'@-s

AUTOMATIC GENERATION OF SYNCHRONIZATION CODE#

Krithivasan Ramamritham+
Robert M. Keller®

COINS Technical Report 81-21
September 1981

+Department of Computer and Information Science
University of Massachusetts
Amherst, MA 01003

*
Department of Computer Science
University of Utah

Salt Lake City, UT 84112

#

This material is based upon work supported by the National Science
Foundation under grant MCS 77-09369.

SUMMARY

An automatic program synthesis system for synchronization code is
described. This system accepts specifications that characterize a
synchronization problem and generates a program that conforms to the problem
description. It is geared towards a specific target machine, namely, the
Applicative Multi Processor System (AMPS) and the generated code is in a
specific target language, namely Function Graph Language (FGL). However, the
synthesis algorithm is general enough to be applicable to other target
mechanisms.

KEYWORDS

Synchronization, specification language, automatic programming, target
language.

1. INTRODUCTION

In recent years, problems involved in the production of reliable and
correct software have attracted the attention of numerous researchers. The
problems assume greater importance today, given the ever increasing cost of
software production and maintenance, and considerable decrease in the cost of
hardware. Various methodologies have been proposed to improve the quality of
programs produced and alleviate problems associated with software maintenance.
These efforts haye resulted in concepts such as structured programming [U4] to
aid in the construction of better programs, and verification [8] to prove the

correctness of programs already written.

In parallel, research has been progressing in the direction of "automatic
programming®™. The viewpoint in this case has been that if it is possible to
formalize the principles involved in writing programs, then one should be able
to embed this knowledge into a program synthesis system. Such a system would

then be able to accept a description of the required program and based on the
knowledge built into it, would automatically produce code that reflects the

description.

The disadvantage of the synthesis approach is that since it has not been
possible to completely "internalize" the process of programming, one
all-encompassing system with such knowledge is yet to be produced. A
synthesis system must embody a broad range of knowledge about the principles
of programming languages and programming, as well as knowledge pertaining to
different domains. As a result, algorithms that automatically produce code
are difficult to devise. These algorithms must be verified, though this is a

one time cost, if correct programs are to result.

One major shortcoming of synthesis systems is that the results they produce
are sometimes less efficient than desired. Nonetheless, the advantages of the
synthesis paradigm have lead to burgeoning efforts in the direction of
producing viable program synthesis systems [6]. One of these advantages is
that such systems eliminate the tedious task of program construction and a
posteriori validation. Of significance is the fact that the programs generated
are guaranteed to be correct. In addition, the specifications are required to
be sufficiently free of ambiguity. Presence of such ambiguities is one of the

woes of current programming techniques.

A pragmatic solution to the shortcomings mentioned earlier, while retaining
the advantages of the synthesis paradigm, is to limit the scope of synthesis
systems. The rationale behind this is the recognition of the differences in
the reasoning involved in conceptually different domains. Also, the knowledge
required to solve problems in a single domain are likely to be more manageable
than that required for a general synthesis system. Thus by building systems
with domain-specific knowledge, it becomes feasible to synthesize solutions
for problems in that domain. Of course, such an approach lacks the generality
required of a general synthesis system. Nevertheless, such software, if
carefully designed, can be integrated to produce a cohesive and general

automatic programming system.

In an operating system, where user programs concurrently share resources,
there is a need for protection and synchronization mechanisms to ensure the
integrity of the resources. Program modules that synchronize shared resource
access play an indispensible role in the correct functioning of operating

systems. In this paper, we refer to such modules as synchronizers.

Monitors [10], sentinels [14] and serializers [1] are examples of mechanisms

which perform the funetions of a synchronizer. This paper concerns our

experience with the construction and use of an automatic programming system
which produces synchronizers. This system has been designed and implemented
with the view of demonstrating the feasibility of our theory [23, 25] of
automatic synthesis of synchronizers. Hence we chose as a target vehicle, a
machine that allowed us to experiment with various primitives needed for
synchronization. At the University of Utah, ongoing research on the
Applicative Multi-Processor System provided us a suitable environment for this
purpose. Hence the implementation is geared towards the Applicative Multi
Processor System (AMPS) and the synchronization code is in a specific target

language, namely Function Graph Language (FGL).

Section two explicates the concept of synchronization by developing a
synchronization model and enumerating considerations that go into constructing
a synchronizer., In section three, we briefly describe our specification
language for expressing such considerations. In the next three sections we

enter into the specifics of the implemented system. In section four, features
of AMPS and FGL that are relevant to this paper are characterized. In section

five, the structure of the synthesized code is explained. Section six
discusses the implementation of each phase of the general synthesis algorithm.
Section seven is devoted to a discussion of issues related to implementing the
synthesis algorithm to produce code for other synchronization mechanisms such
as monitors, serializers, or Ada tasks. In the final section, we summarize
this work and discuss its limitations. A complete example of synthesized code-

appears in the Appendix.

2. WHAT IS A SYNCHRONIZER?

2.1. The Synchronization Model ,
This section is intended to clarify the notion of synchronization. To

maintain the integrity of a shared resource, an answer to the question, "Who
is to access the resource, when, and how?", is essential. A protection
mechanism is responsible for who accesses the resource and how the resource is
accessed. On the other hand, the synchronizer is responsible for when the

access actually takes place.

A shared resource can be considered to be an abstract data type [4]
comprised of the following:

- the data that is shared,

- the operations on the data, and

- the synchronizer of the operations.
Any access to the data is through the execution of one of the operations.

Furthermore, each of the operations can execute only when the synchronizer

permits it to do so. A synchronizer is that sequential process which

guarantees disciplined access to shared resources, j.e., accesses to a shared

resource are controlled by a synchronizer. Constraints essential for
maintaining the integrity of a resource are built into it. Concurrent
processes access a shared resource by requesting execution of any of the
specified operations. After ensuring that none of the constraints is
violated, the synchronizer for that resource subsequently services the

requests. We say that an operation becomes active when it is serviced by the
synchronizer. The constraints on a resource access arise due to the following

considerations.
2.2. Properties Affecting Synchronization

The properties of the shared resource and the properties of operations on
the resource that affect the integrity and hence synchronization, is the
subject of this section.

Mutual Exclusion of Resource Access Very often, when a process modifies the

state of a resource, it should be provided exclusive access. For instance, a
write access to a disk file should be permitted only when no other process is

accessing the file. A resource that does not require exclusive access can be

concurrently accessed by multiple processes.

Invariant Behavior of the Shared Resource Suppose a synchronizer were

controlling accesses to a bounded stack. Correct use of the stack demands
that the stack neither overflow nor underflow. Thus, accesses to the stack

should be permitted only if this invariant property is not violated.

Sequencing Accesses to the Resource Often resource accesses are required to

occur according to some strict sequence. Consider a one slot buffer, with
operations "put" for leaving a message in the buffer and "get" for retrieving
jt. For correct use of the buffer, once a process puts a message, another

"put" can be performed only after a "get" is executed by some process.

Priority to a Resource Access Returning to the disk file example, we may

want processes to read the file as soon as possible, or require that the file
always reflect the 1latest information. The former requires processes
requesting read access to be served before the rest, while the latter would
favor write accesses. In other words, some predefined priority criterion

determines the request which requires faster response.

Fairness to processes requiring access The responsiveness of the

synchronizer to requests depends on how "fair" it is in handling requests.
When multiple processes are accessing a resource in parallel, the accesses
should be permitted in such a way that no single process is made to wait
indefinitely. So accesses should be controlled according to some fairness

criterion.

The above 1list, though not meant to be exhaustive, is indicative of
considerations that should go into the design of languages for sﬁecifying and

constructing synchronizers.

2.3. Constituents of a Synchronizer

The purpose of this section is to motivate the various steps in the
synthesis algorithm. Towards this end, we examine the constituents of a
synchronizer. The most general synchronization scenario will be assumed for

this purpose, in order to cater to all possible synchronization situations.

The synthesis procedure we envisage will generate synchronizers which
accept requests for operations on a shared resource and grant the requests
only if they conform to the prescribed behavior. In essence, for every type of
resource access, the knowledge required to infer whether a given request of
that type can be allowed to execute is built into the synchronizer for that

resource. We refer to this knowledge as constraints on a resource access,

Such constraints are only one aspect of what comprises a synchronizer. The
other relates to the ordering of multiple requests that satisfy the
constraints. Hence, the algorithm which generates synchronization code has to
transform a given set of specifications into a set of "constraints and

information required to order access requests.

The code for a synchronizer exists in some programming language. We use

the term target language to refer to the language in which synchronization

code should be synthesized. Also, synchronization code wuses the

synchronization primitives provided in the machine which executes the

synchronization code. We use the term target machine to refer to this

machine. It is necessary to obtain the constraints on servicing operations in
a form that can be evaluated by the target machine. In this regard, two

predominant considerations are:
- How do pending requests manifest in the target machine?
- How does the synchronizer know which operations are currently
active?
The answers to these are required since very often constraints on servicing

operations are expressed in terms of the predicates on the state of

operations.

In every synchronization technique proposed so far, some mechanism is
provided for requests to wait until the synchronizer services them. In most
cases, queues are used for this purpose. Here we will assume the most general
setting for the use of queues, i.e., one in which a user is provided the
flexibility to choose the queue in which a request waits and the queue from

which a request is chosen for service.

