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ABSTRACT

This report introduces a specification language, called
SPA (Specifications for Partition Analysis), that has been
used in conjunction with the partition analysis method. The
SPA language is based on the operational approach to formal
specification, whereby a procedure is described by an
algorithm that models the desired behavior. The operational
approach was chosen because it is both easy to use and
amenable to analysis. Furthermore, the SPA language has
abstract constructs that enhance the comprehensibility of
operational specifications by facilitating the description
of the behavior of a procedure at a high 1level of
abstraction. The wide spectrum of descriptive capabalities
provided by SPA enables the wuse of SPA throughout the
pre-implementation phases of the software development
process.

An overview of the software development process 1is
provided, along with descriptions of some of the
specifications that are developed throughout this process.
The general role of program validation within software
development is discussed, as well as the specific role of
the partition analysis method. The SPA language is outlined
and an example of the development of a procedure using SPA
is provided.
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INTRODUCTION

To demonstrate the reliability of a program, there must
be some mechanism that enables the determination of whether
the program performs correctly. Often this mechanism is
merely a prospective user who, when asked whether the
results are correct, answers "yes" or "no" based on unstated
requirements of the program. An alternative mechanism, and
often a more dependable and versatile one, is the use of an
independent description of the desired program behavior.

Such a description is referred to as a problem specification

and is often a product of the software development process.
A problem specification provides an independent description
of the external behavior of a program and thus provides an
alternative, and usually more conciée, representation to
which an implementation of the program can be compared. The
partition analysis method [RICH81a, RICH81c] incorporates
information derived from such a specification with
information derived from an implementation to develop common
representations of the two descriptions of a program. These
representations are then compared through the application of
verification and testing techniques. By verifying that the
implementation is consistent with the specification, which
is assumed to be correct, and ascertaining that consistency
through actual execution on a2 comprehensive set of test
data, the partition analysis method provides assurance in

the reliability of the implementation.
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This report first provides an overview of the software
development process, along with descriptions of some of the
problem specifications that are developed throughout this
process. Then, the general role of program validation
within software development is discussed, as well as the
specific role of the partition analysis method. Next,
several approaches to formally specifying the problem to Dbe
solved are described and the types of problem specifications
to which partition analysis is applicable are discussed. A
specification language that has been used in conjunction
with partition analysis is introduced. This language, which
is called SPA (Specifications for Partition Analysis),
enables descriptions of a program at varying levels of
abstraction throughout the pre-implementation phases of
software development. An example of the development of a
procedure using SPA is provided. Finally, the SPA language

is thoroughly described.
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PARTITION ANALYSIS IN SOFTWARE DEVELOPMENT

The Software Development Process

Software development is a process of iterative
refinement in which problem specifications of graduated
levels of abstraction are developed. This process consists
of several consecutive phases, where each phase refines the
results of the previous phase. Thesé phases are not always
clearly distinguishable, but a wuseful delineation is to
consider software development as a four-phase process --
requirements analysis, specification, design, and
implementation. It may not always be possible to adhere to
the ordering of these phases. The problem to be solved is
not always fully understood throughout its development and
it may become necessary to backtrack to correct any untimely
decisions that result from a 1lack of understanding.
Assuming a complete understanding of the problem, however,
the problem to be solved is represented by successively more
elaborate descriptions of the desired program behavior
throughout the software development process. Even
abandoning this idealistic view, these successive problem
specifications provide a sequence Qf benchmarks that should
be achieved in developing a program.

A program begins as a concept of some task that a
prospective user would like to have performed by a computer.
During the requirements analysis phase, this concept is put
onto paper in the form of a requirements document. The

analysis of the requirements is usually done by, or at least



in collaboration with, the prospective user, so this
document is generally the user's perspective of the task the
program should perform, The requirements document also
describes the external program behavior expected by the user
and thus defines the interface between user and program.
The remainder of the software development process takes a
divide-and-conquer approach in attemptiﬁg to satisfy the
requirements.

The specification phase is concerned with describing
the program as a system of interacting modules. Current
philosophy (which originated with Dijkstra [DIJK68])
proposes that a program be decomposed into hierarchical
levels of abstraction. Each level is considered an abstract
machine, which 1is composed of modules that are used to
implement (by being called) the machine on the next higher
level in the  hierarchy. A clean decomposition of each
abstract machine is achieved when each module corresponds to
a concept that is useful in solving the problem posed by the
next higher machine. Two types of modules have been found
useful in decomposing the solution to a problem -- the
procedure and the abstract data type. A module that
corresponds to a procedure is a mapping from a set of input
values to a set of output values. A module that corresponds
to an abstract data type consists of a data type and a
collection of allowable operations for objects of that type.
The operations of an abstract data type are mappings and
thus will eventually be implemented as procedures. The

intended behavior of each module is described by a module
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specification, which dictates the external behavior of a

module, while the range of possible implementations, which
describe how that behavior can be efficiently produced,
remains broad. There 1is a wide variety of approaches for
formally specifying both procedures and abstract data types
that may be employed during the specification phase. Many
of these approaches are discussed later in this section.
The result of the specification phase is a system
specification, which represents the hierarchical structure
and the interactions among the modules and includes the
module specifications.

During the design and implementation phases, the system
specification is . refined by choosing efficient data
structures and selecting and optimizing algorithms for each
of the modules. The refinement of a module is usually a

step-wise process through which module designs of graduated

levels of detail are developed. The system design consists
of a set of corresponding module designs. In the
implementation phase, the module designs are further refined
and translated into the appropriate programming language,

providing module ‘implementations. This phase results in a

set of modhle implementations that make up the final
implementation of the system.

Thus, throughout the software development process,
problem specifications are developed that proceed from the
abstract to the concrete -- from a requirements document, to
a system specification, to a system design, and finally to

the system implementation. While there is a wide variety of



alternative views of the software development process in the
literature on programming methodology, and the terminology
varies greatly from one to another, the description of
software development given here is fairly typical of most of

the approaches that have been proposed.

Program Validation

In the traditional view of software development,
program validation follows the implementation phase. The
task of program validation is the demonstration of the
reliability of the program. The two primary methods for
accomplishing this task are program testing and program
verification. Partition analysis 1is a program'validation
method that integrates verification and testing techniques.
In applying these techniques, partition analysis utilizes
both the problem specification as well as the
implementation. The task of demonstrating program
reliability is divided on the basis of the hierarchical
decomposition of the problem. Partition analysis is applied
to each module independently by comparing a module
implementation to the associated module specification. The
validation of the modules at each 1level in the hierarchy
rests on the assumption that the modules at the lower level
-~ that is, those modules fhat are called -- are reliable.
When each module corresponds to a clean abstraction, the
interactions between modules are kept to a minimum, and
demonstrating the reliability of an entire program amounts

to demonstrating the reliability of its modules as well as
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the interfaces between them. In this fashion, partition
analysis demonstrates the reliability of the implementation
with respect to the specification. The implementation can
be deemed reliable, therefore, only if the reliability of
the specification has been demonstrated. The correctness of
the specification is a fundamental assumption of partition
analysis.

