming experience is to focus on the
levels that people pass through as they learn to program. That is, we are
interested more in the kinds of errors that people make, than in which group
of people made the errors. Thus, we feel that this type of exploratory study
serves to identify a broad range of interesting behaviors which can then be

studied using more carefully controlled experimental techniques.

Scoring this type of production data 1is difficult.’ Based on the
programming knowledge described earlier, we developed a number of categories
for coding the students” programs. For the most part, these categories
reflected the functional characteristics of the program. For example, we
scored a program with respect to the use/misuse of the Counter Variable,
Running Total Variable, etc (see Figure 2). This approach goes beyond more

straightforward measures such as scoring a program with respect to the

6In their introductory courses both groups of students were taught and used
all three Pascal loop constructs: while, repeat, for.

7Since students wrote the solutions on paper without access to a computer,
we felt that it would be counterproductive to score as incorrect, programs
which had only minor syntactic errors. Also, we did not mark as incorrect,
programs in which there was no check for the count being zero before
attempting to divide by it in the average calculation. We made this decision
since only a small handful of programs did make the test.

What Do Novices Know About Programming? Page 15

use/misuse of a programming language comnstruct (e.g., did the student
correctly use an assignment statement). In effect, the latter technique would
simply access the student’s understanding of the syntax and semantics of the
programming language constructs which, while undeniably important, are not the
only components of programming knowledge. For example, if we had just looked
at assigonment statement usage, we would have missed the distinction between
the Counter Variable and the Running Total Variable. Our goal in developing
scoring categories based on programming plans was to tap into the students”
understanding of the functional characteristics of constructs, as well aB

their understanding of the syntax and semantics of those constructs.

5. Overall Performance

Table 2 displays the percentage of novices and intermediates who gave a
correct solution to the problems. Unquestionably, the figures are low.
Novices scored less tham 50% on every problem, while the intermediates scored

less than 60% on every problem.

Problem 1 Problem 2 Problem 3
for problem repeat problem while problem
Novices 11/27 12/27 9 23
Correct (41%) (443) (3 %)
Intermediates 29/57 28/49 18/:3
Correct (57%) (57%) (42%

Table 2: Overall performance of novices and intermediates.

The majority of errors are not explainable simply as momentary ?ment?l
slips,” such as failure to initialize a variable. Performance improved oniy
slightly if errors of this sort were overlooked. For example, if we counté\
as correct all those programs in which the only error was a missing
initialization, the percentage of correct programs (across all 3 problems)
would only go up by 3% (to 45%) for the novices, and by 6% (to 59%) for the

jintermediates. Thus, we believe that the errors represented by this data

What Do Novices Know About Programming? Page 16

reflect real misconceptions that students have about programming, and cannot

be accounted for by simply saying “They made silly errors."

6. Bugs and Misconceptions: Looping

As stated earlier, our objective in this study was to build up a catalogue
of common programming bugs and their underlying misconceptions. ‘We begin this
discussion with a description of bugs and misconceptions concerning the choice

of looping‘construct and looping strategy.

6.1. The Looping Constructs In Pascal

Do novice and intermediate programmers distinguish among the three Pascal
loop constructs and use them in the appropriate context? The answer, based on
our data is, less than half the time. Table 3 lists the percentage of novices

and intermediates who used each particular loop construct on each problem.

Let us first consider the performance of the novice group. Their
performance data on Problem 1 are surprising. This problem is clearly a gég
loop problem; the for loop was designed for use in situations in which
termination of the loop must occur when the Counter Variable exceeds some
specific value, e.g., in Problem 1, the Counter Variable must range between 1
and 10. However, only 22% used a for loop; 37% used a repeat loop and 37%
used a while loop, even though these constructs required the students to do
more work by having to make explicit those operations done implicitly by the
for loop (i.e., initialize counter, test counter for stopping, increment

counter),

Problem 2 (see Table 1) was a repeat loop problem; the variable that
controlled the loop, “sum," needed to be assigned a value in the loop before
it could reasonably be tested. 59% of the novices used the repeat loop and
37Z used the while loop; no novices used a for loop here. For Problem 3

(Table 1), the appropriate loop conmstruct is while; the loop must not be

What Do Novices Know About Programming?

