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Section 1 of the chapter distinguishec top—down brain theory
(functional analysis of cognitive procescec) from bottom—up brain
theory (as in the analysis of the dynamics of neural nets).
Section 2 then advocates ‘cooperative computation’ as providing a

style of analysis for studying the iuteractions of neural
subsystems.

Section 3, "Interacting Schemas for Motor Control, " provides
a top-down analysis of perception and th¢ control of movement in

the ‘action—perception cycle’. We intyroducre perceptual schemas
as the building blocks for the representation of the perceived
environment, and motor schemas as coutrol systems to be

coordinated into programs for the control of movement. Section 4
contrasts two approaches to the desigwn of machine vision systems.
The analysis exhibits many of the inciaohts to be gained from a
top—-down analysis, but shows that suth &n analysis does not
guarantee a unique functional analysic of the problem at hand.
Section 5 presents an algorithm for computing the optic flow
which exhibits the style of cooperative tomputation set forth in
Section 2. This model has not been confronted with data from
neurophysioleogy, but is very much ‘in the style of the brain,’
and offers interesting insights into +ihc¢ evolution of 1layered
neural structures.

The next two sections do offer neursl models which have
developed through a rich interactiun between theory and
experiment. Section & models the poscille role of the cerebellum
in parametric tuning of motor schemas; while Section 7 models

interaction between tectum and pretectum in visuvomotor
coordination in #frog and toad. We close in Section 8 by
sketching a path between these neural wudels and the top—douwn

analysis of cognition.
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1. BRAIN THEORY: ‘BOTTOM-UP’ AND ‘T(i* -DIIN’

‘Brain theory’ seeks to make systematic use of mathematical
analysis and computer simulation to elucidate the interactions of
the components of the brain, and how 1ibey can subserve such
diverse functions as perception, wmemty, and the control of
movement. As such it differs from the ’‘mind theory’ of cognitive
psychology which seeks to analyze pruperties of the mind with
little concern for how these propertiec arc played out over the

structures of the brain. In this paper, we provide a view of
brain theory informed by two viewpoints: the need for a healthy
interaction between cognitive cstudies {‘top—douwn’) and
neuroscience {‘’bottom-up); and the omerging vutility of an
approach to brain theory which emphirizes the ‘cooperative
computation’ of a multitude of subsystems. {The latter point is

also central to the paper by von der Meslsburg in this volume. We
shall develop it in Section 2.)

I want to suggest that brain theory should confront the
‘bottom-up’ analyses of neural modelling not only with biclogical
control theory but also with the ‘tap—down’ analyses of
artificial intelligence and cognitive pcychology (Arbib, 1975;
1978; Marr and Poggio, 1977a). In bottom -up analyses, we take
components of known function, and explorve ways of putting them
together to synthesize more and more complex systems. In
top—-down analyses, we start from some complex functional behavior
that interests wus, and try to deteymine what are natural
subsystems into which we can decompose & tystem that performs in
the specified way. 1 would argue that pyruougress in brain theory
will depend on the cyclic interaction of these two methodologies.
In advocating a brain theory of this tupe¢, we suggest that many
experiments in the 1laboratory of +{the neurcanatomist and the
neurophysiologist should be related tuv evolving theories of
high—level brain function, while at the «ame time suggesting that
to contribute to brain research a cognitive analysis must
constrain the subsystems posited by exploving whether they can be
mapped into the circuitry of actual brain regions.

The top—down approach complemente bottom—up studies, for one
cannot simply wait until one knows what 11 the neurons are and
how they are connected to then simulatc the complete system.
Jose Luis Borges (19735) tells of a country which prided itself on

the excellence of its cartography. AL years went by, the
cartographers produced maps of greater and greater accuracy,
until finally they achieved the ultimate, full-scale, map. And

Borges wryly notes that there are places in the Western Deserts
where even today you can see tatterrd {ragments of the map
(presumably, pegged to the place they represent). We need a
guide to understand a new territory, Lui & map which provides no
simplifications and pointers to distinctive features to aid our
exploration does not help us. In the same way, a model which
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51m?1g. duplicates the brain is no move illuminating than the
brain itself. We need theory to procece data efficiently, and to
present the facts in an illuminating and insightful way; and we
need Qetailed studies by neurologists of huw brain lesions impair
behavior (both transiently and permanently), as well as by
neurophysiologists and neurcanatomists on circuit, cell and
synapse. Brain theory, properly conceived, can contribute to the
design of further experiments that help shape the overall
understanding of how portions of the br#in interact to make us
what we are.

The layered structure of the brain ir one of its distinctive
features, and may well play an important role in helping us
analyze the way in which sensory informetion —- be it wvisual or
somatic or otherwise —— can be used in the control of behavior.
Such an analysis offers hope that rather than having to model
individuval activity in millions or move of neurons, we can hope
to understand much brain function in teyme of the interaction of
spatial patterns distributed across a relatively small number of
neural arrays. Another unit of complexity intermediate between

the single neuron and the brain is the ‘module’. One of the
earliest ’‘modules’ came from the Scheibels’ (1958) anatomy of the
reticular formation. They observed that ithe major neurons of the

reticular formation had dendrites which were parallel to one
another, and orthogonal to the axons which ran up and down along
the head-tail axis. They thus suggested that nearby neurons
could be aggregated together into ‘poker chips’ orthogonal to the
head—-tail axis, with the neurons within # module being roughly
uniform in their sampling of the traffic wup and down the
reticular formation as well as their campling of the peripheral
input.

This analysis of the reticular formalion in terms of the
interactions between a relatively om:d) number of modules was
used by Kilmer and McCulloch (196%9) in itheir RETIC model of the
reticular formation. This model was intercsting not only in that
it was related to one of the earliest ’‘module’ concepts within
neuroanatomy, but also because it t«howed how a neural system
could achieve some overall behavior without executive control.
Kilmer and McCulloch suggested that ihe veticular formation had
the task of committing the organism to «come overall mode of

behavior. Each individual module of KI-T1IC was thus to use its
sample of inputs to make an initial dctevmination of the relative
desirability of the different modes. Different modules were

coupled to a sample of their neighbors in such & way that the
back and forth traffic between the modulee proved sufficient for
them to reach a consensus in which the miagority gave top priority
to a single mode thus committing the organism overall. We shall
say more about this style of ’‘cooperative computation’ in Section
2.
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Another form of intermediate wuwit 1is the ‘column’, an
anatomical structure suggested firel by the studies of
Mountcastle (1957) and Powell on somatostmsory cortex (1957), and
then later by the work of Hubel and Wicuel on the visual cortex
(1974). The suggestion here is that as we move Uup and douwn
through the layers of the cortex we find ihat all the neurons are
responsive to Toughly the same stimuli Fvom the external world,
and that a small displacement will keep us with neurons with
roughly the same ‘features’, but that if we go further we will
move on to another ‘column’ of celle describable by different
features. This suggests, then, that muth of the analysis of
cortex can be conducted in terms of the interaction between
columns, with the analysis of individual wcurons playing a more
restricted role to explain the dynemics of the column units
{Mountcastle, 1978; Szentagothai and Mihkib, 1975; Szentagothai,
1978).

Before closing this section, we stvress that brain theory
will progress both by computer simulstion and mathematical
analysis. We see analyses that are mathemstical in that we not
only provide formal descriptions «f <cystems but also prove
theorems about their behavior. There &ve mathematical analyses
of properties of general classes of «ystems related to the
Hodgkin-Huxley equation, (reviewed in (Rinvel, 1978)), in studies
of cooperative computation (as outlined in the next subsection),
and in control theory. On the other hand, there are many cases
in which our symbolic representatiun nf systems and their
interactions does not take a form which lends itself easily to
mathematical analysis. Rather, we tury to the computer to
conduct neural simulations and cognitive modelling experiments in
the style of Artificial Intelligence (A}) to gain insight into
the capabilities of & system so reprecented. It may well be that
we shall see the growth of a delicste interaction between
mathematical analysis and simulation as we use our mathematics to
determine what is a sufficiently wide sample of different
conditions in which to simulate a system ¢to get & proper
appreciation of the full range of its behavior.
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2. COOPERATIVE COMPUTATION

Time and again, we find that modern siudies in brain theory
must concern themselves with the integration of the activity of a

multitude of subsystems. This bringe wu:s, then, to the key
question of cooperative computation: tlow is it that local
interaction of a number of systems can be integrated to yield
some overall result? The study of coopcrative phenomena has its
roots in the statistical mechanice «f physics whereby the

individual motion of billions of atoms could be averaged to come
up with reliable thermodynamic descriptiunc of the behavior of a
gas or a liquid as a whole. I-trr example, in studying
ferromagnets, we seek to wunderstand houw atomic magnets can
‘cooperate’ to yield global magnetism ihrouugh the mass effects of
local interactions. Cragg and Temperley (1953) were perhaps the
first to suggest analogies between tortical activity and domain
formation in ferromagnets. A number of inleresting models have
been developed in the 1970’s, starting with the studies of Harth
{1970) and of Wilson and Cowan (1973) and continuing up to such
studies as that of Amari and Arbib (1977), Amari (1980), and Shaw
{1978). For example, if we imagine the viecual cortex to contain
a great variety of cells tagged not only fur visual direction but
also for depth in the visual field, then we can imagine the
process of recognizing regions in the vicual input at different
depths to be one of suppressing all neural activity except that
corresponding to the depths within a given direction; and we can
then imagine this process of segmentation as having much in
common with the process of domain formation in magnets {(Julesz,
1971). We shall say more about stereopsic below.