As far as the second question is concerned, the identity of individual
requests is rarely required. More often it suffices to know whether some
operation in a class is active or not. A counter of active operations is a

natural choice for this purpose.

In addition to queues and counters, "synchronizer variables" are necessary
to "mirror" the state of the resource. The state of a synchronizer variable is
indicative of the state of the resource. Their advantage lies in the fact that
the interactions with the shared resource which would otherwise be necessary,

are avoided.

Now we are in position to catalogue the constituents of a shared resource.

1. A set of data structures -- queues, counters and synchronizer
variables.

2. A procedure which accepts requests and enqueues them onto
appropriate queues,

3. A procedure which dequeues requests when requisite conditions are
satisfied.

In addition, to obtain modular code, information relating to the operations,

Such as constraints for their service, their priority, etec., are encapsulated
in distinct procedures. So we have the following for every operation class.

1. A procedure which evaluates the enabling condition for operations
in that class, hence returns true or false when evaluated.

2. A procedure which is a wait-until version of (1). So this procedure
returns true when the enabling condition becomes true.

3. A procedure which incorporates all the changes effected to the
synchronizer variables by operations in the class.

4. A procedure which evaluates the priority for an operation based on
the priority rule applicable to that class.

The term "class procedure" is used to refer to a procedure in this set.

For reasons which will become apparent subsequently, associated with each
queue are two procedures. They contain information on the minimum condition
required to service an operation in the queue.

1. A procedure which evaluates the minimum condition to determine if
it is true or false.

2. A procedure which is a wait until version of (1). So this procedure
returns true when the minimum condition is true.

The term "queue procedure" is used to refer to a procedure in this set.

Synthesizing a synchronizer is then equivalent to synthesizing the
necessary data structures, the enqueuing and dequeuing procedures, the class
procedures and the queue procedures. (Recall our desire to provide for the
most general synchronization scenario. Later we will explain how
synchronization code for problems which do not require such generalities can

be "optimized".)

This is achieved through the following phases of the synthesis algorithm.

There are six steps in automatically generating synchronization code. They are

Parsing phase A given set of specifications (expressed in the 1language
described in the following section) is parsed.

Translation phase ,
High-level specifications are translated into a set of

constraints on each class of operations.

Simplification Phase
The constraints derived in the previous phase are simplified.

Resource allocation phase
Queues, counters, and synchronizer variables are allocated.

Substitution phase
The constraints are derived in a form that is evaluable in the
target language.

Code generation phase
Code for the synchronizer is generated.

These are explained in detail in section 6.
3. THE SPECIFICATION LANGUAGE

The language is designed to specify properties of a shared resource and the
operations on it. As we just listed, some of these properties are invariant in
nature, e.g. mutual exclusion, whereas fairness is a dynamic or time-dependent
property. Hence the specification language should be able to express all
properties in a uniform manner. Temporal 1logic [22] 1is a tool which

facilitates this.

3.1. Specification Language Primitives

Always P This means condition P will remain true from now on, i.e., P
is true now and throughout the future.

Eventually P This means condition P is true now or will eventually become
true.

P UNTIL Q To be read as "P remains true until Q becomes true". This

means if Q eventually becomes true, then P remains true from
now until Q becomes true; otherwise ALWAYS P,

In addition to the above temporal operators, the ordinary logic operators V
(or), & (and), ~ (not) and => (implies) can also appear in the specifications.
To enhance the readability of the specifications, certain operators are
derived from the above primitive operators. They are defined as follows:

P ONLYIF Q P can be true only if Q is true.
P ONLYAFTER Q P can become true only after Q becomes true.

P AFTER Q P will become true after Q does.

P TRIGGERS Q Truth of P causes the truth of Q.

These are derived from ALWAYS, EVENTUALLY and UNTIL, and are formally
defined in ([25].

A specification statement can involve arbitrary predicates. However, since
operations and their synchronization is the domain of interest, specific
predicates are used to refer to different phases of an operation.

req(a) There is a request for operation "a".

start(a) Operation "a" is permitted to execute.
exec(a) ‘Operation "a" is executing now.
term(a) Execution of operation "a" has terminated.

Using the above primitive predicates, we define the following:

sat(a,cond) there exists a request for operation "a" which satisfies
"cond".

reqs$i there exists a request for an operation in class A.

exec$A an operation of class A is active.

In essence, a specification statement is constructed using
1. Temporal logic operators,

2. Operators of predicate calculus,

3. Predicates associated with an operation, and

4, Arbitrary predicates.
3.2. Specification Language Constructs

The specifications that are input to the synthesis system are in a
high-level language. The semantics of statements in the language is expressed
in terms of the primitives just described. As an example of a complete set of
specifications, consider the following synchronization problem and its

specification.

Statement of the Problem A fixed number of similar resources is managed by

an operating system. User processes acquire a resource by executing the
operation "allocate", and the operation "free" releases the resource. Number
of resources free at any given time is maintained by "avail". "Maxavail" gives
the total number of available resources. In addition, to expedite the freeing
of resources, free requests are given higher priority than allocate requests.

This is a typical problem which arises in the context of resource management.

High Level Specification of the Problem

SYNCHRONIZER Resource_manager IS
OPERATION_CLASSES Allocate;
Free ;

OPERATIONS a: allocate; (s1)
f: free;

RESOURCE_STATE_INFORMATION

10

RESOURCE_STATE_SPECIFICATION

maxavail : CONSTANT 2 ;

avail : [0,maxavail] INITIALLY maxavailj;
RESOURCE_STATE_CHANGES

Allocate : avail <- avail - 1;

Free : avail <- avail + 1;

RESOURCE STATE INVARIANCE

(avail < maxavail) & (avail > 0);

SERVICING CONSTRAINTS
always {start(a) ONLYIF req(a)l;
always {start(f) ONLYIF req(f)};

OPERATION EXCLUSION

Allocate EXCLUDES Free;
Free EXCLUDE;
Allocate EXCLUDE;

INTER-CLASS PRIORITY AMONG ENABLED OPERATIONS
free > allocate

SCHEDULING DISCIPLINE
always{Req(f) => eventually Start(f)}

always{[Req(a) & (“enabled(f) UNTIL Start(a))l

=> eventually Start(a)}
END

Following are significant aspects of the specification language:

(S1) Instances of operations in a class can be referred to by using
generic operation names, such as f and a.

- (S2, S3) Data structures constituting the state of the resource, and

modifications to the resource state by the operations, can be
specified.

- (SY4) There is a construct to specify invariance of a resource state

predicate.

(S5) SERVICING CONSTRAINTS specifications express the conditions
that should exist when an operation is serviced.

(S6) Exclusion among operations belonging to the same class or
different classes can be specified.

- (S7) Priority among operations within a class (INTRA-CLASS) and

between operations of different classes (INTER-CLASS) can be
specified.

- Using the specification of sequences, for example,

A FOLLOWS B

it is possible to state the order in which a set of operations
should be serviced. In the above specification, A and B are two
operation classes. Similar to operation exclusion, it is possible

(s2)

(33)

(s¥)

(85)

(S6)

(s7)

(s8)

1

to specify the exclusion of sequences.

- (S8) Scheduling discipline statements specify the fairness that is
expected of the synchronizer. An op is said to be "enabled" if it
satisfies servicing constraint, exclusion, sequence and invariance
specifications.

The specifications require that every free request be eventually serviced.
Due to the presence of priority specifications, a weaker form of fairness is
acceptable for allocate operations. Since requests are made by processes
outsidé the synchronizer, the sequential model assumed precludes the immediate
recognition of the presence of requests. This implies that, although at a
given time an allocate request may be eligible for service, a free request may
have arrived before the synchronizer recognizes this fact, thus preventing the
synchronizer from servicing the former. Hence it is required that a allocate
request eventually be serviced provided no free request is enabled until the
allocate request is serviced. (Other types of fairness are specifiable, based
on the behavior of the conditions that enable an operation. For a complete

description of the specification language see [24].)

4, THE TARGET ENVIRONMENT

The motivation behind implementing the synthesis algorithm for a specific
target is to demonstrate the feasibility of synthesis besides exhibiting the
practical issues involved. In choosing a specific target, two considerations

were predominant:

1. The target environment should permit experimenting with various
synchronization primitives.

2. It should be possible to execute the synthesized synchronizer in
order to study its performance.
The existence of a simulator for AMPS along with the data-structuring features

of FGL made the combination an attractive target environment.

4,1. AMPS and FGL

The Applicative Multi-Processor System features a loosely-coupled
architecture incorporating a large number of processors functioning relatively
independently and interacting when necessary. The internal program
representation in AMPS is essentially a coded directed graph known as a
function graph. Function Graph Language (FGL), the language in which these
graphs are defined, is an applicative language in the sense that the

underlying basis of computation is the application of functions to data

12

objects to form new data objects. Hence the name Applicative Multi Processor

Syétem. AMPS is based on a demand driven data flow model of computation.

Though an FGL program is a collection of graphs, a textual form of FGL
exists. Programs in this textual form are compiled into a lower level textual
form which is loaded into a simulation of the AMPS system and executed in a
manner which simulates parallel execution. Description of the architecture of
AMPS appears in [17]. Function graphs are developed in [15] while the precise
syntax of FGL is defined in [16]. For the sake of brevity, here we describe

only those features of FGL which are essential to follew this exposition.