Novices

Used for

Used repeat

Used while

Used other

Total attempting

Used appropriate
construct and correct

Used inappropriate
construct and incorrect

Overall correct

Intermediates

Used for

Used repeat

Used while

Used other

Total attempting

Used appropriate
construct and correct

Used inappropriate
construct and correct

Overall Correct

Problem 1
for problem

6
(22%)

10
(37%)

10
(37%)

1
(4%)

27

4/6
7/21
11/27

31
(61%)

(=)

20
(39%)

(=)

51

21/31

8/20

29/51

Problem 2
repeat problem

(-)

16
(59%)

10
(37%)

(4%)

27

7/16
5/11

12/27

1
(22)
(10%)
38

(78%)

(10%)

49

3/5

25/44

28/49

Page 17

Problem 3
while problem

1
(4%)

8
(35%)

10
(37%)

4
(17%)

23

5/10

4/13

9/23

(-)
(16%)
30

(70%)

(14%)

43

14/30 ;
4/13

18/43

Table 3: Looping comstructs used by Novices and Intermediates

What Do Novices Know About Programming? Page 18

executed if the controlling variable has a specified value and therefore the

test must be placed at the head of the loop.8 37% of the novices uﬁed a while

loop as opposed to 35% who used a repeat loop.

The intermediate group had a different pattern of performance. On Problem
1, the intermediates did seem to recognize it as being a for loop problem, in
contrast to the novice group. However, on Problem 2, in which the repeat loop
was the most appropriate construct, only a few used 1it. Rather, the
overwhelming choice was the while loop. Counter—-intutively, more novices used
the appropriate loop comstruct in this problem than did intermediates.

Intermediates again chose the while loop in Problem 3. However, given the

overall usage of the while loop by the intermediates, it appears that the

intermediates no longer have the repeat loop in their bag of tools; they

simply use the while loop in all situations. Since the course in which they
were tested was a "data structures' course, and did not focus on being tested
on Pascal per se, they apparently had no motivation to remain familiar with

the repeat loop; the while loop could always be coerced into service.

Based on this simple test, it appears that novices and intermediates do not
distinguish among the three Pascal loop structures as experts might. A

student we interviewed, when asked why he chose to use the while construct

rather than one of the other two, responded:

“When I don’t know what is going on, I use a while loop."

At first, we found the results of the for loop problem (Table 2, Problem 1)
counter~intuitive. After all, since the for 1loop does so much work
automatically, we thought it would be the easiest to understand and use. On

second thought, we decided that these automatic, implicit aspects of the for

8y :
This, in turn, requires a Curious coding structure which we examine in the
next section.

What Do Novices Know About Programming? Page 19

loop might in fact be the problem. Since the for loop does a number of
actions automatically, students might be uncertain about exactly how it works.
To gain control over the program, students might choose a repeat or while loop

and do the extra work to add the required looping machinery themselves.’

The difference between the repeat and while loops is subtle. Moreover,
since omne construct can simulate the other, the distinction is hard to
enforce. We feel that textbooks significantly contribute to the confusion.

For example:

€

The principle difference is this: in the WHILE statement, the loop
condition is tested before each iteration of the loop; in the REPEAT
statement, the loop condition is tested after each iteration of the
loop.

Findlay and Watt [1978]

If the number of repetitions is known beforehand, i.e., before the
repetitions are started, the for statement is the appropriate
construct to express this situation; otherwise the while or repeat
should be used. ... The statement [in a while body] is repeatedly
executed until the expression becomes false. If its value is false at
the beginning, the statement is not executed at all. ... The sequence
of statements between the symbols repeat and until is repeatedly
executed (at least once) until the expression becomes true.

Jensen and Wirth [1974]

As opposed to these "syntax level" descriptions, we feel that the "“deep
structure” of these constructions should be emphasized. A better explanation
is:
If the test variable will have & meaningful value as the loop is
entered, i.e., a value that could prevent the loop from being executed

even once, then a while loop is appropriate. If, however, the first
meaningful value of the test variable is assigned to it during the

3 e

9Some support for this interpretation comes from the following fact:
students in these classes were not taught the goto, and never comstructed
loops out of more primitive constructs. Thus, they might have been unsure of
the ingredients of a loop, and uncomfortable with all the magic implicit in a
for loop.

