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1. INTRODUCTION

The ability to generate examples having specified propefties is
important in disciplines like mathematics, linguistics,
philosophy, law and computer science [Baker 1978; Collins 1979:;
Levi 1949; Rissland 1978a, 1980al. Examples lie at the heart of
efforts that involve reasoning and learning, whether carried out
by a person or a machine. They are useful for inductive
reasoning, sharpening of conjectures, planning, programming and
concept formation [Anderson 1982, Hawkins 1980; Hayes-Roth 1980;
Lenat 1977; Polya 1968, 1973; Soloway 1978; Winston 19751].
Having a rich stock of examples is intimately related to

understanding [Rissland 1978b].

In reasoning processes 1like proposing, proving and refuting
conjectures [Lakatos 19761, there 1is counterpoint between
developing and trying to prove conjectures and trying to refute or

refine them. As Alpha of Lakatos' Proofs and Refutations says,

"Discovery does not go up or down, but follows a zig-zag
path: prodded by counterexamples, it moves from the
naive conjecture to the premises and then turns back
again to delete the naive conjecture and replace it by
the theorem."

Examples are often the critical turning points in what Polya calls

the "alternating procedure®™ [Polya 1965]:

", ..should we try to prove the assertion A or should we
try to disprove it? We have here a choice between two
different directions. To prove A we should 1look for
some propositions from which, or for some strategy by
which, we could derive A. To disprove A we should 1look
for a counterexample. A good scheme is to work
alternately, now in one direction, then in the other.
When the hope to attain the end in one direction fades,

va
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or we get tired of working in that direction, we turn to
the other direction, prepared to come back if need be,
and so, by learning from our work in both directions, we
may eventually succeed."”

Examples play a central role in the evolution of theories; the
examples, especially the paradigms, shared by members of a
scientific discipline, show well what they believe their theory is
[Kuhn 1970, 1974]. In disciplines like mathematics, the ability
to generate examples can be considered as important as the ability
to prove theorems; both processes are necessary links in the
cycle of conjecturing-refining-proving/refuting by which such a
subject grows. Examples thus can be thought of as having the same
power and status as proofs, in the sense that one counter-example
can disprove a conjecture just as a proof can establish it as a

theorem.

Given the importance of examples an obvious question is "Where
does an example come from?". In particular, how does one generate
an example with desired properties? In this paper we look at the
process of generating examples that satisfy certain constraints:
Constrained Example Generation (CEG). Our approach was to: (1
make some initial guesses based on our own experiences, (2) take
protocols of CEG, which were used to (3) couch a CEG model in
computational terms, (4) implement the CEG model (in LISP), and
(5) experiment with it. This paper presents our CEG model and
some of the protocols upon which it is based; the CEG
implementation is only described briefly; a more detailed

discussion will be covered in another report.
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2. OVERVIEW OF THE CEG PROCESS

Our model of CEG incorporates three phases: RETRIEVAL,

MODIFICATION, and CONSTRUCTION.

When an example is sought, one can search through one's storehouse
of examples for one that matches the properties desired. If one
is found, the example generation problem has been solved through
RETRIEVAL. In retrieval, there are many semantic and contextual
factors -- like the last worked problems -- and therefore one is
not merely plunging one's hand into an unorganized knowledge base.
Thus even though retrieval sounds simple, it is no doubt very

complex.

However, when a match is not found, how does one proceed? In many
cases, one tries to MODIFY an existing example that is judged to
be close to the desired example, or to have the potential for
beéing modified to meet the constraints. Often the order of
examples selected for modification is based on judgements of
closeness between properties of known examples and the desiderata,

that is, how "near" the examples are to what is sought.

If attempts at generation through modification fail, experienced
example generators, like teachers or researchers, do not give up;
rather they switch to another mode of example generation, which we
call CONSTRUCTION. Under construction, we include processes such
as combining two simple examples to form a more complex one and

instantiation of general model examples or templates to create an

cég
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instance. Sometimes one constructs an example from a definition:

one reads and picks it apart; then paraphrases and otherwise

studies components of the definiton; finds examples for these

more elementary constituent elements; and finally, combines them
into an example. Sometimes this resembles back-chaining in
theorem proving. Construction is usually more difficult than

either retrieval or modification.

In examining human protocols, one sees two types of generation:
(1) retrieval plus modification; and (2) construction. That is,
one does not necessarily try first retrieval, then modification,
then construction; -sometimes construction is attempted

straightaway.

3. EXAMPLES OF HUMAN CEG

We have taken protocols of 19 subjects working CEG problems from
elementary function theory and geometry. The subjects were a mix
of undergraduates (11), graduate students (5) and professors (3).
Unless otherwise noted, any solution we present is typical of them
all. We worked individually with each subject in a session in
which  we asked the subject to work on a sequence of CEG problems.
Subjects were encouraged to think out loud as much as possible and

to make as many notes and sketches as they wished; they could

‘also spend as much time on a problem as they wanted. We tape

recorded each session, which typically lasted 30 to 40 minutes,
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and then used the recordings, some of which were transcribed, and

the subjects' notes in our analyses.

To give the reader an idea of the richness and complexity of the
CEG process, in this section we present synopses of some protocols
for CEG tasks taken from the domain of plane geometry, concerning
quadrilaterals. A complete transcript of one protocol for the

second problem is included as Appendix A.

Since we were interested in spontaneous CEG behavior, we did not
force subjects to draw or re-draw their solutions with accurate
measures of angles and lengths, say with ruler and protractor.
This, no doubt, would precipitate another type of CEG. However,
to make it easier for the reader to follow, we include sketches
and diagrams, often redrawn from what the subjects drew; for
instance, if the subject marked three sides as being equal, we

draw the figure that way.

e
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3.1 Three Sample CEG Problems with Solutions and Comments

Problem Geom1:

Draw a quadrilateral (U4-sided planar figure) with exactly
three equal sides.

