Language Generation

Natural Language Generation as a Computational Problem:
an introduction?

David D. McDonald?
University of Massachusetts at Amherst

COINS Technical Report 81-33

(December 1981)

L. This paper, along with papers by Allen, Berwick, Kaplan, Sidner, and Webber, will appear in Compurational Theories of Discourse

edited by Brady, MIT Press, 1982,

2. The rescarch reporied here was performed while the author was a graduate student in the MIT Artificial Intelligence Laboratory. The

Laboratory’s antificial intclligence rescarch is supported by the Defense Advance Rescarch Projects Agency under Office of Navel

:lscscarch contraci N0014-75-C-0643. The preparation of this report was supported by the National Science Foundation under grant
T-8104984.

Introduction McDonald

Language Generation -2-

Research into the process of goal-directed natural language generation by computers is in its infancy.
Until recently there has been no pragmatic pressure to go beyond the simplest ad-hoc generation facilities
because the communications needs of the programs that would use the facilities has not required it.
Theoretical accounts of generation have lagged accordingly since sophisticated theories of language use
cannot be developed apart from equally sophisticated models of language users. Now however, the advent of
expert programs in medicine, command-and-control, computer-aided-instruction, and similar language-
intensive fields has made deep theories of language generation a necessity if these programs are to have an
adequate ability to explain their conclusions and reasoning in a continually changing task environment.

The meager amound of computational research on language generation to date requires us to begin
with simple questions with the goal of developing a general organizing theory. Without answers to the most
basic questions about the process, analyses of specific phenomena of the sort that the other papers of this
volume address in the context of language understanding cannot yet be profitably addressed in generation;
rather we must first determine: What does language generation start with? What kinds of decisions are made
and how are they controlled? What sorts of intermediate representations are neceded? Modern theories of
linguistic competence, though cast in a "generative” framework, are not suited to the job of goal-directed
generation because their formal structure does not permit them to address the central problem, i.e. how
specific utterances arise from specific communicative goals in a specific discourse context.

This paper is extracted from a much larger work, [McDonald 1980], which elaborates and argues for my
computational theory of natural language generation. Since there is relatively little experience with natural
language generation in the literature, we will begin with an exposition of some of the results that have been
achieved using this theory with several artificial spcakers, elaborating the linguistic and rhetorical problems
that have been dealt with. This discussion will give the reader an idca of the kinds of problems that this
research has concentrated on and where the focus of the theory lies. Following that we will consider what it
means to have a computational model of generation and sketch the limitations that have been imposed on it.
The main points of the model will then be presented, including a walk-through of one of the example outputs.
Finally the model will be contrasted briefly with earlier generation techniques and the utility of the present
computer program discussed.

Test Speakers McDonald

Language Generation -3-

1. Results for Test Speakers

It is a truism in artificial intelligence research that one cannot study thinking except by studying
thinking about something in particular. This is true in the study of language generation: there is no such thing
as generation in the abstract; one must study the generation of specific, well-developed artificial speakers
performing in specific discourse contexts. The most fluent goal-directed generators of the past have ajl been
based on a conceptually well-developed "speaker” program, e.g. the tic-tac-toe model of [Davey 1974] or the
psychoanalytic patient of [Clippinger 1978), since it is only when the conceptual basis for the decision-making
is well-grounded that stylistic linguistic decisions can be made on a sound basis.

The present research takes this one step further by generalizing the "linguistic component” of the
generator to deal with more than one conceptual input representation. The question of "what do you start
from" in generation has always been a vexing one: When studying language understanding, the input
represention to the process (i.e. English text) is agreed upon by everyone and its details can be specified to
whatever degree one likes. The psycholinguistically correct source for language generation on the other hand
is utterly unknown and likely to remain so for some time; futhermore any variation in the details of the input
representation will have considerable repercussions within the generation process (cf. [McDonald 1980}
chapter four). Faced with this situation, I have (1) deliberately separated the conceptual and the linguistic
phases of decision-making in generation into two modules connected by an explicit interface, thereby making
the dependencies between them clear; and (2) tested the linguistic module with six different conceptual
modules ("speakers”), four completed, two in progress, employing five different styles of conceptual
representation.

Research on a separable linguistic component within the generation process is based on the hypothesis
that linguistic decisions and represcntations within the process can be legitimately and profitably
distinguished from conceptual ones. For this separation to be sensible, it must be the case (1) that the
interactions between the “linguistic component” and the rest of the process can be specified precisely, and (2)
that the extent of their shared assumptions about representations and contingencies is small (otherwise the
linguistic component wouid have to be largely rewritten for each new speaker).

The relationship betwecen the linguistic component and the larger system is sketched in figure 1.

Test Speakers McDonald

(o8

Language Generation -4-

EXPERT PROGRAM GENERATOR
Speaker | | Dictionary -: Linguistic
: ! Component

Figure 1 A Coarse View of the Total System

The expert program is what human users really think they are talking with; the generator is just part of a
"natural language interface”. The expert is grounded in a particular conceptual domain such as internal
medicine or petroleum geology. It is expected to have no linguistic knowledge of its own; instead, any
domain-dependent knowledge about how to answer questions, what information to include, what to leave out
as obvious, knowledge about how to give explanations at the appropriate level of abstraction, or comparable
discourse abilities is located in a speaker component which may or may not be a physically independent part of
the expert program. The speaker assembles a message for input to the linguistic component, describing the
goals it wishes to achieve with its utterance using whatever representation is convenient to it and the expert
program. Messages are decoded by a dictionary compiled specially for each new representation; the
dictionary is where the knowledge of what natural language phrases could be used to realize the components
of the messages is stored.

The generator consists of the "speaker" (with its dictionary) and the "linguistic component”: the
speaker deciding roughly "what to say” and the linguistic component deciding "how to say it" and
orchestrating the actual production. A distinction like this is common to ncarly every generator that has been
developed. (See for example, [Simmons & Slochum 1972; Goldman 1974 ; Davey 1974; Moore 1981], but
compare [Shapiro 1975].) For existing cxpert systems, the notion of a scparable “speaker component” is only
a convenient fiction, the knowledge of the speaker having been incorporated ad hoc into the expert proper;
nevertheless, if future experts are to have the fluency and versatility they will require, then this special kind of
conceptual knowledge that I am attributing here to a "speaker” will have to be incorporated a theoretically
sound way. In any eve' :, it will be convenient to think in terms of the speaker as the part of the expert system
that makes all the decisions about what to say, providing the input to the linguistic component.

1.1 The Different Input Representations

In this section we will go briefly through the six input representations that have been explored and then
look at a sample of the results that have been achieved, giving examples of generated texts and discussing the
linguistic phenomena involved in their construction.

The speakers/cxpert-programs have been by necessity artificial and minimal: The burden of this
rescarch was intended to be on the linguistic problems of generation rather than the conceptual ones, and the
expert programs in existence at the time this resecarch was begun were not sufficiently sophisticated to

Test Speakers McDonald

Language Generation -5

motivate the linguistically interesting constructions of English and thus could not be used. (Relevant English
constructions include: embedded clauses, ellipsis, pronominal and non-pronominal subsequent reference,
arbitrarily embedded wh-movement, and thematic relations such as focus and given/new.) Consequently
each speaker had to be built from scratch, and was elaborated only as far as was needed to motivate the
~ English it was intended to illustrate. In the completed speakers, not much more than the examples shown was
ever actually developed. Below is a summary of the speaker programs used according to the type of
conceptual representation they employed; a detailed description of the first two will follow.

Predicate Calculus ~ Well-formed formulas in the predicate calculus, in isolation and in natural deduction
proofs, were supplied directly as the linguistic component’s input, ¢.g. from V(x) man(x) — mortal(x) the
component produced: “All men are mortal”. This domain presented an opportunity to study the decoding of
message-level conventions such as expressing quantifiers as determiners or type predicates as class nouns, as
well as discourse coherency and the symbolic analysis of possible realizations.

Assertions in PLANNER-style Data-bases A description of a semantic net was supplied to the generator as-a
set of simple relational assertions about the nets component parts. One net corresponded a multi-paragraph
text, one paragraph per node, ordered according to a depth-first scan. This domain provided an opportunity
to produce large texts without developing an elaborate expert program, and provided a study of stylistic
variation, the use of the thematic relations focus and given/new, and of the use of ellipsis and indefinite
anaphora including the automatic collapsing of conjoined predicates at the message-level.

OWL The language OWL, developed by William Martin [Hawkinson 1975], is a compositional
representation specifically designed as the target output formalism of a natural language understanding
system (and thercfore able to represent naturally the kinds of underspecification, ambiguity, quantification,
eic. found in natural languages). The work on this domain was done by an beginning MIT graduate student,
Ken Church, part-time during the fall of 1978. The inputs to the program were literal procedures taken from
DIG, the digitalis therapy advisor developed originally by Silverman [1975] and reimplemented for
explanations by Swartout using OWL [1977]. The resulting texts from Church’s work (which will not be
shown) were comparable to, though not quite as smooth as, the texts originally obtained by Swartout.
Church’s work demonstrated what had been suspected earlier, namely that because its one-pass control
structure is biased to expect rhetorically pre-planned input, this linguistic component is not a good place to
stage large-scale reanalyses of a domain’s conceptual structure.

FRL FRL, "Frame-oricnted, Representation Language™ was developed by Goldstein and Roberts [1977] as
an experimental implementation of "frame" ideas of Minsky [1974]. It was used by Winston as the
representation for his program for making and evaluating analogies [Winston 1980]. A dictionary was
compiled for Winston’s database on the play "Macbeth”, from which texts were directly produced describing
the actors and major scenes. Winston imposed a rigid “case-frame"” discipline on the ficlds of his FRL frames,
making them very easy to translate into English. This made it possible to concentrate instcad on the

Test Speakers McDonald

Language Generation ' -6-

coherency of the text (as in the semantic net domain), and to develop a battery of general linguisic
transformations to deal with propositional attitudes, subordinate clauses, sentence-level adjunction, and
thematic focus, and to study explicitly planned cataphor and subordination (as in “Because Lady Macbeth
persuaded him to do it, Macbeth murdered Duncan.").

KL-ONE KL-ONE is a highly structured semantic net formalism under development at BBN [Brachman
1978; Woods 1979]. The work on this representation is still very much underway and has been initially
reported in [McDonald 1980]. In their primary generation application KL-ONE nets are used as the
knowledge base of a tic-tac-toe program, modeled after the work of Anthony Davey [1974], that gives fluent
commentaries of games of tic-tac-toe that it has either played or read. It provides an opportunity to
experiment with discourse-level planning, and to study how rhetorical intentions can control descriptions (e.g.
whether to say "the corner opposite the one you just took" or just “a corner™). A second project using the KL
ONE representation began in the fall of 1981 with the task of producing paragraph-length English descriptions
of natural scenes starting from the output of an A.I scene-understanding system. This domain focuses on the
problem of planning vocabulary selection, particularly how the choice of spatial description may be
constrained by grammatical context.

Next we will .00k at some example input and output from the first two test domains and consider the
linguistic problems that had to be faced in order to produce them. After this section, we will discuss the
principles behind the linguistic component and follow through an example in detail.

1.2 The LOGIC Domain

In any study of language generation, it is important that the message-level representation with which
the process starts be credible. It would be questionable, for example, whether a program that started from a
dictionary of fragments of English sentences could be said to have solved any significant problems. The
predicate calculus, on the other hand, is a very credible message representation: it is an accepted, comfortable
"internal representation” for the programs of a large part of the artificial intelligence community; it has a
universally agreed upon interpretation; and it is sufficiently unlike natural language in form that
demonstrations of the work that one’s linguistic component has done are readily available.

The logic domain consists of a representation for well-formed formulas in predicate logic, routines for
translating formulas typed by a user into this representation and storing them, and a dictionary with fixed
entries for the logical connectives and inference rules and a set of conventions for new entries that the user
may write for particular predicates, constants, and typed variables. There is no speaker or expert program per
se, all of the interpretation of conventions and application of discourse heuristics that a "spcaker” would do
being embedded directly in the entries of the dictionary.

The original work with the logic domain consisted simply of presenting the program with a single well-
formed formula ("wfTf") and having it produce an English rendering. For example

Test Speakers McDonald

Language Generation -1-

Y(block) V(surface) space-for(surface,block) < (table(surface) V cleartop(surface))

was rendered as:

"There is space on a surface for a block if and only if that surface is the table or it has a clear top.”
Different conventional interpretations of formulas were experimented with, originally under explicit control
of the designer and later under program control using both lookahead at the lingustic decisions and simple
tests of the logical structure of the expressions to determine whether an interpretation would go through. The
same formula, say: " V{x) man(x) = mortal(x)", can be understood conventionally and rendered as: “All
men are mortal”, or understood literally and rendered as: “For any thing, if that thing is a man, then it is
mortal”.

