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ABSTRACT

Computer Interpretation of a Dynamic
Image from a Moving Vehicle

May 1981
Thomas Dell Williams
A.S. Northern Essex Community College
B.S. University of Massachusetts
M.S. University of Massachusetts
Ph.D. University of Massachusetts

Directed by: Professor Edward M. Riseman

The goal of this thesis is the design and
implementation of a computer program that constructs an
interpretation of images of a natural scene, in
particular one imaged while the camera is in a moving
automobile. The succession of images is to be
interpreted in terms of surfaces and objects in

three-dimensional space.

The agreement between image dynamics and an
internal surface model of the environment is measured by
comparing a pair of temporally disparate images (two
movie frames). ﬁsing the model, an image taken at oné
location can be transformed into a synthetic image of
the scene as it would be viewed from another location.

This synthesis accounts for point displacements and

vi
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occlusion effects as predicted by the internal model.
Differences between the real and the synthetic images
are then used as an error measure in a search that
refines the model. Once the model is refined,
unresolved errors are used to correct the initial

surface model by resegmenting the image into a better

'approximation of the surfaces in the environment.

This surface model refinement is followed by an
object identification phase. Size and color attributes
measured from the derived internal model are compared
with stored attributes for objects. The result is the

identification of some of the scene objects.
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CHAPTER I

INTRODUCTION

Humans rely heavily on vision to recognize, measure
and appreciate their environment. The speed, accuracy,
and reliability of human vision challenges those who
would construct an artificial system with similar
performance. No one has yet succeeded in constructing
such a system, although many advances in the field of

scene analysis have taken us closer to that goal.

Theorists have proposed (Gibson 1950, Marr 1977)
that sufficient information exists in static and dynamic
imageé to derive an understanding of the physical
environment depicted in the images. These theories
suggest that object/background separation, the size and
shape of 6bjects. and distances to them can be determined
without prior knowledge of the specific objects that

appear.

Pictorial cues such as texture, shadows, and
occlusion that are available in static monocular images
can be used to infer important depth information. Humans
can understand a static image as surfaces and objects in
the physical world. This implies that there is

sufficient information preserved in a static image to

1



allow the reconstruction of a plausible three dimensional

scene,

Static scene analysis systems (Barrow 1978, Hanson
1978b, Bullock 1978) exploit pictorial depth cues in an
attempt to derive an interpretation of an image as
surfaces and objects. Once depth information is
obtained, the orientation of surfaces, the identity of
objecfs, and the spatial layout of the scene can be
determined. However, the problem of automatic and
reliable inference of depth from static cues remains
unsolved for general static scenes, although considerable
progress is being made at understanding what the cues

are, and how to use them.

The motion of imaged scene points from a moving
camera provides direct rather than inferred depth
information. The convincing fidelity of depth conveyed
in motion pictures demonstrates the ability of a dynamic
image to preserve depth information in a direct and

accurate manner.
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I.1 Goals

——

The goal of this thesis is the design and
implementation of a computer program that constructs an
interpretation from images of a natural scene, in
particular one imaged while the camera is in a moving
automobile. Motion cues derived from successive frames
of a movie will be exploited to allow the moving image to
be interpreted in terms of surfaces and objects in

three-dimensional space.

A second and related éoal is the identification of
objects based on color, texture and size. This goal is
an exercise in the structuring of high level knowledge
about scenes and objects. An object identification
system is presented which uses as input the results of

the surface interpretation process.

The goals are met through a set of experiments that
are presented in chapters IV and V. Our methodology for
system development involved the testing of each subsystem
individually by providing it with the information that
other sybsystems would produce in the completed system.

Then the entire system's behavior was tested.



I.2 Image Interpretation via Motion

In this thesis techniques from the field of static
scene analysis are extended by incorporatiné depth cues
derived from a dynamic image. We chose to analyze
dynamic images because important depth information is
available for use‘in directly segmenting objects from
their background. We propose a group of processes for
interpretation of a natural scene that is successively

photographed by a camera in motion (Figure 1). These

movie frames are to be interpreted in terms of surfaces

and objects of the scene. Motion information leads to a
description of the scene in terms of surfaces, which in

turn leads to a description of the scene in terms of

object identities (see figure 2).

One subsystem is explored in great detail since it

is the basis for an approximate surface interpretation of

the physical environment. A model is hypothesized
depicting the three-dimensional positions of scene
surfaces relative to the camera. Then, the motions of
image features are used to refine this model. The
surface interpretation provides both the
object/background segmentation and size measurements for

object identification. An object interpretation is
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produced by comparing both spectral features from the
image and size information from the surface
interpretation to prototypes which are associated with

stored object names.

I.3 Depth from Motion

To determine the distance from the camera to scene
points based on the positions of points on the image
plane, images of the scene taken in two physically
disparate locations are used. For each scene point that
appears in both images, an inter-image displacement can
be measured. By simple triangulation the
three-dimensional position of each point with respect to
the camera can be determined. This technique is called
"motion stereo" because it involves the comparison of a

pair of images taken from a moving camera.

Automatic discovery of the displacement of
projections of a scene point between two images is called
the "correspondence problem" (Ullman 1978, Quam 1974a),
or "stimulus organization problem" (Burt 1976). The
thrust of most research in stereo image understanding has
been the reliable and fast computation of inter-image
correspondence of points. The system presented here

develops an interpretation of distances using an



hypothesize-test strategy. An hypothesized

three-dimensional interpretation - expressed as a model
of scene surfaces - predicts image dynamics which are
tested through inter-image comparisons. This is in

contrast to the more common motion detection techniques

(Quam 1974, Prager 1979, Thompson 1979) that detect image
dynamies to generate a three~dimensional model of the
scene without any prior hypotheses about the surfaces in

the scene (figure 3).