An FGL program is essentially a composition of FGL functions and
procedures. A function always produces the same output for a given input and
is specified by giving it a name and a set of arguments. The result of
evaluating a function is determined only by its arguments. A procedure is
defined and evaluated similar to a function, but may have side-effects in its
execution., Using the IMPORTS facility, certain arguments can be implicitly
specified, their value determined by context, i.e., by their textual nesting.
A textually nested function is defined by including the function in a WHERE ..
END declaration within an outer function. The LET facility in FGL is used to
abbreviate an expression by an identifier. In summary, a function is defined
by

Its name and list of arguments,

A list of imported identifiers.

A list of abbreviations.

The code which is evaluated to return the value of the function.

-~ Nested functions.

With this prelude, we are now in a position to discuss the primitives and

operators used in coding synchronizers.
4.2, FGL Primitives for Synchronization

In this section, we describe the operators available in FGL to program
_ synchronization code. Some of these are built-in while others have been

programmed using the built-in functions of FGL.

Operators for Scheduling In general, in a demand driven model of execution,

there are no assumptions made regarding the sequencing of function executions.

13

Thus, concurrency is achieved "naturally". However, for synchronization
control, some mechanism is required to "control concurrency”. The following
operators in FGL provide the facility to order the evaluation of functions and

procedures.

SEQ(f4,...,f,) evaluates the arguments sequentially; returns the result of
evaluating f .

PAR(f1....,fn) evaluates all the arguments concurrently; returns the result
of evaluating f1 as soon as it is evaluated.

SPAR(f1,....f evaluates all the arguments concurrently; returns the result

)
n
of f after all the arguments are evaluated.

ARBIT(f1,f2) evaluates f. and f2 concurrently; returns true (nil) if f
(f2) is evaluated before f2 (fy); favors f, in case of a tie.

These operators are employed to control the execution of functions.

Operators Yo Avoid Busy Waiting In the demand driven model of execution, as

the name indicates, a function is executed only if there is a demand for the
result of that function. Under certain circumstances, there is a need to
execute a function only when there are two demands for its value. Such a
situation arises when "busy-waiting" is to be avoided by the synchronizer. To
be more specific, a synchronizer should not have to proceed with its execution
unless some condition necessary for it to take an action is true. Suppose a

predicate function returned a value only if
1. A synchronizer is waiting for the predicate to beccme true, and

2. The predicate is true.
Then busy waiting can be avoided. This is made possible by the operator
"DJOIN". A DJOIN evaluates its argument only when it has two demands for its
result. In the above example, one demand originates from the synchronizer and

another from the operator which makes the predicate true.

Using the DJOIN operator, it is possible to have two versions of every

procedure that evaluates a predicate.

1. Status determining version: This version returns true if the
predicate is true, false otherwise.

2. Wait until version: This version, which uses the DJOIN operator,
always returns true; this result is returned when the predicate
becomes true.

The above operators are built-in FGL functions. Now we introduce the

14

programmed functions used in the synthesized synchronization code.

Operators for Handling Requests As was indicated earlier, requests waiting

for the attention of a synchronizer are enqueued into appropriate queues. A
queue has been implemented as a set of tokens ordered according to some

criterion, e.g. the order of arrival, or priority of the request in the token.

Associated with every queue are the following:
1. A unique name

2. Names of classes (enqueued classes) of operations which wait in the
queue.

3. A semaphore which provides exclusive access to the queue.

4, A composite condition (queue condition); this is the minimum
condition necessary for a token in the queue to be enabled.

5. A "wait until" version of (4), (wu queue condition).
A queue is created by executing

GQUEUE(Kq>,
<enqueued classes>,
{queue condition>,
{wu queue conditiond).

This returns a reference to the created queue which is used for subsequent

manipulation of the queue.

A token is enqueued into a queue by executing
ENQ(<q>, <token>).
Later in the chapter we shall elaborate on the constitution of a <token>. Here
it suffices to note that one of the components of a <token> is a reference to
the access operation which the enqueueing process desires to execute. ENQ
returns the result of executing that operation after it is serviced by the
synchronizer. Thus the enqueueing process is delayed until the requested

access is serviced.

A token is dequeued from a queue by executing
DEQ(Kq>, <token>)

by which the referred token is removed from the queue and returned as result.

The following functions evaluate the status of a queue.

NON-EMPTY(Kq>) true if <q@> is non-empty,
false otherwise.

15

WAITQ(Kq>, 'empty) waits until <gq> becomes empty,
then returns true.

WAITQ(<q>, 'nonempty) waits until <q> becomes nonempty,
then returns true.

Operators for Servicing Requests There are two operators for servicing
requests: EX and DET_EX.

When a synchronizer evaluates’

EX(<q>, <token>),

{token> is dequeued from <q> and the dequeued operation executed.

When the synchronizer evaluates
DET_EX(<synchronizer>, <q>, <token>, <counter>),
<counter> is incremented by one, <{token> is dequeued from <q> and the dequeued

operation executed. This execution takes place in parallel with a recursive
invocation of the synchronizer. When the operation terminates, <{counter)> is

decremented by one.

Operators for Manipulating Counters A counter is created by executing
GCOUNT(Kinitial value>)

where <initial value> is normally 2zero. This returns a reference to the

created counter. Associated with every counter is a semaphore which provides

exclusive access to the counter.

The following operators manipulate the value of a counter:
INCRC(<Letr>) Increments the value of <ctr> by one.
DECRC(<ctr>) Decrements the value of <ctr> by one.

The following operators evaluate the value of a counter:
CTRVALUE(<ctr>) returns the current value of <ctr).
WAITC(Lctr>, 0) returns true when {ctr> gets a zero value.
WAITC(Lctr>, 1) returns true when <ctr> gets a non-zero value.

Operators for Manipulating Synchronizer Variables A synchronizer variable

is used to mirror the resource state. Associated with a synchronizer variable
is a semaphore which guarantees mutually exclusive access to the variable.
Also, if a maximum or minimum bound is specified for a resource state

variable, then the corresponding synchronizer variable also has similar

16

bounds.

A synchronizer variable is created by executing
GRES(<initial-value>, <min-value>, <max-value>).

This returns a reference to the created variable.

A synchronizer variable is modified by executing
CHANGERES (<variable>, <newvalue>),

when the value of <variable)> is modified to <newvalue>.

The value of a synchronizer variable is returned when
RESVALUE (<variable>)
is executed, while the operator
WAITRES(Kvariable>, <relational-operator>, <value>)
returns true when {variable> bears the relationship given by

{relational-operator> to <value>. Thus

WAITRES(a, "=", 0)

returns true only after the synchronizer variable "a" has the value 0.

Operators for selecting requests from a queue The selection functions used

to dequeue tokens from queues are

FIRST(Kq>) This function returns the identity of the first request (from
the front) in the referred queue.

HIGHEST-PR(<q>) This function returns the identity of the request with the
highest priority in <g>. If more than one request has the
highest priority, then the first from the front of the queue
is returned.

FIRST-EN(<q>) This function returns the identity of the enabled request
closest to the front of the queue.

HIGHESTPREN(<Kg>)
The returned request has the highest priority among the
enabled requests in the queue.

In essence, the programmed operators provide the ability to create and

manipulate all the data structures used in a synchronizer, namely,
- Queues,
- Counters, and

-~ Synchronizer variables.

The above operators are built using the primitives developed [13] for resource

17

control in the demand-driven data-flow model of computation used in AMPS.

5. THE STRUCTURE OF RESULTING CODE

In this section, the structure of the synthesized code is explained. First
we discuss the procedures synthesized for synchronizing access to a specific
shared resource "SR". This is followed by an explication of their nesting
structure.

5.1. Synthesized Procedures

The SR-DATABASE: This procedure comprises the queues, the counters and the

synchronizer variables, i.e., all the data structures used for
synchronization, and presumably even the shared resource. When SR-DATABASE is
created, it returns a reference to the procedure (ENQUEUER) which enqueues

requests for access to SR.

The ENQUEUER: This procedure possesses the knowledge required to enqueue

requests into queues. Based on the conditions that prevail when a request
arrives, the ENQUEUER builds a token with the information pertaining to that
request and enqueues the token into an appropriate queue. To enqueue a
request, a user invokes the enqueuer with the name of the access operation and

the arguments to it.

The SYNCHRONIZER: This is the procedure which performs synchronization of

access operations and hence is the crux of the synthesized code. It
essentially waits for appropriate conditions to hold and services requests

according to specifications.

In addition to the above, the "class procedures" and the "queue procedures"

are alsc synthesized.

There are certain implications of having separate procedures for enqueuing

and dequeuing. The advantages are:
1. Separation of concerns is achieved in a modular fashion.

2. It increases the parallelism; while a request is being enqueued,
another request could be dequeued.
These advantages are derived at the cost of possible increased conflict in

accessing the queues, counters and the synchronizer variables.

18

5.2. Nesting of Synthesized Procedures

The following nesting diagram portrays the structure of the synthesized

code.

SR-DATABASE
where

ENQUEUER

where

-- the class procedures --

end

SYNCHRONIZER

-- the queue procedures --
end

The following explanation justifies this block structure.

