Vds: An Interactive VLSI Design System

Andrew S. Cromarty and Steven P. Levitan
Department of Computer and Information Science
University of Massachusetts at Amherst
Amherst, Massachusetts

COINS Technical Report 81-36
November 1981

Abstract

Vds is an interactive system for VLSI design, written in a graphics-
extended version of CoinsLisp. All interaction with the Vds user is performed
through Gus, a device-independent graphics kernel supporting a wide variety of
raster-graphics, text display, and menu selection functions. Gus presents the
user with a consistent interaction protocol independent of the hardware in
use, and supports such features such as zoom, pan, and multiple viewports on
all graphical output devices, allowing the VLSI designer to use graphics
devices interchangably as their availability dictates. Multiple
hierarchically-related graphical views of objects (cwurrently full-detail,
bounding-box, and floorplan views) are supported. All input-output relations
are user-extendable and reconfigurable by means of "keyboard macros" and
user-written functions which can be bound to keyboard keys. .

A semantic net graph structure is employed for representation of
circuits, allowing them to be archived, extended, and merged with other graphs
or standard VLSI circuit libraries. The semantic net is hierarchically
organized so as to allow composition of circuit subassemblies to form larger
circuits, and supports built-in design rule checking based upon high-level
semantic information about the design. Vds interfaces directly with circuit
simulation software to provide additional design checking and optionally
produces a translation of the semantic net into graphics commands compatible
with a commercially-available Core Graphics Standard implementation. Because
of its modularity, Vds is easily extended to support new graphical functions,
user-coded VLSI composition functions, additional design rules and expert
knowledge, and new or alternative VLSI subcircuit definitions.

[Implementation of the system described in this document.is currently under:
way; this is a report of work in progress.] '

1. Introduction

The le;st decade has seen a revolution in the way integrated circuits are
designed. Prior to the mid-Seventies, the dominant design approach for Very
Large Scale Integrated (VLSI) devices was the same as for ‘small-scale and
mediun-scale integration: boolean gates (nand, nor, not, etc.) were
interconnected to achieve some "random-logic" functioﬁ. It soon became clear,
however, that these increasingly complex devices could not be ef'fi.ciently
designed and debugged using the discrete-gate approach; integrated circuits so
implemented were likely to waste the majority of the silicon in connections
between irregular patchworks of logic, and efforts at further miniaturization
were often hampered by tﬁe great complexity of chips designed according to
this unstructured random-logic approach. In response to this problem, a
structured design methodology was developed, pioneered largely by Mead and
Conway [10]. This methodology presents the task of the designer of VLSI
circuits as one analogous to that of the software designer: the top-down
design of clean, regular, structured implementations of algorithms.

Concomitant with the growth of this structured design methodology was the
appearance of computer-aided VLSI design systems, which assist the designer in
develbping a VLSI device much as screen-oriented text editors and text
formatters assist the software designer in development of a program. The more
primitive systems simply provided a picture of the chip while various "mask"
layers were laid down and fleshed out, maintaining some minimal data base to
record the location of specific polygonal objects on the chip [6]. More
sophisticated systems [15, 1] performed addi‘tional functions such as
compaction of subcircuits and some checking of the input to detect design

flaws such as two polygons being placed too close together. (By our analogy

with software, such design-rule checking (DRC) corresponds to syntax checking
in a compiler, and subcircuit compaction ‘corresponds roughly to code motion in
optimizing compilers.)

These developments signalled not the discovery of the solution, however,
but merely the statement of the problem. VLSI devices can have high semantic
complexity, just as large software systems do; however, current VLSI design
| Systems leave largely unaddressed the problem of specifying, organizing, and
taking advantage of such semantic information. Furthermore, it is typical
that there will be a great degree of concurrent processing occurring in such a
device, the description and specification of which is as unsolved a problem
for the hardware domain as for software. Additionally, we still lack adequate
formalisms to decribe the tradeoffs between such issues as size, ‘Speed, and
complexity of these devices. Attractive graphical displays, as useful as they
can be, are in and of themselves insufficient to organize the enormous amount
of information involved in the VLSI design process.

It is therefore becoming clear that what is needed is not simply a
computer-aided graphics system, but rather a system in which the graphics .are
integrally tied to successively higher levels of abstract description of the
function and the structure of the device under development. Such a ,syéten
should be cleanly and carefully designed so as to be amenable to extension, in
order to incorporate both expert semantic knowledge about VLSI design and
additional graphical models of the device. Furthermore, it should be as
comfortable to use as is a good contemporary screen -editor. This paper

describes V4g, our first steps towards the development of .such a system.

