PARAMETRIZED DATA TYPES DO NOT NEED
HIGHLY CONSTRAINED PARAMETERS

Michael A. Arbib
Computer and Information Science
and

Ernest G. Manes)
Mathematics and Statistics

COINS Technical Report 81-23

(September 1981)

(Revised October 1982)

To éppear in the journal Information and Control.

PARAMETRIZED DATA TYPES DO NOT NEED
HIGHLY CONSTRAINED PARAMETERS!

Michael A. Arbib
Computer and Information Science:

Ernest G. Manes
Mathematics and Statistics
University of Massachusetts

Amherst, MA 01003

Abstract

We argue that data types may be considered as objects in any suitable
category, and need not necessarily be ordered structures or many-sorted
algebras. We show that arrays may be specified having as parameter any
object from a category ¢ with finite products and coproducts, if products
distribute over coproducts. We extend the Lehmann-Smyth least fixpoint
approach to recursively-defined data types by introducing the dual notion
of greatest fixpoint, which allows us to define infinite 1ists and trees
without recourse to domains bearing a partial order structure. Finally, we
show how the least fixpoint approach allows us to define queues directly in

terms of stacks, rather than through a separate equational specification.

1 The research reported in this paper was supported in part by Grant
No. MCS 80-05112 from the National Science Foundation.

1. What is a Data Type?

The notion "recursively-defined data type" has two meanings: Perhaps
the one more common in the literature on abstract specification is that in
which it is the individual data type which receives the recursive definition,

as in the definition

L=1+AxL

for (possibly empty) lists of elements from A. It is in this sense that

we shall use a recursively-defined data type in this paper. On the other

hand, in a language with structured data types as in PASCAL, we may say that
it is the family of data types which is recursively defined: we start with
certain basic data types, and then recursively define new data types through
the use of arrays, records, files, pointers, etc. When we have a scheme for
such building, e.g., arrays built from an arbitrary data type, we may speak

of the scheme as a parametrized data type. In this paper we build on the

work of earlier authors to offer a somewhat eclectic approach to both types
of specification which (although using some basic machinery from categorical
algebra) seems to be more "intuitive"” than other formal approaches, without
losing rigor. In this introduction, we give a general overview of the con-
straints from which we free our data types, and then provide a more detailed

development in subsequent sections.

Scott (e.g., [1977]) has argued that recursively-defined data types
are to be determined by successive approximation, and should thus be defined

in some category, Dom, of ordered structures, such as complete lattices or

w-cpos. By extension, then, there is a school of thought which views a
data type as being simply an object of a suitable category, Dom.

Other authors (e.g. Guttag [1977], Goguen, Wagner, Thatcher and Wright
[1975], Liskov and Zilles [1974]) have stressed that a data type encompasses
not only a carrier (e.g., the set of integers), but also operations (e.g.,
addition, test for positivity), and that these operations may involve sets

other than the carrier (e.g., Bool = {true, false}). An abstract specifi-

cation of a data type is then to be given by a set of equations the operations
must satisfy (or, more'generally, a set of conditional specifications that
these and other 'hidden' operations must satisfy). A data type is then to
be seen as some generalized variety of many-sorted algebras.
.Our general viewpoint will be as follows:
(i) Data types are objects of a suitable category.

(ii) In general, order structure need not be placed on the objects of the
category. To the extent that successive approximations determine a
recursively-defined data type, they will arise naturally as chains of
morphisms in a limit construction (but not in a colimit construction).

(ii1) While equational specification is appropriate for certain data types,
there will often be direct constructions which are more ‘natural’
from a programming viewpoint. For example, we shall show how to
construct a queue from a stack, rather than giving it a direct equa-
tional specification (which would say nothing of the normal FIFO vs.

LIFO relation between queue and stack).

We shall give examples of what we mean by (i) in Section 2; shall turn
to (ii) in Section 3; and treat (iii) in Section 4. Section 2 is elementary,

to give the flavor of our approach; Sections 3 and 4 are more technical in

their use of category theory.