Solution 1z

Take a square, which has Y4 equal sides, and modify it so that it
has only 3 equal sides:

| -_-—_’ [::::::]
Deform a rhombus, which has four equal sides, into a non-convex

quadrilateral:

Take an equilateral triangle, which has exactly three equal sides,
and "open it up": :

/AN —

Solution 2:

Solution 3:

e



Page 8

Solution 5:

Draw one side. Then draw two more sides in succession, each
having the same 1length as the first. Then merely draw a line
between the unattached endpoints of sides one and three, thus
completing the figure:

[

Solutions 1, 2, and 3 follow a retrieval-then-modify progression.

Comments

In Solution 1, the example retrieved, a square, is an important
"reference" example, one of everybody's favorite quadrilaterals
and one about which a great deal is known. {NOTE 1.} The rhombus
of Solution 2, while also an example of a quadrilateral, is not as
"standard" as the square. The equilateral triangle in Solution 3
is another well-known and important reference example in plane

geometry, but not of a quadrilateral.

The square and rhombus are in some sense from the "right" class of
objects, quadrilaterals, and meet the "having U4 sides" constraint.
In contrast, the triangle is from the more general class of plane
figures; it meets the other constraint, "exactly three equal

sides".

The statement of problems and items of knowledge 1like results,
concepts, and examples, often includes a pre-condition or
hypothesis that in its treatment is different from the other

conditions and hypotheses. For instance, the Bolzano-Weierstrass

“

e
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Theorem in real analysis states "In R¥#*n (Euclidean n-space),
every bounded, infinite sequence has a convergent subsequence.
"In R#*#n" is a condition of the theorem that 1is treated
differently from the rest of the theorem: it declares th- context
in which the theorem is to be set for proof, use or study
[Rissland 1978al. Similarly, in the geometric problems in this
section, the requirement that the example be a quadrilateral sets
the context: we are in the domain of quadrilaterals. Such a
labelling of context highlights the difference between parsing the
problem in these two ways:

1. "Find an X in QUADRILATERALS such that 1)..."

2. "Find an X such that 1) quadrilateral, 2)..."
In a strictly mathematical sense, there is no difference, although
the emphasis is different. In an information retrieval sense, the
first way specifies that we are to search through a knowledge base
of quadrilaterals; the second says that quadrilateralness is
simply one of the desired attributes. If the KB is organized into
sub-KB's like one for quadrilaterals, the first way eliminates the
need to test quadrilateralness once that KB is "brought in" and

thus can be more efficient.

Solution 4 is constructed in a progressive "cascading" fashion in
which another constraint is satisfied at each step. No problems
were encountered in this construction -- for example, no
intermediate results were nullified in later steps, as will be the
case in Problem Geom3 below -- and there was no need for
back-tracking, which would have made the problem-solving process

much more complicated.
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Solution 4 also involved fortuitous drawing of sides and angles so

that the sides did not intersect: another choice could have lead

to the following:

Problem Geom2:

Draw a quadrilateral with exactly three equal angles.

Solution 1: Retrieval+Modification

Draw an equilateral triangle and open up the two base angles, say
to 80 degrees. Then draw a new side at 80 degrees to one of the
opened sides and continue it over to the other opened side to
complete the quadrilateral:

-Solution 2: Cascading Construction

Draw a side. Draw another side meeting the first. Draw two more
sides, attached to the endpoints of the first two sides, and

making the same angles as between the first two sides. Let them
-intersect where they will:

YA

ta;
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Solution 3: Another Cascading Construction

Draw a side. Draw another side meeting the first. Draw a third
side, attached to the second and making the same angle as the
first and second. Draw a fourth, attached to the third with the

same angle. Continue it until it intersects the first side:

[ > [

The following 5-sided figure was produced with the cascading
construetion of Solution 3. In a sense, its "bug" is the result
of a bad choice for the angle parameter in the construction.

Buggy Solution 3:

Comments

One subject described the cascading construction of Solution 3 as
"walking along a 1line and then making a turn" (See Appendix A.)
much like the "TO-POLY" routine in LOGO Turtle Geometry [Abelson
and DiSessa 1981]. It is interesting to wonder whether forcing
subjects to use environments like LOGO, SmallTalk [Byte 1981] or

even ruler-and-protractor would help.

There are often implicit criteria or standards of judgement in the
generation and acceptance of solutions in these protocols. For
instance, to be correct, Solution 1 would need a "trimming off" of
the "unused" portion of the right side of the triangle. Both

subject and interviewer "knew" to infer this. Thus, one can see a
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tradeoff between judgement and modification -~ simplicity in one

often leads to compensating complication in the other.

Judgements of examples with respect to the constraints are an
important part of CEG; without them incorrect examples can be
offered as solutions, as with Buggy Solution 3 which subjects
sometimes fail to note produces a 5-sided polygon. Thus,
retrieval+modification 1is really a shorthand description for

retrieval, judge, modify, judge.

Modifications, like "opening up" Solution 1, are procedures, which
means they can be misapplied as one subject did when he used it to
modify a quadrilateral into a five-sided figure, thus producing a
buggy version of Solution 1. Constructions, also clearly
procedural, can also go wrong, for instance through "bad"

parameter choices as in Buggy Solution 3.

