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ABSTRACT

A distributed transaction system manages information that is
dispersed over a number of storage devices. This paper deals with an
experimental transaction system designed to satisfy real-time
constraints through distributed control of the executions of
transactions. Of interest is the correctness of the algorithm for
distributed control. Demonstrating the correctness involves showing
that the algorithm guarantees the consistency of distributed data, and
equally importantly, that every transaction will eventually terminate.
Proof of consistency is based on the notion of serializability of
transactions while proof of termination is based on the conflict
resolution and failure recovery strategies employed by the transaction
system.,
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Note for the Printer

symbol ¥ stands for "for all" and should be printed as v.

symbol 4 stands for "there exists" and should be printed as 3.

symbolh} stands for "there does not exist"
and should be printed as

symbol & stands for "belongs to" and should be printed as
symbol /\ stands for "and" and should be printed as A.
sybbol V stands for "or" and should be printed as V.
symbol = stands for "not" and should be printed as .
symbol [] should be printed as E].

symbol <> should be printed as .

€.

A.



1. INTRODUCTION

A transaction system manages information that is dispersed over a
number of storage devices. Examples of such systems are airline
reservation systems, information retrieval systems and automated
offices. Some of the requirements of transaction systems are:

- consistency - the transactions should be processed in a
such a way that information in the system is always
consistent.

- quick response - typically a transaction is initiated by a
user at a terminal and hence the response time should be

short, and

- robustness - the system should be able to complete a

transaction _even 1n the event of failure of storage or
processing elements.

Systems which satisfy these requirements are in general termed
distributed database management systems [5, 9, 11]. In these systems,
responsiveness and robustness are achieved through the distribution of
data and by maintaining duplicates of parts of the data. Access to
distributed data is also improved through the distribution of various
aspects of controlling the data. Different algorithms have been

proposed for achieving distributed concurrency control [2, 8, 12]. In

this paper we will concern ourselves with the algorithm that has been
implemented as part of the Delta system [5]. This algorithm differs
from others in that only timestamps of individual transactions are

utilized for achieving distributed control.

An important function of any concurrency controller is to ensure that
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transactions that are permitted to execute will maintain the consistency
of distributed data. Another equally important function is to guarantee
that a transaction once initiated will eventually terminate. Our work
is directed towards demonstrating that Delta's concurrency control

mechanism, called distributed executive, performs these two functions

correctly. We use temporal 1logic [7] to formally argue about the

correctness of the Delta system.

To prove that Delta's distributed executive maintains the consistency
of distributed data we prove that transactions in Delta are well-formed,
two-phase, and legal in the sense of [3] and. hence are serializable.
According to the notion of serializability, a distributed executive is
guaranteed to maintain the consistency of distributed data if every set
of transactions, allowed to run concurrently, is equivalent to some
serial execution of transactions in that set. Two sets of transactions
are equivalent if the resulting database state is the same for
executions of both sets of transactions, when started at the same
initial state. Since serializability is a sufficient condition for

consisténcy, Delta's distributed executive maintains the consistency of

data.

Termination of transactions is of significance in transaction
systems since it relates to the responsiveness of the system.
llerctofore not much attention has been paid to this "liveness" property
of transaction systems. It is in general difficult to guarantee
termination of transactions in the face of failure of storage or

processing elements. In a distributed system such as Delta,

transactions may not be able to terminate due to a number of reasons,
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predominant among them being
- two or more transactions are deadlocked over access to a
set of common data items.

- transactions are made to wait indefinitely for the
resolution of a conflict.

- processing or storage elements needed for the execution of
the transactions have failed.

The conflict resolution strategy used in Delts favors a transaction

that was started earlier and thus prevents deadlocks. Since there are
| Y\

oy LK

only a finite number of transactions that could haveﬁstarted before any
waiting transaction, the strategy also avoids situations where a
transaction waits indefinitely. Failure recovery strategies of Delta
make termination possible even in the event of failures. We approach
the problem of demonstrating termination in the Delta system through
successive relaxation of the assumptions concerning the nature of
transactions and the functioning of the system itself. As we shall see,
the final assumptions, relaxing any one of which cannot guarantee
termination, indicate those system components whose failure may affect

termination.

Some issues concerning the correctness of distributed control have
been dealt with earlier. Thomas [12] provides plausibility arguments
for the correctness of his majority consensus algorithm. He focuses on
the consistency of data and deadlock among the transactions. Proof of
correctness of the SDD1 concurrency control mechanism with respect to
consistency requirements is reported in [2]. Rosenkrantz et al. [8]
are concerned about consistency and termination properties of their

concurrency control mechanisms but do not include failure of storage



Page 4

elements in their discussion. Besides being concerned with a
concurrency control mechanism that is cdnceptually different from the
ones mentioned above we are interested in both consistency and
termination properties of transactions in Delta even in the presence of

failures.

We begin by outlining the salient featﬁres of the distributed
executive of the Delta system. Only those aspects relevant to our
discussion of correctness will be stressed. (A complete description of
the distributed executive appears in [5].) Temporal logic and auxiliary
predicates on the system states are introduced in section three.
Section four is devoted to a proof of correctness of Delta's distributed
executive. The implications of the proof on the implementation of the

system are discussed in the concluding section.
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2. THE DELTA SYSTEM

Delta is an experimental distributed transaction system built within
the framework of INRIA'S Project Sirius. It allows wusers to
concurrently access data files in physically dispersed storage devices.
Agents such as human users, sensors, etc., access the system by

activating transactions. A transaction consists of a finite number of

elementary actions that manipulate the data objects. Create, Read,
Write and Destroy are typical actions. Agents view transactions,
delimited by BEGIN and END commands, as atomic. Hence it is the
responsibility of Delta's distributed executive to ensure atomicity of
transactions in the face of concurrent execution of transactions.
Actions corresponding to a transaction are fired by the master process

controlling that transaction, to be executed by processes referred to as

slaves. Data objects are partitioned and replicated to survive crashes

of storage elements and a particular partition is associated with a

specific slave.

Underlying the Delta system is a communication subsystem which

guarantees reliable communication between the components of the system.