2. 'Array' as a Parametrized Data Type

The dictum "data types are objects in a suitable category" has the
corollary that "parametrized data types are ways of constructing objects
from other objects (the parameters)", it being left open as to what cate-
gories the objects belong to. Perhaps as fundamental a parametrized data

type as any is the array:

array 1...n of C

th cartesian power of the carrier of

is a data type whose carrier is then
the data type C, and which comes equipped with operations for reading and
assigning any one of the n components. The point to be stressed is that C
need not be a set; it could be a file or record or stack of records of files,
etc. In each case, the components of the array are not to be seen as
set elements, but rather as structured entities subject to the operations
of the data type C.

Category theory is well-suited to handle this sort of situation. For

example, the familiar definition of Cartesian product, A, x A, = {(a], a2) l

ay € A], a, € Az}, of two sets A and B, receives the following generalization:

Definition: In a category 1§ an object A equipped with two morphisms

pry ¢ A —+-A] and pry : A —+-A2 is said to be the product of A] and A2
if for ever pair of morphisms f1 : C —+—A] and f2 : C —+—A2 there is a
unique f : C — A such that pri-f = fi as shown in the 'commutative

diagram'.

N
A \f', Ay
| /
1 ¢ 7
[In the category Set of sets and functions, take A = A; x A,, prj(a],az)

= a; f(c) = (fi(c)s fy(c)).]

Thinking of the notion of product as "array in miniature", we make the
following observations which bear upon the general notion of a parametrized
data type:

(a) The definition makes sense in every category.

(b) However, in a given category it is a matter to be determined
whether (i) every pair of objects has a product; or (ii) if a
given pair of objects has a product.

(c) If the product of two objects exists, it is unique up to unique

isomorphism.

Combining observations (a) and (b), it will often prove convenient,
when giving a general categorical construction (parametric data type speci-
fication), to place restrictions on the category K which guarantee that the
construction goes through for all choices of the objects (parameters). To
illustrate, we now give a general definition of array 1...n of C, first
working with Set, and then generalizing the construction so that it works

in a broad class of categories K.

Consider, then, the data type consisting of arrays of length n with

entries from the set C. It is given by the set c" together with two maps

as follows, where [n] denotes the set {1,...,n}:
"x[n] —C, (xi)w x[i] = pry(x) o
1
" x ¢ x[n] —c", ((c],.. ,cn),c,i)» (c]...,ci_],c,ciﬂ,. ,cn)

where the latter makes possible the assignment x[i] :=c
We may say that if C is an object of the category Set, then array 1..n

is an object of the functor category (see, e.g., Arbib and Manes

of C
[1975], p. 153) ﬁA where A is the category
[J—]
(2)
R }

with 4 objects and 2 non-identity morphisms as shown. We wish to view

array 1..n of (+) as a functor X from Set to Se=_t_A. Its action on objects
f: C—-—D to

is given by (1), while its action on morphisms sends

XC — XD with the diagrams

Xf :
M"x[n] —>¢C c" x ¢ x[n] —_—"
. . n .

f"><1dnl Lf fixfxid lfn
D" x[n] —— D D" x D x [n] —_—D"

which do commute for any function f.

Clearly, the above definition only uses some very general properties
in the following

of Set. Let us then define X = array 1..n of (-)

general setting:

K has finite products and coproducts
(3)

(including a terminal object, 1), and
Ax - preserves coproducts for each object A of .

-6 -

Generalizing our previous notation, write [n] for the coproduct of
n copies of 1. We first define c" as the product of n copies of C, and

then define C"x[n] —- C by

while C"xCx[n] — C" is defined by

CnXCX[n]———->Cn
N o~ .
C ><Cx1nj
pr
CnxCx] k
b
CnxC——————rC
pr, if j=k
where 9ip =

J Pry -Pry if not.

Extending the definition to morphisms, array 1..n of (f), 1is a straight-

forward exercise, and is omitted.

We have thus defined the parametrized data type array 1..n of ()
in terms of a functor from K to.ﬁLA which is defined for any category
satisfying the conditions (3), with A the diagram category of (2). The
pérameter C in array 1..n of C can then be any object of any such category
K. and since array 1..n of C lives in JQA, all the operations of K are
"packed" within the specification.