It has become increasingly apparent, however, that in
practice errors are more likely to be introduced during the
pre-implementation phases of software development than
during the implementation phase. Therefore, validation must
be done, not only following the implementation phase, but
throughout the entire software development process. 1In
fact, it has been shown that design errors are inherently
more difficult to detect and correct than implementation
errors [BOEHT75]. Clearly, it 1is important to develop
capabilities to eliminate design errors when they occur
rather than after the implementation phase has been
completed. With this in mind, the reliability of each
successive description of the problem -- be it the
implementation, the system design, the system specification,
or the requirements document -- should be checked. In this
view, validation is an 1integral part of the software
development process, where validation involves demonstrating
that each newly-developed problem specification is

consistent with the previous one.
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Partition analysis is envisioned as a validatibn method
that can be applied throughout the design and implementation
phases. Although the method is typically used to
demonstrate the consistency of a module implementation with
a module specification, the techniques employed are equally
applicable to a comparison of a module specification and a
module design, a comparison of twb module designs at
different levels of detail, and a comparison of a module
design and a module implementation. This extended
application of partition analysis enables the demonstration
of reliability throughout the design and implementation

phases.

Module Specifications

The partition analysis method, whether applied to a
module implementation and a module specification or to two
module designs, relies on the use of a formal specification
language. A formal specification 1language 1is one whose
syntax and semantics can be precisely defined. There is a
variety of approaches to formally specifying the behavior of
modules, some of which depend on whether the module is an
abstract data type or a procedure [LISK79]. The partition
analysis method is approbriate only for certain types of
module specifications. This section outlines several of the
varied approaches for writing module specifications. The
type for which partition analysis is currently most suitable
is then discussed as well as why that particular type was

chosen.



“

~

The approaches for formally specifying the behavior of
a procedure fall into two main categories -- input/output
specifications and operational specifications. By either
approach, the specification describes the relations between
the inputs and outputs of the module, and should be
interpreted as what must be accomplished by a correct
implementation but not how it must be accomplished. The
input/output approach describes the behavior of a procedure
by specifying pairs of assertions that constrain the
relations between the inputs and outputs. Whenever the
input values satisfy an input aésertion, the corresponding
output assertion specifies intended output values.
Input/output specifications are generally expressed in the
standard notation of mathematical logic and their use has
been most extensive in proving program correctness [FLOY67,
HOAR69, LOND75, MNAUR66]. 1In the operational approach, the
desired behavior of a procedure is described by an algorithm
that models the function corresponding to that behavior.
The operational approach is widely wused in professional
software development environments [CAIN75, DAVI77].

An abstract data type is specified by describing the
functionality of the operations allowed on the data type.
The three most widely studied approaches for specifying
abstract data types are abstract model specifications, state
machine model specifications, and axiomatic specifications.
In the abstract model approach [HOAR72], the data type is
explicitly defined by a representation in terms of another

data type whose properties are well understood or specified
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in advance. The operations of the abstract data type are
specified in terms of the operations defined for the data
type that is used as the model. Using the state machine
model approach [PARN72, ROBI77, SILV79], the abstract data
type is viewed as a machine and the behavior is specified by
characterizing the states of the machine. 1In the axiomatic
approach, of which algebraic specifications [GOGU75, GOGU79,
GUTT75, ZILL75] are the most popular, an abstract data type
is specified by 1listing axioms that characterize the
operations on the data type in terms of each other. The
effect of any sequence of operations must be deducible from
the axioms provided.

A critical review of these approaches to formal
specification led to the conclusion that the most
appropriate language to use in conjunction with partition
analysis 1is one that follows the operational approach.
Employing the operational approach has some disadvantages.
Most notably, this approach tends to result in
specifications that are less concise and more apt to Dbias
the implementation than specifications developed by the
other approaches. On the other hand, operational
specifications have numerous advantages. In particular, the
algorithmic representations provided by operational
specifications are amenable to the analysis techniques that
have been established for procedural programming languages.
Moreover, the operational approach appears to be more widely
used outside of the academic community than the other

approaches. It 1is easier for software developers to write
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and comprehend specifications in operational languages
because they are similar to programming languages and
because the operational approach, unlike the other
approaches, is not based on sophisticated mathematical
theory [DAVIT7T]. Furthermore, a good operational
specification 1language not only has constructs that are
similar to programming language constructs but also has more
abstract constructs that enhance the comprehensibility of
operational specifications by facilitating the description
of the behavior of a procedure at a high 1level of
abstraction. This wide spectrum of descriptive capabilities
enables the use of the operational approach throughout the
pre-implementation phases of the software development
process.

Several operational languages that are suitable for
specifying procedures have been described. PDL [CAIN75]
allows the specification of procedures in structured
English, but also has facilities for describing a procedure
in whatever level of detail is appropriate to the current
phase 1in software development. PDL can be used, therefore,
throughout the specification and design phases to create
operational specifications. LAMBDA [JORD77] 1is another
language that effectively permits the development - of
operational specifications of graduated levels of detail.
LAMBDA has constructs for structuring data and can thus be
used to specify abstract data types with the associated
operations described in an operational way. Both LAMBDA and

PDL are specification languages that are independent of any
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programming language and can be used in the specification
and design phases of software development but not in the
implementation phase. Other operational approaches to
specifying procedures have proposed the use of programming
languages to write abstract implementations, which are later
optimized to produce a concrete implementation. SETL
[DEWA78] has been used as an operational specification
ianguage to describe algorithms with minimum attention to
the description of data structures; all data are modelled
by sets. Alphard [WULF76], Clu [LISK77], Gypsy [AMBLT771,
and Ada [ADA80] are high-level programming 1languages that
attempt to promote the hierarchical development of programs
and have been suggested for use in the pre-implementation
phases of software development. Another operational
specification language, CIP-L [BAUE79], has been designed to
cover the spectrum of software development from
specification through implementation. CIP-L contains a
variety of constructs that provide a descriptive power
richer than those provided by existing highflevel
programming languages. It allows formal problem
specifications to be formulated 1in which operational
descriptions can coexist with non-operational ones, which
are gradually refined.