Masters are arranged along a virtual ring with each master having a

unique predecessor and a wunique successor. We will not go into the
details of the virtual ring beyond noting that it survives failures of
both processing elements and components of the communication subsystem.

A particular message called the control token circulates along the

virtual ring. When accessed by a master, this token delivers unique
integers called tickets. A master uses these tickets to timestamp a

newly initiated transaction. All actions invoked for a particular
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transaction are identified through the use of the timestamp for that

transaction.

2.1 Execution of transactions:

An agent in Delta initiates a transaction by submitting it to a
master. That master takes charge of executing the transaction and
invokes slaves to execute the actions corresponding to that transaction.
These actions (Read, Write, Create, or Destroy) take place within the
execution context of the invoking transaction. To simplify our
discussion here, we will assume that a master invokes a slave to execute
a set of actions for a transaction through a single request. Before
performing the actions, slaves lock the data items needed for completing
the actions. However, all modifications are done only on copies of the
data involved anq are made permanent only when instructed by the master

at the end of the transaction.

Two transactions conflict at a slave when one is trying to modify a
data item accessed by another. When conflicts occur at different
slaves, they are resolved identically at all such slaves. (If t1 and t2
are the timestamps of transactions T1 and T2 respectively, and t1 < t2,
then T2 is said to be younger than T1 and T1 is said to be older than
T2c)

1) When a younger transaction is received by a slave and it
conflicts with an older transaction, the younger
transaction waits for the older one to complete.

2) When an older transaction is received by a slave and it
conflicts with a younger transaction whose actions are in

progress, then the younger transaction is rolled back or
aborted.

To rollback or abort is a system-wide decision. We shall see the
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implications of each during the discussion of termination. If a
transaction is aborted by a slave, the master aborts all actions for the
transaction at all slaves. In the case of a rollback, the slave
concerned waits until conflicting older transactions have committed and
then restarts the action. Other slaves are not affected. This conflict

resolution strategy is similar to the "wound-wait" protocol discussed in

(81.

To make the results of the actions permanent, the master, on
encountering the END statement of a transaction, initiates a two-phase

commit protocol.

Phase-1: A master sends "prepare to commit" messages to its
slaves. If the actions for that transaction have been
completed and the changes, 1if any, can be locally
committed, then a slave acknowledges by indicating its
readiness to commit. Otherwise a slave indicates its need
to abort. The first phase ends when every slave involved
in a transaction has acknowledged the prepare to commit
message.

Phase-2: If one or more slaves have indicated their need to
abort then all slaves are informed by the master to abort.
On the other hand, if all slaves are ready to commit, then
the slaves are informed by the master to commit, in which
case, the slaves make the changes permanent. In either
case, once slaves receive messages from the master to
commit or abort, locks set on local data items are removed
and the context of the transaction destroyed.

After a master decides to commit a transaction, it informs the agent
for that transaction that the transaction is completed. Otherwise, the

master restarts the transaction with the same timestamp.

2.2 Execution of transactions in spite of failures:

Now we briefly describe what happens in the Delta system under
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different kinds of failures. Some of the solutions are simplified
versions of those described in [5].

To make recovery possible in spite of failure of slaves, the Delta
system 1is designed with enough redundancy such that when a failed slave
is eventually restarted, it will be able to restore its storage elements
to be consistent with the rest of the system. To facilitate recovery in
the event of failure of a master, the 1list of slaves involved in a
transaction 1is passed to the slaves along with the prepare to commit
message. Below we examine the nature of the failures possible and how
the.system responds to their occurrences.

1. If a master fails before the prepare to commit message is
sent to all slaves, another master recognizes this fact
through the virtual ring mechanism. This master aborts the
transaction controlled by the failed master and restarts it
with the same timestamp.

2. If a master fails after prepare to commit messages have
been sent to all slaves, then slaves communicate to decide
on the course of action.

a. If at least one slave has committed, then all commit.

b. If all have indicated their readiness to commit, then
all commit.

c. If at least one slave has aborted, then all abort.
d. If none of the above cases apply, then the transaction
is aborted and resubmitted by another master with the same
timestamp.
If some slaves have failed and if the slaves that are up have neither
committed nor aborted, then they wait for the failed slaves to restart

and then decide based on the above criteria.

Below we present abstract code depicting the functioning of masters
and slaves, using an Ada-~like syntax. (The statement labels in the code

will be used in the proof.)




Lp5:
Lp6:

p: master PROCESS[G:agent,SA:set of actionsl];

t : timestamp;
BEGIN

t:=ticket obtained from virtual ring;

Restart:

FOR EACH slave
LOOP send

FOR EACH slave

LOOP send

~

Wait until either "ready to commit t" or "need to abort t"

required
"request
required
"prepare

to execute actions SA

actions for t" message END LOOP;
to execute actions SA

to commit t" message END LOOP;

message is received from all slaves;
IF any slave needs to abort

THEN
BEGIN

Send "abort t"
GO TO restart;

ELSEND'
BEGIN

messages to all slaves;

Send "commit t" messages to all slaves;
Send "t completed" message to g;

END;
END;
END master;
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3. PRELIMINARIES TO THE PROOF OF CORRECTNESS

To provide rigor to the proof of correctness, the formalism of
temporal logic 1is employed. Hence we start with an introduction to
temporal logic and its operators and then proceed to introduce certain
predicates to refer to various stages of execution of masters and
slaves. We end this section with precise statements for the assumptions

made about Delta.

3.1 Temporal logic

Pnueli first applied temporal logic for reasoning about safety and
liveness properties of concurrent programs [7, 4]1. It has since been
used for proving properties of concurrent programs (1, 6] and for the
specification of protocols for distributed systems [10]. Following
along those 1lines, concurrency is modeled by a nondeterministic
interleaving of computations of individual processes. Each computation
changes the system state which consists of values assigned to program
variables and the instruction pointer of each of the processes. Using
temporal logic operators, one can specify and reason about the
properties of the sequence of states that results from the execution of

the concurrent processes.

Since temporal logic is an extension of predicate calculus, a
temporal logic statement can involve the usual logical operators V (or),
/\ (and), -~ (not) and => (implication) besides the temporal operators
[1, <> and UNTIL. (In what follows, P and Q are arbitrary assertions.)