What Do Novices Know About Programming? Page 20

loop, then a repeat loop is the appropriate iteratiom comstruct.

In otherwords, there is a close connection between the loop test, the loop
construct, loop plan, and the problem; the choice of 1loop construct is
dependent on when the test ought to be performed. This observation is
consciously reflected in the frame representation of looping plans in Figure

2.

The frames and slots in Figure 2 reflect the close connections between the
test in the loop and the loop construct, and the connection between the test

and the problem.

A final comment: the reader might feel that the distinction among the three
loop types is not important for a novice. To some extent, we might agree.
The problem is that courses and textbooks do teach all three loop types ---
and students are éxpected to understand them. Given the above data, however,

one wonders if teaching all 3 is a good strategy.

6.2. Choosing the Appropriate Loop Construct: Predictor of Success? No

Does choosing the appropriate loop construct (i.e., for, repeat, or while
depending on context) for a given problem facilitate the production of a
correct program solution? In effeét, choosing the appropriate loop construct
might “get you into the right ballpark." If a student does choose the correct

loop construct, then

1. he might know more about programming, and thus be more likely to
write a correct program,

2. and/or the loop construct itself might impose constraints that help
the student to get the components of the loop correct.

Thus we ask: what was the pattern of performance for those students who did
choose the appropriate loop construct? Keep in mind that the students in
general did not use the loop comstruct that was appropriate to a problem, and

their accuracy was low.

What Do Novices Know About Programming? Page 21

The students (novices and intermediates) who chose the appropriate loop
construct were only slightly more likely to write correct programs (see Table
3). In other words, simply choosing the appropriate loop comstruct is not a
predictor of program correctness. As we shall describe in the next section,

choosing the appropriate looping strategy can be a predictor of correctness.

6.3. Choosing the Appropriate Looping Strategy: Predictor of Success? Yes

If the choice of loop comstruct is not a predictor of success them, is the
choice of loop strategy? Recall from Figure 2 that a looping strategy is a
type of Strategic Plan which specifies a global approach to a problem, whilé.a
looping comstruct specifies an Implementation Plan, and is the command in a
specific programming language that a programmer selects to realize his
strategy. In this section, we will describe two alternative looping

strategies, and examine their importance for programming.

We will first focus our attention on the performance pattern of our
subjects on Problem 3. While from Table 2 we see that the novices did equally
poorly on all 3 problems, the performance of the intermediates is quite
different; 57% correctly solved Problems 1 and 2, but only 42% correctly
solved Problem 3. While Problem 3 is different from Problems 1 and 2, there
is no a priori reason to expect students to perform any differently than they

did on the other problems.

The stylistically correct solution to this problem, using a while loop [see

Wirth 1974], requires a curious coding structure: 5
read first-value

while (test ith value)
process ith value

read next-ith value

The loop must not be executed if the test variable has the specified value,

and this value could turn up on the first read; thus, a read outside the loop

is necessary in order to start the loop off. This results in the loop

What Do Novices Know About Programming? Page 22

processing being [‘behind the read;" the ith input is processed and’ then the
next ‘ith (i + 1) is fetched. We call this looping strategy the "“process

i/read next-i" strategy.

We feel this looping strategy to be unnecessarily awkward and downright
confusing (see also Knuth [1974]). A more '"natural” looping strategy would be
to read the ith value and then process it; we call this latter strategy the
“read i/process i" looping strategy. Only through circuitous means can one
encode a read i/process i strategy with a while loop in problems such as
Problem 3. For example, one can embed an if test inside the loop which
repeats the test in the while statement itself, or one can use a Boolean
variable and assorted assignments (see Figure 6). Hence, the while loop
facilitates the coding of a process i/read next-i strategy, but does not

facilitate the coding of a read i/process i strategy.

Soloway et al. [198la] described an experiment which demonstrated that
students do in fact prefer to solve problems using a read i/process i
strategy, as opposed to a process i/read next-i strategy. Also, their ability
to write correct programs is enhanced if the loop construct facilitates the
former strategy. In other words, people do have natural looping strategies,
and we need to pay attention to the match between such strategies and the

strategies facilitated by programming language constructs.