Although any of these operational specification
languages could be wused with partition analysis, none had
all of the features that were deemed desirable.
Consequently, SPA (Specifications for Partition Analysis)

was defined. The SPA language 1incorporates constructs
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capable of describing conditional values, finite summation
and product, existential and universal quantification,
assertions, non-determinism, and abstract data types, as
well as the standard implementation-oriented constructs.
Thus, although the language is basically operational, it has
facilities for expressing specifications similar to those
described by the other approaches. A more thorough
description of SPA is provided in the next section. The SPA
language is intended to be usable throughout the
specification and design phases of software development. It
is not proposed that SPA serve as the 1language of
implementation -- that is, there is no plan to compile the
low-level specifications -- but design can proceed to the
point where the implementation phase is merely a translation
of the 1lowest-level module designs into the appropriate
programming language. The use of a single specification
language throughout the specification and design phases
greatly facilitates the extended application of partition
analysis throughout the pre-implementation phases of

software development.

Example of Module Development

To illustrate both the step-wise refinement process in
software development and the SPA specification language,
this section provides an example of the development of a

single module, which is presumably part of a larger program.
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Figure 1 gives the requirements for a procedure to
determine whether a positive integer is prime. The module
specification of PRIME, which is provided in Figure 2, |1is
developed by specifying the mathematical properties of both
a positive integer and a prime number. Figure 3 provides a
refinement of this initial module specificatiqn, which makes
use of the fact that if N has a factor greater than the
square root of N then there is a corresponding factor less
than the square root of N. Thus, if N has no factor 1less
than or equal to 1its square root, it has no factor. The
next module design, which 1is shown in Figure 4, takes
advantage of the fact that odd numbers have only odd
factors. Thus by first returning false if N is even, only
the possibility of an odd factor must be checked for the
remaining positive integers. The Ada implementation, which
is taken from [WEGN80] and appears in Figure 5, is yet more
efficient. By first returning false if N is divisible by
either two or three, only the possibility of an odd factor
that is not divisible by three must be checked for the
remaining natural numbers. The application of the partition
analysis method to the initial module specification and the
module implementation of PRIME is provided in [RICH81b,
RICH81c].
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Input: positive integer N

Output: PRIME returns true if N is a prime number
or false if N is not a prime number.

Figure 1.
Requirements for Procedure PRIME

procedure PRIME( N: in integer inset {1...1})
return boolean =
-- specification
-- PRIME returns true if N is a prime number
-- or false if N is not a prime number
begin
case
N = 1: ;
return false;

7]

N = 2:
return true;

otherwise:
-- if N has no factor < N-1, then N has no factor

return forall< i: integer inset {2..N-1} |

(N mod i /= 0) >;

(o)} (8] =W N —

endcase;
f end PRIME;

- Figure 2.
Module Specification of PRIME
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procedure PRIME( N: in integer inset {1...})
return boolean =
begin
case
N = 1:
return false;

N = 2:
return true;

otherwise:
-- if N has no factor <= sqrt(N), N has no factor
return forall< I: integer inset {2..sqrt(N)}}
(N mod I /= 0 >;
endcase;
end PRIME;

) Figure 3.
Module Design of PRIME

procedure PRIME( N: in integer inset {1...})
return boolean =
FAC:integer;
ISPRIME:boolean;
begin
case
N = 1:
ISPRIME:= false

N mod 2 = 0O:
~- if N is even and N /= 2, N is not PRIME
ISPRIME:= (N = 2);

otherwise:
-- if N has no FACtor <= sqrt(N), N has no FACtor
-- if N is odd, any FACtor of N is odd
ISPRIME:= true;
for FAC:= 3 to sqrt(N) by 2 loop
if N mod FAC = 0 then
ISPRIME:= false;
exit;
endif
endloop;
endcase;
return ISPRIME;
end PRIME;

Figure 4.
Module Design of PRIME
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function PRIME( N: in integer range 2..max'int)
return boolean is
-- implementation in Ada
-- PRIME returns true if N is a prime number
-- or false if N is not a prime number
FAC: integer;
ISPRIME: boolean;

begin ,
if Nmod 2 = 0 or N mod 3 = 0 then
-- if N is even and N /= 2, N is not prime
-- if N is divisible by 3 and N /= 3, N is not prime
ISPRIME:= (N < 4);

else
-- if N is odd, any FACtor of N is odd
-- if N is not divisible by 3,
-- N has no FACtor in the sequence 9,15,21,...
~- if N has no FACtor <= sqrt(N), N has no FACtor
ISPRIME:= true;
FAC:= 5;
while FAC¥¥2 <= N loop
if N mod FAC = 0 or N mod (FAC+2) = 0 then
ISPRIME:= false;
exit;
else
FAC:= FAC + 6;
endif;
endloop;
endif;
return ISPRIME;
end PRIME;

Figure 5.
Module Implementation of PRIME
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THE SPA LANGUAGE

SPA (Specifications for Partition Analysis) is a
specification 1language to be used in conjunction with the
partition analysis method. The SPA language 1is considered
an operational specification language because the sequence

of statements implies an order in their evaluation. SPA,

however, is more than Jjust a high-level programming
language. It incorporates facilities for describing
conditional values, finite summation and product,

existential and universal quantification, assertions, and
nondeterminism. SPA is thus capable of representing both
operational and input/output specifications for procedures.
In addition, abstract data types can be described in SPA by
specifying the behavior of the operations performed on those
types. This section describes the SPA 1language. The
constructs that are common to most specification and
programming languages are described only briefly, while
those that might be unfamiliar to the reader are discussed
in greater detail along with examples.

The conception of the SPA language was influenced by
the partition analysis method, and thus was designed with
several goals in mind. First and foremost, the language is
capable of specifying a 1large class of problems to be
analyzed by the partition analysis method. There are
constructs in SPA that can not currently be evaluated by the
partition analysis method, but have been included with the

intended purpose of allowing the expansion of the class of
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problems. Second, the language is abstract enough to enable
the specification of problems throughout the specificétion
and design phases of program development. Thus, SPA can be
used to create specifications of procedures that do not in
any way constrain the implementation or to create 1low-level
designs that closely resemble an implementation of the
procedure. SPA is intended to enable the description of
procedures that could be written in any algorithmic
programming language, although certain capabilities -- e.g.,
concurrent activity, performance restrictions, and realtime
constraints -- have been excluded because their analysis by
the method was never intended. The 1lenguage has been
designed to facilitate the application of partition
analysis. Although most programming languages are not as
restrictive, SPA requires explicit control over the
visibility of identifiers. One final design consideration
was the ability to formally define the semantics of SPA.
Although this has not yet been done, a well-defined
semantics would be required for the automation of the
partition analysis method. Several existing specification
and programming languages have also influenced the design of
SPA. These include SPECIAL [SILV791, CIP-L [BAUE78], Gypsy
[AMBL77], Alphard [WULF76], Euclid [POPE77], CLU [LISK7T7],

and Ada [ADA8O].
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Language Overview

A problem specification written in SPA is composed of
one or more module specifications. A module specification
is a procedure specification or an abstract data type
specification.