In applying procedures 1like the "“opening up" modification of
Solution 1 or the cascading constructions of Solutions 2 and 3,
there is a problem of choosing the parameters with which to apply
them; this 1is, in fact, another example generation problem:
instantiation. Some subjects tried different angles and 1lengths
in generating their solutions. However, no one chooses .90
degrees. Not choosing involves considerable knowledge. (For
instance, the example of the opening up procedure applied with the
argument of 90 degrees, its:' result (a rectangle), the theorem
stating that the sum of the angles must be 360 degrees.) In
procedural domains like computer science, an expert knows that

certain parameter choices, 1like O in numerical and NIL in list
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processing situations, can cause trouble; that is, that they are
counter-examples. Thus, choosing involves knowing what not to

choose.

The following problem has no solution. However, attempted

solutions involved CEG in interesting ways.

Problem Geom3

Draw a quadrilateral with exactly three equal sides and three
equal angles.

Attempted Solution 1:

Take a square and unbend it so as to destroy the equality of one
of the angles and one of the sides:

Attempted Solution 2:

Repeat the cascading Solution 3 to Problem 2 but "be careful" to
keep the constructed sides equal:

DD

C
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Comments

Intuitively, most subjects felt the impossibility of this problem
and made comments like: "there isn't enough room to move around";
"if you get three equal sides, trying to get only three equal
angles messes up the inequality of the fourth side". They are
commenting on a serious gonstraint interaction problem. Only one
subject, a mathematician, sketched a proof to show the

impossibility of the desired quadrilateral. {NOTE 2}

In some cases, the subject actually went through his "whole" data
base of examples: square, rectangle, equilateral triangle,
rhombus; in turn, he judged each a failure. Upon completing a
retrieval phase, he then tried, unsuccessfully, to use

modifications.

There is also something to be said here about the parsing and
ordering of constraints and the agenda control that they engender.
One can treat "three equal angles" as a single constraint or as a
cluster of constraints, for instance as (1) Angle2 same as Anglel;
(2) Angle3 same as Angle2. The same can be said for the "three
equal sides" constraint. Attempted Solution 1 treats the
constraints in the first way: that is, first handle the "three
equal sides" constraint and then the "“three equal angles"
constraint; this could be called "block" control. Attempted
Solution 2 treats the constraints in the second way; that is,
alternate between meeting a side constraint and an angle
constraint: do Side1, then Anglel, then Side2, then Angle2, etc.;

this could be called "shuffle" control.
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In this problem, one sees a conflict between "global", overall
progress and "local" improvements. Considering the constraints
parsed as (1) "three equal angles; (2) "three equal sides" (with
the setting "quadrilaterals" as another constraint), one might
quickly satisfy the "three equal angles" constraint. One could

then attend to the "three equal sides" constraint and deform the

' figure to meet it; this looks like further progress since another

constraint has been met, but satisfaction of the previous
constraint has  been undone. In other words, local,
constraint-specific progress has been made at each step, and yet
the overall satisfaction of the example still stands at only two
of the three constraints; in other words there has been no change
globally. Illusory local progress was also seen in Buggy Solution
3 to Problem Geom2 where subjects generated a figure with three
equal angles but failed to notice that it was five- and not

four-sided. {Note 3}

Conflict between local and global progress 1is indicative of
constraint interaction problems. Such problems can be very
difficult [Sussman 1975] [Stefik 1980]. However, recognition that
one is encquntering constraint interaction is useful in itseif
since it can alert one to switch problem-solving modes and perhaps
invoke more sensitive judgement and control mechanisms and, at the

very least, to give up before expending too many resources.
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3.2 General Comments on CEG

In summary, some general points about CEG which these protocols

illustrate are:

1.

there are different generation strategies; for example,'

"retrieval+modification" and "cascading construction";

in addition to a collection of retrievable examples, there are
also many known modification techniques (e.g., "opening up");

modifications are often applied to well-known "reference"
examples; a modification episode can be described as a base
example plus a sequence of modifications;

well-understood examples (e.g., models, references,
counter—examples) focus the search for a new solution;
examples capture the essence of past experience;

there are variations in what subjects consider the appropriate
ground-level class of objects in which to search or attempt
modifications; the specification of the class of the desired
object (e.g., quadrilateral) could be considered another, but
exalted, constraint much like the "setting" of theorems;

the importance of both 1local and global judgements of
candidate examples' satisfaction of the constraints; laxity
in judgement 1leads to accepting examples that are not
solutions;

"good" constructions are not always good; they can go wrong
through "bugs" or "bad" parameter choices;

there are several parsing and control strategies for the
constraints themselves (e.g., the order in which they are
dealt with);

modification often raises the problem of how to set the
procedure parameters (e.g., what angle or length to use).

S
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4, CEG: THE MODEL

In this section we present our model of the CEG process. Its
high-level architecture is domain-independent and describes our
experiences with CEG in a variety of domains including

mathematics, computer science, law, lingistics and planning.

4,1 General Skeleton of the CEG Model

CEG has five basic subprocesses:

Retrieval, Modification, Construction, Judgement, Control

Presented with a task of generating an example that meets

specified constraints, one:

1. SEARCHES for and (possibly) RETRIEVES examples JUDGED to
satisfy the constraints from an EXAMPLES KNOWLEDGE BASE (EKB) ;

or

2. MODIFIES existing examples JUDGED to be close to, or having
the potential for, fulfilling the constraints with
domain-specific MODIFICATION OPERATORS; or

3. CONSTRUCTS an example from domain-specific knowledge, such as
definitions, general model examples, principles and more
elementary examples from a DOMAIN KNOWLEDGE BASE (DKB) .

Retrieval, Modification and Construction

are usually attempted in that order.
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Clearly, this model needs many other features to describe the CEG
process in its entirety: for instance, there are support

processes for parsing of problem statements into constraints,
displaying and representing information (e.g., images). In
addition, understanding of a domain is an important adjunct

process to CEG.