I.4 Surface Interpretation

Surfaces are the boundaries of objects; and are the
places where the scene illumination is reflected., 1In
general surfaces are curved, and very sharp curvature of
surfaces, such as where two faces of a cube meet, are
called surface edges or discontinuities. Curved
three-dimensional bodies can be modeled as composites of

surface patches, joined at space curves (York 1979).

The representation utilized here involves planar
surfaces at orthogonal orientations within the viewing
geometry. Although this representationidoes not
accurately reflect the nature of real surfaces, our
premise is that it is sufficient for recognizing objects

at a distance. The size dimensions of height, width, and
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depth of a telephone pole, or a tree can be approximated
reasonably well if the objects are represented as

rectangular solids.

The surface interpretation process involves the
combination of static image analysis and the analysis of
image dynamics. A surface interpretation is first
hypothesized on the basis of a coarse static analysis.
Then, this interpretation is used as an initial scene
model to predict image dynamics. The model is refined on
the basis of the agreement between image dynamics and the
model. An image taken at one location is transformed |
into a synthetic image of the scene as it would be viewed
from another location, given the scene model. This
synthesis accounts for point displacements and occlusion
effects as predicted by the surface model. Differences
between the real and the predicted images are then used
as an error measure in a search that refines the surface

model (see figure 3).

Once the model is refined, unresolved difference
values are detected wherever two-dimensional image
dynamics disagree with the three-dimensional surface
model. Thus, errors in the initial segmentation of the

image into surfaces would be detected by these difference

-3 32
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values. The initial surface model can be corrected by
resegmenting the image into new surfaces which better

account for the image dynamics.

This hypothesize-test process could be used to
refine the orientation, distance and curvature of each
surface which is hypothesized. Such a process would be
computationally expensive and its results too detailed
for many purposes. We simplify by assuming that all
surfaces are planar and oriented in either of two

directions.

The two-orientation representation is not an
inherent system limitation, but rather an efficient means
for deriving a surface model that has sufficient detail
to interpret the positions and identities of objects in
our test scenes. The two orientations chosen are
parallel to the ground plane, which we call "horizontal",
and parallel to the image plane, which we call
"yertical®. The road, grass, and soil are all oriented
in the ground plane. All other objects can be
approximated by flat surfaces parallel to the image
plane, for in our scene no objects (other than the
horizontal ones) have large depth disparities across

them. For images with a long planar surface, such as the
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wall of a building parallel to the direction of travel,
this two-orientation representation would need to be

extended to three orientations.

I.5 Object Interpretation

The term "object" carries many meanings. We refer
to the items in the scene that are physically separate
entities as objects. Trees, telephone poles, signs,
people, the sky, and the road are all examples of
objects. Except for the sky, the objects that we deal
with are solid, and usually touch one another for
support. Transparent objects do not appear in the images
and there is no mechanism for dealing with the appearance

of several objects in the same image location.

Within our definitions, the interpretation of
natural outdoor images culminates in an understanding of
the spatial layout and identity of objects in the scene.
To determine identity, systems must match the size and
color of objects detected in the image to the size and
color associated with the stored concepts of known

objects.

—3
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In static scene analysis systems, various techniques
are applied, each with its assumptions about the scene,
to obtain object size from static image features. With
the assumption of an accurately modeled ground plane and
an assumption of the orientation of a given surface, the
size and distance to that surface can be determined
directly. Alternatively, if there is prior knowledge of
the expected position or size of the objects appearing it

is possible to use matching techniques to directly obtain

spatial relationships.

We chose to avoid implementing a system requiring
the extensive use of knowledge which is specific to the
particular scene. Thus, our approach is to use
information from the image, in a bottom-up fashion, to
produce a description of the scene in terms of surfaces.
The surface description is then used, again bottom-up, to

derive an object interpretation.



CHAPTEHR I1I

REVIEW OF SCENE ANALYSIS

This chapter reviewes the field of scene analysis.
First, some concepts are described which are used in the
analysis of images. Then, the problems involved in
computer interpretation of images are briefly examined.
This is followed with a review of the literature
pertaining to the analysis of static images. The final
section deals with the issues and the literature
pertaining to the analysis of dynamic images. The reader
is directed to section II.4 if he is knowledgable of the

static scene analysis problems and literature.

II.1 The Elements of Scene Analysis

Scene analysis is a field of study aimed at
automatic interpretation of images of scenes. Although
the techniques are as varied as the domains of
application, there are certain elements common to all
scene analysis systems. The;e elements are 1) a scene,
2) a sensor, 3) an image, U4) extracted features, 5)
aggregations of features often called image
segmentations, and 6) an interpretation. In each scene

analysis system these elements and the interactions

14
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between them are tailored to meet specific goals. We
begin by describing the elements, and follow by examining

the way they interact in several systems.

II.1.1 Sensor. The device that records information from

a scene is called a sensor. Sensors are transducers that
convert scene illumination into another form of energy
(usually electrical) that can be measured. A camera is
employed to image (form a projection of) the light flux
present at some point in a scene. The transduction takes
place in the photographic emulsion if a film camera is
used; or in the photo-sensitive target if a television
camera is used. The corresponding subsystem in the human
visuai system is the eye where the light flux that

impinges on the retina causes electro-chemical activity.

Some scene analysis systems are designed to
integrate active as well as passive sensor information.
Active sensors are coupled with their own illuminators so
that the nature of the signal being sensed is known,
while passive sensors record illumination that exists
naturally in the environment. The use of radar
range-finding in the application of military target
interpretation, laser range-finders for scene analysis

(Duda 1979), and the use of ultrasound imaging systems
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for non-invasive medical applications are all expamples
where surface distance information is available directly
from an active sensor. Our goal is to derive surface
information from a passive sensor - a moving camera -
that records light flux as it occurs in a natural daytime

environment.