The study of how 1local intevaciions may yield global

function may be studied ‘discretely’ or ‘continuously’. The
classic ’‘discrete’ study is given by von Neumann’s (1951) use of
tesselation avtomatsa to model «¢) -reproduction. These

structures comprise nets of regulariy cpaced auvtomata, each
connected to a few neighbors, with the next state of each unit

being determined by the present cstate of units in its
neighborhood. {(This will be familiar 1o readers of Scientific
American as the setting for Conway’s "Game of Life”.) The
analysis of such nets is purely combinstorial: given a program
for local cellular interaction, we check that the details of the
program do indeed yield some desirved pattern formation. (See

Arbib (1972b) and Ede (1978) for the usc of such models in
embryology. ) By contrast, the ‘continucue’ approach approximates
a tissue of cells by functions varying continuously over the
tissue., and uses techniques from differential equations,
stability, and statistics. This approach to biological systems
goes back to Turing’s (1952) paper on morphogenesis {which was
fore-shadowed by Rashevsky (1948)), which introduced the wuse of
reaction-diffusion equations intoe the ctudy of pattern formation.



PAGE 8

Turing studied a ring of cells. in each cell there were two
chemical substances called morphogens. Within any one cell,
these substances could engage in chemical reactions: each
morphogen could also diffuse between celle. One might think that
such interactions would yield identic#l  chemical equilibria in
all the cells. To the contrary, Turing was able to show that,
even with linear equations, the system would eventually be
structured with standing waves of chemical concentrations., thus
providing the substrate for the expression of biological pattern.
Turing was once asked whether his model weuld explain the stripes
of the zebra, and his reply was "The stripes are easy. it’s the
horse part that I have trouble with!" “the important point for us
here is that we have a model of how lotal interactions give rise
to global pattern (See (Fife, 1977; HKatchalsky et al., 1974;
and Kopell, 1978) for further information on reaction-diffusion
equations and related topics.) ©Groscherg (1978) has explored
analogies between reaction-diffusion quations and neural
processes, including the problem «f piztterning an array of
synapses in neural learning. Haken (1%/73) has written a book on
"Synergetics, ® seeking to provide & unified mathematicsal
framework in which a8 number of these cooperative phenomena can be
viewed. In particular, he relates the reaction-diffusion problem
to the mathematics used to look at such phase transitions as the
formation of a coherent pulse of 1ight in a laser and the
order—disorder transition in a magnet.

In ‘top-down’ brain theory and artificial intelligence, we
find a ‘discrete’ style of analysis of curoperative computation.
Such AI projects as HEARSAY (Erman and Leccver [19801) and VISIONS
{Hanson and Riseman [1978al) wuse @2 wumber of interacting
knowledge sources to converge upon a perceptual analysis of some

sensory input —— an acoustic signal euctoding a sentence in the
first case, and a color photograph of an oautdoor scene in the
second. The conceptual structure thus created seems to hold

promise for letting us understand how different regions of the
brain interact -- as in language behavior (Arbib and Caplan,
1979) -— when we seek to make contact wiih the level of analysis
of the neuroclogist concerned with brain lerions, rather than that
of the neurophysiologist and neurcanatomict who can trace a few
cells at a time. '

When we turn to the analysis of neursl netdorks per se, we
find that the ’continuous’ style of analysis of cooperative

computation is playing an increasing 1yole. We have already
mentioned that the formation of the underlying tissues has been
studied in terms of reaction-diffusion equations. In the rest of

this section, we briefly discuss schemes that explain how one
part of the brain can be ‘wired up’ to ancther, analysis of the
effects of early environment on +the modification of feature
detectors via synaptic plasticity, a+« well as models of
cooperativity in the mature function of the nervous system.
Certain of these studies will be takew up in more detail in
subsequent sections.
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By way of background from neurophuyciulogy, we first recall
the notion of retinotopy.

2.1 Retinotopy and Population Lnicuding: When 1light is
focused by the lens upon the retina, & very small solid angle in
the external world can affect each individual receptor. But as
we move back through the layers of the retina and along the optic
tract into different regions of the braoiw, neighbor neuron talks
to neighbor neuron in affecting neuwrons further along the
pathway. Thus, the activity of neuron: eswi:y from the periphery
may be influenced by 20 degrees or mure of the visual field.
Yet, as we move across layers of neurons iwu visual cortex, tectum
(midbrain wvisval region) or lateral gewiculate (thalamic visual
region), we find that there is a lawful direction across the
surface corresponding to wup and down in the visual field and
another corresponding to 1left and +wight. This property of
preserving the spatial structure froum the retina as we back up
into the brain is called retinotopy.

Just as we may speak of retinotopy when we see a variety of
‘maps’ of the retina within the braiu (Allman, 1977), so may we
talk of somatotopy when we look at ’‘maps’ of the body surface ——
whether they be sensory maps of the tactile and other stimuli to
the skin, or motor maps of the distributsion of contraction of the
musculature around the body (Brodal, 1749).

In such layered structures, it m&#y be inappropriate to
regard a single neuron as by itself conwveying a vital message for
the brain. Rather, it is the pattern of firing as distributed
across a whole array of neurons that robustly encodes vital
information about the world (Erickson, 17%774). If this is so, the
occasional misfiring of an individual neuron poses little problem
because the receptive field that it camples overlaps the
receptive field of hundreds or even thoucands of other neurons in
its vicinity in its own layer of the broin, yielding a natural
redundancy and stability. This naturasl redundancy and stability,
induced by the way in which layers of neurons represent spatial
properties of the world, seems to solve tihe problem of "reliable
computation in the presence of noise”.

The ‘maps’ within a neural layer are not simple
point-by—point transmissions of arrays of stimulation from the
periphery. Rather, they involve sophisticated transformations.
For example, Lettvin et al. {1959) ideuiified several classes of
ganglion cells in the retina of the fron, including cells which
seemed most rTesponsive to the presence of small wiggling objects
in their receptive field and those that +vesponded best to the
passage of a large dark object acrcce their larger receptive
field. Moreover, they found that thece different types of cells
distributed their messages to the tecium in such a way that each
cell-type projected to a different depih, with each progjection
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retinotopic and corresponding points in the arrays one atop the
cther.

In the mammalian retina, Kuffler (19%1) had found that the
ganglion cells did not respond to these ‘#rog relevant’ stimuli,
but rather served to enhance contrast, while Hubel and Wiesel
(1962) found ‘edge detectors’ in the vitual cortex of cats and
monkeys, which seemed to respond best to the movement of edges
with a specific orientation in their receptive field. In this
way, we find that the input to the brain i arrayed in maps of
distinctive features. The suggestion ie that these maps serve to
provide the input variables for contvrnlling the animal’s
behavior. In Section 7 "Mudelling Frog Visuomotor
Coordination”, we shall develop this idea Further in a specific
situation. We here turn to a brief survey of cooperative
computation in retinotopic arrays.