Given the existence of natural looping strategies, such as read i/process
i, and their apparent importance, is the choice of looping strategy a
predictor of success? The data in this experiment seem to indicate yes -—- at
least for Problem 3. Of the 24 students (novices and intermediates) who used
a process i/read next-i strategy, 17 got the program correct, while of the 40
students who used the while construct, only 19 got the program correct. For
the group choosing the process i/read next-i strategy, the difference between

those getting the program correct and those getting it incorrect is

What Do Novices Know About Programming? Page 23

program Student7_Problem3;

var N, Sum, X : integer;
Average : real;
Stop : boolean;

begin
Stop := false;
N := 0;
Sum := 0;
while not Stop do
begin
Read (X);
if X = 99999
then Stop := true
else begin
Sum := Sum + X;
N :=N+1
end
end;

Average := Sum / N;
Writeln (Average)
end.

The above is a correct solution for Problem 3 of Table 1. Note
that it is an actual student’s program which has been only minimally
edited in order to facilitate readability.

Figure 6: Simulating Read/Process with a while Loop

significant (Sign test: N = 24, x =7, p < 0 .03), while the corresponding
difference for the group who chose the while loop is not significant (n = 40,
x =19, p > .10). Choice of appropriate strategy (i.e., process i/read next-
i) did predict program accuracy. Choice of appropriate loop comstruct (i.e.,

while), did not predict accuracy.

Figure 6 displays a program illustrating the potency of the looping
strategies which students bring to a problem --- and to a programming
language. (Recall our earlier discussion of how a while loop can be used to
encode a read i/process i strategy with an embedded test.) We also saw more

unusual constructions. In Figure 7 we see a program which has a vhile loop

What Do Novices Know About Programming? Page 24

program Studentl7_ Problem3;
' var Sum, Count, Num : integer;
Average : real;
begin
Sum := 0;
Count := 0;
repeat
Read (Num);
while Num <> 99999 do
begin
Sum := Sum + Num;
Count := Count + 1
end
until Num = 99999;
Average := Sum / Count;
Writeln (“The average is °, Average)
end.

This program attempts to solve Problem 3 from Table 1. - This
student 1is clearly trying to code the repeat loop body as
“read/process" and using the embedded while as a way to (incorrectly)
force an exit from the middle of the repeat loop. Note that the above
is an actual student’s program which has been only minimally edited in
order to facilitate readability.

Figure 7: A .Multi-Loop" Program

embedded in a repeat loop.10 One interpretation is that this student wanted
to input a value first, then test it, and, when necessary, jump out of the
loop. However, he was not able to marshall the programming comnstructs to

correctly achieve this goal.

We call the kinds of constructions . described above (see Figures 6 and 7)
"multi-loops." The frequency of multi-loops was not randomly distributed over
the three problems. In the novice group, there were 11 'multi~loop" programs,

8 of which occurred on Problem 3; in the intermediate group, there were also

1ORecall that students in these classes were not taught the goto construct;
thus we did not see programs which escaped from the middle of the loop via an
if coupled with a goto.

What Do Novices Know About Programming? Page 25

11 multi-loop programs, 8 of which occurred on Problem 3. Our interpretation
is that students wanted to implement their read i/process next-i strategy, and

they went to great lengths to do so in Problem 3.

7. Bugs and Misconceptions: Variables

In this section, we will describe a selection of bugs and misconceptions
associated with variables found in the novice and intermediate groups’
programs. The three types of variables posited earlier (the Read Variable,
Counter Variable, and Running Total Variable) will help to focus this

discussion,

7.1. Counter Variable vs. Running Total Variable: Update Problems

Typically, imstructional texts treat the update of the Counter Variable and
the update of the Running Total Variable as instances of the same basic
construct, i.e., the assignment statement. If students do treat the two types
of variables as the same, we would expect to see no difference in performance,
as students should be as likely to handle correctly the Counter Variable
update as the Running Total Variable update. The data tell a differemnt story.
On Problem 3, 100% of the novices wrote a correct Counter Variable update,
while only 83% wrote a correct Runmning Total Variable update. In contrast,
the intermediates performed essentially the same on both updates: 91% correct
on the Counter Variable update versus 95% correct on the Running Total

Variable update.11

Why should the Running Total Variable update be "harder" thanm the Counter%
Variable update for the mnovices? After all, both require assignment?

statements of the same form. Below, we list three hypotheses which could

Uyere we did not include the performance of students on Problems 1 and 2,
since Problem 1 focused attention on the Counter Variable and Problem 2
focused attention on the Running Total Variable.