I1.1.2 Image. An image is a projection of reflected

scene illumination onto a Surféce. We deal with existing
light flux and flat image planes in our system. Systems
have been designed that make use of other illuminants
such as radar waves and infrared light, and other
projection surfaces, such as spherical (Badler 1976). We
record our images and usually refer to an image as an
entity that exists now, although it was recorded in the
past. A moving image is recorded as temporally disparate
frames, each considered a separate image with an

associated time index.

To facilitate computer processing, images are
quantized in a regular array. Various patterns, such as
hexagonal and rectangular arrays have been used, but for
our work the more common square array has been adopted.
Each unit square is an element of an array and is given a

value that is the average of sensor values within the
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boundaries of the element. These picture elements are

called pixels, and are often refered to as image points.

Temporal quantization occurs in a moving image
recording system. We use movie frames that are recorded
at 18 frames per second, and select for analysis frames
that are nine apart in the sequence, resulting in an

effective frame rate of two per second (see figure 4). .

I1.1.3 Features. A feature is some abstraction of image

information indicating points or areas of significance.
Features vary in complexity and usefulness (Bullock 1974)
and, therefore, are selected for each domain of
application in scene analysis. The majority of scene
analysis features fall into the categories of "point",

"edge", or "texture".

Point features are those which can be derived from
the information available at one pixel. 1In monochromatic
images the only point feature is intensity. 1In
multi-spectral images, various color features can be
computed from the red, green, and blue values that are

typically recorded at each pixel.
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Edge features are the result of inter-pixel
differencing. These features are consistent with the
observation that important scene information can be
conveyed by simple line drawings (Attneave 1954),
Typically, the average of point values from two adjacent
areas are compared (see figure 5). We call the
difference between these two averages the "response" of
the edge operator. When the difference exceeds some
threshold, an edge is placed between the two areas.
Alternatively, a confidence of "edgeness" can be assigned

to a short line segment placed between the two areas.

Texture features are typically either statistical or
geometrical abstractions of areas of the intensity image.
We are only concerned with the use of texture for the
recognition of objects. The use of simplified texture

features for this purpose is presented in chapter V.

Point features, such as color and intensity, are
alone insufficient to provide an interpretation of a
scene. According to one line of reasoning (Bullock
1977), point features are highly variant with respect to
object models because of lighting conditions, whereas the
shape of connected edges is a more useful and invariant

feature for eventual interpretation. We agree that



H -

point feature edge feature

image image
response = A - B

Figure 5. A simple edge feature might be the difference
two adjacent 2 x 2 areas.
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features that are used for interpretation must be
invariant, but only with respect to the particular
interpretations performed. Problems with the use of edge

features for motion analysis will be addressed at the end

of this chapter.

I1.1.4 Aggregations of features. Features are usually

—% —3% —3§ —3 ¥ "8 —a T8 —3 a1 —3 TB T3 T3 T3 33 —3 —3 "3

aggregated into abstractions that serve to segment the
image into meaningful areas. In scene analysis these

aggregations involve regions, corresponding to areas of

points which are similar in some feature; line segments,
corresponding to boundaries between areas that are
dissimilar with respect to some feature(s); and
vertices, corresponding to the junction of line segments
(Hanson 1976). The result of aggregation is an image
which is partitioned into regions. We call a partitioned

image a "segmentation" (see figure 6).

This intermediate-level image description is
intended to provide an interpretation subsystem with
information that can be readily compared with object
models. Our system relies on regions (the aggregated
point feature), to define localities in which

interpretation processes act.
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I1.1.5 Interpretation. Interpretation refers to the

derivation of a description of the scene in terms of the
identity and position of objects that appear in an image.
Scene analysis systems vary considerably as to what their
interpretations will consist qf. and in what domains they
are applicable. Some schemes are designed to examine a
novel approach to the application of knowledge in a an
artificial intelligence problem (Freuder 1973), while
others are intended to understand arbitrary outdoor
scenes containing any of numerous possible objects

(Hanson 1978, Ohlander 1975).

Interpretation processes use object models,
aggregated features and a matching strategy to derive
identities and spatial relationships of scene objects.
Various matching systems and sérategies have been

explored, and are briefly examined below (section II.3).

Object identity can be derived by matching color and
texture features of regions with models of objects stored
in terms of those features. This technique is applicable
for objects that are relatively invariant in color and
texture, such as the sky, trees and grass. Other
features, such as line segments and vertices (Roberts

1965, Waltz 1972) or shape (York 1980), are used in the
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matching process when objects can be identified by these

characteristics.

The identification of objects is often enhanced by
first interpreting the scene in terms of the disposition
of scene surfaces. Three-dimensional characteristics of
objects can then be used in the matching process (Marr
1977 ). A model of the scene in terms of surfaces seems
a natural intermediate interpretation that bridges the
gap between image features and object identification.
This intermediate description is called a surface

interpretation.

II.2 Problems in Static Scene Analysis

Obviously, the extraction of image areas that
correspond to separate objects can be based on
differences in depth (Duda 1979). Unfortunately, no
feature of a static image is guaranteed to indicate
discontinuities in depth. Point and edge features can
indicate discontinuities in intensity and color that
arise from several phenomena which are unrelated to

differences in depth.

.3
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Scene analysis systems are effective because
discontinuities in depth are very often associated with
other scene differences that give rise to intensity
differences (Gibson 1950). Static scene analysis, until
recently, had ignored this fact and still achieved
acceptable levels of performance (Hanson 1978b, Bullock
1978, Levine 1978). The reader is refered to (Barrow
1978) and (Horn 1970, Horn 1977) for a more comprehensive
description of the relationship between scene

characteristics and image intensities than that presented

below.