A procedure specification is the wunit for specifying
the behavior of a function by a sequence of statements,
which may correspond to actions or assertions. A procedure
specification may reference formal input parameters,
imported identifiers, and locally declared identifiers. A
procedure may modify locally declared variables and formal
output parameters. A value returning procedure has no
formal output parameters and thus may modify only locally
declared variables.

An abstract daﬁa type specification is the wunit for
specifying a data type and a collection of operations that
can be performed on objects of that type. An abstract data
type specification may reference imported identifiers and
locally declared identifiers. An abstract data type exports
a list of 4identifiers, which can be referenced by other
modules to access objects of the data type. The behavior of
the abstract data type is described by procedure
specifications for the exported operations.

A module specification has two essential parts: a
description of the behavior of the module and a description
of the data that can be manipulated by the module. Behavior

is described by statements. Data are described by type
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definitions and expressions.

A data type defines a set of values and associated
operations that can be performed on objects of that type.
SPA has three classes of types: simple types, composite
types, and abstract data types. The simple types include
the predefined types, scalar types, and subtypes. The
composite types include arrays, records, and sets. The
abstract data type 1is a data type (either simple or
composite) with an associated set of user-defined operations
for objects of that type.

The statement part of a module specifies the behavior
of the module. There are both simple statements and
compound statements, which are sequences of statements. The
simple statement is the assignment statement, which
specifies that the value of an expression be assigned to a
variable. A procedure invocation specifies the evaluation
of a sequence of statements enclosed by the designated
procedure. Loop statements specify the repeated evaluation
of an enclosed sequence of statements. Case statements and
if statements specify the selection of a sequence of
statements based on the values of conditions.

The power in the SPA language lies in the expressions
that can be created using the predefined operators. Along
with the typical arithmetic, relational, and logical
operators, SPA provides a wide variety of operations on
sets. The usual set operators of union, intersection, and
set difference are included, as is set membership. SPA also

supports several operations that return a value when applied
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to a finite set of values. These include the minimum and
maximum value of a set, the sum and product of the values in
a set, and some value and the unique value satisfying a
specified condition. In addition, both wuniversal and
existential quantifiers can be applied to a set of values.
SPA also provides for conditional expressions, which return
a value depending on the values of the designated
conditions. Expressions aré built up in SPA from constants
and variablés, using this wide variety of predefined

operators along with user-defined procedures.

Syntax Notation

The notation used to describe the SPA syntax 1is an
extended BNF (Backas-Naur Form). 1In this notation:
- upper case words, possibly containing hyphens, denote
syntactic categories, where underscores indicate that
the category is a terminal;

- lower case words denote reserved words;

- special characters that are terminals are enclosed 1in
single quotes;

- the left side of a rule is separated from the right
side by "::=";

- square brackets enclose optional items;

- curly brackets enclose repeated items, which may appear
zero or more times; :

a vertical bar separates alternative items.
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Type Declarations

A type determines the set of values that objects of
that type may assume and a set of basic operations that can
be performed on those objects. A type declaration
associates an identifier with a type. There are three
classes of types supported by SPA: simple types, composite
types, and abstract data types. The abstract data type is a
module in itself and is treated later in this appendix.

TYPE-DECLARATION::= type IDENTIFIER = TYPE-DEFINITION

TYPE-DEFINITION::= SIMPLE-TYPE-DEF

i COMPOSITE-TYPE-DEF
i ABSTRACT-DATA-TYPE-DEF

Simple Types

Simple types include predefined types, scalar types,
and subtypes. The predefined types are integer, real,
boolean, and character. A scalar type defines an unordered
set of values by enumeration of the identifiers that denote
the values. The only operations permitted for scalar types
are equality and nonequality. A subtype 1is either a
subrange type or a subset type. A subrange type 1is a
subrange of another simple type defined by indicating the
smallest and largest element in the subrange (an infinite
subrange can be specified by replacing the largest element
by '.'). A subset type is a subset of a simple type defined
by indicating the values in the subset with a set expression
(the constructs for set expressions are outlined below). A

subtype of a simple type inherits the operations of that

type.
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PREDEFINED-TYPE
SCALAR-TYPE-DEF
SUB-TYPE-DEF
integer
real
boolean
character
SCALAR-TYPE-DEF::= (IDENTIFIER, IDENTIFIER-LIST)
SUB-TYPE-DEF::= SUBRANGE-TYPE-DEF
| SUBSET-TYPE-DEF
SUBRANGE-TYPE-DEF::= [TYPE-INDICATION] RANGE-CONSTRAINT

SIMPLE-TYPE-DEF::

PREDEFINED-TYPE::

SUBSET-TYPE-DEF::= SET-EXP
TYPE-INDICATION::= IDENTIFIER
i TYPE-DEF

RANGE-CONSTRAINT::= ARITHMETIC-EXP '..' ARITHMETIC-EXP
} ARITHMTIC-EXP '...'

Examples of Simple Type Declarations

Example of scalar type declaration:

type MONTHS = (JAN,FEB,MAR,APR,MAY,JUN,
JUL, AUG, SEP, OCT,NOV,DEC)

Example of subrange type declaration:
type SUMMER = MONTHS JUN..AUG;
Example of subset type declaration:

type ODD = {I: integer | I mod 2 /= 01};

Composite Types

The composite types include arrays, sets, and records.
An array type is a structure consisting of components that
are all of the same type. The elements of the array are
designated by indices, which must be a subtype of type
integer. A set type is the powerset of its component type,
i.e., the set of all subsets of values of that type. A
record type is the same as the Pascal record.

COMPOSITE-TYPE-DEF::= ARRAY-TYPE-DEF

SET-TYPE-DEF

RECORD-TYPE-DEF

ARRAY-TYPE-DEF::= array '['INDEX-TYPE {,INDEX-TYPE}']'
of COMPONENT-TYPE

INDEX-TYPE::= SUBRANGE-TYPE-DEF
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COMPONENT-TYPE::= TYPE-INDICATION
SET-TYPE::= set of COMPONENT-TYPE
RECORD-TYPE::= record
IDENTIFIER':' COMPONENT-TYPE;
{IDENTIFIER':' COMPONENT-TYPE;}
endrecord

Examples of Composite Type Declarations

Examples of array type declarations:
type LINE = array [integer 1..80] of character;
type = array [integer 1..60] of LINE;

type MATRIX = array [integer 1..3,integer 1..3]
of real; -

Examples of record type declarations:
type DATE = record
DAY: integer 1..31
MONTH: MONTHS

YEAR: integer 1500..2000
endrecord;

type COMPLEX = record
REALPART: real

IMAGPART: real
endrecord;

Examples of set type declarations:
type DATESET = set of DATE;
type MATRICES = set of MATRIX;

Object Declarations

An object is an entity that contains a value of a given
type. Object declarations introduce one or more named
objects of a designated type. An object may be variable or
constant. If constant, the initial value of an object is
specified in the declaration and may not be modified.