The ENQUEUER constructs a token for each request. A token comprises the

following information:
- Name of the class to which the request belongs.
- Arguments to the request.
- Value of the synchronizer variables when the request arrives.
- Reference to the code for the operation.

- Reference to the procedure which evaluates the priority of the
operation,

-~ Reference to the procedure which evaluates the enabling condition
for the operation.

- Reference to the procedure which evaluates the wait-until version of
the enabling condition for the operation.

- Reference to the procedure which incorporates the changes to the
synchronizer variables when the operation executes.
Since only the ENQUEUER requires the reference to the class procedures, they

are nested with the ENQUEUER.

As noted earlier, to construct the queues, SR-DATABASE requires the

following information:

The name of the queue.

The classes of operations which enqueue into the queue.

The procedure which evaluates the minimum condition necessary for a
request in the queue to be enabled.

The procedure which evaluates the wait until version of the minimum

19

condition.

Hence the queue procedures are nested with the SR-DATABASE.

The rationale behind nesting the ENQUEUER and the SYNCHRONIZER within
SR-DATABASE is the following: For every shared resource, there is a unique

synchronizer, an associated enqueuer, and a database. Also, the only
information that need be "visible" to a user are:

1. The name of the shared resource, and

2. The names of the operations on the resource.

To access a shared resource, a user process invokes the database procedure for
the resource. This returns the reference to the associated enqueuer. For every
access to the synchronized resource, the enqueuer is invoked with the name of
the access operation and the arguments to the operation. Thus the block
structure ensures that a shared resource is accessed only through the access

operations. In other words, limited protection is achieved through the

nesting structure.

How are the
- Shared resource, and

- Procedures for the operations on the resource
manifest in the code. The former can be part of the database, while the
procedures for the operations can be conveniently nested within the database
procedure, to make use of the protection offerred by the synthesized code.
Obviously, since the definitions of the resources and the operations are not
required for synthesis, they have to be incorporated after the code is

synthesized.
6. THE SYNTHESIS SYSTEM

This section describes how the theoretical framework developed in [25] to
perform synthesis is implemented to generate synchronizers in the target
environment provided by AMPS and FGL. The resulting synchronizer has the
structure described in the previous section. The implementation is coded in
RLISP - an Algol 1like extension of Standard LISP [21]. To perform logical
deduction, inference and simplification, the simplifier part of the Stanford

Pascal Verifier [8] is used.

The six steps in automatically generating synchronization code are

20

explained in detail in the following pages. Their functions are portrayed by

block diagram in Figure 6-1.

6.1. The Parsing Phase

Specifications expressed in the language briefly described in section 3 are
translated into an internal representation. This translator is written using
the META/REDUCE translator writing system [20] running on top of REDUCE (a

LISP extension for algebraic computation [91).

6.2. The Translation Phase

The objective of the following translations is to derive constraints on
servicing an operation. Such constraints are embedded in the specifications of
exclusion, invariance, and sequencing. For each operation "c", this phase
determines "enabled(c)"in the following form:

Vc{C always{start(c) ONLYIF enabled(c)}
If enabled(c) is the conjunction of all constraints implied by various
specifications, then when an operation "c" is serviced it does not violate the
given specifications. The implied constraints are derived by applying certain

translation rules. We will examine each of these now.

For each resource state variable, a synchronizer variable is provided to
"mirror" the state of the resource. If the synchronizer variable is given the
same name as the corresponding resource state variable, then every constraint
can be considered to be a constraint on the value of the synchronizer
variable. For instance, invariance of the value of a synchronizer variable
implies the invariance of the corresponding resource state variable.
Henceforth, any reference to the resource state should be considered to be a
reference to the corresponding synchronizer variable. The following rule is

applied to derive the constraints implied by an invariance specification.

The Invariance Translation Rule

From

-~ the invariance specification, and

- the specification of changes to the resource state,
determine

- the "precondition™ [19] for operations in each
<operation-class>.

21

Specifications
v

-

i parsing

H phase

]
]
V Internal representation of the

i specifications,

translation |-->--| simplifier

phase Y G

V Overall constraints on servicing the operations,

i specified fairness.

simplification }-->--} simplifier |

phase ==Ce=]

V Simplified form of the constraints,

\ fairness.
[]
]

resource allocation |

- -

phase i

V Queues, counters, synchronizer variables,

i constraints, fairness.

substitution

]
'
phase !

V Queues, counters, synchronizer variables,

i constraints expressed in the target language,
]

]

fairness.

{ code generation |

' phase

v

Synthesized code.
Figure 6-1: Block Diagram of the Synthesis System

22

By starting an operation only if the derived pre-condition is true, during the

execution of the operation the invariance condition will hold.

Exclusion Translation Rule
The specification "A EXCLUDE B" is translated into

Va{A,Vb<£B,
Start(a) =z> “Exec$B
Start(b) => ~Exec$A.

The specification "A EXCLUDE" translates into
VatA, Start(a) => “Exec$A
By servicing an operation only if operations that it is expected to exclude

are not active, the specified exclusion is satisfied.

Sequence Translation Rule There are two cases to consider:

1. Execution of different instances of a sequence exclude each other.

2. Execution of different instances of a sequence can proceed
concurrently.

Case I

"<operation-class-2> FOLLOWS <operation-class-1>"
translates to

4C12, Vop14<operation-class-1>, VYop2(<operation-class-2>,

start(op1) TRIGGERS C12

start(op2) ONLYIF C4

start(op2) TRIGGERS ~C,, (1)

where C12 is a predicate which is initially false.

The following translations are required to ensure that a new instance of a
sequence starts only after the termination of the previous instance. For each
distinct (terminator, initiator) pair, say (<operation-class-1>,

{operation-class-2>), we add the following:

iC.,, Voplé&loperation-class-1>, Yop2{Loperation-class-2>,
start(op1) TRIGGERS C12
start(op2) ONLYIF C12
12 (2)

start(op2) TRIGGERS ~C
where C,5, is a predicate which is initially true. Statements in (2) are

similar to those in (1) above.

Case II

"<operation-class-1> FOLLOWS <operation-class-2>"

23

translates to

4C1 » ¥p,

¥op%é<operation-class-1>. Vop2&<operation-class-2>,
start(op2) & (C.,, = p) TRIGGERS (C12 = p+1)
start(op1) ONLYiE C1 >0

start(op1) & (C,5 = p) TRIGGERS (Cqp = p-1)

where C12 is a counter which is initially O.

The motivations behind these translations is to constrain the servicing of
operations in a sequence through predicates which are enabled only after a

previous operation in the sequence is serviced.

Priority Translation Rule Suppose

- "Higher-priority-classes(OPC)" is the set of operation classes whose
operations have higher inter-class priority than operations in OPC.

- "Highest-priority-op(OPC)" gives the set of operations in class OPC
which have the highest priority in class OPC,

~ "Highest-priority-enabled-op(OPC)" is similar to
highest-priority-op(OPC) except that it applies only to enabled
operations in class OPC.

If inter-class priority applies to requested operations,

VOPC1, Vop1¢OPC1,
YOPC2thigher—~priority-classes(0OPC1),
always {start(op1) ONLYIF ~“req$0PC2}

If inter-class priority applies to enabled operations,

VOPC1, Vopl1&0PC1,
VOPC2¢higher-priority-classes(0OPC1),
¥op260PC2,

always{start(op1) ONLYIF ~enabled(op2)}

If intra-class priority applies to all requested operations,

VOPC ¥op4OPC,
always{start(op) ONLYIF op¢highest-priority-op(OPC)}

If intra-class priority applies only to enabled operations,

VOPC ¥op<£OPC,
always{start(op) ONLYIF
op{highest-priority-enabled-op(OPC)}

Refer to the appendix (page 42) to see the effect of the translation phase for

the resource manager problem.

24

6.3. The Simplification Phase

In this phase, the derived conditions are simplified. They are
1. Enabling conditions of operations.
2. Conditions that trigger changes to the synchronizer variables.

3. Constraints implied by priority specifications.
(1) and (2) require straightforward simplification. Let us consider (3) in

some detail.

In the translation of inter-class priority specifications if priority is
applicable to all requests, the absence of requests in the higher priority

classes when an operation starts, satisfies the priority specification.

On the other hand, if priority is applicable only to enabled operations (as
in the Resource Manager problem), then priority specification translates to
the absence of enabled operations in the higher priority classes. Suppose
enabled operations in "OPC2" have higher priority than enabled operations in
"OPC1". Let us say that a condition "C" is true if there are no enabled
operations in OPC2. One naive method to determine if C is true is to examine
each request in OPC2 and test if it is enabled. This blind search can be
avoided by recoghizing the following facts: If all operations in OPC2 have the
same enabling condition "E", then either they are all enabled or disabled.
Thus,

“E => C.
Also, when an operation is serviced, all constraints including the priority
constraint should be satisfied. Thus it is necessary to evaluate “E only if
other constraints are satisfied. So the constraint on starting operations in
OPC1 implied by higher priority to operations in OPC2 is derived by
simplifying “E assuming the enabling condition for OPC1.