The operator [] is pronounced "always". []P states that P is true now




Page 12

and will remain true throughout the future. The operator <> is
pronounced "eventually" and is the dual of [] in that
<>P IFF al[]-P.
Thus, <>P if P is true now or will be true sometime in the future. A
requirement such as "every request will be serviced" can be specified as
[J("request for service exists" => <{>"request serviced").
The operator UNTIL has the following interpretation:

(P UNTIL Q) IFF P will be true as long as Q is false.
(The truth value of P once Q becomes true is not indicated by UNTIL.)
The UNTIL operator is typically used for expressing temporal orderings.
For example, the fact that a service can not be provided until there is
a request for that service can be stated as

~("request serviced") UNTIL ("request for service exists")
The semantics of [] and <> are identical to those of the corresponding
linear time logic operators of [4] whereas UNTIL is related to Lamport's
binary [] operator (read AS LONG AS) in the following manner:

(P UNTIL Q) = (-Q[1P)

In addition, we use the following derived operator.
(P ONLYAFTER Q) = (~P UNTIL Q)

P can become true only after Q does.

Given below is a list of the theorems of the so called "linear
time" temporal 1logic [4] that will be employed in the proof of
correctness.

T-1 : [J(P V Q) => ([IJP V <>Q)
[IC(P 7\ Q) => (L1p /\ [1Q)
T-2 : [J(P => <5>Q) /N [1(Q => <OR)
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=> [1(P => <>R)

T-3 : [JP /\ >Q => <O(P /A Q) ¢

T-4 : (P UNTIL Q) /\ []l-~Q@ => [1]P

T-5 : ((P ONLYAFTER [1Q) /\ P) => [1]Q

T-6 : (P ONLYAFTER Q) /\ (Q ONLYAFTER R)
| => (P ONLYAFTER R)

CT-7 (P ONLYAFTER Q) /\ [1(R => P) /\ [1(Q => S)

=> (R ONLYAFTER S)
T-8 : If T is a theorem then []T.

These theorems follow from the definition of the operators.

We mentioned earlier that the state of a system is made up of the

values assigned to program variables and the position of the instruction

pointer of individual processes. Here we introduce certain auxiliary
predicates to deal with the latter.

3.2 Definition of predicates on the position of instruction pointers:

Given a statement S that is executed by some process,

at(8) 1IFF control of that process is at the beginning of S.

in(S) IFF control is within S.

after(S) IFF control is immediately following S.
These three predicates are mutually exclusive and become true 1in the
above order. The formal definition of the 1language construct
corresponding to S would specify how these internal control points are

affected by the execution of S.

S-1: Given a statement sequence S;T, where S and T are executable

statements then control is at the beginning of T if and only if
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it is after statement S.

at(T) IFF after(S)

Assuming that the underlying scheduler of processes is fair,

if control is at the beginning of a statement then control will

eventually be within the statement, i.e.,

at(sS) => <>in(8)
and if the statement is known to terminate, then control
will eventually reach the end of the statement.

at(S) => <after(s)

If S is

IF p THEN S1 ELSE S2

then

at(S) => [1((at(381) => p) /\ (at(S2) => ap))
after(S) <=> [after(S81) V after(S2)]

at(S) /\ p => <>at(sS1)

at(S) /\ ap => <>at(sS2)

If S is
BEGIN S1; S2;...;Sm END
where each Si is known to terminate, then
at(S) <=> at(s1)
after(S) <=> after(Sm).
Control cannot reach a statement that has already been executed.
¥i 1<i<m, after(Si) => ¥j 1<j<i, ~<>at(sj)
By S-1, S-2 and T-2,
¥i 1<idm, at(Si) => ¥j ilj<m, <after(Sj).
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S-5: If S is the statement
"WAIT UNTIL C
where C is a boolean condition, then
at(3) => at(sS) UNTIL C /\
<>(at(S) /\ C) => <> (after(S) /\ C)

S-6: Given a set of guarded commands

SELECT

WHEN g1 DO ailj;’
OR

WHEN g2 DO a2;
OR .

LI ]

WHEN gm DO am;
END

the following inferences can be made for all i,J, i#j.

G-1: Commands are executed in the order in which guards are

recognized to be true.
[gi ONLYAFTER gjl => [at(ai) ONLYAFTER at(aj)]

G-2: The underlying scheduler of processes is such that once a guard
is true, the associated command will be eventually executed.
gi => <>at(ai)

G-3: A command can be executed only after its guard becomes true.

at(ai) ONLYAFTER gi

3.3 Definition of predicates on the state of the system

The following functions and predicates on the state of masters and
slaves are wutilized for making precise statements about the working of
Delta's distributed executive. (Henceforth, for the sake of brevity, we

will refer to a transaction with timestamp t as transaction ¢t.
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Variables starting with m refer to messages, p to masters, e to entities

and t to transactions.)

master(t) The master in charge of transaction t.
slaves(t) The slaves that execute the actions for
transaction t.
timestamp(T) S The timestamp of transaction T.
g)awnt
entltles(t(ﬁ) The data entities that are accessed by comsumer—
¢ for transaction t.

3.3.1 Predicates associated with the execution of transactions
start(t) Actions for the transaction with timestamp t are
started by some master.

req(t,c) Slave ¢ has received a request for executing
actions for transaction t. -

access(t,c,e) Entity e is accessed by slave c¢ for N
transaction t.

“term(t,c) Slave ¢ completes the actions for
transaction t.