OBJECT-DECLARATION::= IDENTIFIER-LIST':'TYPE-INDICATION
: [constant][':=' EXPRESSION]
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Expressions and Operations

An expression is a formula that specifies the
computation of a value. Expressions consist of operands,
operators, and fuﬁctions. The rules of computation specify
operator precedences according to eight classes of
operators. Set intersection has the highest precedence,
then set wunion and set difference, then the multiplying
operators, then the adding operators, then the relational
operators, then negation, then conjunction, and finally
disjunction has lowest precedence. Sequences of operators
with the same precedence are evaluated from left to right.
The precedence may be overridden by the use of parentheses.

EXPRESSION::= LOGICAL-EXP

LOGICAL-EXP::= CONJUNCTION

i LOGICAL-EXP or CONJUNCTION
CONJUNCTION: := NEGATION

i CONJUNCTION and NEGATION
NEGATION::= RELATIONAL-EXP

not RELATIONAL-EXP
RELATIONAL-EXP::= ARITHMETIC-EXP

RELATIONAL-EXP REL-OP ARITHMETIC-EXP

ARITHMETIC-EXP::

SUM
SUM::= TERM

| ADD-OP SUM
| SUM ADD-OP TERM
TERM::= FACTOR
| TERM MULT-OP FACTOR
FACTOR::= PRIMARY
| PRIMARY EXP-OP PRIMARY
PRIMARY::= LITERAL
! OBJECT
| COMPOSITE-EXP
| DESCRIPTIVE-EXP
! CONDITIONAL-EXP
! FUNCTION-CALL
! ADD-OP FACTOR
i '(' EXPRESSION ')
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Object Denotations

.Denotations of objects  either designate .an entire
- Objeet - or  .a. component of.:an object.  An entire object is
- denoted by . its identifier. . A .component or group of
- components  of an object is denoted by the identifier of the
.:pbject;follpwed_by a  selector Specifying the . components.
The selector may specify an index of an array, a slice of a

- .One-dimensional array, a field of a record.

. IDENTIFIER

IDENTIFIER
;’['ABITHMETICPEXP{uARITHMETIC—EXP}']'
IDENTIFIER '['RANGE-CONSTRAINT']®

e et ey e,

LDENTIFTER '.' IDENTIFIER

- OBJECT::

Composite Expressions

Composite expressions denote values of composite types
and are formed by objects of those types and constructors.
The compositeveXpressions‘include array expressions, record
expressions, and set expressions.

COMPOSITE-EXP::= ARRAY-EXP
i RECORD-EXP
i SET-EXP

Array expressions are specified with three types of
array constructors, two of which are applicable only to
one-dimensional arrays. Expressions for one- or
multi-dimensional arrays can be constructed with an indexed
constructor, which allows the array to be viewed as an
unordered collection of components identified by index
selectors. Thus, an array expression 1is constructed by
associating a value with each index value. One-dimensional
arrays can be constructed by a positional constructor, which

requires that the array be viewed as an ordered collection
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of components. An array expression is thus constructed by
listing values by position to be associated with the indexed
components of an array. SPA provides a shorthand notation
for the positional construction of a one-dimensional array
with component type character whereby the characters need
not be separated -- that is, ('abe') is the same as
(ra','b','c"). In addition, a one-dimensional array
expression can be constructed with an iterative constructor,
which supplies an index variable and an expression to be
evaluated for each value designated for the index variable.
ARRAY-EXP::= IDENTIFIER
! T(" ARRAY-CONSTRUCTOR ')'

ARRAY-CONSTRUCTOR: := INDEX-ASSOCIATION
{,INDEX-ASSOCIATION}
INDEX-ASSOCIATION::= [INDEX-RANGE '=>'] EXPRESSION
INDEX-RANGE::= '['ARITHMETIC-EXP{,ARITHMETIC-EXP}']"’
! CHOICE {,CHOICE}
| OBJECT-DECLARATION
ARITHMETIC-EXP
RANGE-CONSTRAINT

CHOICE::

Record expressions can be constructed with two forms of
record constructors. A field constructor allows the record
to be viewed as an unordered collection of components
identified by field selectors. Thus, a record expression is
constructed by associating a value with each selector name,
and does not depend on the order of the components in the
record type definition. A positional constructor requires
the record to be viewed as an ordered collection of
components and disregards selector names. It constructs a
record expression by listing values by position.

RECORD-EXP::= IDENTIFIER
! *(" RECORD-CONSTRUCTOR ')’
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RECORD-CONSTRUCTOR: := FIELD-ASSOCIATION
{, FIELD-ASSOCIATION}

EXPRESSION

IDENTIFIER'=>' EXPRESSION

FIELD-ASSOCIATION::

Set expressions are constructed from sets and set
operators. Sets are specified by set constructors. An
enumeration constructor enables the listing of the
individual elements in a set. The elements of an
gnumeration constructor must be expressions of the same
type. A property constructor supplies a type and a
necessary and sufficient property of the elements. A
subrange constructor is used to specify sets of numbers by
indicating the smallest and largest elements in the subrange
(infinite sets can be specified by replacing the largest
element by a '.'). The set operators are set union (union),
set intersection (inter), set difference (diff). Each set
operator takes two set-valued arguments with the same
component type as operands and results in a set-valued type
with the same component type.

IDENTIFIER

! T{'" SET-CONSTRUCTOR '}
! SET-EXP SET-OP SET-EXP

SET-EXP::

EXPRESSION {,EXPRESSION}
IDENTIFIER ':' TYPE '}' LOGICAL-EXP

TYPE-INDICATION RANGE-CONSTRAINT

SET=-0P::= union | inter | diff

SET-CONSTRUCTOR::

Examples of Composite Expressions

Examples of indexed array expressions:
(to,o01,01,13=>1.0, [0,11,01,01=>0.0)

(0=>0, 1=>2, 2=>U4, 3=>6, U=>8,
5=>1, 6=>3, T=>5, 8=>T, 9=>9)
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Example of positional array expression:
(0,2,4,6,8,1,3,5,7,9)
Example of intensional array expression:

(I: integer 0..U4 => 2%T,
I: integer 5..9 => 2¥(I-U4)-1)

Examples of field record expressions:
(DAY=>4, MONTH=>JULY, YEAR=>1776)
(MONTH=>JULY, DAY=>4, YEAR=>1776)
(IMAGPART=>-1.5, REALPART=>6.75)

Examples of positional record expressions:
(4, JULY, 1776)

(6.75, -1.5)

Example of extensional set expression:
{2, 4, 6, 8, 10}

Examples of intensional set expressions:
{I: integer | 0 < i < M}

{J inset LESS10 | J mod 2=0}

Example of subrange set expression:

{I: 1..M-1}

Examples of set operations:

NLESS10 inter {J: integer | J mod 2 = 0}
{1..10} diff {J: integer | J mod 2 /= 0}

Descriptive Expressions

Descriptive expressions allow the specification 'of a
value by describing its properties. Each descriptive
expression describes a set that qualifies the range of
values over which the properties are evaluated. This set

may be described by local variable declarations, whose types
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qualify the range of values. Any qualification variables
serve as iteration counters for the expression and take on
each value specified in the qualification. There are three
types of descriptive expressions: the characterization
expressions, the finite repetition expressions, and the
quantification expressions.