The intensity values recorded from an image are the
result of three scene-dependent factors. They are 1) the
magnitude of illumination falling on the imaged scene, 2)
the type of material composing each surface of the scene,
and 3) the orientation of each surface relative to the
viewer and light sources. We refer to these three

characteristics of the scene as the illumination,

reflectance , and orientation respectively. See figure K

for examples of these differences.

'The jllumination in a natural outdoor scene comes
from three sources. They are the direct rays from the

sun, the omnidirectional (diffuse) light from the sky,
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orientation

reflectance

Figure 7. Examples of differences in image
intensity due to differences in the scene.
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and reflected light from other objects.

Differences in the amount of illumination are mostly
accounted for by shadowing of direct sunlight:. Shadowing
of sky light and reflected illumination does not play as
important a role as illumination differences in our
scenes, although in some situations these effects are

visible.

Differences in reflectance are due to the
composition of the material where the light impinges.
Surface reflectance characteristics are determined by the
molecular structure near the surface of the object. This
property provides the rich variety of coloration in
images of natural scenes. It is responsible for the
greenness of grass and leaves, for the contrast betyeen
the background of a sign and its message, and for the
clarity of a dash painted on a road. Static scene
analysis systems derive their interpretations primarily
(although not entirely) through differences in

reflectance.

Differences in the orientation of a surface with
respect to the camera and illuminating source create
differences in imaged intensity (Horn 1970). The

formulation of the percentage of the light that is
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reflected depends on the reflectance characteristic.
Metalliec surfaces tend to reflect most of the impinging
light in one direction while matte surfaces reflect light
evenly in all directions. For any surface of constant -
reflectance the image will be of constant intensity where
the orientation is constant. 1If a surface is curved its
orientation varies. For most surface reflectance
characteristices, a variation in orientation will produce

a variation in imaged intensity values.

Orientation differences are responsible for some of
the fine textures of trees and grass because the leaves
are at a variety of orientations. This characteristic
also accounts for the intensity gradient across cylinders
(such as telephone poles) and for the highlights imaged
from metallic and glossy painted surfaces as found on

automobiles.

Segmentation algorithms are generally éapable of
detecting all intensity and color differences in images,
but are not capable of distinguishing one source of
difference from another. A poSsible exception is the
work being done by Barrow and Tenenbaum (Barrow 1978)
where, in restricted domains, it appears possible to

determine depth discontinuity.
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Some researchers have found it beneficial to err on
the side of excessive segmentation and allow some
interpretive process to decide what regions must be
merged, or what line segments must be ignored, in order
to compose a depth segmentation. Our system provides an
answer to this scene analysis problem by merging and

splitting regions based on their behavior over time.

II.3 Static Scene Analysis Systems

In this section, we discuss a few static monocular
systems which are primarily aimed at interpreting natural
scenes. Several theoretical scene analysis systems, and
several that have been implemented are discussed. The

systems are presented in categories, and are followed by

a summary.

II.3.1 Theoretical visual systems. Marr proposes that

there are three stages of visual processing, that each
Stage has a related representational structure, and that
these structures must be understood before algorithms
should be implemented to perform general visual tasks
(Marr 1977). Once these representations are understood,
the computational problems (hardware and software) can be

devised and a resulting general purpose visual system can

be realized.
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The application of top-down design by Marr coincides
with hierarchical decomposition (Simon 1969). Marr
points out that thé structure of a representation is
determined both by the form of the information given to
each process and the form that each process is expected
to produce. Thus, at each stage of problem decomposition
the interaction between modules of processing activity

must be expressed in some representation.

Marr shows that the apprdach taken in some scene
analysis systems to segment an image is missguided. 1In
order to segment an image into objects, a system must
employ knowledge about the particular scene. No clear
way exists to choose what knowledge should be applied to

produce segmentations.

The proposed solution is a three-stage system where
1) intensity and geometry of the image are used to
produce a "primal sketch", 2) the sketch is processed
into a representation called the "2 1/2 D Sketch", and
3) the 2 1/2 D Sketch is used to produce and recognize
object-centered three-dimensional descriptions. These
three stages correspond roughly to 1) both feature
extraction and feature aggregation, 2) the production of

a surface interpretation, and 3) an object identity and
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shape understanding interpretation.

In the "primal sketch" intensity discontinuities are
gathered together and significant lines, edges, and their
spatial relations are represented. Most scene analysis
systems refer to this type of representation as a

segmentation.

The "2 1/2 D Sketch" is free of identities of
opjects and therefore does not require specialized
knowledge about particular objects. The shape and
position of the surfaces (depth and orientation) are made
explicit at this intermediate level. Because surface
orientation and depth can be used to describe arbitrary
shapes, this is an ideal level of representation that

-

lies between segmentation and object understanding.

The third stage of processing results in the
interpretation of the scene as a composition of objects.
Each object is described in terms of its shape and
disposition with respect to the camera. This third stage

of processing results in the jdentification of objects,

and fits our description of the term "interpretation".
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Didday and Arbib developed a visual system model
that explains perceptual aspects of animal behavior
(Didday 1973). In this system, a model of the current
world situation (commonly refered to as "short term
memory") is built from stimulus input and associations
that can be drawn from stored experiences ("long term

memory").

Didday and Arbib's work support the use of a dual
visual system employing both peripheral and foveal
components. The peripheral subsystem is responsible for
diécovering unexpected change. The foveal subsystem is
steered to investigate areas of the visual field that
demand attention by the resolution of competition between
unresolved elements in the representation and the
unexpected changes in the periphery. Through this
construct, the goals of the perceiver facilitate
perception of scene components required for survival by
influencing the appropriate action-oriented elements of

the internal representation.
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I1.3.2 General vs. specialized systems. As we make the

transition from theoretical visual systems to implemented
systems that embody limited amounts of generality, we
should consider the trade-offs between general and

specialized systems.