What Do Novices Know About Programming? Page 26

account for this observation.

1. The activity of counting and the activity of accumulating a total
are different activities. Whereas counting is naturally represented
as a "successor function" (i.e., increase the previous number by
1), one does not traditionally add up a column of numbers using a
running total algorithm. (With the increasing use of pocket
calculators, this might change.) However, the standard assignment
statement does not distinguish between these two cases, and in fact
requires that both activities be encoded in the same way. Thus,
the mismatch between omne’s standard algorithm and the programming
language results in the Running Total Variable update being harder
to learn than the Counter Variable update.

2. Students might learn the notion of a counter as a special entity,
i.e., they see the instructor and the textbook always using I := I
+ 1 whenever a counter is needed, and thus they memorize this
pattern as an indivisible unit. In other words, they do not
decompose I := I + 1 into & left hand variable which has its value
changed by the right hand expression. By this hypothesis, students
are not Sﬁfwing I = I + 1 as an example of an assignment
statement., When faced with developing an assignment statement
for the '"rumning total function" students must really confront
their understanding of the particular type of assignment statement
needed in this context. The poorer performance in this situation
reflects a misunderstanding of how the assignment statement works,
and how to encode a running total with this type of statement.

3. The assignment statement in the Running_Total Variable update case
requires a variable while the assignment statement in the Counter
Variable update case requires only a constant; the difference in
performance reflects the fact that variables are “harder” than
constants for novices. While this hypothesis might seem like the
obvious ome, it unfortunately does not provide an adequate
explanation for the data. Why should variables be harder than
constants? At the syntactic level, writing down a symbol string
does not seem all that much harder than writing down a number. At
the semantic level, both are the same —- the value of the name is
used in the computation. One must go after deeper differences,
differences which get at why and when variables are used as opposed
to when constants are used. Hypotheses 1 and 2 above attempt to
explain the performance difference by describing the circumstances
under which each entity is most appropriate. This hypothesis,
while appealing on the surface, lacks the explanatory power that we

12Performance data on Problem 3 suggest some intriguing corroborating
evidence. More novices got the count action correct (e.gey I := I + 1) than
got the count initialization correct (e.g., I := 1)! Maybe this was due to
sloppiness. However, if I := I + 1 is a unit unto itself, then possibly the
students do not see the need to initialize the variable.

What Do Novices Know About Programming? Page 27

seek,

Another curious coding technique, which we observed in students’ programs,
provides additional supportive evidence that students perceive the the
Running_Total Variable differently from the Counter Variable The program in
Figure 8 contains a Running Total update which is “fractured," i.e., split

over two lines of code (Y:=X+Z, Z:=Y),
program Student2l Problem3;
var C, X, Y, Z : integer;
begin

C
Z :=0;
v

A := Y div C;
Writeln (A, ° Average’)
end.

The above program contains a fractured Running Total assignment
statement in the body of the while loop. Note that it is an actual
student’s program which has been only minimally edited in order to
facilitate readability.

Figure 8: A Fractured Running-Total Update
While not incorrect, this technique is not good programming practice. It
probably reflects a confusion of the equal sign in traditional algebra with
the assignment operator in programming (see Soloway, Lochhead, Clement

[1981b]).

If students perceived the Counter Variable update to be of the same sort as
the Running Total Variable update, then we would expect to see "fractured
updates” used in both the Counter Variable update and the Running Total

Variable update. Fractured updates were observed in 7 programs from the

What Do Novices Know About Programming? Page 28

novice group. However, in all instances this occurred with respect to a
Runaing Total Variable update, not a Counter Variable update. While the
numbers are small, and thus conclusions drawn from them must be treated with
caution, these data nonetheless are consistent with our claim that stﬁdents do

perceive the two variables as being different.

The observations in this section again illustrate our experimental method:
analyze programming knowledge with respect to functional characteristics,

rather than simply in terms of the syntactic and semantic characteristics.