DESCRIPTIVE-EXP::= CHARACTERIZATION-EXP

i QUANTIFICATION-EXP
i REPETITION-EXP

The characterization expressions (some, that, min, max)
characterize one or more elements in a set by a stated
logical expression. The characterization expressions
operate on finite sets and provide a single-valued result,
which is a value of a member of the set. The value of a
some expression is the value of some element in the set that
satisfies the stated logical expression. If the 1logical
expression does not uniquely characterize an element, then
the some expression may assume the value of any such
element. If there is no element satisfying the logical
expression, then the some expression 1is undefined. The
value of a that expression is the value of the unique
element in the set that satisfies the stated 1logical
expression. If the 1logical expression does not uniquely
characterize an element or if there is no element satisfying
the logical expression, then the that expression 1is
undefined. The value of a min expression is the minimum
value in the set that satisfies the stated condition, while
the value of a max expression is the maximum value in the

set that satisfies the stated condition. If no logical
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expression 1is stated in any of these characterization
expressions, the logical expression is the value true and it

is satisfied by all values in the set.

CHARACTERIZATION-EXP::= CHARACTERIZE-OP'<'QUALIFICATION
[*!' LOGICAL-EXP] '>'

CHARACTERIZE-OP::= some | that | min ; max

QUALIFICATION::= SET-EXP
| OBJECT-DECLARATION
{,0BJECT-DECLARATION}

The finite repetition expressions (sum, product)
characterize the result of an operation repeated over all
values in a set. The finite repetition expressions operate
on finite sets and provide a single-valued result whose type
is the component type of the set. The value of a sum
expression is the sum of the values resulting from
‘evaluating the stated arithmetic expression over each value
in the set, while the value of a product expression is the
product of the values resulting from evaluating the stated
arithmetic expression over each value in the set.

REPETITION-EXP::= REPETITION-OP '<' QUALIFICATION

' '{' ARITHMTIC-EXP '>'

REPETITION-OP::= sum }{ product

The quantification  expressions (forall, exists)
describe a formula in the first order logic. The
quantification expressions operate on finite sets and
provide a single-valued result. The value of a forall
expression is true if the stated logical expression is true
for all elements of the set and false otherwise. The value
of an exists expression is true if the stated logical
expression is true for some element of the set and false

otherwise.
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QUANTIFICATION-EXP::= QUANTIFY-OP '<' QUALIFICATION
'1' LOGICAL-EXP '>!
QUANTIFY-OP::= exists | forall

Examples of Descriptive Expressions

Examples of characterization expressions:
some< J: integer | j inset DIV2 >

that< Q,R: integer | (0 <= Q <= N) and (0 <= R <= Q-1)
and (N=Q¥D+R)>

min< X: real A..B | F(X) >
max< G: integer inset GRADES >
Examples of finite repetition expressions:
sum <DIV2>
product< I: integer 1..N | I >
Examples of quantified expressions:
forall< D: integer 2..N-1 | N mod D /= 0>

exists< P: integer inset NLESSM |
forall< D: integer 2..P-1 | P mod D /= 0 > >

Conditional Expressions

A conditional expression (if, case) designates the
selection of one of its component expressions for
evaluation. Each component expression must be of the same
type and that type 1is the type of the result. There are
three types of conditional expressions: the if expression,
the deterministic case expression, and the nondeterministic

case expression.

IF-EXP
DETERMINISTIC-CASE-EXP
NONDETERMINISTIC-CASE-EXP

CONDITIONAL-EXP::

—_———
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An if expression designates the evaluation of one or
none of a number of expressions, depending on the truth
value of the corresponding conditions. The logical
expression specified after if and any logical expression
specified after elseif are evaluated in succession until one
evaluates to true; then the corresponding expression is
evaluated and provides the value of the if expres§ion. An
else clause may be given as the last alternative and the
corresponding expression is evaluated if all the 1logical
expressions evaluate to false. If no else clause is given
and all the logical expressions evaluate to false, . the 1if
expression is undefined.

IF-EXP::= if LOGICAL-EXP then

EXPRESSION';'
{elseif LOGICAL-EXP then
EXPRESSION'; '}

[else EXPRESSION';']
endif

The deterministic case expression designates the
evaluation of one or none of a number of expressions
depending on the value of the selector expression. The
selector expression must be of a discrete type. Each
alternative expression is preceded by a 1list of choices
specifying the values of the selector for which the
alternative is selected. The choice values must be of the
type of the selector expression and must be mutually
exclusive. An otherwise clause may be given as the choice

for the 1last alternative to cover all values not given in

previous choices.
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DETERMINISTIC-CASE-EXP::=
case EXPRESSION of
CHOICE {','CHOICE}'=>' EXPRESSION';'
{CHOICE {','CHOICE}'=>" EXPRESSION'; '}
[otherwise'=>" EXPRESSION'; ']
endcase
CHOICE::= ARITHMETIC-EXP
i RANGE-CONSTRAINT

The nondeterministic case expression designates the
evaluation of one or none of a number of expressions
depending on the truth values of the corresponding
conditions. Each alternative expression is preceded by a
logical expression specifying the condition under which the
alternative might be selected. The logical expressions need
not be mutually exclusive. When more than one of the
logical expressions evaluate to true, any of the
corresponding expressions might be selected for evaluation
and provide the value of the case expression, hence allowing
for nondeterminism. An otherwise clause may be given as the
last alternative, and the corresponding expression is
evaluated only if all other logical expressions evaluate to
false.