Many successes in scene analysis have been in very
limited or specialized areas where ad hoc structures and
processes have delivered good results. Such systems are
noticeably rigid in their implementation, cannot be
easily reformulated to act in other domains, and do not
offer the research field much understanding of how to
solve general vision problems. Bullock shows that the
designs of general systems are sophisticated, and in
order to accomplish a wide variety of tasks they are
sub-optimal in solving any one task (Bullock 1978). He
describes three types of general vision systems called
matching, cueing, and interpretation. Basically, all
three types derive an intermediate representation through
feature analysis, and then by matching the intermediate
representation with stored object models, the name,

location, and identities of objects are derived.
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Rather than a goal of generality in vision systems,
Bullock argues for flexible configurations of specialized
subsystems that closely match their domains and achieve
optimal solutions. Hopefully, such an approach will
result in systems that have more speed and accuracy, and

are more practical to construct than general systems.

We have limited this review to‘some of the
literature that is aimed at interpreting images of
natural scenes in terms of the objects that appear. Most
systems use some form of image segmentation as an
intermediate structure. The identity of objects is
either derived from the segmentation, the segmentation is
dérived from the object models, or the segmentation
directs the application of verification programs that
confirm identities from the image data directly. System
design differences should then be viewed as differences
in the methods that bring together semantics (object
models) and syntax (image and feature values) of image

interpretation.

II1.3.3 Blocks world scenes. Roberts designed and

implemented a system which attempted to automatically
locate and identify objects from image information

(Roberts 1965). His work pioneered the field of computer
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image understanding. The task domain was indoor scenes
of blocks (a small set of polyhedra), and the goal was to

locate and identify the block types.

In the first of a two stage process (see figure 8),
spatial discontinuities of intensities were located in
the image. These discontinuities in intensity were
assumed to be caused by the boundaries of surfaces in the
scene. Thus, the lines formed by simple inter-pixel
intensity differencing were likened to a line drawing of

the object.

Then, a set of three-dimensional atomic object
models were compared with the lines extracted from the.
image. A suitable match was sufficientvfor the
recognition of the object. Although the system correctly
identified objects in many cases, it performed poorly in
others. Problems occurred where shadows, missing lines,

and strong intensity gradients were present.

Eventually this work was extended in two important
ways by others (Shirai 1973, Waltz 1972). By including
shadows as part of the model of the objects, and also by

improved line extraction, these latter systems became
very good at recognizing polyhedral scenes. Although it

is not clear that this approach can be extended into the
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non-polyhedral world, early research systems did
demonstrate the application of object model information

to the image understanding problem.

II1.3.4 Real world scenes. Yakimovsky and Feldman

(Yakimovsky 1973), and Tenenbaum and Barrow (Tenenbaum
1973 and 1976), have integrated the interpretation and
the segmentation processes (see figure 9). These scene
analysis systems contain information in the world model
that is used to permit or block the joining of pixels
into regions. Through a succession of pixel joinings,
the image is segmented into objects, where object
jdentification is based on color and image position. The
world model is in the form of likelihoods of adjacency

between all pairs of objects.

Yakimovsky's segmentation proceeds by joining pixels
and regions through a decision tree analysis, while
Tenenbaum's process uses an iterative technique that
makes a partial interpretation and suggests joins (or
blocks the joining process) between pairs of regions.
Through the use of heuristies, both systems attempt to
derive a segmentation that reflects the maximum
likelihood decisions for the image, based on properties

of objects and a priori probabilities for the set of
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objects in the domain. Unfortunately, it is not always
possible to obtain adjacency probabilities for the set of
all objects in the domain. Also, it is not clear that
adjacency in the image plane is a good measure for scene

domains in which objects are likely to appear anywhere,

These systems show that top-down analysis is
possible, where a model is used to "find" the best
segmentation of the scene (directly in terms of objects).
As Marr points out, the segmentation of'the image
directly into objects is only possible when specialized

knowledge can be brought to bear (Marr 1977).

Tenenbaum and Barrow found it inappropriate to
consider segmentation and interpretation as distinet
processes (Tenenbaum 1975). They supported this with the
observation that data directed (bottom-up) processing
maintains analyses that depict the actual scene, but run
into a bottle-neck of having too many possibilities to
consider for interpretation (Barrow 1975). Processing
which is entirely goal-directed (top-down) considers only
the relevant possiblities, ignoring the unexpected, and
produces results that do not depict the scene faithfully.
They conclude that a combination of top-down and

bottom-up processing is a good solution, but at that time

39
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very little experimentation with such a paradigm had been
done. In more recent work they discuss a framework for
first generating a surface segmentation directly from
image information before proceeding to interpret or name

objects (Barrow 1978).

II.3.5 Query-directed systems. Several scene analysis

systems that rely heavily on goal-directed analysis, or
top-down processing, have been proposed and successfully
implemented. Object or scene models are used to discover
instances of objects, either directly in the image, or

through an intermediate symbolic structure.

Garvey designed a system that finds particular
objects in images when asked to do so (Garvey 1976) (see
figure 10). When queried about an object, such as a
chair in an office scene, the system produces a cost
effective sequence of tests called a "strategy". The
tests determine the existence and position of the object
in the image. Advantages of this system are its ability
to formulate strategies according to the goals of the
user, and the ease with which new objects and object
characteristics could be added. This system demonstrates
the "test" step of a hypothesize-test paradigm. Once the

human hypothesizes an object, Garvey shows that there is
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Figure 10. Garvey's query directed analysis
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a method for preparing an optimal strategy for locating

an instance of it.