It does not take long, however, to exhaust the linguistic insights to be gained from looking at single
formulas in isolation. A predicate calculus formula is underdetermined with respect to the more sophisticated
forms of reference and quantification supported by natural languages, and its connectives and predicates can
usually be given many equally plausible renderings. When formulas appear in isolation, there is no
motivation for using one rendering or one interpretation of a quantifier over another.

One way to provide the needed motivation is to look at formulas in the context of a proof. Figure 2
shows a natural deduction proof followed by the text that the logic domain’s dictionary selected for it. (The

first line is a statement of the "barber paradox™” created by Bertrand Russell as a popular rendering of the set
of all sets paradox.)

Test Speakers McDonald

Language Generation -8-

linel: premise

3x (barber(x) A Vy(shaves(x,y) « —ishaves(y,y)))
line2: existential instantiation (1)

barber(g) A Vy(shaves(g,y) <> —ishavesl(y,y))

line3: tautology (2)
Vy shaves(g,y) «> —shaves(y,y)

line4: universal instantiation (3)
shaves(g,g) « —shaves(g,g)

lineS: tautology (4)
shaves(g,g) A —shaves(g,g)

line6: conditionalization (5,1)
3x (barber(x) A Vy(shaves(x,y) « -lshaves(v,v)))

-> (shaves(g,g) A —1shaves(g,g))

line7: reductio-ad-absurdum (6)
=3x (barber(x) A Vy(shaves(x,y) « —ishaves(y,y)))

Assume that there is some barber who shaves everyone who doesn’t shave himself (and
no one else). Call him Giuseppe. Now, anyone who doesn’t shave himself would be
shaved by Giuseppe. This would include Giuseppe himself. That is, he would shave
himself; if and only if he did not shave himself, which is a contradiction. This means
that the assumption leads to a contradiction. Therefore, it is false, there is no such
barber.

Figure 2 The Barber Proof

The lines of the proof are passed to the program in sequence; the English text selected for earlier lines
provides a discourse context to narrow the choices available to later ones directly controlling subscquent
references to constants, variables interpreted as generic references, and predicates and formulas used as
descriptions. Further motivation for text choice is provided by the labels that are attached to certain lines to
reflect their role in the structure of the proof (e.g. "the assumption” or "a contradiction"), and by the logical
inference rules that derived the lines: a large part of the rendering of the proof must be an explanation,
guided by the inference rules, of how each linc follows from the earlier ones.

The proofs that were used in the logic domain were selected from a set of proofs that had been used by
Daniel Chester [1976] in virtually the same task. The choice was made deliberately to permit a direct
comparison of the output of the two systems on the same material—something that is rare in studies of
language gencration. Chester’s version of the "barber proof™ is as follows:>

3. My source for Chester’s results is a personal communication with him in November of 1975; the major effort on the logic domain was
completed in December of 1977.

Test Speakers McDonald

Language Generation -9-

Suppose that there is some barber such that for every person the barber shaves the person iff the person
does not shave himself. Let A denote such a barber. Now he shaves himself iff he does not shave
himself, therefore a contradiction follows. Therefore if there is is some barber such that for every
person the barber shaves the person iff the person does not shave himself then a contradiction follows.
Thus there is no barber such that for every person the barber shaves the person iff the person does not
shave himself.

Chester’s program belongs to the "direct translation” school of natural language generation systems
(see [Mann et al. to appear]). It produced the paragraph above by recursively replacing the formulas of the
proof with English text (after editing it for production), entirely on the basis of local propertics of the
formulas. The lack of contextual input to the program’s realization decisions is reflected in its minimal
treatment of subsequent reference and the occasional abruptness of transition from line to line.

At this point, I will use the example of the barber proof to point out some of the accomplishments that
are embodied in the current version of my generation program.

The ability to go beyond the literal content The program processes a proof by realizing its formulas and
subformulas one at a time in top down order (i.. the construction axioms of the predicate calculus are
followed). The formulas are not translated mechanically, but rather at each step along the way, a context-
sensitive decision iv inade as to how (or whether) the major logical connective (or inference rule) is to be
realized. and which (if any) of the subelements of the formula are to be involved in that realization. Line
three of the proof, for example, has no corresponding sentence in the text because we can assume that such a
step in the proof would be made automatically by the audience. (This is an implicit. conventional
assumption: there is no simulation modecl of the user.) Line four, on the other hand, has been expanded into
three sentences because the logical substitution of a second instance of the same constant is assumed to be
liable to confuse the audicnce. The three sentence subargument is constructed by putting a special rhetorical
twist on the formula of line three (to define the set), adding a new formula based on the variable being
substituted (sentence four), and concluding with the formula from line four.

The logical conjunction in line one is interpreted as a conventional way of defining the type of the
variable "x". Similarly the two quantificrs in that line are realized in the determiners of their variables ("'some
barber", "everyone") rather than as “for" phrases.

Subsequent reference Knowing when not to use a pronoun is very important in the production of
understandable texts. Thus while the barber is identified and given a name in first two sentences, he is not
pronominalized in the third and fourth because those sentences are part of a new new discourse structure (the
"subargument” composcd to case the transition to line 4) where the discourse focus is on the universally
quantified variable "y" rather than on the barber “Giuseppe”. When the focus shifts to him in sentence five
as a result of the use of the intensifying reflexive ("Giuseppe himself™), he can then be pronominalized in the

four instances in sentence six. (N.b. the name “Giuseppe” was picked arbitrarily.)

Test Speakers ' McDonald

Language Generation -10-

Descriptions may be “pronominalized™ as well as references. At the end of sentence one, the original
description of "y" (i.e. "everyone who doesn’t shave himself’) is recapitulated in the description of the
complement set as: "no one else”, Then in the final sentence, the original complex description of the barber is
reduced to just the adjective “such”.

Functional labels The premise functions in the proof as "an assumption” that is to be shown to be false
because it leads to a contradiction. Since this role is known to the audience (we began by saying "Assume
that.. "), we can use the label later (sentence seven) as a succinct reference to the entire first line. The logical
schema "A A = A" is similarly labeled as "a contradiction”. Part of the concept of a label is the ability to
include a literal rendering of the labeled expression as an appositive (final sentence). In the logic domain’s
dictionary, appositives are triggered if the last literal rendering was not in the same paragraph or, as in this
case, if the line is the conclusion of an argument.

Context sensitive realizations Part of the linguistic context that is produced to guide later decisions is a
rhetorical description of the discourse structure. The different terms of this structure will guide decisions at
syntactic and morphological levels: in sentences one and three a contraction is used ("doesn’t shave") while
the same logical structure in the formal context created by the conclusion sentence of the subargument is not
contracted (formal being an experimental rhetorical feature in the grammar). Similarly the connective «> is
spelled out in a formal context (sentence five), but in an unmarked, informal context, it is understood as a
restriction on a variable and expressed as a relative clause. In another case, the same quantified variable ("y")
is realized in the unmarked context of sentence one as “everyone”, but when marked in sentence three as
identifying a set it is realized as “anyone”,

Part of the discourse context is the distance between phrases. When a contradiction is deduced from
the immediately previous line, as in line five, the identification of that deduction is given in the most direct
way possible by adjoining a relative clause to the last sentence; when the dependency line is much earlier (as
in line six), the formula from the line is repeated and the phrase "leads to" is used.

Attempts to avoid ambiguity In sentence one, the interpretation of "«>" as a restriction on a variable’s
range must include sor 2 phrase to indicate that the entire range has been specified and not just a part of it.
Conscquently the "iff-entry” is designed to say "<restriction> and <complement of restriction>”. (An equivalent
technique would have been to replace the word “everyone” with “all and only those men who... *.) Because the
presentation of this combined restriction should be done carefully, a special monitoring routine is activated in
an attempt to avoid introducing scope ambiguities in the conjunction. On the basis of the point where the
conjunction is attached (i.e. as the direct object of “some barber who shaves ___"), the projected contents of
the second arm of the conjunction (a noun phrase), and the fact that the first arm has ended with a direct
object, the monitor decides that it is possible that the second arm will be missinterpreted as conjoining with
the more immediate, lower direct object rather than with the intended one. It causes the parentheses to be
added around the sccond arm as one way available to it in this case to try and forestall missinterpretation.

Test Speakers McDonald

“

Language Generation -11-

1.3 PLANNER-style Assertions

The source data structure in this domain was a KL-ONE network reimplemented as a set of binary
relations expressed as PLANNER-style assertions. A KL-ONE net consists of a set of named objects of various
types (only "concept” and "role” are shown here), linked together by the relations: “subconcept”, "has-role”,
"value-restriction”, and others not shown. This domain took the network as input and produced an English
description of its literal contents; that is, rather than interpret the net as a representation of certain facts (e.g.
"every phrase has a head, a modifier, and an interpretation... "), it is interpreted at its literal level as a collection
of KL-ONE objects (e.g. "The concept phrase is the top of the net, it has a head role that..."”).

Figure 2 shows the first paragraphs of the text constructed for one of the development networks in use
at Bolt Beranek and Newman Inc. ("BBN") during the spring of 1979. (It represents a first pass at a
conceptualization of an English grammar.) The text was created by scanning the net depth-first following its
“subconcept” links, devoting one paragraph to each concept. Each paragraph mentions (or assumes—see
below) three facts about about its concept: (1) the name of the concept(s) it is a subconcept of, (2) the names
of its “roles” and the "value-restrictions” they are subject to, and (3) the names of its own subconcepts if any.
(The fact that each paragraph will present a new concept is taken to be already known to the audience, and as
a consequence, the information that, e.g., “phrase is a concept" is omitted as already given.)

Varying the paragraph structure The few paragraphs shown in the figure are sufficient to illustrate the
stylistic heuristics that the dictionary for this domain incorporates. (Like the logic domain, this domain had
no speaker as such; its messages were comprised directly of KL-ONE nets or coherent subnetworks.) In each of
the first three paragraphs, the presentation of the concept’s roles and their value-restrictions is given in a
different style. It is done by varying the rhetorical pattern of the description according to the number of roles
the concept has. In the first paragraph, "phrase™ has three roles and the style chosen puts each role in a
separate sentence: “<role> must be <value-restriction>”. The second paragraph’s concept has more than three
roles, leading to the use of a summarizing sentence to identify them as its roles before giving their value-
restrictions. The third paragraph, with only two roles, uses sentences based on the "has-role” relation, with
cach value-restriction cmbedded as a relative clause.

Onmitting "given” information Note that the second, third, and fourth paragraphs do not start with a
sentence about what their concept is a subconcept of. This is because that information appears in the text
already (in the last sentence of each previous paragraph) and the dictionary entry that would make the
decision to include that information decides that it will be still remembered and thus would be redundant if
included. Similarly in the sccond paragraph where there is a summary sentence listing roles of the concept
pp's, the "has-role” facts have been left off of the later sentences since to leave them in would have led to an
unacceptably redundant text.

Varying descriptions with context ~ The noun phrases constructed to describe roles vary along the same
lines as paragraphs, i.e. they include facts or leave them out depending on what facts have already appeared in

Test Speakers McDonald

Language Generation : -12-

INSUBJECTPE
OFPERSONPP

Phrase is the top of the net. Its interp role must be a concept, and its modifier role
and its head “ole must be phrases. Izs subconcepts are pp, np, adjunct, indobjclause,
and word.

Pp has the roles: pobj, prep, interp, and ppobj. Pobi must be a np, prep a prep,
interp a relation, and ppobj a pp. Pp’s subconcepts are ofpersonpp, insubjectpp,
locationpp, and gboutsubjectpp.

Ofpersonpp has a pobj role which must be a humanp, and a prep role which must be
an of.

Insubjecipp’s pobj role must be a subjectnp, its preprole an in, and its interp role a

«.[[further paragraphs for the rest of pp’s subconcepts]}

Np is another subconcept of phrase...

«-[[further paragraphs for the rest of phrase’s subconcepts and the subconcepts of each of those in turn]]

Figure3 Describinga Semantic Net -

their paragraph and what remain to be given. Thus we go from using just a name to introduce a role
(paragraph three) to giving the concept that owns it, its name, and the fact that it is a "role" (in paragraph
four).

Test Speakers McDonald

Language Generation -13-

Using ellipsis Throughout the example text, grammatically-driven ellipsis is applied to reduce redundant
verbs (paragraph two), and to merge relations with common arguments (paragraph one). These are general
purpose transformations, triggered by the syntactic and lexical properties of the texts, independently of the
content of the relations involved.

2. A Computational Model

The ability to speak is as natural to us as the ability to see or to use our hands to grasp objects. We are
fast, we are accurate, and we are unaware of the mechanics of how we do it.* As easy as it is for us to speak,
we know from linguistic and ethnomethodological analysis that the process is complex. Even if we leave aside
the question of how we arrive at the thoughts behind our words and look just at the "linguistic” part of the
process—selecting words and constructions, applying grammatical rules, and producing the words in
sequence—it is clear that very sophisticated rules are being followed. Somehow we select one
lexical/syntactic combination from the many possible alternatives, managing to attend simultaneously to the
potentials of the different constructions, our multiple goals, and the constraints arbitrarily imposed by our
grammar. We follow conventions of direct utility only to our audiences and actively maintain elaborate
coherency relations across large stretches of discourse.