—wait(t,c) Transaction t is made to wait by slave c. _yh?jkf,
S ‘__\‘7 13
committed(t,c) Slave ¢ has made transaction t's changes N
permanent, has unlocked the entities used by
t and has destroyed the context of t. S
| .\._
| rolledback(t,c) Slave ¢ has unlocked the entities used by t] !
L. and has made t to wait.
/
__aborted(t,c) Slave ¢ has unlocked entities used by t
' and has destroyed the context of t.
—need-to-abort(t,c) Slave ¢ needs to abort all changes made bffyﬁ“**'~“

transaction t.
The following assumptions are made about the execution of actions.
1: Actions can terminate only after all entities have been accessed.
8E§E§§t,c) ONLYAFTER ¥eéentities(t,c) access(t,c,e)
2: Terminated actions remain terminated unless an abortion or rollback
takes place. 'AHW;AW\KH
term(t,e) => [term(t,c) UNTIL{CnolLedbackgt,c) V aborted(t,c))]
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3: If a transaction has terminated, then it cannot be waiting.

term(t,c) => await(t,c)
3.3.2 Predicates associated with message-passing o
send(m[%ﬂ,pE)-/zquu Process&ﬁ?jﬁénds message m to process;;g.
sent@ﬁ,p1,p2) Message ﬁ_has been sent from process pl
: to process p2.
receive(m,p1,p2) Process p2 receives message m from process pl.
received(m,p1,p2) Messagejmf}rom process pl has been received by

process p2.
Pa
If S is the statement executing which p1 sends WM _to p2 then
in(8) <=> send(m,pl1,p2)
after(s) => sent(m,p1,p2)
sent(m,p1,p2) ONLYAFTER after(S3)
Similarly, if p2 executes statement R to receive m(from p1l then

in(R) <=> receive(m,pl, p2)
after(R) => received(m,p1,p2)
received(m,p1,p2) ONLYAFTER after(R)

The following assumptions are made about the communication medium
1: A message will be eventually received.

send(m,p1,p2) => <>receive(m,pl,p2)

no

A message can be received only after it is sent.
receive(m,p1,p2) ONLYAFTER send(m,p1,p2)
3: Message exchanges are permanent.

sent(m,p1,p2) => [lsent(m,pl,p2)
received(m,p1,p2) => [lreceived(m,p1,p2)

Along with assumption 2 above, these imply,
received(m,p1,p2) => sent(m,pl1,p2)

3.3.3 Predicates associated with locks

lock(t,c,e) Slave ¢ locks entity e for transaction t.

locked(t,c,e) Entity e has been locked by slave c
for transaction t.

unlock(t,c,e) Slave ¢ unlocks entity e for transaction t.
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conflict(ti1,t2,c) Transaction t1 needs an entity that is already
locked by slave ¢ for transaction t2.

A data entity is not locked for a transaction until it is
locked by a slave for that transaction.

-locked(t,c,e) => [-~locked(t,c,e) UNTIL lock(t,c,e)]
If executes statement L to lock entity e for t then

in(L) <=> lock(t,c,e)
after(L) => locked(t,c,e)

A data entity remains locked for a transaction wuntil a slave unlocks
it.
locked(t,c,e) => [locked(t,c,e) UNTIL unlock(t,c,e)]

%g c executes statement U to wunlock entity e used by transaction t
en

in(U) <=> unlock(t,c,e)
after(U) => qlocked(t,c,e)

Transaction t1 conflicts with transaction t2 at slave/%>if and only if
t1 needs an entity locked for t2.

conflict(t1,t2,c) <=> 3Jefentities(tl,c) locked(t2,c,e).

tSP@V** 2

3.4 Definition of well-formed, two-phase and legal transactions

A transaction t is said to be well-formed if for every{iiizidg> that 1is

invoked by the master of that transaction, for every entity e accessed

by ¢, the following are true.

WF-1: A data entity can be accessed only if it is locked.
(access(t,c,e) => locked(t,c,e))

WF-2: A data entity is unlocked only after it is locked.
(unlock(t,c,e) ONLYAFTER locked(t,c,e))

WF-3: Once a data entity is locked, it will be eventually unlocked.
(lock(t,c,e) => <>unlock(t,c,e))

We assume that no change occurs when a slave tries to lock an entity for

a transaction when it is already locked for that transaction.
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A concurrent execution of a set of transactions {t1,t2,.....,tn} is
said to be legal if
LE-1: ¥i 1<i<ln,¥cé¢slaves(t),¥efentities(t,c),

(lock(ti,c,e) => ¥j,j#i, «locked(tj,c,e))

that is, when a slave locks A data entity, there is no other transaction
for which that entity is locked. Thus, for concurrent transactions to
be legal, a transaction should be made to wait if it needs to 1lock A
data entity that is 1locked by a different transaction. (Recall that
data is partitioned and replicated and that a particular partition is

associated with a specific slave.)

A transaction t is said to be two-phase if

TP-1: The unlock phase starts only after locks are placed on
all accessed entities.

(:iislaves(t), Veéentities(t,e),
%T nlock(t,c,e) ONLYAFTER

! ¥cléslaves(t) V¥eléentities(t,c1) lock(t,c1,el)
TP-2

Once A data entity has been unlocked for a transaction, it
cannot be locked again by that transaction.

Vcéslaves(t), Vefentities(t,c),
unlock(t,c,e) => «<>lock(t,c,e)
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4. PROOF OF CORRECTNESS OF DELTA'S DISTRIBUTED EXECUTIVE

Proof of correctness of Delta's distributed executive is based on the
description given in section two and the definitions in section three.
As mentioned in section 3, our proof will consist of two parts.

a) Showing that Delta's distributed executive controls the
execution of transactions in such a way that consistency of

data is maintained at all times.

b) Showing that a transaction once initiated by an agent will
eventully terminate.

4.1 Transactions in Delta maintain consistency of data

We will prove that concurrent transactions permitted by‘ Delta's
distributed executive are serializable. Since serializability of
transactions is a sufficient condition for the consistency of data,
transactions in Delta preserve the consistency of distributed data. To

demonstrate serializability, we use the following theorem from [3].

Theorem: If each member of a set of transactions ({t1,t2,...,tn} is
well-formed and two-phase, then a concurrent execution of transactions

t1,t2,....,tn which is legal is serializable.

Thus to show that the transactions allowed by Delta's distributed
executive are serializable and hence preserve the consistency of

distributed data, we prove the following:

1. Transactions in Delta are well-formed.

2. Concufrent execution of transactions in Delta is legal.
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3. Transactions in Delta are two-phase.