It is worth pointing out that the implementation so far has not utilized
any information about the target environment. Subsequent phases will be
target language dependent. Refer to the appendix (page 42) to see the effect

of the simplification phase for the resource manager problem.

w

25

6.4. The Resource Allocation Phase

The resources necessary for synchronization, namely queues, counters and
synchronizer variables, are allocated in this phase.

To increase the flexibility of the use of queues, for our purposes, a queue
is an ordered set with provision for a new element to be inserted (enqueued)
anywhere within the set and for an element to be removed (dequeued) from
anywhere within it. This use departs from the special case of first in first
out queues. We still prefer to call them queues, since in a majority of
situations, the first element in happens to be the first element out of the

queue.

Enqueuing a request For the purposes of enqueuing, a queue can be

- a simple queue, or

~ a priority queue.
In a simple queue, a new request is enqueued at the end of the queue. In a
priority queue, all requests are ordered according to some priority criterion
and hence a new request takes its position in accordance with its priority

relationship with respect to those already in the queue.

Dequeuing a request For the purposes of removing a request from a queue,

there are various factors which determine which request is to be dequeued next

for service. These are based upon

- the class of the requested operation,
- the priority of the operation, and

- whether the operation is enabled or not.
The "selector functions" defined in section 4.2 are based on these factors.
Given that there are a number of ways in which a request for an operation can
be enqueued into a queue and dequeued from a queue, how does the synthesis
algorithm choose the appropriate one? The choice of enqueuing and dequeuing
procedures are determined by the "queue allocator". The queue allocator
chooses a particular type of queue and the associated selector function on the

basis of priority and fairness specifications. The rationale for the queue
allocator's actions will confirm the fact that priority and fairness criteria

are preserved by the queues.

The Queue Allocation Rule

26

Case 0O:
It is required to retain the ordering among all the requests
that access the shared resource:
Case 0.1:
The scheduling discipline requires that operations be serviced as
per their order of arrival.
Allocate a single simple queue for all requests
Always service the first request.
Rationale:
By the definition of first come first served.
Case 0.2:
The scheduling discipline requires that all requests
which satisfy the constraints infinitely often,
be eventually serviced:
Allocate a simple queue for all requests
Always service the first-enabled operation

Rationale:

Since the first enabled operation is always served, every request,
if not already serviced, will eventually reach the front of the queue.
Due to its being enabled infinitely often, the first operation will
eventually be enabled, at which time it will be serviced.

If a total ordering of all requests is not required, then requests in each
class will be enqueued into individual queues. The following discussion
pertains to a single class of operations.

Case 1:
There is no intra-class priority applicable to that class:

Case 1.1:
All requests for operations in the class have
the same enabling condition:
Allocate a simple queue for that class
Always service the first operation from that queue
Rationale:

Since all operations have the same enabling condition, the
operations should be serviced in the order of arrival of their
requests.

Case 1.2:
All requests for operations in the class
do not have the same enabling condition:
Allocate a simple queue
Always service the first-enabled
operation from that queue

Rationale:
By servicing the first-enabled operation, all operations that
satisfy the constraints at a given instance will be serviced.

Case 2:
There is an intra-class priority specification
for that class:

Case 2.1:
There is a unique intra-class priority rule

"w

27

applicable to that class:

Case 2.1.1:
Priority rule applies to all operations in that class:

Case 2.1.1.1:
Priority for an operation does not change with
the resource state:

Allocate a priority queue for that class

Always service the first request from that queue

Rationale:

Since priority applies to all operations in that class, and the
priority for an operation is static, by enqueuing the requests
according to their priority, it suffices to examine only at the first
request in the queue.

Case 2.1.1.2: :
Priority for an operation does change with
the resource state:
Allocate a simple queue for that class
Always service the highest-priority
operation from that queue

Rationale:

Since priority changes with resource state, the request with the
highest priority needs to be determined dynamically and serviced.

Case 2.1.2:
Priority rule applies only to enabled operations
in that class:

Case 2.1.2.1:
Priority for an operation does not change
with resource state:
Allocate a priority queue for that class
Always service the first-enabled request from that queue
Rationale:
Since only enabled operations need to be considered, by enqueuing
operations according to their priority (which does not change), always
the first enabled operation needs to be serviced.

Case 2.1.2.2:

Priority for an operation does change
with the resource state:

Allocate a simple queue for that class
Always service the highest-priority-enabled request
from that queue

Rationale:
Since priority changes with resource state, the operation with the
highest priority among the enabled operations needs to be determined

dynamically.

Case 2.2:
Multiple priority rules are applicable to that class:
(depending on the resource state)

28

Case 2.2.1:
Priority applies to all operations in the class:
Allocate a simple queue for that class
Always service the highest-priority request
from that queue

Rationale:
Since priority changes with resource state, this is similar to case

2.1.1.2 above.

Case 2.2.2
Priority applies only to enabled operations in that class:
Allocate a simple queue for that class
Always service the highest-priority-enabled request
from that queue

Rationale:
This is similar to case 2.1.2.2 above.

Thus the queue allocator determines the number of queues required for a
particular synchronization problem. For each queue it determines whether it is
a simple or priority queue and decides the appropriate selection function for
that queue. Notice that the translation rule for intra-class priority

specifications is embedded in the queue allocator.

Knowing the enabling condition for the operations that enqueue into a
queue, the queue allocator also derives the minimum condition necessary for an

operation in the queue to be enabled. This is derived as follows:

1. If operations in a single class enqueue into a queue, then the
conjunction of constraints common to every operation in that class
is the required minimum condition.

2. If more than one class of operations enqueue into a queue, then the
conjunction of constraints common to every operation in those
classes is the required minimum condition.

Here again, the simplified form of the derived minimum condition is used. One
feature which merits mentioning is that the queue allocator incorporates
certain efficiency improvement strategies, by which a selection function with

a higher efficiency is chosen in preference to a more obvious but less
efficient selection function. (Ref. cases 2.1.1.1 and 2.1.2.1 of the queue

allocator.)

Returning to the functions of the resource allocation phase, the counter
allocator allocates one counter per class and is fairly straightforward. The
synchronizer variable alloccator allocates one variable per resource state

variable, Information on bounds of resource state variables is extracted from

29

the specifications. Also allocated in this phase are the counters and
predicates introduced by the translation of sequence specifications. Refer to
the appendix (page 43) to see the effect of the resource allocation phase for

the resource manager problem.

6.5. The Substitution Phase
In this phase, conditions that trigger any synchronizer action, namely, the
enabling conditions, the queue conditions and the triggering conditions are

expressed in terms of FGL operators.

The following mapping is used to determine the truth of the above
conditions.
req$C -> NON-EMPTY(C q)
“req$C -> EMPTY(C q)
execs$C ~> CTRVALUE(C ctr) > 0
“exec$C -> CTRVALUE(C ctr) = 0

sr_var=p -> RESVALUE(sr_var)=p
In the above mappings, "C" is an operation class, "C—q" is the queue allocated
for this class, "C_ctr" is the counter allocated for the class, "sr_var" is a

synchronizer variable and "p" is a constant.

The following mapping is used to determine the wait-until version of the
above conditions.

req$cC -> WAITQ(C_q, 'nonempty)

“req$C -> WAITQ(C q,'empty)

Exec$C => WAITC(C ctr,1)

~“Exec$C -> WAITC(C ctr,0)

sr_var=p => WAITRES(sr_var,"=",p)

Using these mappings from the primitives in the specification language into
primitives in FGL, the enabling conditions and queue conditions are

expressible in terms of FGL primitives. For example,

1) req$C & ~exec$C
>
NON-EMPTY(C—q) & C_ctr=0

2) wait until(~req$C & synchronizer variable=p)

30

-2
SPAR(WAITQ(C_g.'empty),WAITRES(synchronizep_variable,":",p)

3) wait until(req$C V exec$C)
->
ARBIT(WAITQ(C_q,'nonempty),WAITC(C_ptr,1))

These mappings essentially involve substitutions and hence the name of this
phase. Refer to the appendix (page 43) to see the effect of the substitution

phase for the resource manager problem.

6.6. The Code Generation Phase

The code generation phase is designed to generate code for the various
procedures which constitute the synchronization code and is implemented as a
set of modules, one for each procedure in the synthesized code. Each module
outputs code in conformity with the syntax of FGL using the information
resulting from the earlier phases. In addition, the resulting procedures are
nested to conform to the structure defined in section. Code generation for
all procedures but the SYNCHRONIZER is facile.

In simple terms, a synchronizer takes certain actions when certain
conditions are true. In other words, synchronization code is primarily a set
of guarded commands [5]. Basically a synchronizer takes two types of actions.

They are:
1. Starting an operation.

2. Cause appropriate changes to the state of the resource.
For (1), one of the FGL procedures EX or DET EX is used. Information required
for (2) is obtained from the specifications of changes to the resource state
by the operations. In the substitution phase we provided rules for
translating primitives in the specification language into primitives in the
target language. Hence constraints for starting an operation, and conditions
which trigger state changes, are expressible in terms of the primitives in the
target language. Thus, information required to code the guarded commands is
available at the end of the mapping phase. What remains is to order these

guards suitably so as to maintain the fairness.

As was explained in section 3, our specification language permits a user to
specify the fairness desired by him. In the synchronizer that we envisage,
the guards will be examined in an order which preserves the fairness

specified. This is unlike the usual guarded commands where if more than one

31

guard is true, one of the corresponding commands is chosen
nondeterministically.