Bajesy and Lieberman use a model of objects and
expected context to direct the analysis of natural
outdoor scenes (Bajcsy 1974). First, the scene is
segmented into regions based on inter-pixel similarity of
color. Then, a strategy that uses a semantic network as
a model of outdoor scenes locates the objects. The order

of tests that the strategy applies is fixed.

This work is perhaps the first report of success at
using object model information stored in a semantic
network for top-down outdoor scene analysis. A more
recent paper by Rosenthal and Bajcsy (Rosenthal 1978)
proposes a structure for linking abstraction levels of a
semantic network to resolution levels of an image so that
queries about satellite images can be answered. They
posit that, regardless of a choice of control structure,
a hierarchy of visual knowledge is necessary to recognize
objects in a context. In this system a query generates a
sequence of objects to be identified before the queried
object is located. Thus, a context of objects is
generated. The identification sequence is derived from a

hierarchy of objects that relate object size to
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resolution of the image. Starting at the largest object
first (coarsest resolution), the queried object is

quickly located.

Althpugh this technique of relating object size to
image resolution is effective in satellite images, it is
of doubtful utility in terrestrial images. Perhaps the
sky and ground could be extracted at a coarse level, and
all other objects at a finer level., We find that the use
of partitioned semantic networks, where levels of
abstraction form a hierarchy of visual knowledge is
appealing as a structure for storing a priori information
(see‘chapter V). Partitioning by abstraction level
rather than resolution level condenses information that
has similar use into identifiable areas, and allows a
clear description of the relationships between elements
of different abstraction levels (Williams 1977).

However, we do believe that there is a need to understand
the appearance of objects at different distances, and

this can relate to image resolution,.

Ballard, Brown and Feldman outline a method for
developing a goal-directed vision system, where prior
knowledge is used to guide the extraction of image

descriptions (Ballard 1978). They use an intermediate
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level called a "sketchmap" where a symbolic structure is
built during analysis. This structure associates image
elements with model elements, thus producing an
interpretation. The model is a graph in which model
nodes represent objects, and arcs between the nodes
represent conditions where a relation holds. Also,
procedures are described that instantiate model nodes

into the sketchmap.

This system has been shown useful for answering
queries in diversified areas of scene analysis, such as
finding docked Ships in aerial photos, and ribs in very
noisy x-ray images. This intermediate structure lacks
the surface level of abstraction that is necessary for
-general visual problems in outdoor scene analysis. The
sketchmap is an instantiation of model information that
can answer questions about an image. To make such a
system géneral-purpose we would suggest that the first
question should be "Describe all the surfaces in the
scene.", and should be followed by, "Where are the

objects?", and "What are their identities?".

I1.3.6 General-purpose systems. Bullock describes

general-purpose computer vision systems as they are

applied to outdoor images (Bullock 1976a and 1976b). One
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of the goals is to derive useful information from scenes,
such as the identity, position, and description of
objects. To produce results, a simplified implementation
of a general design was used. In it a perfect model of
each object is used, and only one object is found at a
time. The system consisted of a matchgr that compares
models extracted from a sensor image with models
extracted from a goal image. Thus, two intermediate

structures are compared (see figure 11).

Considerable effort was expended in the selection of
appropriate features for the model. It was shown that
simple features, calculated on image data points, such as
intensity, were easy to compute, but highly variable when
objects were moved or lighting conditions changed.

Global features that depict connected boundaries are very
difficult to compute but are highly invariant for a given
object. Features were chosen that fall between the two

extremes, and their geometric relationships were used as

a representation for comparison.

This system did not abstract surface models from
images before proceeding to match against stored object
information. It relies on the pre-specification:of

medium complexity features (edges) for the objects of
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interest. Although this approach works for certain
objects and scenes, we feel that a matching process that
relies on edge features can easily be overloaded by the
myriad of edges and textures that are common to images of

natural scenes.

In an evolving system called VISIONS, Hanson,
Riseman and Williams (Hanson 1975, 1976, '1978a and 1978b,
Riseman 1977, Williams 1977b) present a two stage
approach to computer interpretation of images from

outdoor scenes (see figure 12).

In the first stage, the image is segmented either by
region or edge analysis. In region analysis adjacent
pixels that have similar point features (Nagin 1979) are
joined together. In contrast, edge analysis identifies
dissimilarities in features of adjacent pixels, and
collects them into region boundaries (Prager 1979, Hanéon

1980).

The result of the first stage of processing is an

image segmentation, coded into a graph structure. This

graph is topologically similar to the regions, line

segments, and vertices as they appear in the
segmentation. Each region, segment, and vertex is

represented by a node, and the nodes are connected by
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arcs that relate the regions to their bounding segments,
and the segments to their common vertices. Values
associated with the nodes in the graph describe
attributes of the regions and line segments. Color,
area, and centroid are examples of region attributes, and
contrast and length are examples of line segment

attributes.

The segmentation does not correspond to a surface
interpretation. It serves as an intermediate structure
in which there is a high degree of correspondence between
some of the line segments and real surface boundaries,

and therefore, also between regions and surfaces.

The second stage of the process is designed to
interpret the segmentation in terms of surfaces, objects,
and collections of objects. The problem of
interpretation is divided into three components. They
are the knowledge base, the processes that act on the
knowledge base, and the strategy which applies the

processes.

More recent activity in the VISIONS group (Riseman
1980) include the matching of three dimensional models to
segmentations, and the inclusion of a feedback path,

whereby partially instantiated interpretations can
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influence the segmentation process.

The system presented in this thesis uses portions of
the VISIONS system. The segmentation process is used to
generate an initial model as described in chapter III,
The object interpretation process uses the same structure
as VISIONS and implements two processes in tﬁat
structure. Chapter V details the object interpretation
subsystem, examining both the data structure and the

processes.