To prove (1), (2) and (3) for the Delta system, we consider a typical
transaction in Delta and examine how ité actions are executed by a
master. Transactions that complete without interruptions such as
rollbacks and aborts are first examined. (Consistency with rollbacks
and aborts is discussed at the end of this subsection.) In this case,
for each transaction, the following activities take place: A master
sends requests for actions to slaves; After all such requests have been
sent, the master sends "prepare to commit" messages to the slaves;
After completing the actions for the transaction, slaves respond with a
"ready to commit" message; After receiving such messages from all

slaves, the master instructs them to commit their changes.

In the following statements, t refers to a typical transaction, and
p to the master of t. Lei (Lpi) is a program label in the code for
slave ¢ (master p). Note that at any one time a slave could be engaged
in executing the actions for different transactions. Hence it 1is
necessary to qualify each action of the slave with the transaction
corresponding to that action. However, in what follows we will be
concerned with one particular transaction. Hence we do not make this
qualification explicit 1in the proofs. In developing the proof, the
statement Tollowing "--" provides justification for the preceding

statement in the proof.

4.1.1 Transactions in delta are well-formed

Proof of WF-1: A data entity can be accessed only if it is locked.

¥céslaves(t), ¥efentities(t,e),




Page 22

(access(t,c,e) => locked(t,c,e))
Follows directly from the fact that a slave locks data items
(via statements Le1 and Le9) just prior to access (via
statements Lec2 and Lc10).
Proof of WF-2: Every entity is unlocked only after it is locked.

Vecéslaves(t), ¥etentities(t,c),
(unlock(t,c,e) ONLYAFTER locked(t,c,e))

A data entity required for a transaction is unlocked only after a slave
receives a commit message from the master of that transaction (statement
1 below). A master sends commit messages only after all slaves have
indicated <their willingness to commit (statement 2). A slave indicates
its willingness to commit only after it has completed all accesses for

that transaction (statement 3). Data is accessed for a transaction only
\ D ‘L»LL.u’
after itilocked for that transaction (statement 4). Thus a data entity

is unlocked only if after it is locked.

Let ¢ £ slaves(t), e & entities(t,c).

1. [unlock(t,c,e) => in(Le17)
/\ in(Lc17) ONLYAFTER receive("commit t",p,c)
/\ receive("commit t",p,c) ONLYAFTER send("commit £",p,c)l
=2
unlock(t,c,e) ONLYAFTER send("commit t", p, c)

—— Behavior of slaves in the absence of aborts and rollbacks,
definition of message-passing predicates,
semantics of guarded commands,
assumption 2 about the communication medium,
T-6, T-T.

2. [send("commit t",p,c) => in(Lp5)
/\ at(Lp5) ONLYAFTER
¥ec1 éslaves(t), sent("ready to commit t, c1, p)l
=
send("commit t", p, c) ONLYAFTER sent("ready to commit t", c, p)

-- definition of message-passing predicates,
assumption 2 about the communication medium,
behavior of master, definition of "at" and "in",

T—6; T-7o



[sent("ready to commit t",c,p) ONLYAFTER after(Lc13)
/\ after(Lc13) ONLYAFTER term(t,c)
/; term(t,c) ONLYAFTER access(t,c,e)]
sent("ready to commit t", ¢, p) ONLYAFTER access(t,c,e)

-- definition of message-passing predicates,
behavior of slaves,
assumption 1 concerning the nature of actions, T-6.

[access(t,c,e) =>
=> [in(Lec2) V in(Lc10)]
=> locked(t,c,e)]

-- behavior of slaves.

5. unlock(t,c,e) ONLYAFTER locked(t,c,e).

-- T-6, T-7, statements 1 to 4.

6. WF-2 is the generalization of 5,

Proof

of WF-3: Once a data entity is locked,

‘v
AN

/" 'Once data needed for a transaction are locked, in the absence of

7/

Cﬂ and

3

it will be eventually unlocked.

¥céslaves(t), Vetentities(t,e),
(lock(t,c,e) => <>unlock(t,c,e))

rollbacks, the actions for that transaction will terminate &

Xxxgstatementjl). Eventually slaves receive "prepare to commit"

v -

~ from

the “master (statement Q)TX Since actions have terminated
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aborts

messages

, Slaves

respond with "ready to commit" messages (statement 3) and hence the

master

receives "ready to commit" messages from all slaves (statement

4). Thus the master instructs all slaves to commit their

Locks

are then removed (statement 5). Thus all locked data enti

be eventually unlocked.

Let ¢ & slaves(t), e £ entities(t,c).

For a transaction to be executed,

it. Thus initially start(t) and hence at(Lp1) will be true.

3

at(Lp1)
=> at(Lp2)
=> <>send("prepare to commit t", p,c)

changes.

tes will

some master should initiate
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=> <{>receive("prepare to commit t",p,c) - [t
= <>at(Lc12)
=> <>(at(Lel2) UNTIL term(t,c)) \

: =\ T T
~- behavior of master and slaves 'in the absence of aborts,
definition of message-passing predicates,
definition of the WAIT-UNTIL construct,

assumption 1 about the communication medium.

lock(t,c,e) _ =

=> {1n(Lc1) V in(Lec9))] ‘
~=> Olafter(Le2) V after(LeTor

=> <>term(t,c)

=> <>[}term(t,c)

-- behavior of slaves, definition of lock predicates, D
assumption 2 about actlons.\ )

; oA it

et AT R g |
O ( 2)—/\_term(t,c)) ]
=> <>at(Lec13) ,
=> <send("ready to commit t",c,p) W S N
=> <Oreceive("ready to commit t",c,p) e

L e

-- T-3, statements 1 and 2 kit Urﬁ ~ e
definition of the WA%$-UN$IQ—eeﬁstnggt
assumption 1 about the commmmunication medium,
behavior of slaves,
definition of message-passing predicates.

Veléslaves(t), <>receive("ready to commit,c1,p)
-- generalization of 3.

at(Lp1)

=> <>at(L93)

=> <>at(Lp5)

=> <>send("commit t",p,c)

=> <>receive("commit t",p,c)
=> <>unlock(t,c,e)

-- statement 4,
behavior of master in the absence of aborts and rollbacks,
behavior of slaves,
assumption 1 about the commmmunication medium,
definition of message-passing predicates.
lock(t,c,e) => <>unlock(t,c,e)
-- statements 1 to 5.