If the scheduling discipline is "first come first served", a single simple
queue exists for all requests. The synchronizer waits until the first request

is enabled and then services it.

If the scheduling discipline requires that those operations which are
enabled infinitely often be eventually serviced, then again a single queue is
used for all requests. The synchronizer examines every request from the front
of the queue until it finds one which is enabled. That request is then
serviced. So in these two cases, request arrival order is utilized for

servicing.

Suppose that the scheduling discipline specified is: 1if an operation is
enabled, then it should be eventually serviced. If only one class of
operations requires this type of service, then operations in this class are
considered for service before operations in other classes. If more than one
class of operations require this type of service, then all requests in such
classes are enqueued into a single queue and always the first enabled

operation in that queue is serviced.

Suppose it is required that an operation be serviced only if it remains
enabled until the synchronizer services it. This is the easiest service to
guarantee, for it suffices to test the enabling conditions of such operations
only after testing enabling conditions of operations which require better

forms of service.

Other significant aspects of generating the SYNCHRONIZER are detailed

below.

- All conditions that trigger changes to the synchronizer variables
are first tested and if they hold, the specified changes are
effected.

- Enabling conditions are evaluated and operations serviced in a
sequence which preserves the specified fairness.

- An EX or a DET_EX procedure is invoked when an operation becomes
serviceable.

- Changes triggered by the "start" of an operation are effected before
an EX or DET EX is executed.

32

- When an opsration is executed using EX, the synchronizer continues
Wwith its actions after the termination of the operation.

- When an operation is executed using DET EX, a new invocation of the
SYNCHRONIZER starts execution in parallel with the execution of the
serviced operation.

Also, to avoid unnecessary computations, the following optimizing steps are

employed:

-~ Control within the SYNCHRONIZER does not progress until one of the
classes is enabled.

- If operations in a queue have different enabling conditions, then
they are not examined unless the queue condition (the minimum
condition for an operation in the queue to be enabled) is satisfied.

- If the sequence specifications imply a totally ordered execution of
all operations, then operations are executed in sequence, using the
FGL primitive SEQ.

Thus at the end of the code generation phase, code is automatically produced
from a given set of specifications.

Before this section 1is concluded, some remarks are in order. This

implementation is for the most general synchronization scenario. For instance,

- Operations in a class can have different enabling conditions.

Operations in a queue can have different enabling conditions.

Enqueuing into a queue and dequeuing from a queue can occur in
arbitrary order.

Priority for an operation can vary dynamically.

Hence we need to have procedures which evaluate
- The enabling conditions of each operation.
- The queue conditions.

- The priority of each operation.
Evidently, such generality is unnecessary for a number of problems and leads
to inefficient solutions. For instance, if all operations in a class have the
same enabling condition, then the cost of evaluating an operation's enabling
condition through a procedure call can be avoided by evaluating it "in place".
Such optimization situations can be enumerated and are fairly straightforward
to implement. (The code produced by the code generator for the resource

manager problem is shown in the appendix (page U44). This code incorporates

33

Such optimizations,) The significant aspect of the implementation described
here is that by providing for the most general synchronization situation, no
synchronization problem is a priori eliminated as being unsynthesizable.

6;7. Efficiency of the Synthesized Synchronizer

A synchronizer accepts requests for operations on a shared resource and
services them when it is satisfied that requisite constraints are met. The
function of the synchronizer then is to evaluate the constraints and determine
which request to service next. Efficiency of a synchronizer relates to this

function.

Suppose two synchronizers A and B are constructed for a given problem.
Given similar synchronization situations, i.e., for a particular state of the
resource and a set of waiting requests, synchronizer A is said to be more
efficient than synchronizer B if the time taken to determine the next request
to be serviced is smaller for A than for B. This qualitative definition will

suffice for the purposes of our discussion here.

Factors affecting efficiency are
1. Efficient evaluation of constraints

2. Efficient selection of operations.
Each of these factors is considered in greater detail below.

Efficient Evaluation of Enabling Conditions The strategy adopted to achieve

efficiency in evaluating enabling conditions is to examine an enabling

condition only if there exists a possibility of its being true. Suppose
Enabling-condition(op) = condl & cond2 & ... & condn.

Then, only if cond1 or cond2 or.. condn is true need the enabling-condition be

evaluated. Also, if.one of cond1, cond2, ... condn is known to be false, then

the enabling-condition need not be evaluated.
Following is a iist of strategies which can be used in this regard.

Strategy 1: The enabling condition for a class of operations should be
evaluated only if some minimum constraint is satisfied. A necessary servicing
constraint for servicing an operation is that there be a request for it. Thus

it is unnecessary to evaluate enabling conditions for a particular class of

operations unless there are requests in that class.

34

Strategy 2: Information on the current state of the resource should be

used to avoid unnecessary evaluations.

Strategy 3: Order the evaluation of the enabling conditions in such a way

that those with less constraints are examined first.

Strategy 4: If sequence specifications imply a totally ordered execution of
all operations, evaluation of the enabling conditions and the servicing of the

operations can be ordered according to the sequence specification.

Strategy 5: Simplify all enabling conditions. Since individual constraints
are derived from various specifications, it 1is possible for the same
constraint to be derived from two different specifications. Hence a
simplification may prove useful in reducing the number of terms in an enabling

condition,

We can also use the "influence relationships" [7, 27] among the predicates

to improve the efficiency of evaluation of the enabling conditions.

Efficient Selection of Operations Another strategy to improve the

afficiency of resulting synchronizers is to construct them so that they select
the next operation to be serviced with minimal computation. Since requests

manifest themszlves as elements in queues, this stipulation translates to an

efficient choice of elements from a queue. The four selector functions

1. First-req(q)

no

Hi ghest-priority-req(q)
3. First-enabled-req(q)

4, Highest-priority-enabled-req(q)
are listed in the order of increasing complexity (in the worst case), i.e., a
selector function lower in the list takes more time to return the identity of
the appropriate request ¢than the one higher in the 1list. The synthesis
algorithm should utilize all the information possible to choose a selector
function which has higher efficiency. One such information concerns priority
and is used by the queue allocator (ref. cases 2.1.1.1 and 2.1.2.1) In some

cases, further information can be inferred from other specifications [25].

A note of caution 1is germane before we conclude our discussion on

efficiency. Since evaluation of enabling conditions and subsequent servicing

35

of requests affect the fairness of the synchronizer, decisions made for
improving the efficiency should be consistent with the order of evaluation

mandated by the fairness specification.

6.8. Correctness of the Synthesized Synchronizer
One of the attractions of the synthesis approach to program development

stems from the claim mmade that an automatic programming system always produces
a correct program. This is not an inherent feature of the synthesis approach.
Correct code will result only if every decision and action of the synthesis
algorithm is taken with the aim of producing code that conforms to a given set

of specifications.

The synthesis algorithm proposed in this paper has been developed with a
view to produce correct synchronizers, i.e., the code generated will presefve
the specified properties of the shared resource and the operations on the
resource. This is a result of the correctness of

1. the rules applied during the transformation of a given set of
specifications into code for a synchronizer,

2. the substitution rules, and
3. the rule applied to order the servicing of operations according to
specified fairness.

Formal proofs of correctness appear in [25].

7. SYNTHESIZING CODE FOR OTHER TARGETS
So far we have discussed an implementation of the synthesis algorithm for a

specific target environment, one composed of AMPS and FGL. To achieve this

implementation, we needed the information on
1. The operators available in FGL and their semantics,
2. Structure of synthesized code, and

3. The syntax requirements of FGL.

This is the information required for synthesizing code in any target.

In this implementation, the first three phases are target 1language
independent. The mapping between primitives in the specification language and
the primitives in the target language is embedded in the substitution phase.
Since this phase is essentially a set of rewrite rules, recoding this phase

for a different target is trivial once the synchronization primitives in the

36

target language are Kknown. Since efficiency considerations and syntax
requirements of the AMPS-FGL environment are "hard-wired" into the code

generator, this phase of the implementation has to be rewritten for other

targets.

Now we focus attention on three different target synchronization mechanisms

and discuss the salient features of synthesizing code for these mechanisms.

7.1. ADA

In ADA, tasks are the program units for concurrent programming. An entry
within a task can be thought of as an operation on the resource that is
encapsulated by the task. A call on an entry within a task can be executed
only when there is a ready accept statement. This acceptance takes place when
a rendezvous occurs. A rendezvous consists of executing statements between a

DO and an END following the accept statement. (For détails of the ADA tasking
facility, see [11, 121.)

Because of the built-in mutual exclusion for performing a rendezvous,
parallel execution of operations on a shared resource have to be engineered
using "bracketing operations". Thus if operations in a class do not exclude
each other, then the code for the class should be surrounded by calls to
entries "start-operation" and "term-operation", and placed outside the task.
Constraints on starting an operation will become constraints on the

"start-operation" entry.

In ADA, every entry "E" has an FCFS queue associated with it and E'COUNT
denotes the number of tasks waiting in the queue for "E". Therefore

E'COUNT=0 is equivalent to “reg$E.

Since all queues are FIFO, intra-class priority has to be handled in a

cumber some manner,

- If the priority of operations in a class is static and if the number
of priority "levels" is finite and small, then separate entries for
each level can be used in conjunction with the COUNT facility to
realize intra-class priority.