It seems to us that, in this case, any further restrictions upon %

would be gratuitous. We emphasize, of course, that other specifications may

-7 -

require greater or lesser stringency in choosing the categories whose
objects serve as parameters. We may contrast this with the definition of

Thatcher, Wagner and Wright [in press]:

A parametrized specification consists of a parameter signature Z,
parameter conditions E, resultant signature Z' (with £ < £') and
resultant axioms E'. ... The specified parametrized type is the functor

Fe ¢ Algy ¢ — Algy g
which is obtained from the functor F : Alg, —~ Algs, [+ Wwhich
H]

takes each I-algebra A to the (Z',E')-algebra freely generated by A,

restricting it to algebras satisfying E.

In contrast to our definition of arrays, we may note:

(a) That the specified parametrized type is a single functor K —- K '
for a fixed K, rather than a general recipe for constructing functors
applicable to a wide class of categories K; and

(b) The category XK is restricted to be of the specific form ﬂlg{,E,
the category of (Z,E)-algebras.

3. Fixpoint Approaches to Data Types'®

Where Scott [1977] has introduced recursively-defined data types as
least fixed points of continuous functionals and Goguen, Thatcher, Wagner
and Wright [1975] have defined such data types as initial algebras, Lehmann
and Smyth [1981] and others have constructed such data types as 'least fix- '
points' of functorial equations XQ =Q for X : K —X an endofunctor.
The present section continues the work of Lehmann and Smyth by exploring the

dual construction of a 'greatest fixed point'. In particular, we show that

1 A preliminary version of this section was presented as Arbib and Manes
[1980b].

-8 -

many interesting data types are defined as greatest fixpoints of functorial
equations XQ = Q that live in Set. Successive approximations are given
by chains of maps in Set; thus no additional order structure need be placed

on the objects of the category.

An isomorphism u : XL — L 1is said to be a least fixpoint of X if it

has the universal property

XL —E—

X¢l l¢ (1)

that for any § : XQ = Q@ (not necessarily an isomorphism) there is a
unique ¢ such that (1) commutes.
We here introduce a dual concept: We say that an isomorphism

M: G— XG is a greatest fixpoint of X if it satisfies the dual universal

property

Q
wl lxw (2)
G 4

e

that for arbitrary A : Q — XQ, there is a unique ¢ : Q — G such that

(2) commutes.

3.1. Examples of Greatest Fixpoints

Given an input alphabet A and an output set Y, consider the following
specification of the 'state' of an automaton: a state is an output together

with a next-state function from the inputs. In functorial form,

XQ=0Q, Xa=Yx[A—Q]. (3)

-9 -

10

In the category Set, the least fixpoint is the empty set. On the other

hand, (3) has [A* — Y] as greatest fixpoint, and the universal property

(2) reads as follows:

- (B
Q : KY) » Y x[A—-Q]

o l 1 Xo (4)

[A* —-Y] —g VX [A—-[A* —=-Y]]

Here, the isomorphism M sends a map f : A* — Y to the pair (f(A), fL(_))
where for each a in A, fLa is the map ww f(aw). Any A : Q — Yx[A — Q]
amounts to a state-transition y : QxA — A together with an output map

B:Q—Y, and (4) then unpacks as

B(q)
o(v(q.a))(w)

a(q)(n)
a(q)(aw)

Which defines o(q) as the observability map of q, as in automata theory-.

For the second example, assume given a function f : A—- A + B and
consider the data type A*B + A~ that arises in defining the historical
iterate g : A — A*B + A~ of f. Here g(a) = (a],...,an,b) in A*B if
iteration terminates after passing through the sequence (al,...,an) of
'states' in A, before exit with value b; while g(a) is the infinite sequence
of 'states' in A obtained by repeated application of f if exit never occurs.