Our ability to do all this with such facility needs to be explained. For this, a static description of the
rules being followed will not be sufficient: we must explain what it is about the way these rules are
represented and manipulated that insures that the process of language production is tractable and gives the
process the character that it has. In short, we must develop a computational model: a simulacrum whose
processing steps and representational devices when viewed from the intended level of abstraction we take to
be isomorphic with those operating in the human mind.

It is important to appreciate that by "computational model", we do not simply mean a program whose
input/output behavior matches that of people (though that in itself would be a considerable
accomplishment). The internal structure of the program—the reasons why its input/output behavior is what it
is—is critical to its value as a model. This is comparable to the requirement for "strong" rather than "weak"
equivalence in constructing a grammar for a natural language. If the model is to be truely sucessful (and
ultimately to be a source of testable predictions), its behavior must follow inescapably from its structure rather

4. The normal speaking rate for English is approximately four syllables per second or 160 words per minute. (The Guiness Book of
Records speed record for reading Iinglish is 400 words per minute.) A study by [.abov [1966] has shown that 75% of everyday speech is
grammatical by any criterion. If gencral rules for ellipsis and self-cditing are added. this figure rises to 90% for non-academic speakers
tatking about cveryday experience. Introspective reports of production appear to go no deeper than mentally "hearing” full phrases (or
alternative words) at a time. We appear to have no conscious access to any of the actual assembly processes such as the sequencing of the
words or their morphological specialization.

A Computational Model McDonald

Language Generation -14 -

than from stipulated rules; it will stand as an explanation of the behavior because any device with comparable
structure would be incapable of behaving otherwise. If one can then independently show that the human
language faculty is structured in the same way as the model (perhaps by comparing the kinds of errors that the
two systems make), then one will have explained why people have the modeled behavior. Consequently, if
our model is to be compelling, we must limit its computational power very carefully. A computational model
that permitted the use of arbitrary procedures (e.g. a Turing machine) would not be interesting as the basis of
a theory because all that it would explain would be that language production was computable: something we
already believe. We must look instead for the weakest model that can do the work: a model from whose
computational properties the characteristics of human language production would inexorably follow. By
doing this, by restricting the kinds of behavior that our model is capable of, we can extract non-trivial
predictions from it and make it subject to empirical tests. (Neither of which I intend to do in this paper. As
will be clear, the model already meets a number of "obvious" psychological criteria such as sequential
production and indelibility (see also [McDonald 1980]). Its first non-obvious application is expected to be in a
theory of the mechanisms behind certain naturally occuring "speech errors”, particularly exchange errors and
blends. (See [Garrett 1980] for an extensive description of speech-errors.) This work, however, is still in
progress.)

2.1 Characterizing the Problem

What computational problem is the mind solving when we talk? "Talking" is of course a loose term
used to cover many kinds of activities, each likely to have its own requirements in processing time, necessary
memory, possibilities for editing, or conscious involvement. We know intuitively that there is an enormous
difference in behavior between, say, writing a carcful essay and holding a fuzzy conversation over breakfast;
so much so that there is little reason to believe a priori that they pose identical problems to the human
speaker. In the present research, I have focused on immediate speech, spoken (or written) without rehearsal
and with only a rough conscious knowledge of what will be said next. There is introspective evidence to
suggest that this mode of speech is primary since even in deliberate writing where there is ample opportunity
for editing and planning, it is the common experience that phrases and even multible sentences “spring to
mind" as immediate percepts without any conscious effort having been made to form them from their
constituent parts.

Given this restriction on the mode of speech to be considered, [take the core of the "problem” for the
mind to be the re-expression of a delimited, deliberately selected "packet” of information (including
references, propositions, descriptions, and probably specific rhetorical instructions) from its original form in
the mind’s internal representation into a constrained, fixed-format language (e.g. English) according to a
fixed, context-free, conventional mapping.

A Computational Model McDonald

Language Generation -15-

2.2 Language Generation as Decision-making

What are to be the primitive operations of the model—at what "grain size” will it characterize the
generation process? Following the lead of systemic grammarians such as Halliday [1966,1970] and Winograd
[1973], I view the output of the process—the natural language text—as the result of a series of decisions, the
set of possible consistent decisions being determined by the language’s grammar. The most relevant aspects
of a generator will then be how it goes about making those decisions, which is what the theory is to determine.
In particular: (1) what kinds of decisions are to be made, what prompts them and what is the nature of their
output; (2) what kinds of information the decisions require and how that information will vary in its
accessibility and form according to the state of the process; (3) what dependencies there are between decisions
and how they influence the overall control structure (e.g. are decisions made nondeterministically or are they
necessarily ordered?); (4) to what extent the results of previous decisions and the foreknowledge of planned
decisions are a part of the generator's state, i.e. is this kind of information explicitly represented and accessible
to current decision-makers?

2.3 Restrictions on the Model

Given the problem of translating a packet of expressions/instructions into a highly constrained, fixed
format language giv : a context-free mapping (i.e. the translation dictionary), there are many known ways we
could use to solve it: Approaches have ranged from nondeterministic optimizers that worked on whole
paragraph-sized texts at oncc [Moore 1981], to programs that have attempted to model stream-of-
consciousness and were liable to interupt themselves with new plans or constraints at every phrase [Clippinger
1978]. All approaches have in common the notion that the input packet or "message” will be decomposed
into its component elements; that the elements will be looked up in the dictionary and a context-sensitive
decision made as to how they can be realized in the target language; and that these realizations, subject to the
constraints of the grammar and the overall goals of the message, are picced together into the utterance. The
approaches differ in nearly every other aspect, e.g. how large an utterance to construct at once, how to control
the process and order the decisions, or how to represent the grammar and implement its constraints.

In the interests of narrowing the field of candidates, and because I believe that the resulting model is
both more perspicuous to the engineer and more interesting to the psychologist, the following additional
computational limitations have been stipulated in my theory.

On-line Operation The input message is viewed by the linguistic component as a stream of elements, the
specific order and chunking of the "message elements” being dictated by the dictionary entrics designed for
that particular domain. The component may be conceptually (though not literally) decomposed into two
transducers cascaded together, the first taking the next element of the message stream and converting it into a
surface structure phrase attached to the trec at the point where the message clement was, and the second then
walking that phrase and producing the text from it (see scction 4.1 below). The two transducers are
constrained to opcrate "on-line”, that is, the output from the first transducer must be completely consumed

A Computational Model McDonald

Language Generation -16 -

by the second before the first transducer moves on the next message element at the same level.

Indelibility = The decisions of the first, "realizing” transducer are exaustively represented in the surface
structure phrases that it produces. The actions of the second, "tree-walking" transducer are then completely
dictated by the structure and annotation of those phrases. Surface structure is indelible, i.e. once a phrase has
been constructed and incorporated into the ongoing surface structure tree, it can not be removed or edited
(though it may be augmented). As a consequence of indelibility and the fact that the surface structure is
organized as a strict tree without loops, the process will not backup—it is impossible to retraverse earlier
sections of the tree once the realizing transducer has past through them. (This same stipulation has been
applied to the recognition of phrases by a parser [Marcus 1980] with intriguing results.)

Locality Decisions may only make reference to contextual information that is local to them at the position
within the tree where they occur. There is no mechanism available in the model that would allow a decision
to scan the tree for information; all potentially relevant information must be expressly recognized as such and
specific provisions made in the grammar to make it available to decision-makers via locally defined and
updated variables. The effect of this stipulation is to restrict the information available for a decision to no
more than would be available to a parser using an LL(k) grammar.

Realtime The overall process must perform its computations in quasi-real time; that is, the number of
operations that take place between the consumption of any one message element in the stream and the next or
between the output of two sucessive words must be no greater than some fixed maximum unrelated to the size
of the input or output streams. This is a stronger time bound that the usual one of linear time, and reflects the
intuition that the process always proceeds at a constant rate.

3. The Relationship Between the Speaker and the Linguistics Component

3.1 ‘Messages’

If the linguistic component was used with only one speaker/expert program, then there would be no
need for an elaborate interface between the two: all of the speaker’s conventions and the linguistic
component’s conventions could be integrated and the responsibility for obeying them distributed evenly in a
scamless merger of the two decision-makers. Explicit messages (and thus conventions for representing
messages) would be needed only when it was necessary to represent goals that refered to the message itself
(such as "don't be long-winded" or "don't use technical vocabulary™). But of course the opposite is true:
there are many qualitatively different expert programs to be linked with a common gencrator; consequently,
the linguistic component is a distinct module computationally as well as conceptually, and a uniform interface
is required to smooth over the differences between domains.

Between the Speaker and the Linguistic Component McDonald

Language Generation =11-

Functionally, the linguistic component lies on the path between the speaker and its audience. The
speaker decides what it wants to say, constructs a representation of its goals and references—a message—and
passes it to the linguistic component. This transfer of an explicit expression is required simply because the
linguistic component is not telepathic: it does not automatically know what a speaker will want to say, nor,
since it works with many speakers, can it even have a priori assumptions about the kind of things that are
going to be said or how they will be represented internally in the speaker/expert program. These must instead
be spelled out (1) in the dictionary: which holds the information on how to interpret the expert’s
representation element by element to determine its linguistic correspondences and relevant substructure, and
(2) in a set of interface functions: which know (a) how to link up an individual element of a message to the
appropriate dictionary entry, and (b) how to answer certain idiosyncratic linguistic questions for the message
elements such as their "person and number"” or whether they act as references or descriptions.

Both the dictionary and the interface functions must be specifically designed for each new
speaker/expert program; they are the repository of all the information required to adapt the linguistic
component to such new domains. Given this modularity, expecially the functional interface, we can be
flexible about the choice of formal representation for a message; we can use whatever representation is
convenient for the speaker’s planning, typically the representation used in the expert program (e.g. as
described in section 1.1).

There is no presumption that messages should result in texts of any fixed size. With the present test
speakers, single messages have produced texts ranging from single exclamations to multi-paragaph discourses.
Neither do messages have to be equated with turns in a conversation since the linguistic state of the
component is preserved between activations and a text can be "picked up where it left off".

Structurally, messages have fallen into two broad classes. The simpiest just consist of pre-existing
expressions taken directly from the expert’s data base. (All of the completed test speakers fell into this class.)
The data base expressions become "instructions for what to say™ through the interpretation provided by their
dictionary entries, and the result is a fairly literal rendering of the expression, the structure of the output text
following the compositional structure of the input expression. Below is an example expression from
Winston’s data base of Shakespearian plays (given in IRL), followed by the text that the linguistic program
generates for it using the dictionary for that domain.

Between the Speaker and the Linguistic Component McDonald

Language Generation -18-

(ma (ako (story))
(part (macbeth)
(lady-macbeth)
(duncan)
(macduff))
(subpart (heath-scene)
(murder-scene)
(battle-scene)))

"‘Macbeth’ is a story. It has four characters: Macbeth, Lady Macbeth, Duncan,
; and MacDuff, and three scenes: the heath scene, the murder scene, and the
battle scene.”

Figure 4 A Simple Message and Its Output

In a simple "direct translation” message such as this, the linguistic component has some ability to
simplify and smooth the text by following default rules keyed by the local linguistic structure as the text is
built; however, all of the choices of ordering and level of detail are fixed by the internal structure of the data
base expression. Since the structure of the data base is determined by whatever is convenient for the expert's
internal computations rather than by considerations of text planning, messages of this sort are necessarily
limited in the applicability. (See [Swartout 1981] for an extensive discussion of this problem.)

The second class of messages are those that are deliberately planned by the speaker and involve
relations among the expert’s expressions that are specific to that speech event and may involve special
rhetorical relations (instructions to the linguistic component) that have no counterpart elsewhere in the
expert. The formal structure of these messages will again be whatever is convenicnt computationally for the
designer of the speaker component, typically an extension of the representation already in use in the expert,
with the interface functions adapted to match. Figure 5 shows a handcrafted example of a planned message in
Winston’s domain. The development of planning programs that can take advantage of the abstract planning
vocabulary that a linguistic component such as this onc can support (e.g. instructions like "focus",
"sequence”, or "constrast”; note for example that the sentence structure of the output text was determined
dynamically by the linguistic component rather than given in the message) is the subject of on-going research
by the author and others especially [Cohen 1978; McKeown 1980]. Experimental messages such as the one in
figure S are aimed at determining what degree of rhetorical abstraction is plausible and how much
forcknowledge of the linguistic properties of expert's expressions is required in planning at this level. Thata
planner can in fact be designed at this level of modularity that will produce indelibly realizable messages is a
hypothesis that underides most of the work on this lingustics component.