4,2 Details of CEG Model

There are many details, many of them domain-specific, needed to
flesh out our model. In particular, some of the knowledge

involved in the various subprocesses and knowledge bases is as

follows:

1. EXAMPLES KNOWLEDGE BASE (EKB) - For each domain, there is an
EKB. The EKB consists of examples and an organization of
them. The examples have facets and attributes such as
taxonomic classification (e.g., reference, model, counter),
recency of creation, rating of importance. One important
facet of an example is its pictorial representation, which can
include a single or a sequence of images. Our subjects tended
to share much of the EKB, and seemed to use similar
description sets.

2. DOMAIN KNOWLEDGE BASE (DKB) - The domain knowledge can be very
complex in the sense of the richness of its content and high
degree of interconnectedness. The examples known (the EKB)
are but one "sub-space" of the DKB; others include the formal
results, definitions, heuristic principles, etc. [RISSLAND
19781]. For CEG, the most obviously relevant part of the DKB
is the EKB. Content of the other parts (e.g., procedural
knowledge about concepts) is distributed in other parts of the
CEG model.

3. RETRIEVAL - Retrieval involves knowledge of ways to access and
search information in the EKB. Some of this 1is
domain-independent like knowing how to search a knowledge base
or do associative retrieval on a taxonomic classification
(e.g., "favorite reference example"), or that a good heuristic
is to retrieve standard reference examples, known
counter-examples, and recent successes (i.e., examples that
have solved CEG problems) before other types of examples.

P
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Some is domain-specific 1like retrieving on domain-specific
attributes like "quadrilateralness".

MODIFICATION - The primary domain-specific aspect of
modification is knowledge of domain-specific modification
operators. This includes knowledge of which operator to use,
and when, and how, in order to achieve (o improve) an
example's satisfaction of a given attribute. Modification
also involves domain-specific strategies like "modify angles
before sides" and domain-independent stategies like "keep
going if success 1is being had" and "switch modification
techniques for variety or if things are not going well".

CONSTRUCTION - Domain-specific aspects of construction include
combining and instantiation techniques and knowledge of how to
build "from scratch", as in a cascading construction, or how
to combine two examples, as with mathematical "curly" brackets
used to define a new function from others. A less
domain-dependent aspect is the ability to call CEG
recursively, for instance for "sub-examples" to combine;
however, domain-dependent knowledge would be needed to set up
such calls,

JUDGEMENT - Judgement involves knowing how to evaluate a
domain-specific attribute of an example, e.g., U4-sided-ness.
Judgement is not just a binary yes/no evaluation of an
attribute, but includes judgements 1like "with respect to
4-sided-ness, this example has 3 sides and thus lacks one" or
"with repsSect to angles-between-sides, this example has small
angles". Judgement also includes the ability to do
comparative judgement such as "this example is better than the
last one" or "example-1 has wider angles than example-2".

CONTROL ELEMENTS - The Control in the CEG model is distributed
throughout the model. For the sake of discussion, the control
issues (e.g., what to do next) are culled together here.
Typical control questions and possible answers are:

1. What retrieval policy should be used: e.g., most recent
success, most important, on the basis of taxonomic class
(references before...);

2. What modification policy should be used: e.g., 1if some
improvement has been made by the last modification, try
again; try U4 times with a given modifier before giving
up; pick the modifier with the most successes to its
credit as the first modifier to try; vary which modifier
to use;

3. How should retrieval and modification interact: Should
retrieval be completed on the whole EKB before
modification is begun; or should a single example be
retrieved and immediately be subject to modification (if
it does not meet the constraints).
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4, When should construction be begun: If a general model is
retrieved, instantiate the model and then pass control and

the instantiated example back to the calling process; if

modification fails or is not going well try to construct.

an example from more elementary examples.

5. How should progress be measured: through devices that
measure an example's satisfaction of individual
constraints.

5. CEG: THE MODEL IMPLEMENTED

To give the reader a better idea of how the CEG model works, 1in
this section we describe some of the details needed to implement
the model of the previous section. This discussion of our
implementation .1s intended to be an elaboration of the ideas in
the previous sections and not a detailed discussion of the

implementation itself.

5.1 Domain-Independent Shell

We have implemented our model of CEG in a computer program,
written in LISP; it runs on a VAX 11/780. 1In our implementation
we have concentrated on retrieval+modification. The modules and
knowledge sources for the system -- without CONSTRUCTOR -- are

shown in Figure 5.1.
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Briefly, when the CEG program is presented with a 1list of
constraints, in the system's syntax, (1) the EXECUTIVE initializes
the system and then coordinates the other modules; (2) the
RETRIEVER searches for and retrieves examples from an Examples
Knowledge Base (EKB); (3) the MODIFIER applies modification
techniques to an example; (4) the CONSTRUCTOR instantiates
general model examples; (5) the JUDGE determines how well an
example satisfies the problem constraints; (6) the AGENDA-KEEPER

maintains an agenda of examples to be modified.

In our work, we represent an example by a frame-like data
structure [Minsky 1975] in which each slot contains information
about a different facet of an example, like its name, taxonomic
class, rating of its importance, a caption describing what it
shows, a picture illustrating it, procedures to construct it. The
collection of example frames is organized by the "constructed
from" relation in which Examplel--->Example2 means that Example2
is constructed from Examplel. The set of examples organized in

this way form what we call an "Examples-space" [Rissland 1978a,bl.

In describing the knowledge that one has about examples and uses
in CEG, one needs a many-faceted frame rich with declarative,
procedural, pictorial and relational information. However, in our
implementation we restrict the representation frame to the few
facets specifically needed to perform the retrieval, modification,

Jjudgement and construction operations that we are investigating.
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In our implementations of the CEG model, we have concentrated on
retrieval+modification and construction by instantiation. Thus,
we have not explored construction by combining examples and the
recursive calls to CEG that that would entail. A truly full
implementation of CEG would need a sophisticated construction

mechanism, including perhaps a theorem proving capability.