This type satisfies theAfixpoint equation
Xq=Q, XQ=(AxQ)+B (5)

whose least fixpoint is only A*B but whose greatest fixpoint is indeed

A*B + A, with the isomorphism

M: A*B + A~ — (Ax (A*B + A”)) + B

-10 -

11

sending b in A*B to b in B; awb in A*B to (a,wb) in AxA*B; and aw in A

to (a,w) in AxA”. Now consider the least fixpoint property:

Q b . (AxQ)+B

| | (6)

A*B+A” — 5 Ax (A*B+A") +B

We may (Arbib and Manes, 1980a) decompose A into two partial functions 84

with domain A'](A><Q) and A, with domain A'](B). Then we define the

partial function A]("): Q —- A*xQ inductively as follows:

5,{q) = (n,0)

and forn 2 1,
(a]...an,qn) if A](n'])= (a]...an_],qn_]) is defined,
A](")(q) = and Ay(q, 1) = (a,,9,) is defined

undefined if not.

It is then clear that

38y...3,... in A” if Al(")(q) = (a;...a.,q,) is defined

glq) = for every n21.

. . (n-1) _ N\ s
b in A*B if A, (q) = (a]...an_],qn_]) is
defined, and Az(qn_]) = b.

CPEPRRRY I

In particular, if we replace f : A— A +B by A = (diag + B)of :
A—A+B—AxA +B, (where diag(a) = (a,a)) then we do recapture the
desired historical iterate g, and (6) gives the recursive definition

b if f(a) = b in B

g(a) =
f(a).g(f(a)) otherwise.

-1 -

12

These examples suggest that much more can be done in the category of
sets than was previously believed. With B =@ in (6), we see that A’ is

the greatest fixpoint of QX = AxQ in Set, countering Scott's claim that

A” can best be constructed as a topological or order-theoretic 'completion’
of A*. To see why a category Dom of ordered domains is not required note
that the important idea of 'finite approximation' in Scott's work arises
naturally in the category of sets in view of the way inverse limits are
constructed in that category:

Under suitable conditions on X (reviewed in the next subsection) the

least fixpoint of X is given by the colimit construction

Xnt xn+1

L = colim (X"0 0) (7)

n

where 0 is initial in the category, and t : 0 — X0 is the unique map;
and we now observe that many functors satisfy the dual condition which

yields the greatest fixpoint as the limit (i.e., inverse limit)
. n+l XMy n
G=1lim (X' '1 ———— X'1) (8)
n
where 1 is terminal in the category and u : X1 — 1 is the unique map.

In the category of sets, an element q of G is represented by a sequence
q, € XM in which 'qn approximates qn+]'. For example, if (8) arises from
(5), write 1= {1}. If q-= a]...akb ¢ A*B then Gg = Ls 9y = ;s
Qo = 81855 +--s QT 3p-..3ps Qs = a]...akb = GQuyp = --o» whereas
q, is similarly defined (but not ultimately constant) when q ¢ A”.

After a summary of functorial results (mostly known) in 3.2 we shall

present further examples in tne category of sets in 3.3, with particular

emphasis on finite approximations of infinite trees.

- 12 -

13

3.2 Functorial Fixpoints

An w-chain in a category X is a diagram of form

—_— Kn+] — Kn — s —_— KZ _— K-l — KO .

A functor K —~Z is continuous if it preserves limits of w-chains.
Dually, such a functor is co-continuous if it preserves colimits of
w-cochains (so that our co-continuous functors are what others have called
continuous). A functor simultaneously continuous and co-continuous we

shall call bicontinuous. The following result is standard category theory:

Theorem 1: Every pointwise product of continuous functors is continuous.
Every pointwise coproduct of co-continuous functors is co-continuous. The

identity functor and all constant functors are bicontinuous. g

For the balance of this section we fix a functor X : X —X and
assume K has an initial object 0, a terminal object 1 and whatever limits
of w-chains and colimits of w-cochains are needed.

An X-dynamics (Arbib and Manes, 1974) is a pair (Q,8) with & : XQ —Q

and the category of all X-dynamics with morphisms

xQ—S » g

Xf l lf | (9)

Q=

is written Dyn(X). An X-codynamics is a pair (Q,A) with A : Q — XQ,

and the category of all X-codynamics with morphisms as in (10)

- 13 -

14

QI Al +XQI
fl lX.f (10)
Q - > XQ

is written Codyn(X). A fixpoint of X is a pair (Q,8) with & : XQ —Q
an isomorphism. In this case (Q,8) is an X-dynamics and (Q,G-]) is an
X-codynamics.