Retween the Speaker and the Linguistic Component McDonald

Language Generation 19

(message1 (sequence (macbeth (murder (duncan))) ;"murderma”

(macbeth (become (king))) ;"ma-become-king”
(lady-macbeth (persuade (macbeth (action murder-ma)))) ;“persucde-ma”
(lady-macbeth (hq (ambitious)))) ;“ambitious-im”

(time-frame (before-time-of-speech))

(focus (macbeth))

(ancilary-tacts ((murder-ma (motive (ma-become-king)))

(persuade-ma (purpose (cause (murder-ma)))))))

"Macbeth murdered Duncan in order to become king. He was persuaded to
do it by Lady Macbeth who was ambitious."

Figure 5 A Planned Message

" In summary, what matters about a message is not the notation that is used but what it specifies and
what it leaves to default. The structure of the message (as interpreted by the dictionary) directly determines
the order in which the linguistics component will break it down and realize its elements; in simple speaking
situations, literal expressions from the expert’s data base may be the best messages—implicitly wrapped in the
directive “describe these objects and relations”; however, as the situations become more complex and less
predicatable, a full-scale, rhetorically knowledgeable planner will be needed to compose messages as the
speaker’s goals and discourse context demand.

3.2 Run-time Relationships

From the point of view of the spcaker/expert program, the linguistics component is & subroutine, a
subprocess that the speaker explicitly activates to realize an individual message. It is only activatable by the
speaker, i.e. it has no independent existance as a parallel process (though the history of the discourse is
contiguous across activations), and once activated runs to completion independently of the rest of the system.
Its internal state is a black-box, not designed to be monitored, interupted, or edited (though it could be "shut-
off" and completely res-arted).

Between the Speaker and the Linguistic Component McDonald

Language Generation -

Speaker—Expert-program

3)/ E\F sthe "message’.’
c/

/\/\

A<E‘/\ /

Time — \ \ Linguistic component

Y n AT

o8 (1]

Audience
:‘realized o
not yet realized -

Figure 6 A Sketch of the Run-time Relationships

Though independently controlled, the linguistic component is not cut off from the speaker while it is
processing. Figure 6 shows diagramatically how the component may at any point ask the speaker questions
about a specific message element in order to determine facts that are only important linguistically (for
example "person” and "number”) or to apply domain-based tests some clement, in effect extending the
message. In the figure, the message is reduced to its essentials: a composite relation over objects selected by
the speaker/expert program (i.e. A(B(C,D), E, F)). We sce it broken down within the linguistic component
layer by layer starting with the root relation A. B and E have been referred back to the speaker for futher
elaboration, while F and then D were realized directly in English (indicated as “..." in the figure). The
speaker is accessible continuously, but the timing and the computational context in which it is actually
consulted arc dictated entirely by the linguistic component.

The speaker has no control over the actions of the linguistic component beyond supplying it with
messages: whether the speaker continues to be active while the component is operating is not important to the
theory. Whether it should have the ability to interrupt the linguistic component and restart it, perhaps in
reaction to what it hears while "listcning™ to the component’s output, is a question we will leave open. There
are some eventualities (such as structural ambiguities) that are difficult to foresce when realizing a message via
a linguistic component of this design, and there are also potential divisions of effort within the speaker’s

Between the Speaker and the Linguistic Component McDonald

Language Generation -2-

planning process which might benefit from a "feedback” design of this sort. Before developing such a design,
however, it is critical to have a clear understanding of the kinds of linguistic information that are naturally
available at different stages in the production process and of how they relate to the vocabulary of the speaker’s
planning process—one of the prime concerns of my research. (Clippinger and Brown [Clippinger 1975, 1978 ;
R.Brown 1973] developed a model of the production of psychoanalytic discourse that made critical use of
such a feedback design, with the result that it was able to produce very natural hesitations and restarts in its
monologue.)

4. The Internal Structure of the Linguistic Component

4.1 A cascade of two transducers

As an automaton, the linguistic component is best described as two cascaded transducers folded together
under the command of a single. data-directed controller. The first transducer goes from the message to a
surface structure level linguistic representation of the utterance to be produced—the "working" data structure
of the linguistic component—and the second goes from the surface structure produced by the first to English
text. (See the sketch in figure 7.)

The "decisions”, whosc dispositions are so important to this theory, are made almost exclusively by the
first transducer; they are the decisions that realize the individual elements of the message through the
sclection of particular surface structure phrases (or refine existing ones). The second transducer in effect
"executes” the decisions of the first by interpreting the surface structure as a program of linguistic actions:
printing words, annotating the grammatical context, recording the history of the process, and propagating
grammatical constraints.

The bulk of my theory of language production is contained in the characteristics of the surface structure
represcntation and the transducer that produces uttcrances from it. The transducer from the message to
surface structure—con-~ptually an extention of the speaker—will be less rigorously developed: it is defined
chiefly by its relationship to the first transducer—the controller—which gates its activitics and imposes filters
and constraints on its decisions. A complete definition of the first transducer has been developed for use in
the computer program and is discussed in detail in [McDonald 1980}, however, only certain of its details are
critical and the others are expected to be refined and modified as the program is used with real speaker-level
planners.

The Linguistic Component McDonald

Language Generation : -2-

1. Message .<.. _____ -

to
Surface
Structure

2. Surface —_—

Structure e~
to
Text

Figure 7 Two Transducers

As inputs to the transducers, both the message and the surface structure are treated as totally ordered
sequential streams of data; tokens from the streams are processed one at a time, and are processed only once
(i.e. the streams never reverse or loop). The two strcams are processed "on-line”, which means that the output
from the first transducer for one token is completely consumed by the second transducer before the first
moves on to its next token. The transducers per se are only interpreters. ‘They have the ability to follow their
input streams and to bind certain predefined variables but little else; their transducing powers derive from
two bodies of permancnt information, the "dictionary” and the "grammar”, to which the transducers will
dispatch according to what they find in their input streams. The dictionary associates elements from the
message with potential realizing phrases, using a linguistic vocabulary defined by the grammar; the grammar
interprets this vocabulary and enforces the constraints and conventional details it specifies. The procedures
and schemata in these two "libraries” do all of the real work of the linguistic component; the transducers are
responsible for controlling when the libraries are used and for maintaining the linguistic context to which they
refer. (The dictionary and grammar consist of a large number of small procedures that are associated with
individual tokens that can appear in the data streams (specific message elements, names of grammatical
categories, etc.). When a transducer sccs one of thesc tokens, it "dispatches to" the associated procedure (i.c.
calls it as a subroutinc) and waits until that procedure has finished its execution before going on to the next
token.)

The Linguistic Component McDonald

Language Generation -23-

The special property of this cascade is that the two transducers have been folded into a single process:
the traversal of the surface structure. This procedure can be summarized as follows: The message starts out as
the sole constituent of the root node of the surface structure tree; the first transducer then decides which
English phrase should realize its dominant element and that phrase, which incorporates at its fringe the next
level of message subelements, replaces the message in that constituent position. A tree-traversal controller
(the second transducer) now takes charge of the process and procedes to traverse this newly constructed
surface structure (" the tree") following its normal top-down, lefi-to-right order. As the controller passes over
it, the linguistic annotation on the tree triggers dispatches to the proccdurally represented grammar and to the
dictionary for the realization of the embedded message elements. (The dictionary thus constitutes the real
content of the first transducer.) If a fringe constituent is a word, it is printed out as part of the text; if it is a
message element, it is realized, replaced in the tree by the new phrase, and the new phrase then traversed as
an extension of the surface structure,

The two transducers can be reliably folded together because of a well-formed-ness condition I have
imposed on the structure of messages, the "constraint-preceeds” stipulation, which dictates that the
enumeration order of a message—the position of message elements within the input stream—must be such
that any message element that makes reference to other elements in the message must be realized before any
of those elements are.

This condition is required because of the stipulation that the gencration process must be indelible (cf,
section 2.3). The theory insures indelibility by designing the trec-walking controller so that it is unable to
retrace any part of the surface structure tree after it has passed through it once. When coupled with the
locality stipulation, this means that the first transducer is prohibited from arbitrarily scanning the message in
search of potentially relevant subelements that denote constraints but must "wait" until those elements are
reached in their normal order in the message stream. Conscquently if a message includes elements that
should be interpreted as constraints on the realization of other elements (for example they might specify
discourse focus or pickout attributes that are to be specially contrasted), then those constraining elements
should be dealt with first so that their implications can be noted and incorporated into the context of the later
decisions. If the process had not been stipulated 1o be indclible, then we might imagine ordering constraints
haphazardly within the .nessage and editing affected parts of the output text by backing up the generator and
restarting once a constraint was noticed. Allowing even bounded backup however (as for example with the
cquivalent of a well-formed substring table) would remove the process from the realm of real-time and would
make the "on-line" stipulation impossible to maintain, not to mention requiring a considerably increased
memory in order to retain all potentially reopenable states of the process. The "constrain-preceeds” condition
and the stipulations of section 2.3 are thus effectively working hypotheses that claim that the appropriate
processing trade-off within generation is to supply heavily planned conceptual messages to a relatively
unsophisticated but quick and clean linguistic generator, rather than the other way round.

The Linguistic Component McDonald

Language Generation : -A4-

4.2 Representing linguistic context — the tree

In order to understand the two transducers we must understand the data structure that binds them
together: the surface structure representation of the utterance under construction known for short as the tree.
We first describe its format and its relationship to the grammar and the dictionary. We then move on to a
sketch of the controller, showing how it traverses the tree and how the tree is used to indicate the proper
routines to dispatch to within the grammar and dictionary.

Figure 8 is a diagram illustrating the representation used for the tree. (It is not a snapshot of the tree
itself; we will not see one of those until the main example.) Two kinds of structures are indicated: constituent
structure. defining positions within the tree, how they are connected and how the controller is to traverse
them; and grammatical labels. defining the properties those positions are intended to have,

Grammatical Labels Constituent structure

"catmq"\) / "ode”
clau
/_ﬂ\ "slot"

[subject] [predicate]‘/

(___,__...—"contents" of the predicate

“stotname™

[verb] [objectt]
shaves

“contents” of the verb

Figure 8 Representing Consitutent Structure: Positions and Labels

The constituent structure is indicated graphically by the pattern of trapezoids and brackets: the
trapezoids indicate the "nodes” in the tree, and the brackets indicate the positions of possible constituents
within the nodes and are referred to as “slots™ or “constituent slots”. The actual constituents themselves are
the slots’ "contents"; for example the node labeled "vp" is the “"predicate constituent” (abbreviated
"[predicate]”) of the "clause node”. Besides a node, the contents of a slot may be a word, or a message
element, or they may be empty. A subtree from a given node to the fringe of the tree will be referred to as a
phrase. (Since the tree is always growing through the action of the first transducer replacing message elements
with phrases, the notion of the "fringe"” of the tree is a dynamic one, constantly changing as the generation
process proceeds.) Grammatical labels either label nodes, in which case they may be referred to as
"categories” and printed just above the trapczoid; or clsc they label constituent slots, in which case they are
called "slot-names” and printed inside the brackets. A node or slot may have more than one label.

The Linguistic Component ’ McDonald

Language Generation ' -25-

This constituent structure representation is different from most others in the linguistic literature
because it explicitly labels the constituent positions rather than just defining them in terms of the relative
position of nodes. (This explicit naming of constituents is also done in so-called "relational grammar"
[Perimutter & Postal to appear] and was used in some early phrase structure systems, see [Postal 1963].) The
"subject” constituent, for example, could alternatively be defined as the noun phrase node directly under a
clause node. Slot-names cannot be dispensed with in the present theory, however, because they are used to
carry the grammatical properties of the constituent positions they label. Attempting to use a relative position
scheme here would lead either to combinatorially increasing decoding computations as the tree grew in depth
or to an undue multiplication of category names; consequently, in this theory the use of explicit slotnames
leads to a more natural treatment of grammatical functions.

The constituent structure is only really used by the controller. It defines the path it will take through the
tree: a standard, depth-first search pattern as shown in figure 9.

. 2

-1 [l

[e

-1 b7 B4

Figure 9 The Path of the Controller Through a Completed Constituent Structure

The importance of this path is in the sequence of grammatical labels that it defines and in the contents of the
slots at the tree’s fringe. Each label is associated in the grammar with a set of procedures, cither of its own or
proccdures of other labels that are contingent on it; these procedures are referred to as grammar-routines.
The slotname "subject”, for example, has grammar routines of its own (i.e. triggered by the controller when
the [subject] is reached, see below) that handle such things as the inversion of subject and verb in questions
and the insertion of the function word “it” in extraposed clauses such as "if’s easy fo be confused by all the
terminology”. The constituent labeled "subject” is looked for specifically by the grammar-routine that
performs subject-verb agreement in tensed clauses, and by the morphology routine when it needs to
determine whether a pronoun should be in the nominative case.