I1.3.7 Static scene analysis summary. Static scene

analysié systems that are intended to function on images
of real outdoor scenes have at least one major problem to
solve. That problem is the generation of a surface
interpretation while making as few a E}iori assumptions.
about the scene as possible. On the path toward this
goal various systems have been developed. They have been
used to explore the application of pre-specified
knowledge about the expected scenes. Few have attempted
to build general purpose systems, but those who have show
a multi-stage system that makes use of information both
bottom-up (from the image to descriptions) and top-down

(from the descriptions to the image).
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II.4 Moving Image Analysis Systems

Many moving image analyses have been aimed at
solving the correspondence problem, i.e., to determine
the displacement of imaged scene points between two
views. These analyses are usually applied in domains
where all image points from any single object show motion
components in a plane parallel to the imagé, such as
cloud movements as viewed from a weather satellite. 1In
other research, three-dimensional motion is anélysed, but

in very few scenarios is the camera in motion.

One important aspect of camera motion is occlusion.
An observer, viewing a movie of our scene, can identify
places in the scene where objects occlude one another.
Occlusion is caused by the presence of a nearer object

between the viewer and a more distant object.

The effect of occlusion in moving images has
received attention in image analysis because many motion
understanding systems employ correspondence techniques.
The problem is that inter-image differences due to motion
(displacement of an image component) must be

distinguished from inter-image differences that are

caused by occlusion and "disocclusion" of scene surfaces

(see figure 13). In this figure the lack of correct
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Figure 13. This figure represents the failure of a
correspondence system during occlusion. The image
pairs indicate solid outlines for the tgp image and

dashed outlines for the tj image. The object is being

occluded as it passes behind a vertically oriented
(invisible) object. In the correspondences, arrows

signify corresponding points that would be discovered
if verticies were being matched. Circled dots represent

points visible in only one image for which only
incorrect matches can be found.
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inter-image matches is created by the effect of
occlusion., As we discuss the motion analysis techniques.
the effect of occlusion in each case will become

apparent.

We will briefly examine moving image analysis as a
research area divided into four sub-areas, according to
the types of analysis performed. The sub-areas chosen
are vector field, tracking, predictive modeling, and
relaxation analyses. This examination is followed by a
summary of the salient attributes of these systems as
they apply to the determination of depth in the complgx

domain of moving images from real world scenes.

II.4.1 Vector field techniques. In vector field

analysis, the origins of vectors are fixed (one each) to
a number of points in the first image (see figure 14).
The goal is to discover the end points so that each
vector represents the spatial displacement of a local
image feature between the first and second image (Ullman
1978). This discovery process is usually automated by a
search that relies on a similarity measure (also called a

"matching function" (Burt 1976)).
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Figure l4. vVector field analyses solve
the correspondence problem by treating

the displacements as a field of vectors.
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The resulting field of displacements can be analysed
(with respect to a camera model) to infer the existence
of rigid bodies, and in some cases a three-dimensional
representation is derived. Gibson (Gibson 1966) calls
the fields "optic flow", and Lee (Lee 1974), Cloksin
(Cloksin 1978) and Prager (Prager 1979) demonstrate some

characteristics of the field that determine depth.

'In strictly bottom-up applications, the vector which
describes the displacement of a point can have any
direction and amplitude. 1In some applications,
constraints on the motion of scene points is available
from knowledge of either the approximate disposition of
scene‘surfaces, or the camera displacement (direction and
magnitude of camera motion) between frames. Constraints
on point displacements result in a restricted area of the
image over which the search for a match needs to be

conducted.

Quam pursued a change detection technique using
correlation to achieve registration of a pair of images
as taken from a satellite (Quam 1971). The registration
was modeled as a set of polynomial functions. These
functions were modified so that they would match the

field of vectors obtained from a set of cross-correlation
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measures. The original specification of the functions
requires knowledge of the camera positions and the
curvature of the object (the planet being photographed).
Although this system was not intended to model motion, it
does relate a three-dimensional model to points in an

image pair.

Quam and Hannah demonstrate a system that
automatically determines depth from pairs of satellite
photographs of Mars (Quam 1974). With assumptions of
little change in range or sun angle between the pair of
photographs, the images of corresponding séene points are
compared by using a cross-correlation measure. A model
of the depth is computed from the resulting
displacements. The model is displayed as a contour map

of the planet's surface.

C. Thompson (Thompson 1975) improves the correlation
technique of Hannah (Hannah 1974) by using some criteria
for acceptance of a correlation match. Two of these
criteria are tests which can reject many false matches.
They are based both on similarity of variance between the
areas surrounding the matched points in each image, and
on the similarity of the correlation peak (between the

two images) and the autocorrelation peak in the first
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image. An autocorrelation array of values is obtained by
cross-correlating the first image area with itself. The

second test is equivalent to the question: 1is the match

value obtained equal to the one obtained when the area is

matched with itself? Furthermore, Thompson suggests a
local search around the correlation peak to improve

resolution of displacement.

Thompson then deals with objects that change in size
or shape between the images, a phenomenon he terms
"perspective distortion", i.e., the effect of
three-dimensional translation of the object. If the
angle of a surface (relative to the camera position) is
known, then the search for a match between image points
that lie on the surface can be directed according to an
expected displacement. Thus, a reduction in search

effort is possible if the surface orientation is known

beforehand.

Nevatia shows that correlation can be used in a
succession of movie frames (Nevatia 1976) to determine
depth. The scene contains one object - a cup that is
covered with dark wrinkled paper. An "interest"
predicate chooses windows that are good candidates for

correlation matching. Rather than computing the
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correlation coefficient, he uses the mean square
difference which was computatiohally more efficient, and

produced adequate results.