2.2 Retino-tectal Connections: We have seen that fibers
from the retina reach the visual mid-brain, the tectum. and there
form an orderly map. Sperry (1944) showcd that this retinotopy
of the tectum would, at least in the #vug, survive rotation of
the eyeball after section of the optic tract. After such an
operation, nerve fibers growing out from the retina would still
find the ‘original’ tectal locus. This might suggest that each
fiber bears with it a unique ‘address’ &ud goes directly to the
target point on the tectum. However, experiments in the 60’s
{reviewed in (Gaze., 1270)) showed, €. 4., that if half a retina
were allowed to innervate a tectum then the map would expand to
cover the whole tectum;  while if 3 whole retina innervated half

a tectum, then the map would be comprected. In other words., the
tibers had in some sense to ‘sort ocut’ their relative position in
using available space, rather than eimply going for a

prespecified target.

There are now a number of models which explain  this
phenomenon not in terms of an overall global organization
principle, but rather by local interactions of a few fibers and
the portion of tectum upon which they find themselves. These
models include the arrow model of Hope, llommond and Gaze (1976),
the ’market’ model of von der Malsbuyrg oand Willshaw (1977), and
the branch-arrow marker model of Overion &nd Arbib (to appear).
{See also Malsburg’s chapter in thie volume, which —— in common
with the present section —~— argues for the broader implications
of such models for brain theory.)
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2.3 Cortical Feature Detectors: Many cells in visuval
cortex are tuned as edge detectors, aud it is known that the
binocularity of this tuning can be mudificd by decoupling the
input from the two eyes (Hubel aud Witvsel, 19465). Moreover,
eatrly visual experience can drastically change the population of
feature detectors (Hirsch and Spinellds, 1971; DBlakemore and
Cooper, 1970). This suggests that +{he aqrowth of the visual
system in the absence of patterned stimulation can at most sketch
the feature detectors, and that interaction with the world is
required whether to fully express the ‘nurmal’ situation, or to
adapt an array of detectors to the peculiarities of a given
environment.

These considerations have challenged a number of workers to
come vup with models in which there oare mechanisms of local
synaptic change within a8 neuron base¢d ou correlation between
presynaptic and postsynaptic activituy, or on reinforcement
signals, or on a combination of the tuwu {(Amari, 1977; Grossberg.
1970; Grossberg and Levine, 1973; HKohowen and Oja, 1976: von
der Malsburg, 1973). In particular, whew local synaptic change
is coupled with inhibitory interaction hetween neurons:. a group
of randomly connected model neurons can eventually differentiate
amongst themselves to give eduye detectors for distinct
orientations. However, it must be noted that while certain cells
in areas 17 and 18 of visual cortex become well tuned as simple
cells, other cells in area 18 and 7 hecome well tuned as
hypercomplex cells —— and complex cells &rise in all three areas.
It thus requires a more subtle theory than any to date to
understand what it is about the precurcive cellular geometry that
provides preconditions for the differcnt patterns of learning in
the two populations.

Recent experiments (Spinelli and Jencen, 1979) show that
early visual experience may actually intrease the area of cortex
allocated to features innervated Wy & given area of the
periphery, contrary to a view that feature detector changes may
simply involve atrophy of those neurousr that are seldom active
Amari (1980) has recently modelled topuaraphic organization of
two nerve fields connected by modifiahle cxcitatory connections;
and has indeed proved that a part of the postsynaptic field which
is frequently stimulated comes to be mapped on 3 large area of
the postsynaptic field.

2.4 0Optic Flow and Stereopsis: ©iven two frames of visual
information, we may ask how local features in one frame are

matched with the correct features in the other. 1¢ the two
frames are taken in temporal succescion, then the stimulus
matching problem is that of computing optic flows it the two

frames come from two simultaneous vaniasge points (the left and
right eyes, for example), then the stimuluy, matching problem 1is
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that of stereopsis.

There are now a wide variety of algorithms which show how
one can start with an initial set of hupotheses about matching
and then use local interactions to slowly change these hypotheses
until obtaining a coherent segmentation of the image on the basis
of common motion or common depth. While & number of models of
stereopsis were based purely on cooperative computation (Dev,
1975; Julesz, 1971; Marr and Poggio, 1'777b; Sperling, 1970),
Marr and Poggio (1979) have offered an alternative model which
uses channels of different spatial frequency to obtain & coarse
match which can then be refined without cooperative computation.
However, Frisby and Mayhew (1977) have offered psychophysical
evidence for a modification of the latter model which does
require cooperative computation between the channels of different
frequencies. We shall provide a specific cooperative algorithm
for the computation of optic flow in Gectlioen 5.

2.5 The Continuity of Development and Function: We have
seen a mathematical commonality which liuked reaction—-diffusion
models of basic pattern generation in binlogical tissues; the
formation of projections from one region of brain to another as
in the connection of retina to tectum: Lhe tuning of connections
to a cell within a tissue as in the formation of feature
detectors in visual cortex; and the actusl function of a brain
region as in the computation of optic flow or stereopsis. This
all suggests that many developments in brain theory will result
from looking for a commonality of underluing mechanisms between
neuroembryology, formation of connections, and adult function.
We may summarize this with the slogen of (Arbib, 1972): "The
brain is a somatotopically organized distributed layered
computer.” Nonetheless, it must not he thuught that there is any
single method to be ‘plugged in’ to solve @11 problems of brain
theory. The rtemainder of this poper will illustrate the
diversities as well as the unities
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3. INTERACTING SCHEMAS FOR MOTOR CONIR(1

In this section we offer a top-down analysis of the
interaction between perception, internal representations, and the
control of movement. This will providee a setting for the
bottom—-up studies of Section 5, & and 7. We start by analyzing
concepts from the theories of control and communication to be
adapted to address the issues of perceptucli—-motor interaction.

Control theory has taught us how to hreak a system down into
an array of continually active .ubsystems linked by
message—bearing pathways through complicated patterns of feedback
and feedforuward. Computation theory hae taught us how to break a
complicated pattern down into a program describable by & flow
diagram whose boxes correspond to the activation of various data
transfers, tests and operations, and wheae lines correspond to
transfer of control from one box to anciher. In control, then,
we have continually active syt.tems in constant
intercommunication; in serial computation we have activation of
one subsystem after another, with +Lthe pattern of activation
delicately determined by tests of curreunt data. In this section,
I want to suggest how ’‘programs in the bruin’ might be viewed as
sharing properties of both control bluack diagrams and computer

flow diagrams. The resultant approach invoelves concurrently
active systems, with which systems ere active at any time being
determined on the basis of current intersctions. 1 shall use the

term ‘schema’ for the units of control From which these programs
are built.

3.1 The Action—-Perception Cuycle: The notion' of the
action—perception cycle (Arbib, 1981&; Neisser, 1976) serves to
emphasize that the current situation in the environment does not
in general serve to determine the Lehavior of the animal.
Feeling hungry, we go to the kitchen to get food from the

refrigerator. Our brain models the world (Craik, 1943). Again,
many movements are explorations of +{hc world around wus. In
short, we perceive so that we may plan cuy actions appropriately;
but in acting we provide ourselves with new opportunities to

perceive. The cycle of action and pevceplion continues.



PAGE 14

3.2 The Schema—Assemblage: How is it that looking around
us we come to recognize objects and their spatial relationships?
We shall look at two theories of this proucecss in Section 4. Here
I want to stress that it seems reaconable to posit that we
perceive the world on the basis of our oun prior knowledge. We
have ‘schemas’ uwhich are programs ov systems which 1let us
recognize a phone or a person or & mountain from appropriate
visual or other stimuli. 1 suggest thuat our knowledge of the
world is divided into a short—term model that represents our
appreciation of our current place in space and time, and a
long~-term model which represents &ll ihat we know both
consciously and unconsciously. To a fFirst approximation. and
especially insofar as it refers to the censible  environment in
which we currently find ourselves, the chort—term model is then
to be construed as an assemblage of activated schemas whose
pattern of activations is related to the current state of the
environment. By contrast, long-term memury is the distillation
of experience (some of it genetic) reprecented by the repertoire
of schemas available for activation. UF course, this begs many
questions as to how schemas are coded in neural terms, and how
they are related one to the other. {1 <ciress that this is a
top—down analysis:; and that much remains to be done to determine
to what extent ’‘schemas’ and other processes described here are
directly instantiated in neural procesces.) Clearly, retinoctopy
provides a fine framework for understanding the disposition of
those schemas which rtepresent objects which are within our
current central and peripheral visual fieid. But when we come to
representing our current awareness of objects in other parts of
the house or in the environment beyond, then we come to deep
problems which I shall not enter into in the present paper.