5.2 Domain-Dependent Modules

The CEG system shell is domain-independent with a clean and
consistent interface to domain-specific knowledge. Only the
MODIFIER, CONSTRUCTOR and JUDGE are domain-dependent; the

MODIFIER and JUDGE are really the workhorses of our system.

For the CEG program to work in a given domain, it must be supplied

with the following domain-specific knowledge:

The EKB

modification routines used by the MODIFIER
judgement routines used by the JUDGE
instantiation routines used by the CONSTRUCTOR

policies for retrieval and modification

.

Ui S -
. . .

Some details about the modules are:

1. EXAMPLES KNOWLEDGE BASE: The components use a common
knowledge base consisting of two parts: a "permanent" EKB,
containing known examples represented as frames and organized
with "constructed from" links to form an Examples-space, and a
temporary copy of the permanent EKB, an "alias" EKB,
containing information gathered in the solution of a specific
CEG problem.

We refer to the temporary knowledge base as an "alias" EKB
since it is a copy of the permanent EKB embellished with
evaluation information generated during the working of an
individual problem, such as the "constraint satisfaction list"
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generated by the JUDGE to show an example's satisfaction of
problem constraints, and "grown" to include new examples
created during the working of a problem, for instance created
by modifications of known examples (from the EKB). Upon
successful completion of a problem, the newly generated

solution example can be added to the permanent EKB -- its
frame plus its constructed from 1links (i.e., modified or
instantiated from 1links) -~ before the other temporary

information in the alias EKB is deleted in the clean up
process, which is a function of the EXECUTIVE.

The EXECUTIVE module is responsible for overall control. The
EXECUTIVE is responsible for initializing at the outset and
cleaning up at the conclusion of a CEG problem. The EXECUTIVE
is responsible for passing retrieval and modification policies
to the RETRIEVER and MODIFIER.

The RETRIEVER is domain-independent. It retrieves examples
according to a "retrieval policy" passed to it by the
EXECUTIVE. The policies use the structure of the EKB and
attributes such as epistemological class, worth-rating,
recency of success to define a prioritization of examples to
be retrieved and evaluated by the JUDGE. Typical retrieval
policies would be "search the EKB in a breadth-first manner
and retrieve model examples before reference examples before
other types" or "retrieve most recently successful examples
first". The RETRIEVER can retrieve on domain-specific
attributes (e.g., quadrilateralness) if the examples in the
EKB have the corresponding tags.

The MODIFIER contains domain-specific knowledge of (1) the
modification procedures; and (2) when to apply them. The
MODIFIER receives its '"modification policy" from the
EXECUTIVE. The MODIFIER is the executive process for the
modification phase; it coordinates: calls to the JUDGE for
evaluation, performance of modifications, storage of examples
in the Alias EKB and the selection of the next example for
modification. The modification policy is wused by the
subsidiary AGENDA-KEEPER. The modifications are performed by
a sub-module that uses a difference operator table as in GPS
[Newell and Simon 1963].

The JUDGE evaluates an example with respect to the posted
domain-specific constraints and passes the results of its
evaluation to the RETRIEVER and MODIFIER in a "constraint
satisfaction list", This includes information on the
differences between the actual and desired values which is
used in conjunction with the difference operator table.

The AGENDA-KEEPER uses the modification policy to maintain an
agenda of examples to be modified. An example of a
modification policy is "if there is improvement with a
modification operator apply it again but not more than four
times in a row".

’,
B
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The CONSTRUCTOR in our implementations is the module with the
weakest analogy to the CEG model of the previous section; it
is capable only of instantiation of model examples. Thus, the
CONSTRUCTOR in our program possesses the domain-specific
knowledge to instantiate model examples (e.g., code
"templates" [Soloway and Woolf 1980]) from the EKB.
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The CEG System for Problem Geoml
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This schematic shows the CEG system endowed with knowledge to work
problems involving constraints on the lengths of sides of polygons
in a retrieval+modification manner:

1. an EKB of polygons (e.g., the unit-square which is a reference
example, a non-square rectangle, a rhombus);

2. Jjudgement routines for evaluating the length of a side of a
polygon;

3. modification routines for changing the length of a side;

Embedded in the code for these routines would be additional
domain-specific knowledge about the scaling of vectors, counting
the number of sides of polygons, etc.
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6. FURTHER DISCUSSION OF HUMAN CEG

There are many aspects of CEG that our model and its
implementation do not address, like esthetics. In this section we
present additional fragments and synopses of protocols to
illustrate more of the complexity and richness of human CEG. Our
problems are taken from elementary function theory of the kind

that a first year calculus student can solve.

Some of the aspects of CEG to be illustrated are:

Pure Retrieval

Retrieval versus Construction
Esthetics in Judging
Divide-and-Conquer plus Merging
Variety in Representation

Over- and Under-constraining
Default assumptions

N OO EWN =

In the following problems, all functions are real-valued functions
of one real variable; in particular, their domain is the real
numbers. Thus, the setting for these problems is "R", the reals,

or FCN[R,R], the functions from R to R.

6.1 Pure Retrieval

Although most of our discussion has concentrated on generation by
retrieval+modification and construction, some problems can be

solved by pure retrieval; for instance:
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Problem Fen1:

Give an example of a function that is continuous at a point
but not differentiable there.

Solution 1:
Y = (X}

or its graphical representation:

Comments

Most subjects who have had some calculus handle this problem with
Solution 1, the reference example of the absolute value function
(at the origin). Responses (in a post-calculus population) are
usually immediate, indicating that the retrieval was made very
readily. For a subject who does not know the calculus well, this
example might involve much more work to generate since it might

not yet have become known, or be known as a reference example.