7.2. The Read Variable

In all three problems (Table 1), a correct solution required that the
pfogrmm "get a new value with a read." 23% of all the programs written by
novices did not perform this function correctly. Since "read a value" into a
variable is a basic technique which is used continually, we were surprised at
the high percentage of novices who could not do this at the end of a semester

of programming.

Consider, for example, the program depicted in Figure 9, which is typical
of programs in the data. This program is an attempt at solving Problem 1.

Notice that there is a read before the loop on the variable Num, but there is

no read in the loop. Instead, the variable Num is operated on by the
arithmetic operation “subtract 1." What misconception might explain this

apparently bizarre program? Recall that in Figure 2 we suggested that the
Read Variable and the Counter Variable were both apecializa;ions of the
New_Value Variable, i.e., both the Read Variable and the Counter Variable were
used to hold successively generated values. Possibly, the student who wrote
the above program confused a Read Variable with a Counter Variable. Since
these variables are “sibling" concepts this confusion seems quite plausible.
Thus, a student might well believe that if subtracting 1 from the value of a

Counter Variable will return the previous value of the Counter, then

What Do Novices Know About Programming? Page 29

program Studentl9 Probleml;
var Num, Prev_num, Count : integer;
begin
Count := 0;
Read (Num);
Sum := 0Q;
repeat
Prev_num := Num - 1;
Sum := Num + Prev_num;
Sum := Sum + 1;
Count := Count + 1;
until Count = 10;
Average := Sum / Count;
Writeln
(“Average of ten integers is equal to “:2)
end.

This program is an attempt at Problem 1 in Table 1. Note that it
is an actual student’s program which has been only minimally edited in
order to facilitate readability.

. Figure 9: Overgeneralizing a Counter Variable to a Read Variable

subtracting one from the variable Num should also return the previous value of
Num. As corroborating evidence, notice that the variable which is assigned the

value of Num - 1 is called Prev_num.

There is another hypothesis which could account for the difficulty some
students seemed to have with the read. It could be that students just didn’t
understand the semantics of the Pascal read statement. They may not have
perceived that a read does 2 things: it gets a new value, and assigns that
value to a variable. A language which treated I/0 calls as special values

that can be assigned "to" a variable or "from"” a variable might be more

palatable to beginning programmers, e.g.,

New_value := Read_from terminal, or,
Write_to_terminal := Running sum / Count.

What Do Novices Know About Programming? Page 30

7.3. Mushed Variables

While experts can distinguish among different kinds of variables, and
correctly note when such variables should be used, we found that a substantial
percentage of novice programs (27%) used the same variable incorrectly for
more than one role. In Figure 10 we display a program with just this sort of
"mushed variable" error. 1In particular, notice that the variable X is used
both to store a value being read in {Read (X))} and to hold the rumning total
{X := X+X}. While two distinct variables are needed in order to realize these

functions in the program, the program in Figure 10 uses only ome variable.

program Student26_Problem2;
var X, Ave : integer;
begin

repeat
Read (X);

X =X+ X
until X + X > 100;
Ave := X div Nx;
Write (Ave)
end,

Note that the above is an actual student’s program which has been
only minimally edited in order to facilitate readability.

Figure 10: Mushed Variables: An Example

Frankly, it is quite difficulf to conjure up a simple explanation for why
students created such programs. For example, it is possible that é student
did recognize that the same variable played two different roles, but assumed
that the computer also recognized this and would use the different values
appropriately. Often novices impute significant power and wisdom to a
computer. We are currently carrying out video-tape interviews with students
as they write programs. From this type of data we hope to develop clearer

pictures of why students make this type of error.

Only 8% (11/143) of the intermediates’ programs contained mushed variables

as against 27% (21/77) for the novices. The difference between this value and

What Do Novices Know About Programming? Page 31

that for the novices was significant at the p < .001 level (chi square =
15.44). One would expect that a student would need to clear up this problem
in order to progress in computing. That is, one can wunderstand the
intermediates not knowing when to use the for and repeat loops, but still

performing quite successfully with only the while loop. Mushing variables,

however, is a catastrophic conceptual error which must be overcome in order to

proceed.