The results for Dyn(X) in Theorems 2 and 3 are from the literature;
the results for CoDyn(X) follow simply by duality but appear not to have
been noted before for ég;. Related concepts and transfinite versions
of Theorem 3 below were extensively studied by a number of workers in
Prague in a series of papers initiated by Koubek [1971], and surveyed
by Addmek and Trnkova [1980]. The early result cited in the next

theorem was in a different context.

Theorem 2 (attr1buted to Lambek in Barr [1970]) If Dyn(X) has an initial

object, it is an isomorphism. If CoDyn(X) has a terminal object it is an

isomorphism.

This allows us to simplify (1) and (2) by dropping the isomorphism
condition. The least fixpoint of X is the initial object of Dyn(X); the

greatest fixpoint of X is the terminal object of CoDyn(X).

Theorem 3 (Adamek and Koubek [1979], Lehmann and Smyth [1981]): If X is

continuous and G is the limit of (8) with projections Py ¢ G — X" then

there exists unique M such that

XG - ———-——r Xnﬂ
‘\\\\\ //////:+1

-14 -

and (G,M) is the
fixpoint of X).

15

terminal object of CoDyn(X) (and hence is the greatest

Dually, if X is co-continuous and L is the colimit of (7)

with injections 1n : X" — L, there exists unique p such that
"o o
i~ /

L

and (L,p) is the initial object of Dyn(X) (and so is the least fixpoint

of X). 0

In this context, it is interesting to recall our original motivation
for the study of Dyn(X) (Arbib and Manes, 1974). We may view an X-dynamics

(Q,8) equipped with an 'initial state map' < :

(2

QX + I ————~ Q. Let us use XI for the functor QXI = QX + I. We say

I —Q as a map

that X : & —X is a recursion process (or input process, or varietor)

if XI has a least fixpoint for every I in XK, and we then refer to the

unique r defined by

XqL I > L

i
XIr i ;r
X;Q —> Q

as the reachability map of the 'initialized machine' (Q,8,I,7). We thus
have

Corollary: Let & have binary coproducts and w-colimits. Then every
continuous X is a recursion process.

Proof: Just apply the above result to XI’ using Theorems 1 and 3. 0

-15 -

16

3.3 Infinite Trees in the Category of Sets

Theorem 4: For functors Set —- Set, any finite product of co-continuous
functors is co-continuous and any coproduct of continuous fuactors is con-
tinuous. Hence bicontinuous functors are closed under finite products and

arbitrary coproducts. ‘ O

Let Q be an operator domain, that is, Q is a disjoint sequence (Qn)

of sets. X, : Set — Set is defined as

X, = 1L 8 x ()" (12)

Then X, is bicontinuous.

The least fixpoint of X is the set of all finitely branching trees
in which n-ary branch nodes are labelled by an element of Qn (so that all
leaves are labelled by elements of QO).

To describe the greatest fixpoint, let T be the set of all finitely
_branching trees in which n-ary branch nodes for n > 1 are labelied by
elements of Qn but leaves are labelled by elements of QO or by 1. We shall
use {1} as the terminal object of Set. For r, s e Twrite r= s (r pro-

duces s) if s is obtained from r by substituting for each leaf L in r

(if any) a tree of form

| /w\ (13)
1 L

for w in some Qm' (If m = 0 the substitution tree is just an element of
QO). The greatest fixpoint G is the set of all sequences (rn),in which

ro =t1and r_ = r

n N+l To see the isomorphism M : G ——+-XwG, observe

- 16 -

17

that given (rn) in G, ry has form (13) for some w € o and that the sub-

th

sequent evolution of the i~ leaf 1 is a sequence (s;) in G;

r (w,S],...,sm) describes M.
In the universal property (2), ¢ is governed by the interesting

recursive equation

w
M(v(q)) = / \

way) " wlay)

w
where A(q) = //i.>\
4 qm

i
Y

Thus, if A(qi) = ;
r. ro; -
j m(i)

the first three entries of y(q) are

AN
A l/.'f'\l

L,

If both (7) and (8) are defined for a given X, then by (1) and (2)
there is a unique T : L — G such that XI = MTu. Here, T embeds each

tree in L as an ultimately constant sequence. For example

“2
A

w3 embeds as :
b/l,\d (15)
w2 w2 W
/“’2 / N\ / N\ / N\
L, R \;., a w3 > @ wy, Wa »
VAR /1\ / I\
L L 1 b ¢ d b ¢ d

- 17 -

18

The e*ample culminating in (6) is the special case 9 = B, Ql = A,
all other Qm empty.