The two principal representations used for Solution 1 are
algebraic and graphical. In other problems and solutions, one
also finds "kinesthetic" representations, in which the sub jects
use their hands to trace out a curve or employ language with words
like "climbing" or "turning". (Such language also entered into
the geometric problems, e.g., "walking" in Problem Geom2.) Each
representation has its own advantages and drawbacks; for
instance, pictures are easy to generate, but are hard to use in

some situations like differentiation or integration; formulas are



’ 0

Page 29

easy to use in such situations but are difficult to generate in
the first place. In fact, it takes considerable skill to
translate from one representation like pictures to another like
equations [Clement et al 1981]. (Such a translation difficulty
will be seen in the third problem, Fcn3.) One surprise in these
protocols is the subjects' 1lack of "binding" to any one
representation mode in individual problems, let alone across
problems; subjects are opportunistic and choose whichever seems

easiest.

6.2 Retrieval versus Construction, Esthetics

The next problem was solved by retrieval and by construction.
Even though the retrieved examples were clearly well-known to all

subjects, some subjects chose to construct a new example,

"Problem Fen2:

Give an example of a function going from the point (0,0) to
the point (1,1).

Solution 1:

Y = X was offered most of the time; sometimes it was represented
as an equation, othertimes as a straight line or graph on
(sketchy) Cartesian coordinates. Y = X®**2 wywas also offered
frequently.

Solution 2:

(1
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Comments

The functions Y=X and Y=X**2 are clearly products of retrieval;
they are "favorite" examples. In fact, Y=X is perhaps the
simplest example of a function. It is an example of many
mathematical ideas (e.g., monotonicity, one-to-one, onto,
identity, isomorphism). This diversity can be considered both a
strong and a weak point; subjects constructing solutions like
Solution 2 stated Y=X wasn't a "good" example because it showed
too many things; some said they felt it was too simple and that
something more complicated was more esthetically pleasing. This
is related to their feeling that in these problems "an example"
means "any arbitrary example",. Thus an example should show
generality by exhibiting many features, but it should not exhibit
S0 many as to seem too special; this is the o0l1d "type-token"
problem [<ref>]. This is also an interesting contrast to the
usual view that "simpler is better" as embodied, for instance, in

Occam's Razor [Russell 19451,

6.3 Divide and Conquer plus Merging

One can frequently solve problems by dividing them into
subproblems, "conquering" each of them, and merging the
subsolutions. The merging often involves "global" knowledge of
the problem as a whole, which in CEG can involve interactions
among the orginal constraints and imposition of additional
constraints on how the subsolutions match up. In these simple

function problems, such "matching up" constraints involve boundary
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conditions on the functions. The point is that to do a successful
"divide and conquer plus merging" solution involves additional
calls to CEG, grouping of constraints, and imposition of

additional constraints.

Problem Fecn3:

Give an example of a function on the unit interval that goes
from the point (0,0) to the point (1,1) and that is not
one-to-one. {NOTE 4.}

Solution 1:
Use Y=X**2: this takes care of the (0, 0) requirement. "Cut and

paste" it to take care of the not 1-1 requirement. Then stretch
the right hand side to pass through (1,1). This looks like:

This was then translated (incorrectly) into the algebraic
representation:

X*%2 when X < .5

Y
Y = X*#2-1/4 when X > .5

Comments

In this solution, the sub-solutions are merged back together
through the use of a picture or mathematical "ourly" brackets., It
is interesting to note that although the curly bracket
construction is one of the best known and most successful
techniques by which to construct new functions, it is hardly ever
taught as such. Even in a standard calculus book [Thomas and

Finney 1979] where there is a lengthy introductory discussion ¢to
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make explicit certain basic notions like 'function', there is no
discussion of the bracket idea even though it is used. (Students

rarely use it until they are told it is acceptable.)

The subject offering Solution 1 didn't quite finish things up in
his algebraic expression of his answer: the third constraint of
passing through (1,1) is not met. However, this can be handled by
"fudging" the coefficients (perhaps by setting up and solving

simultaneous equations) {NOTE 5.}.

Using the mathematical curly brackets often introduces bugs at the
"join" point as in the following solution which doesn't account

for x = .5:

Solution 2:

f(x) =

Note that this solution is made up by combing two simpler
examples: the 0 and 1 constant functions. Using 0's and 1's, as
for instantiation of a parameter, is a very important mathematical

strategy, the 0-1 "mega-principle" [Rissland 1978a,b].

The following solution of the retrieval+modification variety is
interesting in that it is similar to the function used as the
first step in the sequence of functions in the construction of the
Cantor function, a very important function in real analysis

[{Gelbaum and Olmstead 1964].
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Solution §i

Take a function such as Y=X on the interval [0,1], and "make a
flat spot":

Solution ﬂi

The subject who offered Solution 2 to problem Fen2, contentedly
said "see the above".

Clearly, this is an example of retrieval of a recent "success"

from an updated EKB.

6.4 Overconstraining, Underconsﬁraining and Defaults

The following problem shows two different approaches to dealing
with constraints: (1) over-constraining, then relaxing; (2)

under-constraining, then tightening up.

Problem Fcnid

Give an example of a non-negative, continuous function defined
on the real line with the value 1000 at 1, and with area under
its curve less than 1/1000.

Solution 1:

Start with the function for a "normal distribution". Move it to
the right so that it is centered over X=1. Now make it "skinny"
by squeezing in the sides and stretching the top so that it hits
the point (1,1000).