4.3 The Controller

The algorithm for the controller is the heart of this theory of generation: it is the second transducer,
interpreting the tree position by position and thereby dictating the order of events within the process, the
contextual information available to routines in the dictionary or grammar (i.e. what parts of the tree they can
access), and the potential scope of the decisions made by those routines. The algorithm itself is quite simple
since all the controller must do is traverse the tree and dispatch to library routines according to the labels on

The Linguistic Component McDonald

Language Generation -26-

the positions and the contents of the slots. It is diagramed in figures 10, 11, and 12.

The import of the algorithm lies not in its flowchart which is simple enough, but in the constraints it
imposes implicitly on the designer of the grammar and dictionary. No action can be taken by the linguistic
component unless it is specifically selected by this controller at the time and place that the controller dictates.
Thus all actions are local to the controller's position and subject to contextual control No part of the tree is
“visible” to the grammar or dictionary except for those parts specifically picked out by the controller’s
pointers and prearranged pointers positioned by the grammar routines above and behind the controller’s
position; this means that hierarchical constructions such as embedded clauses or rules with left to right
dependencies such as pronominalization or ellipsis can be treated naturally while phenomena with opposite
dependencies must be explicitly planned for or they will be missed. Similarly, since only a single position in
the tree is seen at a time (in contrast with the multi-position buffers of natural language parsing systems such
as [Marcus 1980}]), phenomena that can only be seen by processes with a distributed view of a constituent
structure—such as structural ambiguities—cannot be easily appreciated by this system and will typically go
uncorrected. This controller is thus the embodiment of the hypothesis that only hierarchical and sequential
dependencies can be appreciated during immediate speech; all others being either expressly anticipated and
planned for ahead of time or left to a post hoc monitor to detect and compensate for later.

The Linguistic Component McDonald

Language Generation) -27-

MUMBLE (message)

argument: a message
return value: none

The initial tree: root-node
[root-constituent]
START

Initialize the environment;

current-grammatical-filters <= 'empty i
discourse-history <= 'empty | !
<all grammatical-variables><= 'undefined !

Initialize Controller Variables:

current-node <= 'root-node
current-siot <{= 'root-constituent
current-contents (= (Make-elmt-instance message)

A Start the Controller at
"Dispatch on current-contents”

Figure 10 The Controller: Initialization

Initialization =~ When a new message is passed to the linguistic component, it becomes the contents of the
constant slot "root-constituent”. If at that time the component has finished processing any earlier messages
then it will have rcturned to that position at the top of the tree and the message’s processing will start
immediately; alternatively should an carlier message still be in progress it will not be disrupted and nothing
will happen to the new onc until the old onc is finished and the controller completed its traversal back to the
root. The initial state of the controller is shown in figure 10.

The Block-level Organization of The Controller The controller decomposes into three recursive
procedures named Process-node, Process-slot, and Dispatch, whose dcfinitions are given in the next two
figures. They are threaded in that same order: Process-node calls Process-slot on each of its immediate

The Linguistic Component) McDonald

Language Generation -28-

consituents, and Process-slot in turn calls Dispatch on the content of the slot presently being processed. The
recursive structure of the tree is matched in the controller algorithm by the recursive call to Process-node
from within Dispatch.

The algorithm differs from the standard recursive descent algorithm for traversing a tree only in its
"realize and replace” step within Dispatch: This step has the effect of dynamically extending the tree even
while the controller is traversing it. The extension stops when a phrase is selected that has no further message
elements embedded at its fringe. The dynamic extension of the tree as is the key to the progressive refinement
technique that characterizes this thcory: the embedded message elements in effect constitute "delayed
decisions” that are not taken up until all of the prior decisions that might effect them have been made and
their constraints established (all such dependencies being, by hypothesis, associated with positions in the
surface structure above and behind the embedded element). This technique is akin to the technique of
delayed binding that is used in the processing of some programming languages.

The Linguistic Component McDonald

Language Generation -%-

Dispatch (c;urrent-contents)

argument type: either ’empty, a word-instance, a node, or an elmt-instance
return value: none

Depending on the type of Current-contents do:

‘empty » RETURN

a WORD-INSTANCE ——— (Morphology-routine current-contents)
:modify the word’s print name as needed and "say" it

RETURN

a NODE —— > (Process-node current-contents)

§
RETURN

an ELMT-INSTANCE —— current-contents <= (Realization-procedure current-contentT)
After-Realization

(Foreach feature of current-siot

do (evaluate (get-grammar-routine ’'after-realization feature)))

- (Dispatch current-contents)

0
RETURN

ERROR

Figure 11 The Controller: Dispatching on the Contents of a Slot

Gating the First Transducer The first transducer is taken up exclusively in the dispatch to the function
named "rcalize”. This function contains the procedures and heuristics that are common to all realization
decisions: i.e. criteria for pronominalization. alternate subsequent reference forms such as “one” or "such”,
and "gap-creation” for WH-movement; if nonc of these apply, it dispatches to the message element's
dictionary entry and the standard entry interpreter sketched later in the paper (for a complete specification of

The Linguistic Component McDonald

Language Generation -30-

the realization process, see [McDonald 1980]).

Every message element that is embedded in the tree must eventually pass through this step of the
controller, and then and only then will its English realization be decided on. On return from the function
Realize, the selected node, word, or subelement is knit into the tree in place of the original element, at which
point the controller loops around and repeats the dispatch on the new contents of the slot.

A Last-stage, Morphological Process =~ When an English word is found as the contents of a slot, it passed to
a procedure named the Morphology routine for any required specialization and from there to the output
stream. The Morphology routine does not have much work to do in English: it is responsible for the case of
pronouns, for plural forms, verb conjugation, contractions, and the possessive. It bases its decisions on
properties it associates with the slot-names of the slot that contains the word (e.g. "subject” is understood as
forcing the nominative case) and on inherited attachments to the constituent structure marking such "extra-
constituent” information as tense, aspect, and negation. It is the routine within the generator with the clearest
representation of the notion "next word”, and as a result is responsible for grammatical phenomena
dependent on sucessive linear position such as the verbal auxiliary.

The Linguistic Component McDonald

Language Generation

-31-

Process-node (current-node)

argument: a node
return value: none

Enter-node: (Foreach feature of current-node
do (evaluate (get-grammar-routine ‘enter-node feature)))

(Foreach slot in (constituents current-node)
do (process-slot slot))

¢

Leave-node: (Foreach feature of current-node
do (evaluate (get-grammar-routine 'leave-node feature)))

5

RETURN

Process-slot (current-siot)

argument: a slot
rcturn value: none

current-contents <= (contents current-slot)

Enter-slot: (Foreach feature of current-slot
do (evaluate (get-grammar-routine ’enter-slot feature)))

(Dispatch current-contents) A

Leave-slot: (Foreach feature of current-siot
do (evaluate (get-grammar-routine ’leave-slot feature)))

0

RETURN

Figure 12 The Controller: Processing Nodes and Slots

The Linguistic Component McDonald

Language Generation -32-

Associating Grammar-routines With Constituent Structure Labels The two procedures Process-node and
Process-slot are the primary place where the library of active procedures that constitutes the active aspect of
the grammar is used. These procedures are referred to as grammar-routines and are associated with specific
grammatical labels (also referred to as features). Grammar-routines are further specified by the point in the
controller’s algorithm where they are to be executed, marked in the flowcharts in bold type. they are five
generic events in the traversal of a tree All of the active parts of the generator’s English grammar are
associated with the labels attached to the nodes and slots of the surface structure. These points correspond to
five generic "events” in the traversal of the tree: entering or leaving a node, entering or leaving a slot, and just
after a message element has been realized but before the realizing phrase has been knit into the tree. As
indicated in figure 12, when one of these events is reached, each of the labels associated with the current node
or slot is checked for a grammar-routine of that event type, which if found is immediately executed.

Grammar-routines may perform any of the following actions:

(1) Add function words directly into the output text stream;

(2) Set or reset reference pointers ("grammar variables") to immediately accessible parts of the tree
for the maintainance of grammatical context (see below);

(3) Make specifically constrained "edits” to the constituent structure they immecdiately dominate so
as to impl aent locally triggered phenomena such as heavy phrase shift or conjunction
reduction;

(4) Make local "grammatical decisions” that are not required by the speaker’s message but are
necessary grammatically such as the selection of complementizers.

The current context ~ The rules of grammar embedded within the grammar routines are couched in a
vocabulary that is always interpreted with respect to the current position of the controller in the tree. This
position is defined in terms of the values of three variables: current-node, current-slot, and current-contents,
which are set and reset as the controller moves. Grammatically important facts about the tree—the
vocabulary of the grammar rules—are represented in terms of a set of variables that are bound locally in the
tree but have their values set and reset by of specific grammar-routines. The three variables above are
referred to as controller-variables, and a second, open-ended set are termed grammar-variables. In addition to
these variables, the controller maintains a discourse history, consisting of records of all important events that
have occurred, including the realization of every message element instance, every selected choice, and every
decision brought about by the grammar.

In summary, the current context of the linguistic component can be viewed as a four dimensional array
consisting of (1) the name of the controller event or subroutine presently being executed, (2) the values of the
three controller-variables, (3) the values of the grammar-variables, and (4) the records of the discourse history.
This representation of the context will be used in the diagrams of the main example.

An Example McDonald

Language Generation -33-

5. An Example

This example should serve two purposes: first, to put flesh on the apparatus of the linguistic component
just discussed by showing how it acts as a system; and second, to illustrate some of the sorts of linguistic
analysis that one is lead to as a scientist working in terms of this theory of language generation. From the
point of view of conventional, competence-based linguistics some of the analyses that will be sketched may
seem unusual or even bizzare; this is perhaps to be expected since the need to smoothly interact with an
independent, non-linguistically based process (the speaker/expert program) has imposed its own mark on the
analyses everywhere from the timing of decisions to the details of the surface constituent structure.

This example is drawn from the logic domain described in section 1.2. We will look at the generation
of the last part of the "barber proof”: initially in considerable detail in order to demonstrate how the
controller interacts with the selected surface structure, and then at a coarser level of detail so as to concentrate
on the analyses and the motives behind them. The example will actually be only the last two lines of the
proof, but we will put those lines in context first by sketching the events up to that point.

Generation in the logic domain is an example of "direct translation”. There is no planning component;
instead, messages are constituted directly from the regular data structures of the domain, the lines of the
proof. This is the characteristic pattern of direct translation systems (for example [Swartout 1977; Shortliffe
1976]), and it the source of their convenience—side-stepping an claborate planner by taking advantage of the
organization already in the domain's native data structures, as well as of their limitations—they lock the
generator into a single level of abstraction and invariably leave many conceptual connections implicit. By
translating first into a linguistic rcpresentation and then applying gencral grammatical rules and usage
heuristics, we are able to generate a smoother, more natural text than earlier generators that translated directly
into word strings; however, the overall form and content of the text remain in the mold set by the input proof,
It is safe to say that the dircct translation technique is pushed here to the limits of its fluency; further
improvements will only come with the addition of a planner with a knowledge-base of rhetorical heuristics.

The "message” that started the gencrator off was the seven lines of the proof in sequence. Figure 13isa
snapshot of the tree ju . after this message was received and distributed into the slots of a simple paragraph;
note that the order of the lines has been preserved in the left-to-right sequence of the slots. The formulas
have been abbreviated to just the names of their lines.

An Example ' McDonald

Language Generation . -34-

linel: premise -

3x (barber(x) A Yy(shaves(x,y) « —3shaves(y,y)))
line2: existential instantiation (1)

barber(g) A Vy(shaves(g,y) «< —shaves(y,y))
line3: tautology (2)

Yy shaves(g,y) < —shaves(y,y)
line4: universal instantiation (3)

shaves(g,g) <> —shaves(g,g)
line5: tautology (4)

shaves(g,g) A —shaves(g,g)
line6: conditionalization (5,1)

3Ix (barber(x) A Vy(shaves(x,y) « —shaves(y,y)))

— (shaves(g,g) A "shaves(g,g))

line7: reductio-ad-absurdum (6)
=13x (barber{x) A Vy(shaves(x,y) «> —shaves(y,y)))

Becomes:
i

[d01] [d2] {[d3] [d4] [d5]) [d6] [d7]
linel line2 line3 lined lineS line6 line7

Figure 13 Message and Initial Snapshot

The fixed traversal paitern of the controller dictates that the text will be produced incrementally
following the scquence of the lines. This guarenteed conventional sequence provides the basis for a
chronological discourse context: The text for the first line will have been selected and produced before that of
the sccond line is begun, the second before the third, and so on. On this basis. a model of what the listener
will have heard can be infered, and, coupled with a (very simple) model of what inferences the listener will
make or can be Icad through, will give us some justification for extending the context-free interpretation of
the lines of the proof to an interpretation in terms of the roles the lines play in a conventional proof
technique. Thus while there are seven lines in the proof and seven sentences in the text, there is by no means
a onc-to-onc mapping: The first line of the proof, the premise, is rendered as an imperative to the listener,
setting the form of the argument as a proof by contradiction. The sccond line instantiates the variable.
Logically its formula is a restatement of the body of the existential formula from line onc with a constant
substituted for the body. It is realized in the text however only in terms of its rolc in the proof, "Call him
Giuseppi”, the formula itself being appreciated as redundant.