WF-3 is generalization of 6.
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h.1.2 Concurrent transactions in Delta are legal

Proof of LE-1: Data entities are locked for a transaction only if
they are not locked for some other transaction.

¥i 1<isn,¥céslaves(t) ,¥efentities(tje),
(lock(ti,c,e) => Vj,j¢i, ~locked(tj,c,e))
A slave locks A data entity for a transaction only when it does not
conflict with transactions in progress. Legality of transactions
directly follows from the definition of coﬁflict.
Let ¢ & slaves(t), e £ entities(t,c).
1. lock(t1,c,e)
=> ¥t2 [in(Le1) V in(Lc9)] /\ aconflict(ti1,t2,c)
=> Veléentities(t1) =locked(t2,c,el).
=> alocked(t2,c,e).

-~ behavior of slaves,
definition of conflict.

2. LE-1 is the generalization of 1.

4.1.3 Transactions in Delta are two-phase

Proof of TP-1: Unlock phase follows the lock phase.

V¥céslaves(t), V¥eéentities(t,c),
(unlock(t,c,e) ONLYAFTER
Vcléslaves(t) Veléentities(t,c1) lock(t,c1,el))
Slaves make all changes permanent and unlock the 1locked entities
onlyafter the& receive the commit message from the master (sStatement 1).
A master sends a commit message only if all slaves are ready to commit,
(statement 2). A slave indicates its readiness to commit only if it has
completed access (statement 3). Before accessing data, a slave 1locks
the data entities (statement 4). Therefore, all locking is done prior
to the beginning of the commit protocol whereas all unlocking is done at

the end of the commit protocol.

Let ¢ ¢ slaves(t), e & entities(t,c).



Page 26

1. [unlock(t,c,e) <=> in(Le17)
/\ in(Lc17) ONLYAFTER receive("commit t",p,c)]
=>
unlock(t,c,e) ONLYAFTER receive("commit t", p, c)

-~ behavior of slaves in the absence of aborts and rollbacks,
definition of guarded commands, T-7.

2. send("commit t",p,c) ONLYAFTER
S ¥cléslaves(t), received("ready to commit t",c1,p)
send("commit t",p,c) ONLYAFTER send("ready to commit t",c,p)

-- behavior of master in the absence of aborts,
assumption 3 about the communication medium, T-6.

3. [send("ready to commit t",c,p) <=> in(Lc13)
/\ in(Lc13) ONLYAFTER term(t,c)
;\ term(t,c) ONLYAFTER ¥eléentities(t,c), access(t,c,el)]
send("ready to commit t",c,p) ONLYAFTER access(t,c,e)

-- definition of message-passing predicates,
assumption 1 about actions,
T-6, T-7, behavior of slaves.
4, access(t,c,e)
=> [in(Le2) V in(Le10))
=> Veéentities(t,c),locked(t,c,e)
-- behavior of slaves, definitions of lock predicates.

5. unlock(t,c,e) ONLYAFTER
Vcéslaves(t), Veéentities(t,ec), locked(t,c,e)

-- statements 1 to 4, T-6, T-T7.
6.TP-1 is the generalization of 5.

Proof of TP-2: An unlocked data entity is never again locked
for that transaction.

¥Vcéslaves(t), Vefentities(t,e),
unlock(t,c,e) => ~<>lock(t,c,e)
A slave unlocks data locked for a transaction only after it receives a
commit message from the master for that transaction (statement 1). Once
a master has sent commit messages to the slaves, it cannot demand

actions from them (statement 2). Entities are locked only after a
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master demands actions from slaves (statement 3). Thus data will not be
locked for a transaction once locks set for that transaction have been

removed (statement 4).
Let ¢ £ slaves(t), e & entities(t,c).
1. unlock(t,c,e)
=> in(Lec17)
=> received("commit t",p,c)
=> sent("commit t",p,c) °

-- behavior of slaves in the absence of rollbacks and aborts,
assumption 3 about the communication medium.

2. sent("commit t",p,c) ONLYAFTER after(Lpb)
=> sent("commit t",p,c) ONLYAFTER [J-at(Lp2)

-- Definition of message-passing predicates,
application of S-4 to master code.

3. unlock(t,c,e) ONLYAFTER [J]aat(Lp2)

-- statements 1 and 2, T=-T.

4. [lock(t,c,e) ONLYAFTER receive("request actions for t",p,c)
/\ send("request actions for t",p,c) ONLYAFTER at(LpZ)j
=>
lock(t,c,e) ONLYAFTER at(Lp2)
=>
~lock(t,c,e) UNTIL at(Lp2)
-- Definition of message-passing predicates,
behavior of slaves in the absence of aborts and rollbacks,
T-6, assumption 2 about the communication medium,
definition of ONLYAFTER.

5. unlock(t,c,e) => [Jqat(Lp2) => 4<>lock(t,c,e)
-- T-5, statements 1 to 4.

6. TP-2 is the generalization of 5.

So far, we have considered the case where a transaction completes
without intervening abortions or rollbacks. Let us briefly consider
rollbacks and abortions now. Before a slave performs an action for a
transaction it locks all data entities needed for that transaction. Any

changes to the data are committed only after the slave receives a commit
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message froh the master. Since a rollback occurs prior to the receipt
of a commit message and since a slave releases all 1locks set by a
rolledback transaction, the state of the relevant data entities after
rollback is exactly the same as that which existed before the locks were
set. Hence consistency 1is not affected by a rolledback transaction.
Similarly, an aborted transaction terminates without modifying any data.
Thus actions performed for rolledback and aborted transactions are in

effect null operations, thereby not affecting the consistency of data.

4.2 Transactions in Delta will terminate.

A transaction submitted by an agent is said to have terminated when all
slaves involved in that transaction have committed their actions. Thus,

to demonstrate termination, the following should be proved.
¥t, [J(start(t) => ¥cé&slaves(t), <>committed(t,c)).