"I can make the area as small as I please by squeezing in the
sides and feathering off the sides. But to actually demonstrate
that the area is indeed less than 1/1000, 7I'll have to do an
integration, which is going to be a bother.
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"Humm. My candidate function is smoother than it need be: the
problem asked only for continuity and not differentiability. So
let me relax my example to be a "hat" function because I know how
to find the areas of triangles. That is, make my function be a
function with apex at (1,1000) and with steeply sloping sides down
to the x-axis a little bit on either side of X=1, and 0 outside to
the right and left. (This is OK, because you only asked for
non-negative.) Again by squeezing, I can make the area under the
function (i.e., the triangle's area) be as small as I please, and
I'm done."

(1, 1300

Solution 2:

Another subject said, "Take the zero function, which clearly
satisfies the less than 1/1000 constraint and is non-negative end
continuous, and the function which is 1000 at X=1 and 0O elsewhere

(a "characteristic" function) which clearly meets the (1,1000)
constraint, and smooth them together."

Comments

Solution 1 starts off with an implicit over-constraining: the
example retrieved, a normal distribution, is a reference example
from the class of infinitely differentiable functions which are
not only continuous but also have continuous derivatives, that is,
they are exceedingly "smooth", in fact much "smoother" than mere
continuity requires. Because of the difficulties in demonstrating
satisfaction of the area constraint, the subject subsequently
relaxed his function to a hat function, which is continuous but
whose derivatives are not; the hat function has no gaps or breaks

but does have "corners",.

o
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Solution 2 starts off with an explicit underconstraining. A
"smoothing" operator is then used to tighten up his solution. The
"smoothing" operation is very powerful indeed; it 1involves
knowledge on how to make functions continuous, a very non-trivial

matter.

It was observed in all the protocols that subjects make implicit
default assumptions about the symmetry of the.function (i.e.,
about the line X=1) and its maximum (i.e., oocurring at. X=1 and
being equal to 1000). There is no specification about either of
these properties in the problem statement. It is as if one's
"frame" for a function includes symmetry as a default. This may
be related to effort: it is less work to use a copy of one side
for the other than to specify the two sides separately or

distinctly.

The symmetry default was also seen in the quadrilateral problems
of Section 3. For instance, in problem Geoml there is no reason

to "move" two sides symmetrically as in Solution 1.

There were 8lso instances of over—constraining ‘and relaxing:
trying to use equal, or nearly equal, sides in solutions to
problems requiring equal angles and vice versa (Problems Geoml and
Geom2). The non-solvability of Problem Geom3 shows that such
over—-constraints must necessafily be relaxed. Attempted Solution
2 to Problem Geom3 can be viewed as a tightening up ("be careful")

of the cascading solution to Problem Geom2.
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8. CONCLUSIONS

In this paper, we have described the process of constrained
example generation and illustrated it with brotocols from
mathematics. We have described a model for CEG in terms of
processes of retrieval, modification, coﬁstruction. judgement and
control and a knowledge base of domain-specific knowledge,
particularly a knowledge base of examples. We then presented some
of the details necessary to build a computer implementation of our

model.

In our investigations of examples in other fields such as law and
linguistics, we have found our CEG model to provide a2 good
description of the CEG problem-solving behavior we have observed.
We have also found our implemented CEG system to be robust and

easily adaptable to different domains of knowledge.

A related, and very important, problem to CEG is the constraint
generation problem. That is, how does one decide what one wants

in an example, i.e., in our terminology, what are the constraints?

To answer this, one must examine the context in which the example

is to be used and the purpose for which it is intended. In
mathematies for instance, this involves looking closely at the
"alternation process" and the conjecturing-proving-refuting cycle.
Sometimes the constraints on the examples come from the proof of
the theoreﬁ that the example is to illustrate; sometimes from the
proof sketch of a conjecture that one is trying to refute. 1In

computer science, the constraints can come from sources as diverse

we
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as the intentions of the program user, the specifications, or the
code itself. In law, the kind of example (e.g., hypothetical

case) used depends on the doctrine or argument to be advanced.

We feel that the CEG model of example generation has captured many
of the important features of example generation. Our current
efforts are now focussed on the CEG in different domains like law
—- the problem of generating hypotheticals -- and the larger
issues of constraint generation, especially in the context of
giving explanatibns. In conclusion, we feel that examples are
important to many fields of endeavor and that CEG 1is but one

example of the rich role they play in problem solving.
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NOTE 1. Examples can be classified according to their role in the
development and understanding of a theory. We use the taxonomy
previously developed [Rissland 1978a, b, 1980]:

1. start-up examples are perspicuous, simple cases;

2. reference examples are standard, specific, ubiquitous
cases;

3. model examples are general, paradigmatic cases;

4, counter examples are limiting, falsifying cases;

5. anomalous examples are exceptional, pathological cases.

Such a taxonomy is neither exhaustive nor exclusive. It is also
not stationary in the sense that the members of the classes change
as the development or understanding of the theory changes. In
fact, we conjecture that the migration of examples between
epistemological classes might be a way to gauge the development of
a theory: examples first considered anomalies and
counter—-examples become references and even models as the theory
evolves, especially during Kuhnian "paradigm shifts" [Kuhn 19701].

NOTE 2. Assume such a quadrilateral exists. Mark the three equal
angles: C

1>

A

Case 1. If A, B, D are the three equal sides, then C " A.
==> angle between C and B = angle between C and D,
which is a contradiction.

Case 2. IF A, D, C are the three equal sides, then B " D.
==> angle between C and B = angle between B and A
which is a contradiction. :

Case 3. If ......
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NOTE 3. One can monitor such conflicts in a computational model
by using global and local Constraint Satisfaction Counts (CSC's):
one global CSC to keep track of overall progress (e.g., 1 of 2
constraints satisfied) and one local CSC for each individual
constraint. Thus, this situation would change the local CSC for
"three equal angles" from 0 to 1, the local CSC for "chree equal
sides" from 1 to 0, and cause no change in the global CSC.