Further specialization occurs when A, B each have one element. Here
the least fixpoint is the Peano natural numbers, the universal property (1)

being the principle of simple recursion:

0,
xo\‘

A codynamics Q —~Q + 1 amounts to a partial function from Q to Q. The

S
———

1

=
=

x(0) = Xg
x(n+1) = 6(x(n))

X

8

O -—
O ——
x

greatest fixpoint is N + {o} with M : N + {o} —— N + {=} + 1 the
difference function M(n) = n-1 ifn>0, M) =1 (where 1 = {1}),

M(x) = », The universal property is

A o q+1

q
"’l l"’”
+{

oo} ——M——+ —_N_-+{°°}+]

Here
o if y(q) ==
M(p(q)) = ¢ w(a) -1 if v(q) > 0, y(q) # 0O
L if v(q) = 0.
But p(a(q)) if A(q) is defined
(p+1) (q) =
L if not.

Thus w(q) = 0 if A(q) is undefined, while w(q) =n if aX(q) is defined

o if Ak(q) is always

for 1 <k <n but A"(q) is undefined, and (q)
defined.

- 18 -

19

The functor of (3) is of the form X9 (set Q = Y) and so is

bicontinuous.

4. Stacks and Queues .

Given a set E of elements, we may (as do, e.g., Lehmann and Smyth
[1981]) obtain the stack of elements from E by forming the least fixpoint

of the functor XQ =1 + ExQ, which is the isomorphism
pu:l1+ExS—S.

This defines stack functions by

]

A u-in.l : 1 —= S, which defines the empty stack, and

push u-in2 : ExS —S.

1

From p ' : S— 1+ ExS, we obtain the partial functions

o S—-1 defined only on the empty stack, and
B:S—ExS defined only on nonempty stacks, which

decomposes to yield the two stack-functions

top = pr]-B : S—-E, and
pop = prz-s ¢ S —S.

In short, all the operations associated with the stack data type may be
‘unpacked' from the isomorphism u, and so we may say that the least fixed
point u: 1+ ExS—-S 1is the data type.

It is then clear that the notion of stack is immediately available as

a parametrized data type:

- 19 -

20

Definition: Let E be any object of a category ,’k, such that the functor
XEQ =1+ ExQ is defined and co-continuous. Then the parametrized data

type stack of () is defined for E, and sends E to the least fixpoint

e 2 1+ ExSp —Sp of X;. Thus, for each suitable E in &, stack of E
is an object of the diagram category _‘K,'-“ whose objects are single

morphisms in XK.

Let us now.look at the colimit construction for stack of E (abbre-

viating X to X, and S¢ to S). S is defined by the colimit

0—>-X0——>-X0-——>...-——>X0—>...

We note, by induction, that

1
—3
+
iR
—

X0 Ex0

2

X~0 Ex1=1+E

n
o
+

1+E+ ...+ En'], and we shall use the latter

0

~and, generally, x"o
form for X"0.
Because the functor X preserves colimits, we have that (xn+10 | n20)

n+l

has colimit (an : X''0 —~ XS). Since we have the cocone

-k
(X"HO B .4 S), we obtain u as the unique XS —-S such that

Xk |
"o =1+ Exx"0 N . XS

-Kn"']\h

- 20 -~

u

g - -

21

We now show that this construction enables us to define a queue as
the FIFO version of the stack (which is LIFO). We will then contrast this
specification with the equational specification approach.

On the model of the definition of top and pop, we want to use the
above definition of a stack to yield a queue simply by adding the definition
for the partial functions (each with the nonempty stacks as domain of

definition):

last: S —E which returns the last element of a nonempty stack; and

front: S — S which returns the stack obtained by deleting the last
element from a nonempty stack.