3.3 Perceptual and Motor Schemas: The present theory
posits that a schema is like a neural network, and may thus be in
a state of greater or lesser activity. 11 is perceptual to the
extent that its activation can vary on the basis of cues from
both peripheral stimuli and internal context. It is motor to the
extent that, being activated, it can determine an appropriate
course of action. Just as a contrel system may have an
identification procedure (cf. Section &) to tune its parameters
to provide appropriate control signals to that which it controls,
so will in general a motor schema wred to be linked to a
perceptual schema so that the interaction with the environment is
based on a proper appreciation of the nature of that environment.
Thus, a schema for grasping an object casnw be guided by visusl
perception of not only the position of the object but also its
size and orientation. A motor schema., in this sense, is akin to
what the Russian school, founded by HReirnciein (1948), has called
a synergy {(a different wusage of Lihe¢ term from that of
Sherrington).
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3.4 Coordinated Control Programs: We now offer two
examples of the notion of a coordinated control program which is
to combine the features of both (onventional control block
diagrams and computer flow diagrams.

Figure 1 offers a hypothetical dizgram of @ possible program
for the control of reaching towards a vituczlly sensed object. At
the top of the diagram we see the operation of the perceptual
schemas which recognize the object and locate it on the basis of
a8 description, and those perceptur) «scthemas which in  turn
determine the size and orientation «f i1he object. It has been
observed by Jeannerod and Biguer (1710)) that when a person
reacthes  for an object he already begine Lo shape his hand to the
5i:¢ and orientation «f the object during the reaching movement.
Trus, in the motor schemas, we see the dashed line indicating
similtaiieous activation of both reaching and shaping of the hand.
1f we regard the shaping of the hand &« pivt of the grasp schema,
we have the interesting fact that the tumpletion of this subtask
does not initiate the next task of greaping. It must, in fact.
wait for an activation —— possibly based upon feeling the object
touch the palm of the hand —- concequent upon the successful
completion of the reaching movement.

Figure 2 is based on Brinkman and Kuypers (1972) and Haaxma

and Kuypers (1974). They were ahbhle to show that finely
coordinated visually—-guided behavior involved the cooperative
computation of two different systems. A pathway involving the

brainstem controls the undifferentiated hand movements akin  to
the simple grasping discussed in the previous example. A pathway
from visual cortex to precentral gyrus and thence directly via
the pyramidal tract to motor neurune controls the distal
musculature, and is responsible for the control of relatively
independent finger movements. With iunterruption of either the
corticocortical connections or of the pyramidal tract, the animal
was unable to shape its hand in such a way as to dislodge a
pellet #from a groove whose orieniation could be visually
determined. Instead, the animal could reach for the pellet but
without preshaping the hand, and would then move its hand back
and forth wunder tactile control uniil by chance the pellet was
dislodged. At that time., the tactile fecdback sufficed to allow
the animal to grasp the pellet efficiently and bring it to his
mouth.

We shall place these examples in pevspective when we relate
such top—down models to bottom—up modele 3u Section 8.
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4. TWO THEORIES OF VISION

Section 3 suggested that a task of pevceptual systems was to
vpdate an assemblage of representations of particular objects in
spatial relationship. This problem ic of intense interest to
many workers in the branch of artificial intelligence known as
‘machine wvision’ or ‘computer vision’, irrespective of any
question of the use to be made of the representation of visual
input. This section examines two appvoaches to machine vision.
those of Hansen and Riseman (197{(:) ond of Marr (1978), and
considers to what extent they can be viewcd as cognitive models,
rather than simply as programs to get machines to emulate certain
aspects of vision. In fact, Hanson and Hiseman view themselves
as working primarily at designing a computer system per se to do
something useful, while Marr does see hi:. approach as providing a
top-down specification of the visual system whether it be in
brain or machine. However, I shall argque that the Hanson-Riseman
approach provides valuable cues furr brain theory which
supplement, and occasionally challenge:, those offered by Marr.

Before going on, 1 should note that in the rest of this
section we shall be using the terms ‘bottum-up’ and ‘top-douwn’ in
a somewhat different sense from our aunalycsis of styles of brain
theory. Within & visual system, botlum-up processes are those
that proceed by more and more elabovate processing of the
peripheral signal without reference to knowledge of objects in
the world; while ’‘top-down’ processes ove those that proceed
from knowledge of objects to an intevpretation of ’‘lower-level’
patterns. Both the models discussed heve are in agreement that
there must be two stages of bottoum -up processing. The first
stage applies a variety of local processors to come up with a map
which highlights what are 1likely to he the most ‘information
bearing’ places within the visual input. ‘They also agree that a
second stage must build upon this initizl ’‘feature map’ -+~ what
Marr calls the ’‘primal sketch’ —— to yield a representation which
provides valuvable information about the position and shape of
objects without yet calling wuvpon any interpretation based on
knowledge of objects that might be in ihe world. Here, the tuwo

models depart quite drastically, with Hanson and Riseman
advocating a pattern of segmentation, while Marr advocates the
2-1/2 D sketch. Having obtained these = intermediate

representations, both theories invoke high~level information to
come up with hypotheses about what objecic in the world could be
responsible for the observed visval paticiru.

The general scheme, then, is bottom-up processing through
several levels of representation until ‘world knowledge’ can be
invoked to generate hypotheses; these hupotheses then act top
douwn to verify or disqualify themselve: hy determining whether or
not other data from the visual image a#re compatible with those
data which evoked the hypothesis in the first place. It should
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?e noted that this same overall system ovganization can be seen
in Al studies of speech understanding, ac in the HEARSAY system
(Erman and Lesser, 1980).

4.1 The Hanson-Riseman Approach: The Hanson—-Riseman
approach wuses a pattern of segmentation as its intermediate
representation. An attempt is made to «crument the image into
different regions. There are two methode of segmentation. One
is ‘edge~finding’ based on discontinuitice in color or texture or
depth which could signal a break between two surfaces. The other
is ‘region—growing’, aggregating areas of similar visual stimulus
by +finding clusterings in the feature space and then mapping
representative symbolic labels back upon the image to determine a
partition of the wvisual ¢field. The wvariety of shapes and
illuminations in the world are such that it proves virtually
impossible, at 1least with current techuiques, to come up with
Tegions that are in 1:1 correspondence with surfaces of distinct
objects. The pattern of light and shade in a tree can break it
into a number of chromatically distinct regions. A highlight may
make it impossible to see an edge seporating one region from
another. Shadows and highlights may themselves be treated as
distinct regions rather than features Jying upon a given surface.
In fact, there is a hierarchical problem of grouping texture
elements ——- consider leaves, clumps of leives and branches, trees
on 3 hillside, etc. While it is true that more sophisticated
bottom—up processing can be designed which will take into account

various processes of color change uuder highlighting and
shadowing to allow merging of regions whith would be separated on
a crude analysis, it nonetheless seems fFaiv to posit that total

segmentation cannot be done without invoking real-world
knowledge. Note, however, that segmentation can be improved by a
process of competitive cooperation betuween different segmentation
processes, such as those based on edge -finding and those based on
region—-growing. Once this approximate wegmentation is completed,
the Hanson-Riseman approach calls variocus processes into play to
make hypotheses about the objects of which those regions are
parts of surfaces. The ’‘schemas’ which rtepresent objgects or
other visual regions must thus contain Llhe necessary routines to
determine whether that which they represent is present within the
scene. For example, if a region is blue &and is near the top of a
picture taken outdoors with a level camere, then & Treasonable
hypothesis is +that the rTegion is sku. I¢ it is green and near
the bottom of a picture in an ovtduur c=cene, then it is a
plausible hypothesis that it is gruse. Other cues may suggest
the presence of bushes, trees, houses, windows, cars, etc. Such
hypotheses can then be checked by seeing whether the region can
be merged with other regions which satisfy bounds on their
spectral attributes and other features, and if the resulting
posited surfaces are appropriate in termc of shape, with extra
processing required to take occlusion effects into account, and
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size. A camera model can be invoked to infer the size of an
object from an estimate of its distance along the ground plane in
the case where other depth information frum stereo disparity or a
range finder, say, is unavailable.