Proof of termination is carried out in three steps. 1In step I of the
proof, we show that in the absence of conflicts and failures, every
transaction will eventually terminate. In step II we assume that
conflicts are possible and examine how Delta's conflict resolution
strategy performs with respect to termination of transactions. The
conflict resolution strategy used in Delta prevents deadlocks by
favoring that transaction with the smallest timestamp. This strategy
also avoids situations where a transéction waits indefinitely since
there are only a finite number of transactions that could have. started
before any waiting transaction. In step III we approach the problem of

demonstrating termination in the presence of failures through successive
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relaxation of the assumptions concerning the nature of transactions and
the functioning of the system itself. As we shall see, the final
assumptions, relaxing any one of which cannot guarantee termination,

indicate those system components whose failure may affect termination.

4.,2.1 STEP-I: Transactions will terminate if they do not conflict with

one another.

By examining the code for masters and slaves, the following inferences
can be made: Once a master has been invoked, slaves will eventually
receive the requests for action (statements 1 and 2 below). In the
absence of conflicts, no transaction is aborted, rolledback, or made to
wait (statement 3). In the absence of  waits all actions terminate
successfully (statement 4). Thus in response to its "prepare to commit™"
message, a master receives "ready to commit" messages from all slaves at

which point the master instructs them to commit the changes (statements

5 and 6).
Let ¢ ¢ slaves(t), e ¢ entities(t,c).
1. start(t) <=> at(Lp1)

2. start(t)
=> <after(Lpl)
=> <>sent("request action for t",p,c)
=> <>received("request action for t",p,c)

=> <reql(t,c)

-- definition of message-passing predicates,
behavior of master and slaves,
assumption 1 about communication medium,
definition of "req".

—

3. In the absence of conflicts, X
\/ ot (Lo ) )

1, [laconflict(t,t1,c) %

> [lalat(Leh) V—at{Leb: eyl _ —

> [lalafter(Le5) -Vafter(Lct)V-after(LeT7)]

> [Jawait(t,c) /\-Flarolledbaek{t;c)—/\ [l-aborted(t,c)

¥

i nct



4, start(t)

- Tug,

=> <Oreqlt,c)

behavior of slaves.

-- statements 2 and 3,
assumption 2 about actions,

T-4.

5. start(t)

6.

7.

§,.2.2 STEP-I1:

=>
=>
=>
=>
=2

<>
¥c

<>
<>

-- statement 3,

after(Lp2)
1¢slaves(t),

at%Lc11)
at(Le12)

<>sent("prepare to commit t",p,c1)
<>rece1ved("prepare to commit t",p c)

=> <Oterm(t,e)

behavior of master and slaves,

assumptions about the communication medium,

semantics of guarded commands.

start(t)

=

=> Ol[atlbet2) /\ term(t,c)]
=> £

=> <
=> <
=> <>sent("commit t",p,c)
=> <>received("commit t",p,c)
>—rafterttets)-

=> <>committed(t,c)

>at(Le13)

>after(Lp3)
>at(Lp5)

=> <>sent("ready to commit t",
=> <>received("ready to commit t",
=> ¥cléslaves(t),

€, p?
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=> <>[Jterm(t,ce)

c,p)

{>received("ready to commit t",

-- statements 4 and 5,

definition of message-passing predicates,

semantics of the WAIT-UNTIL construct,
assumptions about the communication medium,
semantics of guarded commands,
behavior of master and slaves.

\ |

cl, p)

generalization of statement 6 for all slaves proves termination
in the absence of conflicts and failures.

Transactions will terminate even if conflicts occur.

As seen earlier, in Delta, conflict between two transactions is resolved

using

the

following

strategy:

If the

younger

of

the conflicting
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transactions is in progress, it is either rolled back or aborted. If
the older transaction is in progress, the younger transaction is made to
wait. First we consider termination when rollback is the adopted

strategy. Abortion is considered later.

Proof will be by induction on ¢t. This necessitates showing the
following.
(a) start(1) => ¥céslaves(1), <>committed(1,c)
(b) If it is assumed that for some t2
Ut1éezl<t2, ¥cléslaves(tl), [start(ﬁ1) => <>committed(tl,c1)]
¥c§4slaves(t2), [start(t2) => <>committed(t2,c2)].

Proof of (a)

Since transaction 1 is the oldest transaction in the system, even if
it conflicts with other transactions it is never made to wait. Hence,

by the proof in step I, transaction 1 will terminate.

Proof of (b)

Assume the hypothesis of induction step. Transaction t2 may or may

U\\“:; ‘;I\b"
not conflict with <lder transactioqg. If it does not, then by the s
.\ Y W - AR S vl 1 A :r\——ffr_w_TAj \,‘Y\.‘ e ﬁ-\ Q\'\’ ‘.fuw‘]’-t\ Y \___1\ e

result of step H, t2 will terminate. Otherwise,L?inee—%faﬂsacttﬁﬂs~W%th

1
% ]

Llower—timestamps—are- aSSumed to—terminate, eventually t2 no longer
conflicts with oidﬁébijinsactlons (statements 1 and 2). t2 becomes the
oldest waiting transaction at which point its actions will be performed
(statement 3). Future conflicts, if any, will occur only with
transactions younger than t2 and by the conflict resolution strategy t2
will not be made to wait (statement 4).

Assume t2 has a conflict with an older transaction t3.

1. 3Jcéslaves(t2), 3t3<t2, conflict(t2,t3,c). B

/ ~ 7
=> _‘_-_J_F____,_,._—-—--"'.””'/ o V\/(--/ - /'VV\ ‘{‘fyuu—szj//
il (tt’%:" /, /X‘A/N
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Owait(t2,ce)
-- behavior of slaves.
2. Vcéslaves(t3), <>committed(t3,c)
=> Vetentities(t,c), <>alocked(t3,c,e)
=> <>qconflict(t2,t3,c)
-~ behavior of slaves,
assumption in the induction step,
R definition of conflict.
3. ¥t3<t2, ¥céslaves(t3), <Ocommitted(t3,ec)
=> ¥t3<t2, ¥c, [Jawait(t3,ec)
=> <>auwait(t2,c)

-- statement 2, behavior of slave c¢ when t2 becomes
the oldest waiting transaction.

4., ¥t1<t2, [-wait(t2,c) /\ committed(til,e)]
[izwait(tZ,c)
-- t2 is the oldest extant transaction.
5. W¥céslaves(t), <>committed(t2,c).