We must do this using only the apparatus from the definition of u. Just
as we obtained top and pop from u" :S—- 1+ ExS, so shall we now
define a function y : S—-1 + SxE from which we may obtain last and
front. Note well that this construction goes through for any E which admits
the definition of stack of E.

To define y : S —- 1 + SxE, we define maps vy, : X"0 —1 + SxE,

and then obtain y as the unique solution of

The inductive definition of \ proceeds as follows:

Yo © 10— 1+SxE

Then, for n>1, we motivate the definition of

=21 -

22
Yooyt X0 =1+ Exx0 — 1 + SxE
n+l °

by the set-theoretic case (noting that the E in SxE and E xX"0 are 'at

opposite ends'). Since
"o =1+ Ex(1 +Exx"0) =1 +Ex1 +ExExX"To

there are three situations for an element w of Xn+]0 in Set:

w A= YW= A (taking 1={A} in Set

W (e,A) = Yn+'|w = (A,E)

w = (e,s) with s # A = Yn+1(w) = (e-front(s), last(s)).

Given y, and y, as above, we use this motivation to define vy (nz21)
0 1 n+l

in the general setting by the diagram:

I

(Ex1)+(ExSxE)

((?\: pr]))
(push«(pryspry)sprs)

I SxE

|
|
|
|
|
II Ex(1+SxE)
|
|
|
|
|
|
|

in
1+SxE 2

where A = A+! : Ex1 —1 — S, and we have assumed our category such

that products distribute over coproducts.

- 22 -

23

We have already mentioned the approach (let us call it ES) to the
abstract specification of data types which uses an equational specification
of many-sorted algebras. In this approach, a queue is defined by two sorts

S and E, together with operators

A:1 —S
push : ExS —- S
front : S — S + {error}

last : S —E + {error}
subject to the equations (using the obvious obbreviations p, f and 2):

f(A) = error 2(A) = error
f(p(e,A)) = A 2(p(e,n)) = e
f(p(e;» pley,s)) = plegs f(pleyss)))
2(p(e;» pley,s))) = Lpleyss)).

Confronted with these equations, the ES approach then constructs the
initial algebra which corresponds to them. Given the nature of the functions
involved, the construction is e]aborate.’ By its nature, it does not make
it at all obvious that the resultant data structure is indeed a "stack
with FIFO retrieval".

However, the reader will immediately see that the intuition that led
the ES theorist to write down the equations -- and his job is just begun --
is what led us to write down the inductive definition of y on the stack --
and our job is already completed. Specifically, the three pairs of equations

correspond to the three pieces of

n-1

10y =1 + Ex1 + ExExX""o

X" = 1 + Ex(1 + ExX

with typical elements A, (e,A) and (eg, ey, s).

- 23 -

24

4. Remarks by way of Conclusion

The main contribution of this paper is the systematic introduction of

gfeatest fixpoints into the setting proposed by Lehmann and Smyth [1981]
(but without emphasis on categories of ordered sets). Why have these
greatest fixpoints not received attention previously? They were always
available as the dual theory to that for least fixpoints. We offer two
possible explanations.

| The first evolves from a well-known method of assigning semantics to a
recuysive specification of a partial function D —-D for some set D. Regard
the set Pfn(D,D) of all such functions as an w-complete poset with the ex-
tension ordering and with least element the everywhere undefined function ..

Usually, the specification

f 2= p(f)
is such that y : Pfn(D,D) —Pfn(D,D) is continuous, and so by the theorem

of Kleene [1952], it has the supremum of

L < yp(a) < wZ(L) < ...

for least fixpoint (the desired semantics in most cases). As Lehmann and
Smyth point out, this is a special case of the functorial least fixpoint.

The details are well-known and take the form

special case general case
partially-ordered set category

monotone map functor

continuous map co-continuous functor
least element initial object

equality isomorphism.

25

The greatest fixpoint of y: Pfn(D,D) —Pfn(D,D) need not exist because
Pfn(D,D) does not have a greatest element. We suggest, then, that one reason
greatest fixpoints have been ignored is that people sought to generalize
exclusively from recursive specifications of functions to recursive speci-
fications of data types.