- If the priority of the operations is dynamic, one plausible
technique seems to be the following: Accept all requests, determine
the priority of each request and "reenter" the request. Once this is
done for all requests in the queue, the highest priority will be
known. Again, the queue is scanned by accepting all requests. Every
request except the one with the highest priority is reentered. In

37

order to ensure termination, the queue has to be "frozen" before
this procedure is attempted.

Section 11.2.10 of [12] has different strategies to process entry calls out of
arrival order.

One major shortcoming of ADA from the point of view of fairness, is the
possibility of SELECT making an unfair choice due to the nondeterminism
assumed therein. However, one of the suggested implementations of the SELECT
statement, namely the "order of arrival method" can guarantee fairness for

entries which are enabled infinitely often.

7.2, Serializers

Serializers are similar to monitors with improvements intended to overcome
some of the deficiencies observed in the latter. Two specific improvements
are, 1) access operations on a shared resource are executed outside the
synchronizer thereby permitting concurrent execution of the operations, and 2)
the unstructured signalling mechanism of monitors is replaced by an automatic
signalling mechanism. Details regarding serializers can be found in [1].

A serializer code consists of a database where the data required for
synchronization is declared and one procedure for each type of access
operation. In its most general form, a procedure enqueues a request into an
appropriate simple or priority queue based on the conditions that exist when
the request arrives. The request waits until a specified condition is
satisfied and when that happens, the request joins a designated crowd, whence
the operation is executed by another process. When the operation terminates,
the requesting process acquires possession of the synchronizer, takes

necessary actions and cedes control of the serializer.

Our synthesis algorithm is capable of deriving all the information required
to construct each procedure in a serializer. Even in serializers, there is a
possibility of unfair selection of requests; if more than one request (in
different queues) satisfies the enabling conditions, the choice made by the
serializer is not defined by the authors of the serializer. Thus a specified

fairness may not be guaranteed by a synthesized serializer.

38

7.3. Monitors

Monitors [10, 3] are perhaps the first structured mechanisms developed for
synchronization. As was mentioned earlier, they are plagued by numerous
shortcomings [2, 18]. Like a serializer, a monitor consists of a set of

procedures, one for each operation on a shared resource, and local data needed

by those procedures. The problem of unfair scheduling pervades monitors too.
Means to synthesize monitors in spite of their two major limitations, are:

1) Since monitors assume mutual exclusion of the synchronized operations,

as was done for ADA, bracketing operations have to be introduced.

2) In monitors, when conditions required to execute an operation do not
hold, a request waits in a queue until the holding of the condition is
signalled by another operation. Since signalling in monitors is done
explicitly, the issue of consequence is: Where should a condition be
signalled? Suppose for every action of the monitor, the set of conditions that
may become true by that action, is compiled. For example, since a request
ceases to exist once it is serviced,

start(op) TRIGGERS ~req(op).
Thus, starting an operation in a class OPC may enable “req$OPC. If after
every action, such a condition is tested and found to be true, then its truth

can be signalled, provided there are requests waiting for it to become true.

Once code is generated for a monitor, using the algorithm given in [10] it
is possible to produce code in terms of lower-level synchronization primitives

such as semaphores.

8. SUMMARY

Statements in a temporal logic based specification language are used to
express the synchronization of concurrent processes. Such specifications are
supplied to an automatic synthesis system which constructs code for the

process which synchronizes the interactions of the concurrent processes.

The theory behind synthesis of synchronizers is based on the recognition of
the following facts:

- Synchronization code is essentially a set of condition-action pairs;
when certain conditions hold, certain actions are taken.

- Conditions are evaluated and actions taken according to a certain

39

order; this order guarantees the fairness specified.

There are basically two types of actions a synchronizer is involved in:
1. Servicing a request for access to a shared resource.

2. Making changes to local variables.
These are indicative of the types of information that should be extracted from

a set of specifications. Our synthesis algorithm derives the information

needed to determine the condition-action pairs and orders them to satisfy the
fairness.

- From the specifications of mutual exclusion, priority, resource
state invariance, and sequencing, the constraints for starting an
operation are determined.

- From the specifications of resource state changes and triggered
conditions, the modifications to internal variables are derived.

- From the specifications of sequencing, priority and fairness, the
basis for ordering the condition-action pairs is extracted.
This provides the infrastructure to generate synchronization code. 1In
addition, heuristics is employed to improve the "efficiency" of the resulting
synchronizer.
- From the knowledge of the primitives available in, and the syntax of

the target language, synchronization code is constructed for a
specific target.

We described the details of an implementation of the algorithm to
automatically generate synchronization code. One of the motivations for this
experiment has been to demonstrate the feasibility of the synthesis approach
to constructing synchronizers and examine the practical issues involved.

Listed below are the salient features of this work.

- The theory behind the algorithm is general enough to be applicable
to synchronization mechanism that conform to the model assumed:
monitors, serializers, and Ada tasks.

- The synchronizer produced by the algorithm is guaranteed to be
correct.

- The. basic algorithm is 1linear. Incorporation of efficiency
improvement techniques increases its complexity.

- The algorithm is indeed practical, as evidenced by the
implementation of the algorithm to generate synchronizers for AMPS
in FGL.

40

[t was stated in the concluding paragraphs of section 6.7, that since
efficiency improvement techniques are essentially based on heuristics, any
practical synthesis system ought to be able to "learn" in the process of
synthesizing code. This would be possible if the synthesizer interacts with
the user and let its strategies be known. Thus if the user determines that a
decision of the synthesizer could lead to inefficient code, he could "direct"

the synthesizer towards a better solution. For this to be feasible, the

synthesis system should be interactive.

The fact that we are utilizing a theorem prover should not come as a
surprise since programming as a task involves considerable logical inferencing
and this is what a theorem prover is used for in this implementation. Since
for our purposes, a logical simplifier will suffice, a general purpose theorem
prover is not necessary. This implementation uses the simplifier part of the
Stanford Pascal verifier for its purposes.

We have used this system to automatically generate synchronization code for
a variety of synchronization problems found in literature. These include the
disk scheduler problems [10] involving the elevator algorithm as well as the
one that minimizes disk arm movement. The resulting code is executable on the
AMPS machine. This has helped us evaluate the performance of the resulting
code. For instance, it can be said that, in most cases, the synchronizer
resulting from wusing a simplifier to perform logical inferencing and
simplifications is more efficient than without it. Further implementations

details are provided in [26].

Since our interest is in synthesizing synchronizers from the
specifications, if the specification language is extended to allow other types
of specifications, it should be brought about only after its implication from
the viewpoint of synthesis is well understood. This area, namely, increasing
the flexibility of the 1language while retaining the capability to
automatically synthesize synchronization code, needs to be further
investigated. In practice, synchronizer should be capable of handling
exception conditions. A way to specify exception situations along with the
actions to be taken when they arise, and the synthesis of exception handling
code, are extensions that need to be incorporated in a fullfledged synthesis

system.

11

In [25] we discuss certain types of "erroneous" specifications (for
instance, inconsistent specifications) and techniques to detect their presence
in a set of specifications. Such techniques could be implemented as a
specifications preprocessor, so that synthesis is not undertaken unless the

specifications are synthesizable.

42

I. An Example
Here we take the reader through all the phases of synthesizing code for the
Resource Manager problem. The specification for this problem is given in

section 3.2. To keep this presentation brief, only necessary details are
presented.

The Translation Phase

The translation phase produces the following for each operation:

- The servicing constraints for the operations.
- The priority constraints for the operations.

- The resource state changes effected by the synchronizer when it
services operations.

For Allocate operations:
RESOURCE STATE CHANGES:
avail <~ (avail -~ 1)

SA1) SERVICING CONSTRAINTS:
(req$allocate &
~exec$free & “exec$allocate &
((avail = 1) <= max) & ((avail - 1) => 0))

PA1) PRIORITY CONSTRAINTS:
¥f&free “enabled(f)

For Free operations:

RESOURCE STATE CHANGES:
avail <- (avail + 1)

SF1) SERVICING CONSTRAINTS:
(reqsfree &
“exec$free & “exec$allocate &
((avail - 1) <= max) & ((avail - 1) => 0))

The Simplification Phase

SA2) SERVICING CONSTRAINTS FOR ALLOCATE OPERATIONS:
(req$allocate & ~exec$free &
“exec$allocate & (0 < avail))

PA2) PRIORITY CONSTRAINTS FOR ALLOCATE OPERATIONS:
("req$free V avail=max)

SF2) SERVICING CONSTRAINTS FOR FREE OPERATIONS:
(req$free & ~“exechfree &
“exec$allocate & (avail < max))

43

-- notice that the preconditions are derived in a simplified
form (assuming that the invariance holds at the beginning of
an operation).