A three—~dimensional object it represented in the
Hanson~-Riseman system by the numerical representation of surface
patches which approximate the surface cuvrounding the volume ©of
an object. The patch boundaries are coded by the use of cubic
splines to yield a representation akin tn that used in computer
aided design of cars {(York, 1980)

In the top—down matching of a s(ene against a posited
schema, a 2-D schema is generated corresponding to the view of
the 3-D schema from a particular pervepective. To increase
flexibility, the 2-D representation is not a picture with fixed
edges, but is rather a graphical structure which posits a range
of likely positions for objects with covrecponding flexibility in
the specification of edges. Once an obgtect is posited in a
particular region, the system can check the hypothesis by seeing
if in a particular area of the image, tup—down processes can
merge regions from the segmentation to meet the spectral shape
and size characteristics that can cenfirm the original
bhypothesis. However, while the current nustem contains routines
to confirm certain hypotheses (Parma el al}., 1980), the design of
programs for inferring hypotheses frum ihe¢ patch representations
is still at an early stage of developmint.

4.2 The Marr Theory: In Marr’s theary, the intermediate
representation after the ’‘primal sketich’ is not based on

segmentation, but is based upon a depth snazlysis which seeks to
assign to each point of the scene an ectimate of its orientation

in space {(recall the review of stereopeiv in Section =2 other
cues come from surface highlights (Houvn, 1974) and motion
{Ullman, 1979)). The resultant 2-1/i'H sketch is 1like a

bas-relief, in which the shape is determined at each point, but
there is no symbolic representation of seporation into distinct
ob jects. Further computations are thew designed to find axes of
symmetry for different bulges in the ¢ -J/2 D sketch, and the
resultant collection of axes are to be used as stick figures
which provide access to a data base of different objects known to
the system. In other words, the three-—-dimensional representation
here is not based on surface patches but on  ‘body-centered
coordinates’ of the represented obkject, providing, as I have
said, 3 sort of stick figure skeleton, wilh a specification of
cross sections to be swept up and down these axes to ’‘f£lesh out’
the three—-dimensional object. Again, @& in the Hanson-Riseman
system, programs for such data-bare access remain a topic for
future research, and I believe that 31 is open to question
whether in #fact the 2-1/2 D sketth (¢on be constructed with
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sufficient accuracy to drive the procere of axis inference well
enough to allow reliable retrieval of hupoiheses.

The two approaches as currently constituted provide a useful
base for wunderstanding the visual cyriem, but certainly do not
stand alone. Data are often noisy, t.v that inference of the
2-1/2 D sketch, or the segmentation whkitch, is unreliable., and
can at best suggest hypotheses rather thin lead to the selection
of a wunique hypothesis. Again, o <«lrategy of cooperative
computation between depth estimation &nd cegmentation might well
work better than either process alouer, aud computer experiments

alopg this line would seem well worth while. Marr’s approach
posits a wuniquely three-dimensional rcpresentation of obgjects,
rather than accepting the perhaps muve plausible view (c#f.

Minsky’s theory of frames (1975)) that our knowledge of an object
is often a synthesis built upon our viewinyg of it from a3 number
of different perspectives. Finally, while Marr has downplayed
cooperative computation in his 1latest <«ilereopsis algorithm, I
believe, as already suggested ¢twite above, that the proper
development of a theory of vision syctems, synthesizing and
building upon features of many differenl approaches {(sampled in
{Hanson and Riseman. 1978b)) will involve ‘cooperative
computation’ between a multitude of prucernces: In a feature—-rich
environment, there are always more featuree available than can be
taken into account in a reasonable timc. It is thus necessary
for processes to be initiated which extract certain salient
features:; but the system must be co designed that the use of
these features does not preclude taking into account other
features. We saw that in the Henson -Kive¢man approach, a process
initiated on the basis of feature measure cues could then be
rigorously checked by invoking other processes which could take
size or shape into account. This type of interaction of multiple
knowledge sources is, it seems to me, the ctyle of the brain with
its incessant interaction of hundrede of continuvously active
brain regions.

5. COMPUTING THE OPTIC FLOW

We have seen that machine vision 71ewearch postulates the
high—-level systems <to build upon the representations initially
determined at the low 1level ({as in the¢ ‘primal sketch’) to
utilize “‘perceptual schemas’ to recognize objects within the
environment. . . Gibson (1955; 12 1977) was one of the
people who most forcefully made clear to psychologists that there
was a great deal of information that could be ‘picked wup’ by
‘low-level systems’ and that, moreover, this information could be
of great use to an animal or to & organism even without
invocation of ‘high-level processes’ ol object recognition. For



example, if, as we walk forward, we rerogunize that a tree appears
to be getting bigger. we can infer ihat the tree is getting
closer. What Gibson emphasized, and othey: such as Lee (1974;
Lee and Lishman, 1977) have since developed, is that it does not
need object recognition to make such infercnces. In particular,
the ‘optic flow’ —- the vector field repvecrenting the velocity on
the retina of points corresponding to pavticular points out there
in the environment —— is rich enough tou tupport the inference of
where collisions may occur within the environment and, moreover,
the time until contact. We shall detail elsewhere {(Arbib et al. .
to appear) our current studies of how inference from the optic
flow might be used in directing the locomotion of a robot around
an obstacle—cluttered world, and the cubsequent analysis of how
relevant such study may be to the coynitive psychologist. Here,
1 want to emphasize a problem often glosued over in Gibson’s
writings, namely that of the actual cumputation of the optic flow
from the changing retinal input. Our ctudies to date have been
‘in the style of the brain’, but have noi been related to actual
nevral circuitry. In what follows, then, rather than asking how
neurons might pick up the optic flow un the basis of continuously
changing retinal input, we shall «imply offer an algorithm
{Prager (1979), Prager and Arbib <(iu appeard; for other
algorithms, see, e.g., Ullman (1979)), plaued out over a number
of interacting layers each of which involves parallel interaction
of local processes, where the retinal inpul is in the form of two
successive ‘snapshots’, and the prublem 1is to match wup
corresponding features in these two {yiuses. {Mathematically,
then, the problem is the same as that of ctereopsis, as discussed
in Section 2. However, whereas there &arv only two eyes, there
may be many successive moments in time, so that the initial
algorithm for matching a successive pair of frames can be vastly
improved when the cumulative effect of @ whole sequence can be
exploited. )

The problem is posed in Figure 3, wht¢re we see four features
extracted from Frame 1, shown as circlee, and four features from
Frame 2, represented as crosses. The sitimulus-matching problem
is to try to match up the features in the two frames that

correspond to a single feature in the external world. Figure
3(a) shows an assignment that seems far Jees likely to be correct
than that shown in Figure 3(b). The 1rerason that we would,

lacking other information. prefer the Jalter stimulus-matching is
that the world tends to be made up of turfaces, with nearby
points on the same surface being displaced similar amounts.
(This use of the plausible hypothesis that our visual world is
made up of relatively few connectied regions to drive o
stimulus-matching process was enuncisted, for stereopsis, in
(Arbib et a8l., 1974).) Our algorithm, then, will make use of two
consistency conditions:
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FEATURE MATCHING: Where possiblc, the optic flouw
vector attached to a feature in broame 1 will come close
to bringing it in correspondence willh a similar feature
in Frame 2.

LOCAL SMOOTHNESS: Since nearby featuves will tend to
be progections of points on the «zme surface, their
optic flow vectors should be similan.

In developing an algorithm which ic ‘in the style of the
brain’, we shall assume that there it a retinotopic array of
local processors, which can make initial rotimates of the local
optic flow, but will then pass messapes hack and forth to their
neighbors in an iterative process to tonverge eventually wupon a
global estimate of the flow. The necd for interactions if a
correct global estimate is to be obtained is shown in Figure 4,
where we see a8 local receptive field four which the most plausible
estimate of the optic flow 1is greatly ot wvariance with the
correct global pattern. Our algorithm ie¢ then as shown in Figure
5. We fix two frames, and seek to solve 1he matching problem for
them. ‘An intial assignment of optic #flow vectors might be made
simply on the basis of nearest match. The algorithm then
proceeds through successive iterations, with the local estimate
for the optic flow vector assigned to eath feature of Frame 1
being updated at each iteration. {Computer simulations suggest
that at most 20 iterations of the algorithm are required to yield
convergence to a reasonable global cutimate of the flow. )
Consider, for example, the Frame 1 feoturc A of Figure 5, and the
position B which is the current hypothe«ic as to the location of
the matching stimulus in Frame 2. We s that, were feature
matching to be the sole criterion, the new optic flow would be
given by the wavy arrow which matches A to the feature in Frame 2
closest to the prior estimate, namely K. On the other hand, if
only local smoothness were taken into account, the new optic flow
vector assigned to A would be the average of the optic flow
vectors of features within a certain neighborhood. Our algorithm
updates the estimate at each iteration by making the new optic
flow estimate a linear combination of the fFeature matching update
and the local smoothness update, as indicated by the dashed arrouw
emanating from A in Figure 5. As stated, the algorithm works
quite well in giving a reliable estimote uf optic flow within 20
iterations.