8. Related Work ‘
Some fine work has been done in Artificial Intelligence and Cognitive;
Science on understanding problem solving in complex domains. In particular,
Collins [1978] has argued for the key role which tacit knowledge plays in the
problem solving of experts. Papert’s [1980] theory of learning, and his work
on the design of LOGO, have impressed upon us the importance of the match
between cognitive abilities and programming language constructs. Brown and
Burton [1978] and Brown and VanLehn [1980] have developed a sophisticated
model to explain the origin of bugs which people exhibit in their subtraction

algorithms; the development of a similar model to explain the bugs and

misconceptions described here is one of our goals.

Others have mapped out the knowledge which experts use in problem solving
in other domains,. For example, Polya [1973] and Rissland [1978] have
described the knowledge which mathematicians use; they emphasize that
mathematicians do not actually do mathematics in the cefinitiom, theorem,

a

proof" style employed by most textbooks, but rather use plans and goals to

-~

guide their thinking. Larkin et al. [1980]) have made similar arguments for*

expert problem solving behavior in physics. A number of researchers have
described various knowledge bases for differént areas of programming, e.g.,
Barstow [1979], Rich [1981], Rich and Shrobe [1978], Miller [1978], Waters
[1979].

What Do Novices Know About Programming? Page 32

Some of the issues we are addressing have also been studied by researchers
in the emerging field of "software psychology." For example, Gannon [1978]
reports on a set of bugs which he found to occur in stqdent programs.,
M. Miller and Becker [1974] attempted to identify the natural problem solving
strategies of non-programmers. Sheppard et al. [1979] explore, among other
issues, the effect on understanding of different looping structures. Mayer
[1980] has explored the utility of providing explicit models as an aid to
learning programming. Shneiderman [1976] and Adelson [1981] have done
experiments which show that experts tend to see programs in terms of
functional units, while novices tend to focus on the individual statements in
a program. Shneiderman [1980], in a recent book which brings together much of
the research in this field, also emphasizes the important role of higher

level, plan knowledge in programming.

9. Concluding Remarks

People will need to program with some degree of proficiency in order to
continue active participation in our technological society. To facilitate
their education we need to develop programming languages, programming
environments, and instructional materials which are tuned to the cognitive
abilities of this audience. We are now engaged in building a system which can
help students in introductory programming courses to debug their programs and
come to grips with their misconceptions [Soloway, et al. 198lc]. A key
component of this project is the empirical work reported here. In order to
design and implement material which facilitates learning, we need to

understand the sources of the bugs and misconceptions that students have.

In this paper we have exasmined some of those misconceptions by looking
beyond “syntax and semantics" errors to the plans and strategies that people
use when they program. By focusing on a few critical aspects of programming
we have shown that looping strategy is a key factor in programming.

Similarly, we found that students are quite sensitive to the pragmatic

What Do Novices Know About Programming? Page 33

differences among variables. Finally, while we did not set out in this paper
to examine issues pertinent to education, our data leads us to the belief that
_ more emphasis should be placed on teaching the plans and strategies relevant

to programming than is done now.

Acknowledgements A number of people have read and commented on drafts of
this paper: Larry Birnbaum, George Cherry, Ann Drinan, Jim Galambos, and Jerry

Leichter, G. Michael Schneider, Ben Shneiderman, and Bonnie Webber. We ¢
sincerely thank them for their help. ;

10. Bibliography

- Adelson, B. (1981) "Problem Solving and the Development of Abstract
Categories in Programming Languages,' Memory and Co nition, vol. 9.,
pp. 422-433.

- Barstow, D. (1979) Knogledge-nased‘ Program Construction, Elsevier
North Holland, Inc., New York.

- Brown, J.S. and Burton, R.R. (1978) ‘“Diagnostic Models for
Procedural Bugs in Mathematics," Cognitive Science, June.

- Brown, J.S. and VanLehn, K. (1980) "Repair Theory: A Generative
Theory of Bugs in Procedural Skills,” Cognitive Science, Vol. 4, #4,
Oct.

- Collins, A. (1978) “Explicating the Tacit Knowledge in Teaching and
Learning," presented at the American Education Research Association
(also BBN Technical Report 3889).