The Resource Allocation Phase

In this phase, the synchronizer variables, the counters and the queues are
allocated. For each queue, the procedure that should be invoked to select the
next request to be dequeued from that queue is also determined. Also, the

minimum condition necessary for requests in a queue to be enabled is derived.
CONSTANTS: max = 2

SYNCHRONIZER VARIABLE:
avail initial value max
minimum value 0
maximum value max

COUNTERS:
allocatecount for allocate operations
freecount for free operations

QUEUES:
A simple queue "allocateq" for allocate requests
Selector function: FIRST
Minimum queue condition:
(“exec$free) & (“exec$allocate) & reg$allocate

A simple queue "freeq" for free requests
Selector function: FIRST
Minimum queue condition:

(Texec$allocate) & (“exec3free) & reqsfree

The Substitution Phase

SA3) SERVICING CONSTRAINTS FOR ALLOCATE OPERATIONS:
Status determining version:
((NONEMPTY(allocateq) AND
(NOT (CTRVALUE(freecount) > 0)) AND
(NOT (CTRVALUE (allocatecount) > 0)) AND
(0 < RESVALUE(avail)))

Wait until version:
(SPAR
(WAITQ (allocateq , 'NONEMPTY)),
(WAITC (freecount , 0)),
(WAITC (allocatecount , 0)),
(WAITRES (avail , "GP" , 0)))

PA3) PRIORITY CONSTRAINTS FOR ALLOCATE OPERATIONS:
Status determining version:
(EMPTY(freeq) V avail=max)

4y

Wait until version:
ARBIT(WAITQ(freeq, 'EMPTY),
WAITRES(avail,"=",max)

SF3) SERVICING CONSTRAINTS FOR FREE OPERATIONS:
Status determining version:
((NONEMPTY(freeq) AND
(NOT (CTRVALUE(freecount) > 0)) AND
(NOT (CTRVALUE(allocatecount) > 0)) AND
(RESVALUE(avail) < max))

Wait until version:
(SPAR
(WAITQ (freeq , 'NONEMPTY)),

(WAITC (freecount , 0)),
(WAITC (allocatecount , 0)),
(WAITRES (avail , "LP"™ , 0)))

The Code Generation Phase
Except for some minor editorial changes, the following code was generated by

the implemented synthesis system. To conserve space, only the code generated
for the DATABASE, the ENQUEUER and the SYNCHRONIZER are shown; the names of

the imported functions are not shown.

us

PROCEDURE resman-database
COMMENT -- this creates the queues, counters and the shared
resource(s). Returns the funarg of the procedure that

enqueues requests, and the synchronizer of these requests;
IMPORTS(...)

LET
COMMENT ~-- each queue has a unique name and the following
associated with it:
1) name(s) of operation(s) that enqueue onto that queue
2) wait until version of the minimum condition required
for an operation in that queue to be serviceable
3) non wait until version of (2);
allocateq BE GQUEUE('allocategq,
CONS('allocate),
Wwuc allocategq,
c éTlocateq).
freeq BE GQUEUE('freeq,
CONS('free),
wuc freeq,
c_freeq),
max BE 2,
allocatecount BE GCOUNT(0),
freecount BE GCOUNT(0),

avail BE GRES(max, 0, max),

dbm BE synchronizer()

RESULT

COMMENT —— return a reference to the enqueuer.

PAR(CONS(enqueuer, dbm), dbm)

WHERE

16

PROCEDURE enqueuer(database, op, args)

COMMENT -- this procedure enqueues requests for access to the
resman database ;

IMPORTS(...)

LET

COMMENT -~ In this case, a token consists of the following:
1) name of the operation
2) apply(operation,args)
3) parameters of the request
enq_allocate BE enq(allocateq,
CONS('allocate, APPLY(allocate, 'nil), nil)),
eng_free BE enq(freegq,
CONS('free, APPLY(free, 'nil), nil))
RESULT
COMMENT -- enqueue the request onto
the appropriate queue;
IF op = 'allocate
THEN <<enq_allocated>>
ELSE IF op = 'free
THEN <<enq_free>>
ELSE PRINT 'error

47

PROCEDURE synchronizer
COMMENT -- the synchronizer;

IMPORTS(...)

LET

max BE 2,

a BE FIRST(allocateq),

pr_condition_f BE ARBIT (WAITQ (freeq, 'EMPTY),
WAITRES (avail, ">=", max)),
wWu_a BE (SPAR
(WAITQ (allocateq, 'NONEMPTY)),
(WAITC (freecount, 0)),
(WAITC (allocatecount, 0)),
(WAITRES (avail, "GP", 0)))
AND pr condition f,

newavail a BE RESVALUE(avail)-1,
f BE FIRST(freeq),
wu_f BE (SPAR

(WAITQ (freeq, 'NONEMPTY)),
(WAITC (freecount, 0)),
(WAITC (allocatecount, 0)),
(WAITRES (avail, "LP™, 0))),

newavail f BE RESVALUE(avail)+1,
choice BE ARBIT(wu_f, wu_a)
RESULT

COMMENT — wait for a request to be serviceable.
modify the resource state as specified.
service the request in detached mode;
IF choice
THEN <<CHANGERES(avail, newavail f),
DET_EX(synchronizer, freeq, f, freecount)>>
ELSE <<CHANGERES(avail, newavail_a),
DET_Ex(synchronizer, allocateq, a, allocatecount)>>
END

48

The following are the notable aspects of this code:

The constraints for free and allocate are evaluated "in place".

In the synchronizer, pr_condition_f is the simplified form of the
constraint derived from priority specification.

The synchronizer avoids all busy waiting by using the "wait until"
version of the constraints.

Changes to the resource state are effected before DET EX is
invoked.

Since the queue procedures are not invoked by the code, they are
not shown here.

49
REFERENCES

1. Atkinson, R.R. and Hewitt, C.E. Specification and Proof Techniques for

Serializers. IEEE Transactions on Software Engineering SE-5 (Jan 1979),
10-23. - T

2. Bl9om. T. Evaluating Synchronization Mechanisms. Proc. Seventh Annual
Symposium on Operating Systems Principles, Dec, 1979, pp. 24-32.

3. Brinch Hansen, P. Concurrent Programming Concepts. Computing Surveys 5
(Dec 1973), 223-245. -

4, Dahl, 0.J., Dijkstra, E.W. and Hoare C.A.R. Structured Programming.
Academic Press, 1972.

5. Dijkstra, E.W. Guarded commands, non-determinacy, and a calculus for the
derivation of programs. Communications of the ACM 18, 8 (August 1975),
453-457.

6. Elschlager, R. and Phillips. J. Automatic Programming. Tech. Rept.
STAN-CS-79-758, Stanford University, 1979.

7. Ford, W.S. Implementation of a Generalized Critical Region Construct.
IEEE Transactions on Software Engineering SE-4 (Nov 1978), 4u9-455.

8. German, S.M., Luckham, D.C., et al. Stanford Pascal Verifier User Manual.
Stanford University, 1979.

9. Hearn, A.C. REDUCE 2 Users Manual. Tech. Rept. Utah Symbolic Computation
Group UCP-19, University of Utah, 1973.

10. Hoare, C.A.R. HMonitors: An Operating System Structuring Concept.
Communications of the ACM 17 (Oct 1974), 540-557.

11. Ichbiah J.D. et al. Preliminary ADA Reference Manual. SIGPLAN Notices
14 (June 1979).

12. Ichbiah J.D. et al. Rationale for the Design of the ADA Programming
Language. SIGPLAN Notices 14 (June 1979).

13. Jayaraman, B. and Keller, R.M. Resource control in a demand-driven
data-flow model. Proc. 1980 International Conference on Parallel Processing,

August, 1980, pp. 118-127.

14, Keller, R.M. Sentinels: A Concept for Multiprocess Coordination. Tech.
Rept. UUCS-78-104, University of Utah, June, 1978.

15. Keller, R.M. Semantics and applications of function graphs. Tech. Rept.
UucsS-80-112, University of Utah, October, 1980.

50

16. Keller, R.M., Jayaraman,B., Rose, D., and Lindstrom, G. FGL (function
graph language) programmers' guide. AMPS Technical Memorandum No. 1,
University of Utah, July, 1980.

17. Keller, R.M., Lindstrom, G. and Patil, S. A Loosely-coupled Applicative
Multi-processing System. AFIPS proc., June, 1979.

18. Lister, A. The Problem of Nested Monitor Calls. Operating Systems
Review 13, 2 (July 1977).

19. Manna, Z. Mathematical Theory of Computation. McGraw-Hill, 1974.

20. Marti, J.B. The META/REDUCE Translator Writing System. SIGPLAN Notices
13, 10 (1978), H42-49.

21. Marti, J.B., et al. Standard LISP Report. SIGPLAN Notices 14, 10

22. Pnueli, A. The Temporal Semantics of Concurrent Programs. In Khan, Ed.,
Semantics of Concurrent Computation, Springer Lecture Notes in Computer
Science, Springer-verlag, 1979, pp. 1-20.

23. Ramamritham, K. and Keller, R.M. Specification and Synthesis of
Synchronizers. Proc. 1980 International Conference on Parallel Processing,
Aug, 1980, pp. 311-321.

24, Ramamritham, K. and Keller, R.M. On Synchronization and its
Specification. Proc. CONPAR, June, 1981.

25. Ramamritham. K. Specification and Synthesis of Synchronizers. Ph.D.
Th., The University of Utah, 1981.

26. Ramamritham, K. Automatic Synchronizer Synthesis System User's HManual.
University of Utah, April, 1981.

27. Schmid, H.A. On the efficient Implementation of Conditional Critical
Regions and the Construction of Monitors. Acta Informatica 6 (1976), 227-249.