The search for a match can be reduced by having a
model of the camera-object motion between images.
Because Nevatia used a single rotating object, all points
move along curves in the images (see figure 15). By
searching in the vicinity of these curves, the
correspondence is quickly found. Integer (pixel)
displacements are found between successive views, and the
path of the point is interpolated across the sequence by
fitting a hyperbolic arec. A three-dimensional model is
then inferred for the points on the object that the

interest predicate selected.

W. Thompson has recently demonstrated a system for
segmenting an image pair based on contrast and motion
(Thompson 1979). By using a technique developed by Limb
and Murphy (Limb 1975) which was designed to reduce
television data bandwidth, Thompson derives motion
estimates from intensity gradient information. The
spatial slope of intensity is measured around a point in
one image, and the value of intensity at the same point

in the second image is recorded (see figure 16). The
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image motion search areas
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Figure 15. Because Nevatia had a model of

the motion of the object, he could predict

the approximate displacement area for matching.
The square areas were searched for in the
adjacent curved areas in the succeding frame.
The object was an inverted cup with wrinkled
paper covering its surface.
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spatial displacement that places the second intensity
value on the intensity slope of the first image is used

as a local displacement estimate.

A set of global displacement estimates is then
formed by collecting the local estimates in a Hough
transform. Peaks in the transform space cofrespond to
frequently occurring motion vectors, i.e., image areas
that move together. Each local estimate is then replaced
by the global estimate which it most closely matches.

The resulting vector field is then used in the

segmentation process.

The segmentation process first considers areas of
strong gradient to form regions, under the assumption the
image edges often correspond to surface edges. Then
adjacent regions containing similar displacement vectors
are merged, and any region covering different
displacements can be split. After splitting and merging,

a final segmentation is formed.

An advantage to this bottom-up system is that it
does not perform a search, either locally or globally.
Also, this system responds to both static and dynamic
pictorial cues, perhaps easing the inéorporation of its

techniques into existing static analysis systems.
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Unfortunately, the process of identifying sets of
points as separate objects, based on the similarity of
their displacement vectors, rules out the possibility of
arbitrary motion. With the camera in motion, |
displacements of image points from a single surface
generally vary in both amplitude and direction.
Additionally, with multiple objects there are likely to
be many objects with similar, perhaps overlapping,

distributions of displacement vectors.

II.4.2 Tracking techniques. Jain and Nagel demonstrate a

system for extracting moving objects from television
images when the camera is stationary (Jain 1978). The
scene used is a street corner as viewed from above, and
the moving objects are automobiles and pedestrians. The
system does not have any prior knowledge of the type of

scene or any models of objects.

This system first measures statistics of the
intensity values across a pair of images. Then,
inter-image differences of these statistics show areas of
occlusion and disocclusion, and hence, the leading and
trailing edges of all moving objects (see figure 17).
These moving edges are used to compute the velocity and

size of the moving objects. If the system is given
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enough frames of the sequence (so that all moving objects
travel at least their length) it can automatically remove
the moving objects from one frame to produce a reference

image of only the stationary scene components.

In another work extending this technique, Dreschler
and Nagel extract the moving portion of television images
where the camera is stationary (Dreschler 1978). Regions
are produced by pointwise intensity differences between a
pair of frames. These regions are then hypothesized as
objects. A set of features is measured across each
region to define a vector in multi-dimensional feature
space. Because the features of an object change little
between successive frames, a cluster of vectors is formed
by one object from a sequence of images. These clusters
are found through a minimal spanning tree search. Any
particular object can then be found in each frame by

mapping back from feature space to the images.

Radig demonstrates a region matching technique for
tracking and describing moving objects in the same
scenario (a stationary background) (Radig 1978).
Features that represent the intensity value and the
gradient of intensities are measured in each frame.

These features are collected into regions of similarity
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and compared with other regions in the preceeding and
succeeding frames. Comparisons of these features
effectively match the regions' internal structure when

linking together regions through time.

Milgram developes a technique that tracks the moving
image of military targets as they appear in infra-red
images (Milgram 1977). 1In this domain, a threshold of
the image is sufficient to separate the target from the
background. The selection of the threshold is automated
by searching for that threshold in each image which
produces the most consistent match of the target size,
shape, and expected position. A dynamic programming

approach is employed for the search phase.

Price solves change detection problems in image
pairs from a variety of scenes (Price 1976). The
technique first segments both images independently, and
then matches regions based on the similarity of their
features. Adjacency of other regions influences the
match process (see figure 18). The system is
demonstrated on images from aerial and terrestrial

scenes, as well as radar images.
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This symbolic matching technique is capable of
finding correspondence of regions where there are many
regions in each image. Changes in camera position, or in
the positions of an object could be handled easily, and
mis-matches of large regions were infrequent. The
technique was shown to be faster than cross-correlation
and better than image differencing techniques for the

problem of change detection.

Let us consider the utility of several of the
techniques in our problem of motion analysig. From the
work on tracking we see that simple inter-image
differencing techniques are adequate for detecting moving
portions of images. When the camera is moving through

the environment however, all portions of the image,

except for very distant objects, are in motion.

Thresholding was discarded as a surface or object
extraction method in this thesis because, in real world
scenes, simple thresholding does not extract object
boundaries. We do employ a version of tracking that
corrects fof errors in our system by forming regions from
difference images. This is explained in chapter III,

section III.2.5.
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Comparison of two segmentations is probably not a
suitable method for motion analysis. Small regions
change very rapidly between images of real terrestrial
scenes. They are quite often near the edges of surfaces
where resolution of displacement is most critical. If
small regions are not collected into the surfaces they
are expected to represent, then measurement of region
displacement is grossly inaccurate and, thus, inadequate

for determination of depth.

II.4.3 Predictive modeling. Martin and Aggarwal examine
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