_ - A second possible reason surfaced in conversation with Gordon Plotkin
in June 1982. Apparently he and Smyth had considered the greatest fixpoint
construction in Set but had abandoned it because of an inability to deal
with incomplete specification. For example, in the set A*+-Aw arising from
the greatest fixpoint of XQ = (AxQ) + B (with B a 1-element set), there are
l1imit projections representing an infinite 1ist as the sequence of its finite

sublists, but thereiis no actual list of form

a]az. . .an.L

where L is an 'as yet undetermined' list. We leave it to the reader to judge
if this objection is countered by the results of Section 3.3. And we cer-
tainly concede that there are enough least fixpoints of functors on categories
of domains to produce the principal carrier of all data types of interest.
Our advocacy of the greatest fixpoint construction is based on its universal
property 3(2). It is hard to imagine how the observability map of 3(4) could
arise using the universal property of a least fixpoint. Indeed, it is some-
times natural to use both universal properties together. Thus, the usual
iterate 1’Jr :A—B of f: A—A+B arises as the composition

p * last

oA ——0 aA"B+A" —— A'B —38

where g is the historical iterate of Section 3 arising from the universal

property of a greatest fixpoint, p is the partial function p(w) =w with

26

domain A*B and last : A*B —B maps a]...anb to b. DBut last arises

from the universal property 3(1) of the least fixpoint of 3(5):

(AA'B)+B —* 5 A'B

l last
h

(AxB)+B —— > B

(iidxlast)+id l

where h(a,b) = b, h(b) = b.

Such examples suggest that the mathematical theory of data types will
best be served by the explicit recognition of the greatest fixpoint, and by
the freeing of the study of fixpoints from any necessary dependence on

ordered objects.

27

References

J. Addmek and V. Koubek: Least fixed point of a functor, J. Comp. Syst.

Sci. 19 (1979) 163-178.

J. Addmek and V. Trnkovd: Varietors and machines, Technical Report 78-6

M.A.

M.A.

M.A.

M.A.

(1978), Computer and Information Science Dept., Univ. of Massachusetts
at Amherst.

Arbib and E.G. Manes: Machines in a category: an expository intro-
duction, SIAM Review 16 (1974) 163-192.

?rbib)and E.G. Manes: Arrows, Structures and Functors, Academic Press
1975).

Arbib and E.G. Manes: Partially-additive categories and flow-diagram
semantics, J. Algebra 62 (1980a) 203-227.

Arbib and E.G. Manes: The greatest fixpoint approach to data types,
Proc. 3rd Workshop Meeting on Categorical and Algebraic Methods in
Computer Science and System Theory, Dortmund, West Germany, Nov. 3-7,
1980b.

M. Barr: Coequalizers and free triples, Math. Zeit. 116 (1970) 307-322.

J.A.

J.V.

s.C.

Goguen, J.W. Thatcher, E.G. Wagner and J.B. Wright: Abstract data
types as initial algebras and correctness of data representations,
Proc. Conf. on Computer Graphics, Pattern Recognition and Data

Structures, May 1975.

Guttag: Abstract data types and the development of data structures,

Communications of the ACM 20 (1977) 396-404.

K]eehe: Iﬁtroduction to Metamathehatics, Van Nostrand (1952).

V. Koubek: Set functors, Comm. Math. Univ. Carolinae 12 (1971) 175-195.

D.d.

Lehmann and M.B. Smyth: Algebraic specification of data types: a
synthetic approach, Math. Systems Theory 14 (1981) 97-139.

B. Liskov and S. Zilles: Programming with abstract data types, Proc. ACM

D.S.

M.B.

J.W.

SIGPLAN Conf. Very High Level Languages, SIGPLAN Notices 9 {1974) 50-60.

Scott: Continuous lattices, in Toposes, Algebraic Geometry and Logic,
Springer Lecture Notes in Mathematics 274 (1977) 97-136.

Smyth: Category-theoretic solution of recursive domain equations,
Univ. of Warwick Theory of Computation Report No. 14 (1976) 12 pp.

Thatcher, E.G. Wagner and J.B. Wright: Data type specification,
parametrization and the power of specification techniques, ACM Trans.
Prog. Lang. and Systems (in press).