The third line does not appear in the text per se at all since it is an obvious conclusion from what was
known so far. The fourth line, on the other hand, has becn expanded into a three sentence "mini-argument”
because of its importance to the proof and because its logic may not be obvious. The fifth line, the derivation

An Example McDonald

Language Generation - -35-

Assume that there is some barber who shaves everyone who doesn’t shave himself (and

no one else). Call him Giuseppe. Now, anyone who doesn’t shave himself would be

shaved by Giuseppe. This would.include Giuseppe himself. That is, he would shave

himself; if and only if he did not shave himself, which is a contradiction. This means

Ib}clzazb the assumption leads to a contradiction. Therefore, it is false, there is no such
rber. :

Figure 14 The "Barber" Proof

of the contradiction, is interpreted for its conventional role, ie. announcing the derivation of the
contradiction. In the text it is adjoined to the previous sentence as a relative clause—a kind of "renaming"
speech-act.

We see the changes that these realization decisions have made in the tree in figure 15. Only the top
nodes of the sentences are shown. The controller is now positioned at slot "d6", and the two final lines of the
proof remain. In looking at the generation of those lines, we will be begin with very cursory descriptions of
the first few lines to establish the basic pattern, then move to very detailed snapshots of the controller and the
tree for several decisions that involve straight-forward analyses, and then back away from the detail during the
last line to highlight the special kind of reasoning that generation can entail. For further examples and a
thorough discussion of the analyses, see [McDonald 1980].

discourse

[d1] [d02] (03] [dd4] (o5] [de] [d7]

clause clause nil discourse adjoined-relative lineé line7

[d1] [d2] [d3] "position of the controller”
clause clause clause

Figure 15 The Tree after Line §

5.1 Recursive Descent Through the Formula

The logical dccomposition of line6 begins with the relation between the inference rule
“conditionalization” and the formula it derives (abbreviated “formula89 — conj101"); thus the gencrator
must do the same. The dictionary entry for conditionalization must select a phrase that will convey how the
formula is related to the rest of the proof before it, and then the formula will be realized in the context of that
phrase. By default, we have the inference rule realized as a bridging phrase stating the conection, "this means
that...", which embeds the formula as a complement. The knowledge-base of the domain would not motivate

An Example McDonald

Language Generation -3-

anything more claborate without appeal to a richly annotated, self-conscious theorem-prover, and one was not
available. The controller traverses this fixed phrase "saying" the subject and verb. The complementizer
"that” is produced by a grammar-routine associated with the label “"complement” rather than from its own
slot in the tree because of a design hypothesis that says that slots should be reserved for items derived directly
from the message; function words are by hypothesis a part of the linguistic background just like the
annotation on the tree.

The next step in the descent is the major connective of the formula, the implication. Implications can
take many forms in English, but the most direct is the subject-predicate relation selected here. The verb
"leads to" is specific to this conventional use of the contradiction. The snapshot in figure 16 show the tree
from [d6] down at the point after the clause realizing the implication has been put in place. The four parts of
the controller’s state are given explicitly.

1. Controller process state: “Dispatch”
3. Grammar Variables (only 3 are shown)
[c8] current-sentence

layse ¤t—clause
[subject] [predicate]
T~ his v 2. Controller Variables
/N'ﬁcurrent-node
[verb] [complement] ¢——————current-slot
mean clause /currenl-contenls

current-subject

[subject] [predicate] 4. Discourse history
formula89 (implication102{...], line6]...}, conjl01f...}, ...)

[verb] [to-obj]
lead conj101

Said so far: “... This means that //"

Figure 16 Snapshot of the Controller’s State

5.2 Stepping The Controller Through the Tree

With the controller in its "Dispatch” state, the next step from the position of the snapshot is a recursive
call to Process-node (refer to the carlier flowcharts). The controller variable "current-node” is reassigned to
the new node labeled “clause”, and we execute any grammar-routines associated with the label "clause” and
the controller-event "enter-node”. There are presently two of these: one for assigning the current-sentence,
which no longer applies, and one that recursively reassigns the grammar-variable "current-clause”, which
does. From here the controlier moves to Process-slot, reassigning "current-siot” to the first of the clause’s

An Example McDonald

Language Generation -37-

constituent slots, the "subject”, and "current-contents” to formula89. One grammar-routine applies here to
assign the grammar variable "current-subject” to the current-contents. (Working in recursive environments
such this clause requires care in the timing of assignments. By "delaying” the updating of the pointer to the
subject until now, we have retained access to the higher subject where it was needed, e.g., for potential
applications of equivalent-np-deletion or conjunction reduction at the level of the clause.)

From Process-slot, the controller calls Dispatch and selects the "msg-elmt” case. The function Realize
will now control the selection of a realizing phrase for formula89 which will then become the current-contents
and the controller will loop through Dispatch again. The realization of formula89 involves appreciating its
redescription as an object with a special role in the proof, i.e. “the assumption”. Its dictionary entry is
considerably more involved than average; consequently rather than look at the interpretation of that entry, we
will digress here to consider a more "normal” entry and how it fits into Realize. The redescription technique
itself will be described later.

5.3 The Realization Process

Figure 17 is a high-level flowchart of the function Realize: It divides into two paths depending on
whether this is the first instance of the message element to appear in the tree, in which case we go directly to
its dictionary entry, or whether this is a subsequent reference (as with formula89), in which case we apply
various hcuristics to determine if it should be realized as a pronoun or some other form of "subsequent
reference”. (Summarizing an entire formula with the phrase "the assumption” is a form of subsequent
reference.

An Example McDonald

Language Generation -38-

MSG-ELMT
MAIN mentioneg>— > SUBSEQUENT
STREAM no \Qfo/re? yes REFERENCE
/ isa
— make a ¢ no pronoun
DECISION possible?
yes
matri
decision yes apply-transformations
no
yes | <
No -> jdone <
MSG-ELMT'S REALIZATION

Figure 17 flowchart of the realization procedure

Every entry has a "matrix" decision. the one that determines what category of phrase will be used, e.g. noun
phrase or clause, and may have an arbitrary number of other "refining” decisions that can add additional
features to the phrase or add optional constituents.

A dictionary cntry consists of a set of possible "choices” and a set of “decision-rules” to pick between
them: A choice is a symbolic spccification of phrases, words, or subclements of the element being realized; A
decision-rule has two parts: one, a list of predicates that may examine both the linguistic context and the
context of the speaker. 2nd two, the choice that should be selected if those predicates are true. The bulk of
the realization process consists of interpreting the decision-rules to select a choice, then possibly going
through further sets of decision-rules to see if the grainmatical or rhetorical context dictates that the choice
should be transformed. Extensions to the tree occur when the selected choice specifies a phrase.

The vocabulary of the specification comes from the permanent knowledge base in the grammar, part of
which is a listing of all of the legitimatc categories in the language and for each category, of the legitimate
sequences of slotnames that it can dominate. Thesc listings are organized in terms of "constituent schemas”.
("Schemas” in the sense that they will be used as templates for the construction of "instances” of those
category canfigurations in the trec.) Every choice has (at least) three parts: (1) a "phrase-schema” that defines
a tree of constituent-schemas possibly augmented by additional labels and by specific words from the English

An Example McDonald

Language Generation -%9-

vocabulary; (2) a list of formal parameters that will be used to pick out subclements of the message element
being realized; and (3) a mapping from parameters to slots at the fringe of the specified phrase,

Figure 18 lists the entry, choice, and grammar that are required to realize the logical predicate shaves.

Message Element shaves(x,y)

Dictionary Entry (define-entry shaves-entry (shaver shavee)
{matrix
default (clause-direct-object shaver "shave™ shavee)))

the Choice (define-choice clause-direct-object
parameters (subj verb object)
phrase (basic-clause ()
predicate (vp-obj1 ())
map ((subj . (subject))
(verb . (predicate verb))
(object . (predicate object1))))

Constituent- (define-schema basic-clause (define-schema vp-obj1
schemas categories (clause) categories (vp)
slols (subject predicate)) slots (verb objectt))
WHICH PRODUCE:
cla
subject] [predicate]
X v

verb object1
shave Y

Figure 18 Entry, Choice, and grammar for the relation ‘shaves’

The dictionary entry shaves-entry will be the one to perform the realization. It decomposes the original
message element into two subelements, the variables X and Y plus the verb "shave”, and binds them to three
local variables for ease of manipulation. Shaves-entry has only onc choice, which it has marked as its default.
As it includes no decision-rules, this default choice will always be taken. The choice, clause-direct-object
(named for the kind of consituent structure it builds), is given in the figure just below the entry. It uses two
constituent schema, basic-clause and vp-objl, to define a two-level phrase-schema (shown instantiated at the
bottom of the figure) whose verb constitucnt has been filled in but other constituents left vacant in
anticipation of being filled by message clements selected by the cntries that select clause-direct-object.
Because this choice will incvitably be used with many different cntrics, its mapping is given in terms of its
own formal parameters (i.c. subj. verb, and object), which arc then bound to the values of the local variables of

An Example McDonald

Language Generation -40-

the entry when the choice is taken. To produce new constituent structure from the choice, its phrase-schema
must be instantiated and the mapping applied to to fill its leaves with the message elements the entry has
selected.)

5.4 Continuing through the tree

Once the phrase for formula89 has been instantiated and knit into the tree, the controller as before
recurses on Process-node and begins to traverse the new noun phrase. Nothing new happens within the
phrase, so we will move on to the next snapshot, taken after the controller has finished with the subject and
moved down and through the slot "to-obj" to the object constituent.

1. Controller process state: “Dispatch”
3. Grammar Variables (only currens-sentence
current-subject, and current-clause are shown)

[d6] /currenl'semence
isubject] :;redicatei
this v 4. Discourse history
. (formulag9[...], implication102]...},
[verb] [complement] line6[...}, conjio1[...], ...)

mean]
current-clause —————
current-subject subject] [predicate]

x n v 2. Controller Variables
formuta89 Q &——currenl-node
[det] [head] [verb] [to-obj]e——current-siot

the assumption lead conjl01 «———current-contents

Said so far: "Thismeans that the assumption leads to//"

Figure 19 Snapshot after producing the verb

Notice that we have not replaced the verb with its third person singular form even though that is the
form that appears in the output stream. By design, we have decided that the level of representation exibited
in the tree should be the level needed by the library routines that reference it; we will not gratuitiously
"update” its contents or add labels if they are not going to do further work in the grammar. The correct
morphological form of the verb was needed only for the output text and so was not constructed until the
morphology routine was passed the word on its way to the text stream. Later grammatical references to the
verb arc going to be concerned with its grammatical propertics rather than its morphological ones (for
example whether it can take compiements, and if so whether they are subject or object controlled) and these
propertics are by convention associated with the root form of the verb which is the onc in place in the verb
slot. The preposition “fo” was introduced by a grammar-routine attached to the label "to-obj” rather than

An Example McDonald

Language Generation -4]-

having its own slot for the same reason: we expect no other part of the generator, dictionary or grammar, to
need to know about the presence of that preposition so we make our expectation concrete by having the
preposition completely “invisible" within a grammar routine rather than occupying a slot where it could be
noticed.

Redescription according to function ~ The last significant operation before moving on to line7 is the
realization of conj101, the formula shaves(g,g) A —1shaves(g,q), as the English phrase “a contradiction”.
This is of course not a literal rendering of the formula; that would have been “He shaves himself and he
doesn’t shave himself”. Instead it is a rendering of the conventional role that the formula played in the proof at
that point, i.e. an indication that a contradiction had been derived. This ability to realize expressions in terms
of their functional redescriptions was also used in the realization of formula89 as “the assumption” at the
beginning of the sentence.

Redescription is a way of seeing the same concept or operation at multiple levels simultaniously
depending on one’s intent, and has become an important part of the representational "repertoire” of moden
expert systems, where it is used in plan recognition and in defining levels of abstraction (see particularly
[Mark 1981]). Intuitively, redescription is associated with particular turns of phrasc in English such as
appositives (as in the last sentence of this example) or some noun-noun combinations (e.g. “the role pobj");
consequently, it is useful to make specific arrangements for it within the linguistics component.

Ordinarily, redescription would be an opcration at a conceptual level rather than a linguistic one, and
we would expect it to be explicitly indicated in the message; however, since the present microspeaker has no
real conceptual knowledge of logic and starts with only the bare formulas of the proof, we must compensate
by performing the redescription locally within the dictionary. The relevant parts of the dictionary are the
entries for the inference rules, thesc being where the microspeaker's tacit knowledge about the structure of
proofs resides. The redescriptions of the individual formulas are deduced as the entries are interpreted and
stored within the linguistics component on a special association list: the entry for a Premis, for example, notes
that the formula on its line serves the function of being the assumption of the proof; and the entry for
tautologies (which is actually a clearing-house for an entire set of logical manipulations) notes that any
derived line of the form A A —A is serving to mark the derivation of a contradiction at that point in the
proof.