NONDETERMINISTIC~CASE-EXP::=

case
LOGICAL-EXP'=>' EXPRESSION';'
{LOGICAL-EXP'=>" EXPRESSION';:

[otherwise'=>" EXPRESSION';
endcase

}
]
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Examples of Conditional Expressions

Example of if expression:

if Nmod 2 = 0 then
false;

else
true;

endif

Example of deterministic case expression:

case DAY of
MON. .FRI=> RATE;
SAT,SUN=> RATE¥*1.5;
endcase

Example of nondeterministic case expression:

case
(HOURS>40)=> RATE¥*1.5;
(DAY=SAT) OR (DAY=SUN)=> RATE¥*1.5;
otherwise=> RATE;
endcase

Procedure Designators

A procedure designator specifies the evaluation of a
value-returning procedure. It consists of the identifier of
the procedure followed by a list of arguments. The
arguments are expressions and their values are substituted
for the coresponding formal parameters. The type of the
value returned by the procedure 1is specified by the
procedure declaration. The intrinsic functions, which are
value-returning procedures, defined in SPA are trunc, which
returns the conversion of a real number into an integer by
truncation, round, which returns the conversion of a real
number into an integer by rounding, abs, which returns the
absolute value of a number, and sqrt, which returns the sqrt
of a number,

PROCEDURE-DESIGNATOR::= IDENTIFIER
[*(' IDENTIFIER-LIST')']
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Arithmetic Expressions

Arithmetic expressions are formed by function calls,
descriptive expressions, objects, literals, and arithmetic
operators. The arithmetic operators are the exponentiation
operator (¥*), the multiply operators (¥, /, mod, div), and
the addition operators (+, -). Each operates on numbers,
which are subtypes of type integer or real. Objects of both
numeric types can be mixed. An operator having only integer
arguments has an integer result; otherwise the result is

real. The mod and div operators are defined only for

integers.
ARITH-0OP::= EXP-OP
i MULT-OP
i\ ADD-OP
EXP-OP::= '%¥!
MULT-OP::= '¥' | /' | mod | div
ADD-OP::= '+' | '-!

Relational Expressions

Relational expressions are formed by relational
expressions, arithmetic expressions, set expressions, and
relational operators. SPA allows a conjunction to be
expressed as a single relational expression. The relational
operators are the equality relations (=, /=), the inequality
relations (<, <=, >, >=), and the set membership relations
(inset, subset). The equality relations apply to any type.
The inequality relations apply only to numbers, which are
subtypes of type integer or real. The inset relation
operates on one object of any type and a set-valued object
with components of that type. The subset relation operates

on two set-valued objects of the same component type. The
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result of any relational expression is boolean.

REL-OP::= EQUALITY-OP
i INEQUALITY-OP

i SETMEMBER-~OP
EQUALITY-OP::= '=' | '/='
INEQUALITY-OP::= '<' | '<=' | '>' | '">=!

SETMEMBER-OP::= inset | subset

Examples of Relational Expressions

Example of a conjunction expressed as a relational
expression:

A <=B<K=2¢C

Examples of set memberships:
N inset DIVZ2
PLESS10 subset NLESS10

Logical Expressions

Logical expressions are formed by relational
expressions and logical operators. The logical operators
are negation (not), conjunction (and), and disjunction (or).
The result of any logical expression is boolean.

LOG-OP::= not | and | or

Statements

Statements denote algorithmic actions and assertions.
A statement may be simple or compound. A simple statement
contains no ‘other statement. ‘A compound statement may
contain simple statements and other compound statements.
STATEMENT-SEQUENCE: := STATEMENT
{STATEMENT}

STATEMENT::= SIMPLE-STATEMENT
| COMPOUND-STATEMENT

re
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SIMPLE-STATEMENT::= ASSIGNMENT-STATEMENT
PROCEDURE-STATEMENT
EXIT-STATEMENT
RETURN-STATEMENT
ASSERT-STATEMENT
COMPOUND-STATEMENT::= CONDITIONAL-STATEMENT

i LOOP-STATEMENT

Assignment Statements

The assignment statement serves to replace the current
value of a variable by a new value spgcified as an
expression. The value of an expression can be assigned to
more than one variable by means of a multiple assignment
statement.

ASSIGNMENT-STATEMENT::= OBJECT ':='
{OBJECT ':='} EXPRESSION ';'

The variable and the expression must be of the same type,
with one exception; if the types of the variable and the
expression are both subranges of the same type, the
assignment is 1legal as long as the value of the expression
is within the subrange of the variable.

For an assignment to an entire array variable or a
slice of a one-dimensional array, each component of the'
array expression is assigned to the matching component of
the array variable. For each component of the array
variable, there must be a matching component in the array
expression, and vice versa. Otherwise, the array variable
becomes undefined.

For an assignment to an entire record variable, each
component of the record expression is assigned to the
matching component of the record variable. For each

component of the record variable, there must be a matching
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component of the record expression, and vice versa.
Otherwise, the record variable becomes undefined.

Procedure Statements

A procedure statement designates the evaluation of the
procedure denoted by the procedure identifier. The
statement specifies the association of any actual arguments
with formal parameters of the procedure. The correspondence
is established by the postitions of the arguments and
paramters in the lists.

PROCEDURE-CALL::= IDENTIFIER ['(' [EXPRESSION]
{, EXPRESSION} ')'] ';'

Exit Statements

An exit statement indicates that further evaluation
should continue at the statement following the innermost
enclosing loop statement. ‘The when clause, if present,
makes the transfer of control conditional.

EXIT-STATEMENT::= exit [when LOGICAL-EXP] ';'

Return Statements

A return statement indicates that control should return
from the procedure currently being evaluated. The when
clause, if present, makes the transfer of control
_conditional. A return statement in a value-returning
procedure must include an expression whose value is the
result returned by the procedure. The expression must be of
the type specified in the return class of the procedure.

RETURN-STATEMENT::= return [EXPRESSION]
[when LOGICAL-EXP] ';'

ro
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Assert Statements

An assert statement specifies a logical expression that
must be satisfied whenever the statement is evaluated. At
‘any point, if the logical expression specified evaluates to
false, the evaluation of the procedure is terminated;
otherwise, evaluation continues under the specified
assertions. When appearing as the first statement in a
procedure, an assert statement specifies initial assertions
that must be guaranteed by any procedure calling the given
procedure. In this sense, the assert statement specifies
assumptions on the input values that are taken for granted
each time the procedure is invoked. When appearing as the
last statement in a procedure, an assert statement specifies
final assertions that the output values must satisfy.

ASSERT-STATEMENT::= assert '<' LOGICAL-EXP '>'

Conditional Statements

A conditional statement selects for evaluation one of
its component statements. There are three types of
conditional statements: the if statement, the deterministic
case statement, and the nondeterministic case statement.