-- using the result of step I.

- 8o far, we assumed rollback as the conflict resolution strategy and
showed that in spite of conflicts a transaction will terminate. Now we
show that even if abortion of transactions is resorted to to resolve
conflicts, transaction will terminate. An aborted transaction 1is
resubmitted with the same timestamp. The resubmitted transaction 1is
executed as though it were submitted for the first time. As in the
proof of (b) above, eventually all older transactions commit, whence a
previously aborted transaction will never conflict with older
transactions. Thus by the proof in step I, this transaction will

terminate.

It should be obvious that the overheads due to aborting a transaction
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are more than that due to rollback. This is because abortion affects
all the slaves whereas rollback is confined to the slave where the
rollback occurs. The current implementation of Delta hence uses

rollbacks for conflict resolution.
4.,2,3 STEP-III: Termination occurs in spite of failures.

In a system such as Delta, slaves, masters or the communication medium
may fail. We assume that the communication medium is robust and hence
examine the termination of transactions in the event of failure of

slaves and masters only.

Failure of slaves: Assume first that masters do not fail, but
slaves may. If a slave fails, transactions which wuse the data
controlled by that slave are aborted and resubmitted with their original
timestamp. The transactions use only those slaves that are available.
Given that information in Delta is partioned and replicated, by the
proof of Step II, the resubmitted transactions will be able to terminate
using the other copies of thé data controlled by the failed slave.
However, recovery may not be possible if all slaves that possess a copy
of a partition fail simultaneously. When a failed node 1is -eventually
restarted, its data is restored to be consistent with the redundant

copies of the partition that it controls.

Failure of a master: A master may fail before prepare to commit
messages have been sent to all slaves involved in a transaction, or
after. To facilitate recovery in the event of failure of a master, the

list of slaves involved in a transaction is passed to the slaves along



Page 34

with the prepare to commit message.

Case-1: Master fails before all prepare to commit messages have been
sent. 1In Delta, a master's death is recognized by other masters through
the virtual ring. Suppose p1 fails while controlling transaction ¢t.
Then some master p2 takes over, aborts t and resubmits it with the same
timestamp. If the new master does not fail, then according to the
results of steps I and II, termination is guaranteed. If p2 fails, as
in the case of p1, another master becomes the new master for t. As long
as there 1is some master which assumes control of t and does not fail
before t is committed, then based on the discussion of failure of

slaves, termination is guaranteed.

Case-2: A master fails after prepare to commit messages have been sent
to all slaves. Slaves communicate to decide on the course of action.

a. If at least one slave has committed, then all commit.
b. If all have indicated their readiness to commit, then all

commit.
c. If at least one slave has aborted, then all abort.

d. If none of the above situations apply, then the transaction
is aborted and resubmitted by another master.

If some slaves have failed and if the slaves that are wup have neither
committed nor aborted, then they wait for the failed slaves to restart
and then decide based on the above criteria. Earlier, we showed that
even aborted transactions terminate. Hence even in situations (c¢) and
(d) above, a transaction will eventually terminate. Hereagain,
termination 1is guaranteed as long as there is some master which assumes

control of t and does not fail before t is committed.
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5. DISCUSSION

We have demonstrated the correctness of the distributed concurrency
control mechanism of Delta. In order to accomplish this task, the
following were needed:

a. Definition of the working of Delta's distributed
executive. While encompassing the essential details, this
definition had to be precise and abstract enough to bermit
formal reasoning.

b. Criteria for the correctness of the distributed

executive.

By examining the description of the distributed executive in [5],
we came up with the abstract programs for masters and slaves given in
section 2. Notice that code for masters 1is essentially -'a sequential
program while the code for slaves is a set of guarded commands; The
assumptions made by LeLann were precisely stated through temporal logic

statements.

The criteria established for the correctness of Delta's distributed
executive were, (1) concurrent transactions should maintain the
consistency of distributed data and (2) every transaction should

eventually terminate.

The notion of serializability was wutilized to demonstrate that
transactions in Delta satisfy the consistency requirement. By proving
that transactions in Delta are well-formed, two-phase and legal, it was
shown that transactioné in Delta are serializable. Since

serializability is a sufficient condition for consistency [3], Delta's
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distributed executive satisfies the consistency criterion.

Commitment of all changes made by a transaction was taken to be
equivalent to the termination of the transaction. As is well known,
termination cannot always be guaranteed in an environment where
processing or storage elements may fail. So we approached the proof of
termination with the purpose of identifying those situations for which
termination can not be proven. This necessitated a three-step approach.
In the first step, transactions were assumed not to conflict, in the
second, conflicts were permitted but component failures were not, and in
the last, component failures were taken into consideration. Proof of
termination was undertaken through systematic examination of the flow of
control through masters and slaves. Consideration of termination showed
that:

a. Even if slaves fail, utilizing the redundancy in

the system a failed slave's state can be restored to be

consistent with the rest of the system. Thus slaves' failure

does not affect termination unless all slaves that hold a copy

of a partition fail simultaneously.

b. Failure of masters is liable to affect termination

(for example, if every master that takes control of a

transaction fails before sending the prepare to commit message

to all slaves).

Thus, except in pathological cases, transactions will terminate

even if masters and slaves fail, or conflicts exist.
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Our attempt to verify an abstract view of Delta, points out to the
use of verification eéven at the design stage for Systems, i.e., even
before the System has been implemented. For this to be poséible, the
assumptions underlying the System should be stated Precisely, and an

abstract yet brecise description of the system should be available.

3 Delta has been designed to serve in a real-time environment, Our
proof of termination only demonstrates that every transaction will
eéventually commit its results and thus terminate. However, typically
for real-time Systems, a bound is placed on acceptable delays before a
transaction is completed. Whether Delta does satisfy such requirements

can only be determined through simulation.

Temporal logic served as the tool to formalize our assumptions and
provide rigor to the proof. The fact that using the same formalism we
were able to demonstrate both consistency and termination properties of
Delta attests to the wusefulness of temporal 1logic in dealing with

invariant and liveness properties of software systems.
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