The access function that associates formulas with their cntrics includes a special check for
redescriptions and passes every redescribed formula to a common meta-entry for its realization. (A meta-
entry chooses between other entrics rather than between English constructions.) This entry knows how to use
the special redescription phrases, and has access both to the literal renderings and to the functional-level
renderings, which it combines according to the context (see discussion below in conjunction with the
realization of negl03).

An Example McDonald

Language Generation -42-

5.5 Delaying Decisions

One problem that can arise with the direct-translation technique is that while the formal structure of
the data used in a message (here the predicate calculus) may be convenient within the domain, it can be at
odds with what would be convenient for the generator. Negationl03, the last line of the proof, is a case in
point.

=3x (barber(x) A Vy(shaves(x,y) « —ishaves(y,y)))

Linguistically, the principle contribution to the content of any text created from negation103 will come from
the "shaves" relations, yet these are the most deeply embedded in the formula. If we follow the formula’s
natural decompostion order, five logical operators will have to be passed through before these content
relations are reached. Given the indelibility stipulation, the realization decisions for those operators must be
made "on the way down" as it were, but how can this be done if those decisions are contingent on linguistic
details of how the content relations can be realized—details that will not be determined until those relations
are actually reached by the controller.

This problem is solved by delaying the affected decisions. We postpone them until the information on
which they depend has been determined, implementing only those decisions that can be made independently
and attaching annotations to the tree indicating that the remaining decisions are still pending. Consider the
first two realization decisions in line7: The inference rule, reductio-ad-absurdum, is realized like the previous
conditionalization rule by picking a bridging adverb that will convey the fact that the linc is the conclusion
(e.g. "therefore”) and then embedding the line’s formula in that linguistic context. However, because this is a
proof by contradiction, we know by convention that this final formula will be a copy of the premis but with
opposite polarity. We should somchow emphasize this polarity in the text, but from this vantage point in the
process we do not yet know what linguistic mechanism should be used (e.g. an explicit "do" or an emphatic
"not"). We must thus delay the decision until we know more, which means that we add an annotation to the
formula we embed, expecting the annotation to be recognized by later routines that will be active when the
neceded information is known.

As it happens, the dictionary entry of the very next operator in the decomposition, the negation, has an
alternative among its choices that we have determined in designing the grammar will serve to emphasize
negative polarity, i.e. “¢body of the negation> is false”. The negation entry is allowed to sclect this choice if the
body of the necgation, the premis line formula89, can be expressed as a simple noun phrase (nominalized
clauses are disallowed); that is the case here, since formula89 was just referred to in the last sentence as “the
assumption” and that nominal form will carry over. If only a clausal realization had been possible, then the
negation decision would have been delayed as well.

An Example McDonald

Language Generation -43-

[97]

clause

[thematic-adverb] [head]
therefore 03
jemphasize-polarity "negative™

Becomes:
’ [a7]

claus

[thematic-adverb] [head]
clause

clause negl03

use-literal-form

[subject] [predicate]

formula89
Everb] [pred-adj]

be false
Said so far; ".. Therefore//"

{define-entry negation-entry (neg)
variables ({bcdy (bcdy neg)))
(matrix
((equal (get-annotation neg ‘emphasize-polarity) 'negative) ;decision-rule
(will-be body 'np)
(X-is-false body)) choice t0 select

((will-be body 'np) ie. do it whenever possible because it's more fluent
{X-is-false body))

default (Mark-X-negative body)))

Figure 20 Delayed Decisions

Expressions like “The assumption is false” lend themselves to appositive phrases that expand on what
was summarized in the subject. This is a fact of the gramunar that can be implemented in a generator in terms
of a transformation that we associate with this expression. The transformation acts independently once
triggered by the usc of the expression and examines the subject to sec if an appositive would be appropriate.
The heuristic used here is a very simple and arbitrary one: redescriptions such as “an assumption” or "a
contradiction” will draw apposatives if their long forms have not been mentioned within three sentences. The
same heuristic applics to pronominalization decisions and is intended to reflect when a reference has faded in
memory—research on discourse structure should lead a more principled criterion. The fact that the
apposative has been planned at the level of the clause inhibits it from appcaring redundantly with the noun

An Example McDonatd

Language Generation -44-

phrase; that is, the local decision that would have produced "The assumption that there is no such barber is
false, there is no such barber” is filtered out by the presence of the higher apposative in the tree.

5.6 Interaction Between Decisions

Traversing the tree below the clause that realized the first instance of negation103 is a simple matter.
The embedded formula in the subject is pronominalized because of its proximity to its last instance and the
fact that both instances were in subject position (in effect a "poor man’s” rule of discourse focus). The
pronoun, verb, and adjective are then passed to the output stream as the controller moves through their
constituent positions.

At the position of the apposative, the negation entry this time passes its decision down to a later process
since its body has been specially annotated because of its apposative function so as to block the redescription
of formula89 as a noun phrase. We go then to the next level of negl03, the existential quantifier, where we
have two choices: either to pass the realization of the quantificr down to appear as the determiner in the
realization of the variable (as in "Someone shaves everyone who doesn’t shave himself") or to use the special
existential construction "There is”. As one might imagine, this decision is designed to be sensitive to the
pending decision on the negation, and we select the special construction since the negation would preempt the
determiner and make the other alternative ineffective.

In English, clauses with the existential “there” are grammatically unusual because the verb agrees in
number with the object rather than the subject. This is handled here via the same mechanism as presently
used in transformational grammars: The word "there” is taken to be a lexically filled "trace” pointing to the
logical subject of the clause, such that when the grammar routine that implements "subject-verb” agreement
refers to the variable "current-subject” it is passed transparently to the object instead. (The reference is not
actually to thc "object”—it cannot be, since the position of the object has not yet been rcached by the
controller and thus its contents cannot be known. Instead the trace points to the message element that would
have been the subject if "there” had not been used, and the transformation that introduced the word “there”
redirected that element to the object position.)

5.7 Realizing Message “lements in terms of their Roles
The conjunction that is now the object constitucnt of the “there” clause is yet another conventional
expression within the proof.

barber(x) A Vy(shaves(x,y) & —shaves(y,y)

The predication "barber(x)" is a restriction on the variable X, which, in other logical notations, would have
appeared in other places in the expression. The actual “content” of the conjunct is just the universally
quantified formula. If we knew nothing else about this conjunction, we would be forced to realize it literally,
as in "Someone is a barber and he shaves everyone who doesn’t shave himself'. However, if we make the
conventional structure of the conjunction apparent to the linguistic component, we can be much more fluent.

An Example McDonald

Language Generation -45-

By labeling the prediéation as a "description” and the formula as a "proposition” both predicatable on thé
variable X, we can take advantage of a general purpose dictionary entry for that combination.

As shown in figure 21, & description and a proposition can be combined in several ways according to
what is needed (i.e. which of the two elements is more important, which order is more important, etc.). In this
case since the conjunction is acting as an object, the combination where the two are set up a modifiers in a
noun phrase referring to the variable is the most appropriate, and that is the phrase that is built and replaces
conj88 in the tree. ’

Combinations of a description and a proposition
predicated of the same object.

proposition[object_]
-'description
Someone who is a barber shaves everyone who doesn't shave himself.

dcscription{objecﬁ]
proposition

Someone who shaves everyone who doesn't shave himself is a barber.

[np object_]

—lmodiﬁer
proposition

A barber who shaves everyone who doesn’t shave himself.

Figure 21

This particular conjunction has of course appeared before in the first line of the proof. We are
therefore dealing with a subsequent reference and the heuristics in that section of the Realize function apply.
Because of the distance of the oﬁgina] instance from the present position, the conjunction should not be
pronominalized, however there are of course "intcrmediate” subsequent reference strategics. One of these,
particularly appropriate to the style of a mathematical proof, is the word “such”, this word can
"pronominalize” the modifying phrascs of the reference, leaving its head and detcrminer.

An Example McDonald

Language Generation -46-

6. Contributions and Limitations

6.1 Specific Contributions of This Research

The computer program developed in this research (see [McDonald 1981]) is the most linguistically
competent natural language production program that has been reported to date. This is due primarily to the
advances in the computational theory of production reported here and in [McDonald 1980] which have
simplified the process of representing linguistic rules and usage-heuristics. In particular:

(1) This is the first theory to be specifically designed for use with source programs that use different
representational systems.>

(2) This is the first theory to be grounded on pycholinguistically plausible hypotheses embodied in a
processor of limited computational power: relevant hypotheses include: the left to right

refinement and production of text,® linguistically motivated limitations on the examinable buffer,
indelible decisions, and a structural distinction in the treatment of function words versus content
words.

(3) Production is driven dircctly by the message to be expressed, not by the hierarchical structure of
the grammar. This is more efficient, and facilitates the conceptualization of messages as
description:. Jf goals to be achieved by the text.

(4) The linguistic structure of the text being produced is explicitly reprcscnted.7 Grammatical rules
can be implemented directly as manipulations of linguistic descriptions, thereby gaining
generality and perspicuity. Details of the structure of produced and planned text may be
referenced directly and used as the basis of usage decisions.

(5) The possible rcalizations of each element of a message are explicitly represented and are available
for inspection or special-case manipulation.

6.2 Relation to previous A.l. work on natural language generation

Virtually all of the carlier work on language generation by people in A.l. including that of this author
and most of that done by psychologists shares a common view of the process: an expert-program/speaker
with no linguistic knowledge or motivations begins the process by deciding—in its own terms—what will be
talked about. Instead, the differences between the various proposals concern the kind of device that is to take
such a "message” and to produce a natural language text from it through application of grammatical
knowledge (encoded in some form) and the use of some kind of "dictionary™ to interpret the speaker’s
message.

5. The ATN-based generator originally developed by Simmons and Slochum [1972] and later adopted by Goldman [1974] has been used
with many different programs: [Reisbeck 1974: Lehnert 1977 ; Yale A.l. Group 1976: Mcehan 1976]; however, all of these employed the
same representational system: conceptual dependency [Schank 1976).

6. Gerard Kempen [Kempen 1977] writes that production should be incremental and left to right, however, his program as described in
{Kempen & Hoenkamp 1980] while realizing clauses scquentially, refines the constituents of cach clause in parallel.

7. This was true also of the German-to-English translation program of Gretchen Brown [1972], and locally true in the systemic grammar
used by Anthony Davey [1974).

An Example McDonald

Language Generation -47-

Two other perspectives have been taken (see [Mann et al. to appear]): one school can be termed
grammar-controlled linearization and translation [Simmons & Slochum 1972; Goldman 1974; Shapiro 1975];
another, larger though less linguistically sophisticated school can be termed production directly from program
data [Swartout 1977; Chester 1976]. (Two other important systems, [Clippinger 1978] and [Davey 1974}, fall
into neither of these categories as they both employ extensive grammars and vest control with non-
grammatical processes; unfortunately, neither has been futher developed.)

The grammar-controlled school vests total control of the process in a topdown generative grammar,
typically given as an augmented transition net ("ATN"). This grammar hypothesizes a way in which the
message might be realized, and then tests the message to see if that way is feasible. It constructs the
hypothesized text if the test suceeds; otherwise it backs up and considers the next grammatically possible
realization. Texts are produced as a side-effect of traversing the ATN. Compared with using the message
decomposition itself to control the process, this technique is inefficient at best, and at worst, allows the
possibility of producing totally confused text should the ATN ever backup over an arc-path that produced
words (i.e. it would start repeating itself without regard for context). Historically it is the case that none of
these systems has ever had occasion to backup; we conjecture that the reason for this is that the space of
possible message configurations dealt with by these sytems is relatively small, making it possible to directly
encode the space on the arcs of the ATN grammar as tests for all of the possible contingencies. We predict that
when the contingencies become too diverse to anticipate when the grammar is written, that grammar-
controlled systems will metamorphose into a more message-controlled style.

The direct production school is much closer to the philosophy underlying the present work. Their
approach is to start with a data structure from the expert program (their "message") and to evaluate it with a
special "text generation” evaluator just as in other circumstances they might evaluate it with, e.g., the normal
LISP evaluator in order to execute some function. The structure of the message governs what generation
processes are run and in what sequence (invariably a strict depth-first sequence, translating arguments before
functions and using the internal LISP stack to record what to do next and what to do with "subtexts" as they
are constructed). The "generation functions” for individual kinds of program objects asscmble texts by
embedding the texts produced for their argument objects within a matrix text; conceptually, generation
functions play exactly the same role as dictionary entries in the model presented here. We suggest that the
difficulties these systems face—almost complete ignorance of grammar, and an inability to produce text that is
not absolutely isomorphic in structure to its message—could be overcome if they were to adopt an
intermediate, linguistically motivated representation. Such a linguistically motivated representation would,
suitably interpreted, serve as a ready description of context and a mechanism for the automatic (i.e. not
expressly requested in the message) application of general rules, a policy which, not coincidentally, is the
central theme of the present theory.