There are many ways the examples can be scored, like a binary "yes
or no", a discrete "success, better, no-change or worse" or some
numerical scale. The range chosen affects the judgement, agenda
and other control processes. The current implementation of the
CEG system uses the S-B-NC-W scheme.

NOTE 4. A function f is said to be "one-to-one"
if when f(a) = f(b), then a = b.

To say it another way, if a and b are different points, their
images will be different; i.e., the function does not repeat a
value. Ways in which a function can fail to be one-to-one are to
repeat values (e.g., y=x*¥2 on [(-1,1]) or to have "flat" spots
(e.g., step functions).

NOTE 5. The following, found by solving simulatneous linear
equations, will solve the problem:

Y
Y

X*¥%¥2 yhen X < .5
4/3 X*%2 -~ 1/3 when X 2 .5

Solving linear equations can be thought of as a way of finding a
point which is constrained to lie on two lines whose equations are
given. Simultaneous equations can often be used to express
constraints; for instance to find the parabola (y = ax¥*¥2 + c)
with the suitably fudged coefficients to solve problem Fen.3, it
suffices to solve: ‘
' 0
1

a/’l + ¢
a + ¢

While such mathematical methods are elegant and efficient when
they work, they are not all that useful for most CEG problems.
Furthermore, they are inadequate as a computational description of
the CEG process.
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APPENDIX A: A Protocol for Problem Geom2

This is a verbatim transcription of one protocol for Problem
Geom2., It shows many of the ideas discussed in the paper. The
subject was very verbal and did a 1lot of thinking cut 1loud.
Remarks by the author are indicated by "ER:".

Problem 1.2. Draw a quadrilateral with exactly three equal
angles. Uh, I'm tempted to think of a square again. Um, so I
will. And three equal angles. Now I'm going to draw in the three
equal ones. As right angles. Now is there any way I can change
that fourth angle to be not equal? I don't think there is. I'm
thinking about stretching sides A and B to be longer, which would
also stretch sides C and D. That isn't changing the angle.
Stretching is the only thing I can think of that serves
the...three angles. So I think that I'm going to try to start
over. Draw a quadrilateral with exactly three angles. Exactly
three equal angles. Oh. No, that won't work. I just thought
that I might be able to move the right end of D down along C, and
that that would work, but that changes two angles not three. So,
I'm having trouble with this very simple-looking problem. Draw a
quadrilateral with exactly three equal angles. I wonder if having
right angles is hanging me up? I'm attracted to the idea of
starting with a triangle. An equilateral triangle. And there are
my three equal angles. Could I somehow get a fourth side in
there? Well, I could if I bent in side A, but then that would
change the angles. Un, I'm going to make the triangle into a
quadrilateral. I'm going to try a right triangle. [Draws again.]
Which does not have three equal angles. I'm starting to get
embarrassed because this problem looks so easy. [Laughs.] But for
some reason, I'm off on the wrong track. OK. Let me see if I can
take a new approach. Uh, I'm going to think about quadrilaterals.
I know about...sort of trial and error. A rectangle won't work.
A trapezoid won't work. Um, and it's starting to occur to me, in
fact——-this may be more foolish--that this is impossible to do.
But I sort of doubt that.

ER: Well, it's always a possibility.

But I sort of doubt that. OK. A parallelogram won't work.
Uh...0Oh. I just had an image of walking along a line and then
making a turn and that reminded me of turtle geometry, and then
making another turn that would be the same, and then making
another turn that would be the same, and that would give me three
equal angles. And then I would draw another line, and now I have
five sides. Damn it! So. Could I get anywhere from that? What
if I drew the line at point A instead of point...from A to C
instead of from B to C? Let me number these: 1, 2, 3, y, 5, I
was drawing 6. I'm looking at the line between A and C. Let me
draw that dotted. And I'm reconvincing myself that quadrilateral
ACDE does not have three equal angles, and um, I'm sort of getting
a blank. I don't know what to do next. Uh, well, I had one idea,
which was to...I had an intuition that maybe doing sharper turns,
at E and D, might help, and that if I picked the angle I was
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turning at correctly, things might work out. But then would the
thing...I mean, one obvious one is a right angle. But then you
get a square. And we already showed that that wouldn't work. So
I'm now attaching some increasing suspicion to the idea that maybe
this is impossible.

ER: Do you want me to make any suggestions?
Uh, that's up to you.

ER: OK. Well, you've done a lot on it. Why don't I just say:
90 degrees is an angle that you've explored pretty thoroughly and
you don't want to look at that. That's what you just said. And
you said something about choosing a different angle, a smaller
angle, and you talked about it, but you didn't draw a picture.
Why don't you just try it? One last try.

OK.
ER: Your routine number 6, but pick a different sort of angle.

OK. So, I'm going to start going vertically to get things looking
nice. Point C--this is drawing 7. And I'm not going to pick a
right angle to turn at point E. I'm going to...say, I could
pick...I'm anticipating picking less than a right angle for the
interior angle and is that going to...? Ooooh! What if I had a
polygon that was was concave? Bet that might work. So now I'm
envisioning something like...oh, I drew it wrong in 7, so 1I'll
draw it very...and I just noticed I'm tending to use equal sides.
And I don't need to use that constraint. So, you have a sharp
angle and then another angle that's going to be inside. 1It's
going to hit line CE if I continue too far. And then draw it back
to the point where I get a nice looking angle at C that's like
angle E and F, drawing 8. This looks like it might work. Just
visually, C 1looks 1like the same angle as E and F. But G...G is
different, so that looks like a possible solution.

>