CONDITIONAL-STATEMENT::=

IF-STATEMENT
| DETERMINISTIC-CASE-STATEMENT
i NONDETERMINISTIC-CASE-STATEMENT

An if statement designates the evaluation of one or
none of a number of sequences of statements, depending on
the truth value of the corresponding conditions. The

logical expression specified after if and any logical

expressions specified after else 1if are evaluated in
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succession until one evaluates to true; then the
corresponding sequence of statements is evaluated. An else
clause may be given as the last alternative and the
corresponding sequence of statements is evaluated if all the
logical expressions evaluate to false.
IF-STATEMENT::= if LOGICAL-EXP then
STATEMENT-SEQUENCE
{elseif LOGICAL-EXP then
STATEMENT-SEQUENCE}
[else
STATEMENT-SEQUENCE]
endif
The deterministic case statement designates the
evaluation of one or none of a number of sequences of
statements depending on the value of the selector
expression, The expression must be of a discrete type.
Each alternative sequence of statements is preceded by a
list of choices specifying the values of the selector for
which the alternative is selected. The choice values must
be of the type of the selector expression and must be
mutually exclusive. An otherwise clause may be given as the
choice for the 1last alternative to cover all values not
given in previous choices.
DETERMINISTIC-CASE-STATEMENT: :=
case EXPRESSION of
CHOICE{','CHOICE}'=>' STATEMENT-SEQUENCE';"
{CHOICE{','CHOICE}'=>"' STATEMENT-SEQUENCE'; '}
[otherwise'=>" STATEMENT-SEQUENCE'; ']
endcase';'

CHOICE::= ARITHMETIC-EXP
i RANGE-CONSTRAINT

ro
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The nondeterministic case statement designates the
evaluation of one or none of a number of sequences of
statements depending on the truth values of the
corresponding conditions. Each alternative sequence of
statements is preceded by a 1logical expression specifying
the condition under which the alternative might be selected.
The logical expressions need not be mutually exclusive.
When more than one of the logical expressions evaluates to
true, any of the corresponding sequences of statements might
be selected for evaluation; hence allowing for
nondeterminism. An otherwise clause may be given as the
last alternative and the corresponding sequence of
statements 1is evaluated only if all other logical
expressions evaluate to false.

NONDETERMINISTIC-CASE-STATEMENT::=

casEOGICAL—EXP':)' STATEMENT-SEQUENCE'; "'
{LOGICAL-EXP'=>' STATEMENT-SEQUENCE'; '}
[otherwise'=>" STATEMENT-SEQUENCE'; ']

endcase ’

Loop Statements

Loop statements specify that a sequence of statements
is to be evaluated zero or more times. A loop may have an
iteration clause, which controls the repeated evaluation of
the 1loop. A loop may also be left as the result of an exit
or return statement. Three iteration clauses are provided:
the for iteration clause, the while iteration clause, and

the until iteration clause.

LOOP-STATEMENT::= [ITERATION-CLAUSE]LOOP-BODY
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for IDENTIFIER GENERATOR
while LOGICAL-EXP

until LOGICAL-EXP

in DISCRETE-RANGE

in SET-EXP
t+=' ARITHMETIC-EXP to ARITHMETIC-EXP

by ARITHMETIC-EXP

ITERATION-CLAUSE::

GENERATOR::

LOOP-BODY::= loop

STATEMENT-SEQUENCE
endloop

The evaluation of a loop statement with a for iteration
clause begins with the evaluation of the for clause, which
serves to declare the specified identifier. The identifier
represents the 1loop parameter, which is a constant within
the loop body. The loop body is evaluated once for each
value specified by the generator (subject to the loop body
being left by an exit or return statement). Prior to each
such iteration, a designated value is assigned to the loop
parameter.

In a loop statement with a while iteration clause, the
logical expression 1is evaluated before each iteration
(including the first) of the loop body. If it evaluates to
false, the loop statement is terminated.

In a loop statement with an until iteration clause, the
logical expression is evaluated after each iteration of the
loop body. 1If it evaluates to true, the loop statement 1is

terminated.

e
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Procedure Declarations

A procedure declaration serves to define a module that
corresponds to a sequence of statements and to associate
with it an identifier so that it can be activated by

procedure statements.

PROCEDURE-DECLARATION: := PROCEDURE-HEADING
LOCAL-DECLARATIONS
PROCEDURE-BODY
PROCEDURE-HEADING::=

procedure IDENTIFIER [ 'FORMAL-PARAMETER-LIST']
[imports IMPORT-LIST]
[return TYPE] '='
FORMAL-PARAMETER-LIST::= '('FORMAL-PARAMETER
{,FORMAL-PARAMETER} ")

FORMAL-PARAMETER::= IDENTIFIER ':' MODE TYPE

MODE::= in | out | in out

IMPORT-LIST::= IDENTIFIER-LIST

LOCAL-DECLARATIONS::= {TYPE-DECLARATION}

{OBJECT-DECLARATION}

PROCEDURE-BODY::= begin

STATEMENT-SEQUENCE
end';'

The formal parameters of a procedure are considered
local to the procedure. A parameter whose mode is in acts
as a local constant whose value is provided by the
corresponding actual argument before evaluation of the
procedure. A parameter whose mode is out acts as a local
variable whose value is assigned to the actual argument
after evaluation of the procedure. A parameter whose mode
is in out acts as a local variable whose initial value is
provided by the corresponding actual argument before
evaluation of the procedure and whose value is assigned to
the actual argument after evaluation of the procedure. If
no mode is explicitly given for a parameter, the mode in is

assumed.
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The import list of a procedure specifes 1identifiers
that are not 1local to the procedure but may be referenced
(but not defined) within the procedure. These 1identifiers
may denote objects, procedures, or types accessible to the
calling procedure.

A procedure heading with a return clause designates a
value-returning procedure (function). Such a procedure's

formal parameters must all have mode in.

Abstract Data Type Declarations

An abstract data type declaration serves to define a
module that corresponds to a data type and a set of
allowable operations on that type and to associate with it
an identifier so that objects of the type can be declared
and manipulated.

ABSTRACT-DATA-TYPE-DECLARATION::=
type IDENTIFIER '=' ABSTRACT-DATA-TYPE
ABSTRACT-DATA-TYPE::= ADT-HEADING
LOCAL-DECLARATIONS
PROCEDURE-DECLARATIONS
ADT-BODY
ADT-HEADING::= TYPE-DEFINITION

[imports IMPORT-LIST]

[exports EXPORT-LIST]
EXPORT-LIST::= IDENTIFIER-LIST
PROCEDURE-DECLARATIONS::= {PROCEDURE-DECLARATION}
ADT-BODY::= begin

STATEMENT-SEQUENCE

end

The import list of an abstract data type specifies
identifiers that are not 1local to the module but may be
referenced (but not defined) within the module. These
identifiers may denote objects, procedures, or types

accessible to the procedure in which the abstract data type

(-]
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is declared.

The export list specifies the identifiers that can be
accessed outside of the abstract data type. The procedures
designated in the export 1list are thus the operations
allowed for objects of the type.

The sequence of statements in the body designate
actions that serve to initialize an object of this type.
The statements are evaluated when an object is declared

(just as an initial value can be assigned for a simple

type).
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