If we take advantage of the availability of a whole sequence
of #rames, rather than just two, then we can obtain both an
increasingly accurate estimate of the oplic flow, and with less
iterations to handle each new frame as it is introduced. For
example, if, having matched Frame n to I‘rame n+l we try to match
Frame n+l to n+2, it is reasonable to i:cswume that —— to & first
approximation —— the optic flow advantes & feature by roughly the
same amount in the two frames. I1f we thuse use the repetition of
the previous displacement, rather thau a wearest neighbor match,
to initialize the optic flow computotion of the two new frames.
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we find from simulations that only 4 or Y jterations, rather than
the original 20, are required, and that the quality of the match
on real images is definitely improved.

The algorithm just described is batcd on two consistency
conditions, feature matching and Jlotal smoothness. It 1is
instructive to note where these constrveainls break douwn. I aone
object is moving in front of another ohject then points on the
rear surface will either be occluded or disoccluded during this
movement, depending on whether the f{ront object is tending to

cover or uncover the object behind it. ‘thus, if we look at the
current estimate of the optic flow and Find places where the flouw
vector does not terminate near a similer ‘rFeature to that from

which it starts, then we have a good indication of an occluding
edge. On the other hand, the local smuothuess will also break
down at an edge, for the two objecte on cither side of the edge
will in general be moving differentially with respect to the
organism. Thus, we can design edge—finding algorithms which can
actually use the breakdown of our concistency conditions to find
edges in tuwo different waye, on the basis of
occlusion/disocclusion, and on the besis of optic flow
discontinuity. To the extent that the estimate of edges by these
two processes is consistent., we hie:ve the cooperative
determination of surfaces within the imige. What is interesting
is that, to the extent that good edge estimates become available,
the original basic algorithm can be vefined, as shown in Figure
6. {This extension of the algorithm has not yet been
implemented. ) For now, instead of having ’bleeding’ across edges,
we can dynamically change the neighborhouod of a point, so that
the matching of features or the conformity with neighboring flow
can be based almost entirely upon feature: on the same side of
the currently hypothesized boundary. {(ltul not completely. for at
any time the edges will themselves bhe counfirmed with limited
confidence, and so may be subject to later change.)

We thus see in Figure 6 an ‘evolutiuuary design process’.
The basic algorithm (1) provides new information which can then
be exploited in the design of the cuwcperative segmentation

algorithms {2), but once the seamentation information is
available, the original algorithm (& be refined by the
introduction of segmentation dependent neighborhoods (3). 1

suggest that this is not simply & iuteresting engineering
observation, but gives wus some veru vreal insight into the
evolution of the brain: basic systemes prouvide the substrate upon
which ‘higher level’ systems may evolve: but these higher level
systems then enrich the environment of the lower systems. and
these 1lower 1level systems may then evolve to exploit the new
sources of information. While it is ¢13)1 wuseful, to & first
approximation, to talk of low-leve) uud high—-level systems, we
see that there is no longer any vunivocal Flow of information. We
?re very close to the Jacksonian notion of levels (Jackson, 1874;
878).
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6. A MODEL OF THE CEREBELLUM

To see how the top-down analysic «f Section 3 can make
contact with details of neural circuitry, we now examine a model
of the cerebellum (Arbib et al., 1974; Mtoylls, 1975; 1976).
The model brings together the notion cf o motor schema with the
notion of maps as control surfaces, and i important in that it
exhibits neural layers acting as control surfaces representing
levels of activation for the ceordination of muscles,

complementing our study of retinotopic representations of visual
input.

We suggested in Section 3 that the problem of motor control
is one of sequencing and coordinating molor schemas, rather than
directly controlling the wvast numberr snff degrees of freedom
offered by the independent activity of &)1 the motor units. We
must not only activate the appropriate schemas but must ‘tune’

them. To understand this notion of tuning we need an important
concept from modern control theory, that of the identificaiton
algorithm. In the familiar realm of Fecdback control theory, a

controller compares feedback signals Fvum the controlled system
with a statement of the desired performance of the system to
determine control signals which will muve 1he controlled system

into ever greater conformity with the given plan. The
appropriate choice of control signal muct depend upon having a
reasonably accurate model of the coutrolled system -- for

example, the appropriate thrust to apply must depend wupon an
estimate of the weight of the objecrt that is to be moved.

However, there are many cases in which the controlled system will
change over time in such a way that nec & priori estimate of the
system’s parameters can be reliably made. Toe that end, it is a
useful practice to interpose an ’‘identification algorithm’ which
can update a parametric description of the controlled system in
such a way that the observed recspontc of the system to its
control signals comes into greater and greater conformity with
that projected on the basis of the parametric description. When
a controller is equipped with an identification algorithm, and
when the controlled system is of the class whose parameters the:
algorithm is designed to identify. and when, finally, the changes
in parameters of the controlled system &1 not too rapid. then in
fact the combination of controller and identification algorithm
provides an adaptive control system, which is able to function
effectively despite continual changes in ithe environment.

So far, our analysis has been top -douwn. We now turn to the
neurophysiological data. As a ‘working example’ we shall model
cerebellar function in locomotion of the high decerebrate cat
{Shik et al., 1966). Where Sherrinoton had noticed that
stimulation of Deiters nucleus in the rtanding animal would lead
to extension of all the limbs, Orlovekii found that in the high
decerebrate cat, stimulation of Deiter:s nuileus during locomotion
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would not affect extension during tihe swing phase, but would
yield increased extension during the suppurt phase. Since the
locomotory ‘motor schema’ has been shuwn to be available even in
the spinal cat in (both classical work by lherrington (1910} and
modern studies (Herman et al., 1974)), it seems reasonable to
view the system in which the cerebellum and Deiters nucleus are
involved as providing an identification algorithm for the
parametric adjustment of the spinal schoema. We now turn to
Boylls’ model which shows how the ad juctment of those parameters
might be computed within the cerebellar cnvirons.

As is well known (Eccles et al., 1747), the only output of
the cerebellar cortex is provided by the Purkinge cells, which
provide inhibitory input to the cerebeilar nuclei. Each Purkinje
cell has two input systems. One input ie via a single climbing
fiber which ramifies and synapses all over the Purkinge cell’s
dendritic tree. The other input sysiem is via the mossy fibers,
which activate granule cells whose axuns rise up into the layer
of Purkinge cell dendrites (which ave f£lat, with the planes of
all their dendritic trees parallel to on¢ enother) to form T's,
whose crossbars run parallel to one auvther at right angles to
the planes of the Purkinge dendritic trecs. {There are a number
of interneurons in the cerebellar covtex, but we shall not model
these here, but shall instead concentrate on the basic cerebellar
circuit of mossy and climbing fibers, ond of granule and Purkinje
cells.)

The climbing fiber input to a Purkiuyge cell is so strong
that, when its climbing fiber is fired, @ Purkinje cell responds
with a sharp burst of four or five spikes, known as the climbing
fiber response (CFR). Many authorse have thought that the
‘secret’ of the climbing fiber is thirs shavp series of bursts,
but we shall suggest below that the true role of the climbing
fiber input is to provide the supprcucsion of Purkinge cell
activity for as much as 100 milliseconds which has been found to
follow the CFR {(Murphy and Sabah, 1970).

The overall architecture of Boylls’ mrdel as played over an
array of interacting control surfaces it shown in Figure 7, which
is an anatomical template of circuitry ubiguitous in cerebellar
transactions. That is, specific lahcle ctould be given to, say.
the ’‘brainstem output nucleus’ as red 1 Deiters nucleus, the
‘reticular nucleus’ could be teticularis tegmenti pontis or
paramedian, etc. From this architecture we gather that the
cutput from the cerebellar nuclei via the brainstem ‘output’
nucleus results from the interaction between cerebellar cortical
inhibition as supplied by the Purkinge tells and between drives
from the reticular nucleus. Tsukashars (1772) has demonstrated
the possibility of intense reverberation between the reticular
and cerebellar nuclei following removal of Purkinge inhibition,
and Brodal and Szikla (1972) and olherse have demonstrated the
anatomical substrate for such loops, with a8 somatotopy as
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indica?ed in Eigure 8. We thus poutulate that there will be
exp;oszvelg excitatory driving of +the cerebellar nucleus by
reticulo~cerebellar reverberation unicvee blocked by Purkinge

inhibition.