- Findlay, W. and Watt, D. (1978) Pascal: An Introduction to
Methodical Programming, Computer Science Press, Inc., Potomac,

Maryland. |
- Gannon, J.D. (1978) “Characteristic Errors in Programming f
Languages,” Proc. of 1978 Annual Conference of the ACM, Washington, g
D.C. ’

- Jensen, K. and Wirth, N. (1974) Pascal User Manual and Report,
Springer-Verlag, New York.

- Kouth, D. (1974) "Structured Programming With go to Statements,”
ACM Computing Surveys, Vol. 6, No. 4,

- Larkin, J., McDermott, J., Simon, D. and Simon, H. (1980) “Expert
and Novice Performance in Solving Physics Problems,' Science, 208.

What Do Novices Know About Programming? Page 34

-~ Mayer, R. (1980) !Contributions of Cognitive Science and Related
Research .in Learning to the Design of Computer Literacy Curricula,"
Conference on National Computer Literacy Goals for 1985, Virginia.

- Miller, M. (1978) "A Structured Planning and Debugging Environment
for Elementary Programming,' Int. J. Man-Machine Studies, 11, pp.
7 9—95 .

- Miller, L. and Becker,. C. (1974) "Programming in Natural English,
IBM Technical Report RC 5137, November.

~ Minsky, M. (1975) "A Framework for Representing Knowledge,, in The
Psychology of Computer Vision (P.H. Winston, ed.), McGraw-Hill, New

York.

- Moher, T. and Schneider, G. M. (1981) "“A Methodology for Improving
Experimentation in Software Engineering," IEEE Fifth International

Symposium on Software Engineering, San Diego, Calif.

- Nilsson, N. (1980) Principles of Artificial Intelligence, Tioga
Publishing Company, Palo Alto, California.

- Papert, S. (1980) Mindstorms, Children, Computers and Powerful
Ideas, Basic Books, Inc., New York. :

- Polya, G. (1973) How To Solve It, 2nd Ed., Princeton University
Press, New Jersey.

- Rich, C. (1981) "“A Formal Representation for Plans in the
Programmer”s Apprentice', Proceedings of IJCAI-81, Vancouver,B.C.

- Rich, C. and Shrobe, H. (1978) 'Initial report on a LISP
Programmer”s Apprentice', IEEE Transactions on Software Engineering,
V4, no.6, November.

- Rissland, (Michener) E. (1978) “Understanding Understanding
Mathematics Cognitive Science, vol. 2, no. 4.

- Sheppard, S.B., Curtis, B., Milliman, P, and Love, T. (1979) “Modern
Coding Practices and Programmer Performance," Computer, December,

- Shneiderman, B. (1976) “Exploratory Experiments in Programmer

Behavior," International Journal of Computer and Information
Sciences,5,2, 123-143,

- Shneiderman, B. (1980) Software Psychology, Human Factors in
Computer and Information Systems, Winthrop Publishers, Inc.,
Cambridge.

- Soloway, E. and Woolf, B, (1980) "Problems, Plans, and Programs,"
in Proc. of Eleventh ACM Technical Symposium on Computer Science

Education, Kansas City.

-~ Soloway, E., Bonar, J., Ehrlich, K. (198la) "Cognitive Factors in

What Do Novices Know About Programming? Page 35

Programming: An Empirical Study of Looping Constructs." Technical
Report 81-10, Dept of Computer and Information Science, Univ. of
Mass., Amherst.

- Soloway, E., Lochhead, J., Clement, J. (1981b) 'Does Computer
Programming Enhance Problem Solving Ablility? Some Positive
Evidence on Algebra Word Problems, in National Goals for Computer
Literacy in 1985, R. Seidel (ed.), in press.

- Soloway, E., Woolf, B., Rubin, E. and Barth, P. (1981c) 'Meno-II: An
Intelligent Tutoring System for Novice Programmers, Proceedings of
IJCAI-81, Vancouver,B.C.

- Waters, R.C. (1979) "A Method for Analyzing Loop Programs," IEEE
Trans. on Software Engineering, SE-5:3, May.

- Wirth, N, (1971) "The Programming Language Pascal," Acta Informatica
Vol. 1, No. 1.

- Wirth, N. (1974) "On The Composition of Well-Structured Programs,”
ACM Computing Surveys, Vol. 6, No. 4.