An Example McDonald

Language Generation -48 -

6.3 When is this linguistic component appropriate?

The utility of an independent linguistic component is that it can be incorporated whole into a new
system, relieving its users of the need to develop their own version of this level of the generation process. This
utility is not without its price however, since preparing an interface between a new expert program and this
component is not a trivial undertaking: creating an adequate dictionary will require the new user to provide
explicit representations for relations that are often left implicit in expert programs; and thought must be given
to the mechanics of message construction and to the practical exigencies of dealing with another independent
computer program. If all that a person wanted to do was to take already highly sugared expressions directly
from his or her program’s data structurcs and produce "linearizations” of them, then it is questionable
whether they should go to the effort of using this component since the already established "direct-translation”
technology should be able to do the job with considerably less overhead.

From an engineering point of view the strength of this component is its ability to combine disparate
internal data structures on the basis of their linguistic descriptions to produce cohesive, context-sensitive texts.
If, to choose an extreme example, all of the remarks that an expert program were ever going to have to make
could be anticipated at the time the program was written, then this component would be entirely superfluous
since the texts could be included at the time the program was written. If on the other hand the expert
program is continually entering into new discourse situations, learning about new objects and relations, and
forced to dynamically configure its remarks to the audience and situation, then using this component (or
something like it) is a necessity.

To be specific, a program that needs to produce texts with any of the following characteristics should
benefit by using this linguistic component for its generation. These linguistic properties of a text are
controlled by a complex set of rules of little interest to the nonlinguist, yet arc crutial if the texts are to be
natural English. With these rules incorporated once and for all into a shareable component, the system
designer is freed to move on to other problems.

Embedded clauses: Any internal relation that is used as part of a description or is modificd by or is an
argument to another relation, for example the propositional arguments of modal predicates such
as "believe” or "possible”, will appear as some form of embedded clause when rendered in
English. The grammar of these constructions involves complex syntactic rules to coordlnate
adjustments to the text of the relation and to the matrix text it is embedded in.

Coherence relations in multi-sentence texts: Text that is part of a larger discourse must obey certain
linguistic conventions that have no counterparts in the purely conceptual structure of the
information being conveyed, e.g. the use of pronouns or definate noun phrases for subsequent
references to the same objects, the ellipsis of predictable phrases, segmentation into sentences
-and paragraphs, the subordination or focusing of individual items. or the deliberate use of
explicit relational connectives and ordering to present complex relations sequentially.

Context sensitive realizations: Within a program it is often possible (even desirable) to be vague about
whether an expression denotes an object, a relation, or a predicate. The corresponding linguistic
choice (c.g. noun phrase, clause, or verb phrasc) then depends on how the expression is being
uscd in a given instance, as determined by its context in the message or by the linguistic context
into which it is introduced. The choice of realization must be postponed until the context is

An Example McDonald

Language Generation -49-

clear.

Describing objects from their properties: When a program is continually creating or being told about
new objects, pre-stored texts for object descriptions must be abandoned in favor of algorithms
that will construct descriptions from properties. For general algorithms, linguistic descriptions of
the properties are required to insure that only grammatical phrases are built. Planning is
required to judge how thorough a description must be, and the nature of the description selected .
will effect how it can be realized linguistically. For example deciding between the two texts: ‘(7
put an X on) the adjacent corner” versus "“..the corner adjacent to the one you just took", the
choice between using the prenominal adjective versus using the postnominal adjective phrase
depends on the prior choice of how much detail of the position must be given for the audience to
recognize it.

6.4 What This Model Can Not Do

Efficiency has its price. Because of its design, there are certain kinds of potentially useful operations
that this linguistic component is intrinsically incapable of. TFhis is not taken as a failing, but as the necessary
result of a deliberate distribution of tasks according to the components that are architecturally most suited to
performing them; that is, I claim (but will not justify here) that the bulk of what this linguistic component
cannot do can be done better by other the components that it will interact with. Specifically:

Creative expression—fitting old words to new situations: This linguistic component does not know
what words mean. By inverting its dictionary it could compute in what circumstances a word
could be used. but it has no means of its own for interpreting these "circumstances” and
generalizing them., (How could it if it is able to be used with expert programs with different
conceptualizations.) A dictionary entry selects words reflexively according to its precomputed
possibilities: in particular, it does not use any sort of pattern-matching on "scmantic features”,
both because of the computational expense and because features that capture useful
generalizations are unlikely to be refined enough to pickout specific words.

Monitoring itself: It is gencrally easier to anticipate and forestall problems by planning than to
monitor for them and then have to edit an ongoing procedure. This linguistic component
capitalizes on this rule of thumb by omitting from its proccss architecture the expensive state
history that would make editing through backup possible. The kinds of unwanted effects that are
difficult to avoid through planning (because they would require cssentially full simulation) are
coincidental structural or lexical ambiguities; these require a multi-constituent buffer to detect
(the sort which is natural to parsers) and are thus better noticed by "listening to oneself” and
interrupting the generator with ncw instructions when needed, rather then burdening that
process with a large buffer which will otherwise go unused.

Recognizing when a message will unavoidably lead to awkward or ungrammatical text: Again, given the
present design this possibility cannot be forescen at the linguistic-level without a complete
simulation (i.e. rchearsing to onesclf). Either the speaker’s message-building heuristics will be
such that these problems just will not occur (this is almost incvitable when messages are planned
and motivated in detail in accordance with the "constraint-proceeds” stipulation), or, by planning
the message in terms of rhetorical predicates such as “modifies” or "focus”, potentially awkward
phrasings will be forescen at the linguistic level and planned around by general rules.

Reasoning about trade-offs caused hy limited expressibility: It can happen that the inability to
simultaniously express, e.g., modality and subordination will not become apparent until the

An Example McDonald

Language Generation . | -50-

realization of the message is already begun. To be able to reassess the relative importance of the
message elements that prompted those choices, this linguistic component would (1) neced a
common vocabulary with the speaker in which to express the problem (since what should be
done is ultimately the speaker’s decision), and (2) need to be aware of the potential problem early
enough to be able to plan alternatives. Without such a vocabulary, the component must rely on
the tacit specification of relative-importance provided in the ordering of the message and the
speaker must be prepared for its messages to sometimes not be realized completely.

Planning by backwards chaining from desired linguistic effects: One cannot give a specific grammatical
relation as a high-level goal in a message and expect this linguistic component to perform the
means-ends analysis required to bring it about; ¢.g. one cannot give it instructions such as: "the
subject of what 1 say next should be the same as the direct object that I just said". Such reasoning
can require exponential time to carry out and a high processing overhead. The effects of such
instructions can somectimes be achicved "off-line” however, by having the the designer
precompute the decision-space that the deliberation would entail and then incorporate it into the
component’s library as what would in effect be an extention of the rules of the grammar. (That
above instruction, for example, is roughly equivalent to the existing focus heuristic.)

7. References Cited

Brachman, R. J. (1978) A Structural Paradigm for Representing Knowledge. Technical Report 3605, Boit
Beranck & Newman, Cambridge, Massachusetts.

, Bobrow, R. J,, Cohen, P., Klovstad, J. W., Webber, B. L. and Woods, W. A. (1979) Research in
Natural Language Understanding: Annual Report September 1, 1978 to August 31, 1979. Bolt Beranek
& Newman, Cambridge, Massachusetts,

Brown, G. (1972) An Experiment in German-to-English Translation. Master’s Thesis, Massachusetts Institute
of Technology.

Brown, R. H. (1973) Use of Multiple-Body Interupts in Discourse Generation. Bachelor’s Dissertation,
Massachusetts Institute of Technology.

Chester, D. (1976) "The Translation of Formal Proofs into English." Artificial Intelligence 7, 3, pp.261-278.

Clippinger, J. H. (1975) "Speaking with Many Tongues: Some Problems in Modeling Speakers of Actual
Discourse.” in Nash-Webber eds., Theoretical Issues in Natural Language Processing, Cambridge,
Massachusetts.

—— (1978) Meaning and Discourse: A computer model of psychoanalytic speech and cognition The John's
Hopkins University Press, Baltimore.

Cohen, P. (1978) A Helpful Computer Conversant. Doctoral Dissertation, University of Toronto.

An Iixample McDonald

Language Generation -51-

Davey, A. (1974) Discourse Production. Doctoral Dissertation, Edinburgh University; available from
Edinburgh University Press, 1978.

Genesereth, M. R. (1978) Automated Consultation for Complex Computer Systems. Doctoral Dissertation,
Harvard University.

Goldman, N. M. (1974) Computer Generation of Natural Language from a Deep Conceptual Base. Doctoral
Dissertation, Stanford.

Heidorn, G. E. (1971) Natural Language Inputs to a Simulation Programming System. NPS-SSHD71121A,
Naval Postgraduate School, Monterey, California.

Halliday, M. A. K. (1966) Notes on Transitivity and Theme in English. Journal of Linguistics 2, 37-81.

—— (1970) Functional Diversity in Language as Seen from a Consideration of Modality and Mood in
English. Foundations of Language 6, 322-361.

Hawkinson, L. (1975) The Representation of Concepts in OWL. in the proceedings of 1JCAI-4, 1975, Tibilisi,
USSR, pp.107-114.

Kempen, G. (1977) Building a Psychologically Plausible Sentence Generator. presented at The Conference of
Empirical and Methodological Foundations of Semantic Theories for Natural Language, March 1977,
Nijmegen, The Netherlands.

and Hoenkamp, E. (1980) 4 Procedural Grammar for Sentence Production. Technical Report Max-
Plank Institute, Nijmegen, The Netherlands.

Labov, W. (1966) On the Grammaticality of Everyday Speech. Linguistic Society of America meeting, 1966,
New York.

I.ehnert, W. (1977) Human and Computational Question Answering. Coguitive Science 1, 1.
Mann, W. C. and Moore, J. (1981) Penman. American Journal of Computational Linguistics.

, Bates, M., Grosz, B. J., McDonald, D. D., McKeown, K. R. and Swartout, L. in press. The State of the
Art in Text Generation. American Journal of Computational Linguistics.

Marcus, M. (1980) A Theory of Syntactic Recognition for Natural Language. Cambridge, Massachusetts:
MIT Press.

Mark, W. (1981) The Consul Project. Information Sciences Institute, Marina Del Ray, California.

McDonald, D. D. (1980) 4 Linear-time Modal of Language Production: Some Psycholinguistic Implications.
abstract in the proccedings of 18th Annual Mceting of the Association for Computational Linguistics,
June 1980, University of Pennsylvania.

——— (1980) Natural Language Production as a Process of Decision-making Under Constraints. Dactoral
Dissertation, Electrical Engincering and Computer Science, Massachusetts Institute of Technology;
Technical report from the MIT Artificial Intelligence Lab in preparation.

An Example McDonald

Language Generation -52-

(1981) MUMBLE. 1ICAI-81, August 1981, University of British Columbia.

McKeown, K. R. (1980) Generating Relevant Expianations: Naturallanguage responses 1o questions about
database structure. AAAL August 1980, Stanford University.

Meehan, J. R. (1976) The Metanovel: Writing Stories by Computer. Research Report 74, The Yale A.L Group,
Yale University, New Haven, Connecticut.

Minsky, M. (1974) A Framework for Representing Knowledge. ATM-306, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, Massachusetts.

Perimutter, D. M. and Postal, P. M. (in preparation) Relational Grammar.

Roberts, B. and Goldstein, 1. P. (1977) The FRL Manual. AIM-409, Artificial Intelligence Laboratory,
Massachusetts [nstitute of Technology, Cambridge, Massachusetts.

Schank, R. (1976) Conceptual Information Processing. New York: American Elsevier.

Shapiro, S. C. (1975) Generation as Parsing from a Network into a Linear String. American Journal of
Computational Linguistics, fiche 35.

Shordliffe, E. H. (1976) Computer Based Medical Consultations: MYCIN. Amsterdam, The Netherlands:
Elsevier Norus Holland Inc..

Silverman, H. (1975) 4 Digitalis Therapy Advisor. technical report 143, Project MAC, Massachusetts Institute
of Technology, Cambridge, Massachusetts.

Simmons, R. F. and Slochum, J. (1972) Generating English Discourse From Semantic Networks.
Communications of the ACM 15, 10, 891-905.

Swartout. W. (1977) A Digitalis Therapy Advisor with Explanations. Technical Report Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.

____(1981) Producing Explanations and Justifications of Expert Consulting Programs. Technical Report
251, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,
Massachusetts.

Winograd. T. (1973) Understanding Natral Language. New York: Academic Press.

Winston, P. H. (1980) Learning and Reasoning by Analogy: the details. AIM-520, Artificial Intelligence
Laboratory. Massachusetts Institute of Technology, Cambridge, Massachusets.

‘The Yale A.L. Group, (1976) Annual Research Report, Yale University, New Haven.

An Example McDonald