The output of cerebellar tuniug s expressed as a
spatio-temporal neuronal activity pettern in a3 cerebellar
nugleus, which can then be played out vii the brainstem nuclei to
spinal levels. A careful analysis of the anatomy enabled Boylls
to predict that the agonists of & mutor schema would be
‘represented’ along a saggital strip of the cerebellar cortex,
while its antagonists will lie orthogunal Lo thet strip (in the
medio-lateral plane). Applications of this formula to cortical
topography of the anterior lobe, as developed by Voogdt (1969)
and Oscarsson (1973), allowed Boylle +to identify particular
ctortical regions as associated with equalliy particular types of
hindlimb—forelimb, flexor—extensor suneirrgic groupings. This led
to conclusions which are experimentally tertable.

The Boylls model suggests theat cctivity within the
cerebellar nucleus is initiated tLhruugh topically precise
climbing fiber activity; the mechaniem involves their direct
cerebellar nuclear activation coupled with the suppression of the
target Purkinjge cell activity in the cortex via the
above-mentioned ‘inactivation responte’. Once activity is
installed in cortico-nuclear interaclions via climbing fiber
intervention, the wunderlying rteverberastory excitation helps to
retain or ‘store’ it. At the same Lime, this activity is
transmitted to the cerebellar cortex «un mossy fibers, eventually
altering the inhibitory pattern in the nuclear region surrTrounding
the active 1locus. The relevant pathwsy: involving mossy fibers
and the cortico-nuclear projection are schematized in Figure 9.
The spread of parallel fibers indicated in Figure 9 {for
simplicity of the diagram, the granule cells are omitted) yields
a form of lateral inhibition which provides spatial ‘sculpting’
in a way depending on the elaborate geumeiyy of cerebellar cortex
and cortico-nuclear projections. Mossy inputs of various types
tune the resultant patterns to the demand of the periphery; and
the program is spinally ‘read out’ as appropriate.

Testing of the various hypothescs has required computer
simulation of this neuronal apparatus, Simulation results
corroborated the conjecture that cerebellar related circuitry
could support the short—-term storage of motor schema parameters
initiated {(and periocdically refreshoed) by climbing fiber
activity. Figure 10 suggests a tupitul nuclear activation
pattern so introduced.
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7. MODELLING FROG VISUOMOTOR COORDINATI(W

In my own group, we have chosen visuwmotor coordination in
frog and toad as a setting where the top—down and'bottom~up
approaches to brain theory may intevecti. Our init1a} .modgl
building was conducted at Stanford in 19Y70; current actlvztg.xs
in collaboration with a number of experimentalists including
Ingle of Brandeis, Ewert of Kassel, and (Coullett of Bussex. After
discussing the basic models of prey selection, and of
preu—predator discrimination, we shall diucuss how new behavioral
experiments are being used to develop & tup—down analysis which,
we hope, will allow us to extend cur current modelling of the
animal’s behavior to models which take context more fully into

account.

Lettvin, Maturana, McCulloch and I"itle (1959) asked "What
does the Frog’s Eye Tell the Frog’s Brvaiu®?" Didday (1970; 1976)
and 1 asked "What does the Frog’s Eye 1e¢ll the Frog?” It is one
thing to say that the human monitoriug a cell through a
microelectrode can correlate the ce¢ll’ce activity with some
feature of the external world; it ic guite another thing to say
that the neural circuitry within the Lrain of the animal can
actually make use of that information in determining behavior
{Perkel and Bullock, 1968). We sought tu sk, then, how the ‘bug
detector’ information from the retina might be used to guide the
animal’s activity. Our basic perspective was formed by the
behavioral studies of David Ingle (1974), who noted that the frog
would snap —— orient and zap with the tonwugue ~-- at a suvitably
small wiggling stimulus within a certain 1range about the animal.
Moreover, if two stimuli were presented within the snapping
range, while the animal would often ocnusp at just one of them.
there were cases in which it would snep &t neither, or would snap
in between at the ‘average fly’.

‘Pure’ top-down analysis of prey selcction would specify the
task as, e.g., "Develop a procedure for finding the greatest
element in an array of elements. " Unlerne constrained by the
requirement “use local, parallel computations,” this might be
realized on 3 computer by simply scannineg @ 1list of values to
find the maximum; and the ’‘no #lu’ and ‘average fly’ effects
could be handled by subroutines that would detect when the top
two entries of the 1list bore some designated relationship.
However, this serial process would not be interesting as a brain
model whatever its wutility as a computational summary of the
behavior. We thus asked how this procecs of selection could be
played out through the interaction of newrans rather than through
the supervention of some executive progran. The model that we
finally developed involved an array of ncurons being modulated by
another array of inhibitory neurons in cuth a way that peaks of
activity in the first layer would compete through the second
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Igger. In general, the highest peak o 1ilhe first layer would
finally suppress all other peaks and ewmtrge from the system to
control motor activity. However, in cume t(ases two peaks would

be sufficiently well matched to hold a balunce in which each held
the other below the threshold for actiuws.

Recent advances in neurophysiolayy have led to better
identification of different cell typcs, and the original model
which was thought to correspond to cells lust in  the tectum is
now conceived of as resulting from interaction of cells in tectum

and pretectum (Figure 11). In particulary, we are now looking at
the detailed anatomy of the tectum tu model it as an array of
‘tectal columns’ (Lara, 1980; Lara el &)., to appear). Ingle
(1975) observed that presentation of & fly-like stimulus to a
frog for 0.3 seconds will rarely elicil # response, presentation
for 0.6 of a second usually will. If & t.1imulus is presented for

0.3 of a second. taken away for ceveval seconds and  then
presented again for 0.3 of a secund, then this second short
presentation will be enough ¢to elicit & rtesponse. We have
modelled this short-term memory. Wie have now shown that a
plavsible geometry of the tectal column will yield this
facilitation effect.

In the model of prey selection, we have asked what processes
can modulate an array of activity on the tectal map which serves
as control surface for the snapping responre. We have thus moved
one step beyond a simple stimulus—respont.e model, in that we are
now asking how given a structured stimuluse one part of it can be

selected for response. The study of facilitation also shows that
the response is ’‘history dependent’. lwerl (1976) has addressed
a different question. If an object 3is small and moves in a

certain way it is a prey to be snapped &i; if it is large and
moves in a certain way it is a predator Lo be jumped away from.
How does the animal make this discrimination? Ewert has shouwn
that if the pretectum—thalamus regitnw of the toad (which is
similar enough to frog for the present «tudy) is ablated. the
animal will snap at any moving object. nuv matter how large it is.
This has suggested that the tectum is wot, as we ot first
thought, & device to guide snappina at flies, but is rather a
device to guide snapping at moving objecis. It is then the task
of other ‘higher’ brain regions to modulate this tectal activity.
‘differentiating’ the process of rwecognition to make finer
discriminations. Working with von Gcelen, Ewert developed a3
model (1974) of filters in both tectum owd pretectum of toad with
inhibitory modulation of tectal activity when pretectal cells

signalled the presence of ‘anti-worm:’, One of our current
efforts is to synthesize -— in a way consistent with current
behavioral, anatomical, and physiclogiral data -- our original

model of prey selection with Ewevri’: work on prey—-predator
discrimination.
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The above models of frog and toad tvcot the environment as

made vup of a number of objects. The énimal in essence has to
choose which of these objects to rtecpond to and whether to
respond to that object as prey ur predator. We now briefly
discuss a number of experiments which brinup ‘context’ into the
world of the animal. Our group has cuilined models for them of
an artificial intelligence kind -— they vt programs, rather than
neural nets which will yield the behavior, Nonetheless, unlike

the serial list approach to prey selecciion mentioned briefly
above, they are structured in terms of iuleracting processes, S0
that +they c¢an be wused as plausilile hypotheses about the
interaction between brain regions. Thie ie in the spirit of many
workers in AI who use psychological ohuevvations to design their
models of how to achieve some intelliucnit behavior, and structure
the models in terms of concurrently active, interacting
processes. However, lesion studies further constrain the model
neurally. We thus hope to see in the necay future not only the
fuller articulation of the top—down modcl on the basis of recent
behavioral experiments, but also physiviogical medelling and
experimentation.

Ingle (1974) observed that when confronted with a ‘predator
stimulus’, the direction of escape «ff a #frog would be a
compromise between the forward dirvection and the direction
directly away from the stimulus. Wheu he interposed & barrier in
the preferred escape path of the 1o, he found that the
preferred path was no longer taken., bui the frog would tend to
Jump to one side or other cof the bharrier. A plausible
interpretation, then. is that the anims) would come as close to
the preferred route as it could while aveiding an obstacle in the
way. Here, then, we see context ot work: the animal is no
longer simply responding to the avercive stimulus, but it is
rather integrating the spatial struciure of the world around it
in choosing its response.

In more recent work, Collett (19/7; 1 ock and Collett, 1980)
has observed not only the animal’:c behavior with respect to
barriers, but has also looked at toade Faterd with a8 chasm between
them and a woerm. He finds that if the chaem is narrow enocugh the
animal will jump across, if it is wide bul shallow the animal
will step down and walk across, but if the chasm is both deep and
wide the toad will simply turn away.

In summary, then, we see that in {the¢ study of visuomotor
coordination in frog and toad we have - preparation in which we
can both carry out subtle behavioial studies to bring
‘manageable’ cognitive aspects into the wsnalysis; while at the
same time we find interesting subproblemt where detailed neural
circuit analysis is possible.
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8. A STYLE FOR THE BRAIN

A The very richness of current sewearch on the brain
guarantges that & view such as thit muet be incomplete. Most
neuroscience is experimental, and emphavizes the cellular  and
subcellular levels, with ecpecii:l rmphasis on chemical
@echanisms. By contrast, while virenning the need for
interaction with experiments, the pyerent paper focuses on

theory, with especial emphasis on mudile which relate neural
models (’bottom—up’) teo the anelysi: of cognitive processes in

terms of interacting function (‘top -dow’). Even here, our
examples of cognitive processes stret: visrion and the control of
movement (see (Arbib., 1981b; 1981c; Mhib  and Caplan. L9795
Lavorel and Arbib, to appear) for a parallel attempt to relate
cooperative computation to «<clinical «ludies of brain and
language). Within this chosen area, we heve sampled a8 number of
fruitful models, with varying degrees of neural veridicality -—-
optic flow, cerebellar tuning of moier schemas, visuomotor
coordination in frog and toad Eelow, 1 «hall try to extract a
general lesson from such models. But fivet, 1 want to return to
the top-down analysis of Section 3 4« jput these models into
perspective. In the language of that te(tion, we may say that we
begin to have neural models of individui:) ‘schemas’, but wvery
little understanding of the way in which ‘coordinated control
programs’ are constructed, embodied, i+ executed in mneural
tissuve. Studies of neural circuitry iv breathing and rthythmic
locomotion (cf. the companion article by Ltent) provide a useful
first sequence of steps, but de nei iddress the problems of
coordinated phasing in and out of diverse activities 1in a
goal-dependent way. The awareness ol tuch shortcomings is not

intended as a criticism of the current ctute of our science, but
rather as a spur to the further articulastion of top—douwn analyses
to better ‘stretch’ the scope of neur:) mudelling.

Given this perspective, the rest of the paper is devoted to
8 summing-up of a view of cooperative tomputation as "a style for
the brain”. Here, I do not wish to 11eilcrate the case for a
cooperative analysis of neural interactions in layers of neurons.
whether in development, learning, or perceptual-motor function --
a case made ' in Section 2, eand &vgucd for persuasively by
Christoph von der Malsburg in his discursion of the ontogenesis

of retinotopy as & paradigm of organization in the brain. Nor do
1 want to say more of the “‘discveic’ form of cooperative
computation as embodied in such Al tustems as VISIONS and

HEARSAY. Rather, I want to recall &w  intermediate level of
cooperative computation which ceems to nive us general insight
into layer-by-layer interactions withiu ihe brain.

The optic flow algorithm of Seciitn 5 ¢irst developed a
basic system of cooperative computatiow of optic flow within a
retinotopic array, and then developtd high—level systems to
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conduct segmentation on the basis of the output of this array;
the higher—level systems then enrich the ¢environment of the basic
systems, which can then be adjusted to exploit the new sources of
information. The distinction between low and high levels becomes
blurred -— the ‘low-level’ systems provide the necessary data to
initiate ‘high-level’ hypotheses, but itheue hypotheses are needed
to constrain the lower—level processes. This is very much the
approach to visual systems espoused in LGeclion 4. There is no
longer a simple one—~way flow of information, but rather a ’‘coming
to equilibrium’ of multiple systems —- an equilibrium which 1is,
of course. dynamic as the ’‘retinal’ input to the system changes
with time. The system must possess something of the ‘adiabatic

approximation’ of Haken (1978, Chapley /) —— it must bhe able to
adjust to significant changes in the worid at a taster rate than
that at which those changes occuy. in the same fashion, the

interacting layers of the cerebellar moded of Section & must
adjust the tuning parameters of the malor schemas rapidly enough
to keep pace with changes in the enviroument -—- this 1is what
makes the system adaptive., with perceptual processes
{identification) intimately intertwined wilh control.

Again, we saw that the tectum of fruw and toad could be
regarded as a basic array for the contynl of snapping movements,
while the pretectum apparently serves to differentiate the
recognition of moving objects so that snapping would not be
directed to large objects. In the same way, the work of WKuypers

et al. (recall Figure 2 of Section ) ctresses that we should
not view the pyramidal and extre pyramidal pathuways as
alternative paths for motor contral. Rather, the pyramidal

pathway serves to differentiate and refiner distal movements which
ride atop movements of proximal musculature under extrapyramidal
control.

Interestingly, making contact between frog and monkey
studies, it appears that the monkey’s hasic ‘undifferentiated’
reaching movements can work quite well wilh visual input from the
retina directed through the superior cvolliculus (the mammalian

analog of the tectum) even in the abseuce of visval cortex. In
fact, primates can exercise quite elaborate control of their
movement in the absence of visual cortex. In his study of "What

the Frog’s Eye tells the Monkey’s Breim " Humphrey (1970) built
on the argument that a monkey without viwual cortex should have
at least as much visuval ability a+ a frog. But monkeys had
hitherto appeared to be blind when they had lost wvisual cortex.
Humphrey argued that the monkeys hi:d not been tauwght to pay
attention to the visual cues they have, and after two years he
was able to get a monkey without visuml courtex to be able to grab
at moving objects, and use changes in luminance -— such as an
cpen door -—-— for navigation, even though delicate processes of
pattern recognition were never regained.
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In this way, we see the development of a paradigm which can
guvide wus in the mathematical analysic &nd computer simulation of
interacting brain regions as we come to ~ddress an ever richer
array of cognitive processes.
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Figure 9. The circles indicate featuvcs in Frame 1. the crosses
features in Frame 2, and ithe tolid arrows the current
estimate of the optic flow - ihe head of the arrow

shows the posited position iu Frame 2 of the feature
corresponding to the Framc 1 fevature at the tail of
the arrow. ‘Feature matching’ alone would adjust A’s
optic flow to the wavy ariuu puinting to the Frame 2
feature nearest to B (ihc current estimate of A’s
Frame 2 position); ‘local emupthness’ would yield the
dotted arrow the average ol the optic flow of the
neighbors; while our relaxation algorithm yields the
dashed arrow as a weighicd ctombination of these two
estimates.
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RETINAL INPUT

Optic flow
relaxation algorithm
(a) Feature matching
(b) Loca!l smoothness

(c)Seg'ngntatim-dependent©: ‘ ok

QD) Basic sigoritm

Edges based on Edges based on Cooperative

occlusion/fksocciusion optic flow discontinuity gorit

Figure b&.

(1) DOur basic optic flow +relaxation algorithm wuses
the consistency conditionc of feature matching and
local smoothing. (2) The¢ resultant optic flow
estimate permits the hypotheuvization of edges on cues
based on both occlusion/disocclusion cues and on
optic flow discontinuituy. (:t) The resultant edges
hypotheses can be used to sefine the computation of
optic flow by dynamically adjueting the neighborhoods
used in employing the concicterucy conditions.
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Activation pattern ‘stored’ iw cerebellar neuronal
interactions wvia climbing Fiber activity represents
the parameters for a particular motor schema which
may activate the musculature.
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