2. VLSI Design: Decomposition and Synthesis

The design process for VLSI is similar in many ways to other logical
design tasks. The initial problem is decomposed, in a top-down fashion, into
subproblems and sub-subproblems until the problems are trivial to sqlve.
These low-level solutions are then composed, bottom-up, to solve the bigger
and bigger problems, until the original problem is solved., This technique
leads to a modular structure 'for the final system.

There are, however, two differences beteween a purely logical design
process, like that used for software, and the design of systems in VLSI: for
VLSI (at this point in time) the "trivial® sélution of the bottom 1level
problems is not simple; and unlike programming tasks, the camposition of
solutions to the subproblems is itself a difficult task. For these reasons
VLSI design is often seen, incorrectly, as strictly a bottom-up process.

Although the logical representation of bottom level problems such as
logic gate design is simple, their electrical characteristics are poorly
parameterized, and their geometrical representations are complex.
Unfortunatly, design decisions during this part of the design process have a
large effect on overall circuit behavior and size. This is largely because the
final circuit will typically have many (often thousands) of replications of a
simple structure.

The composition of simple subcircuits into more complex structures is
also a difficult and poorly understood task. Unlike programming, where
composition is done textually, the composition of circuits is a geometric
problem involving three-dimensional size and placement problems. Even worse,
the process of interconnecting the component parts, which in programming

simply involves concatenation of lines of text, is an enormous problem in

itself for VLSI design (8, 12, 13].
2.1 The tasks of the designer

With this background we can look at the specific tasks of the VLSI designer
and consider the ways in which a design system can help perform these tasks.

Hon and Sequin [7] list the following tasks for the IC designer:

1. Bntering design geometry

2. Outputting design geometry (plotting, printing)

3. Documenting the design

4. Checking for design rule violations

5. Checking for logical errors

6. Simulating the behavior of a design
All of the above tasks are necessary but by no means sufficient to
characterize the design process. These are the bottom-up part of the design
process and do not capture the initial top-down part of the process.
Furthermore, conceiving of these tasks as independent, discrete events thwarts
attempts to capture the full potential of a symbolic interactive design aid

sSystem.
2.2 The tasks of the design aid system

Instead of considering VLSI design from the perspective of design tasks, we
can look at the information that the designer must keep track of and

manipulate during the design process. This yields three coherent views of the

system as it evolves fram a problem to a solution. These alternative views of

the device are called domains by Weste [15]:

1. Structural: A view in vhich the design is conceived of as a graph.
Here each node of the graph represents a component of the circuit and
each edge represents connections between components. Subecircuits are
modeled as subgraphs.

2. Physical: The actual device construction is based on geometric areas on
several photo-masks. This view directly represents the circuit as a
composition of two-dimensional objects in different layers. 'lhe.boti?om
level design, or layout, is performed almost exclusively with this view
of the device.

3. Behavioral: The device is viewed as a collection of electrical
components, each characterized parametrically. This view is concerned
with timing, power and loading issues of the design. At a higher level
of abstraction, this view captures the logical behavior of the device
for incorporation into a "system" view.

We take the position that a design aid system must help the designer
manage and manipulate alternatives views of the design [2]. As such the
design system must perform the tasks of editing and managing a database
containing both graphical data and text. The system should keep track of the
different views of each part of the system and maintain "crosslinks" between

different views where appropiate.
2.2.1 Support in the structural domain

The design system must support a hierarchical data base which reflects
the structure of the design. As circuits are built by composition or
modification of other circuits, the data base must keep track of the
"parentage" of the ciréuits. This allows for automatic inheritance of design
changes. In addition, connectivity, a relation that is lost in the physical
domain, must be maintained in the stuctural domain. This allows the system to
distiguish between circuits, which often have fixed geometries, and

connections between circuits, which have more flexibility.

2.2.2 Support in the physical domain

There must be a graphics/text editor to allow the designer to manipulate
the physical objects of the design [11]. These are both the geometric objects
which represent the photo-masks and text objects necessary to comment,
annotate, and document the design. The system should perform such chores as
Justification of text and compaction of graphics objects. In addition the
System must help the designer with (or, to be more ambitious, solve) the

problem of interconnecting subcircuits together.
2.2.3 Support in the behavioral domain

In this domain the system must maintain a logical description of each
circuit and extract and maintain each circuit's electrical parameters for
simulation purposes. Simulation must be done on both the electrical and

logical levels of abstraction.
2.3 A coherent view of the design

For designers to do their work efficently and éorrect.ly they must have a
coherent and detailed conception of all aspects of .the design. Of course, it
is not possible to keep all the trivial details in mind at all times; the
system must help. It must have ‘a structural, physical and behavioral
representation of all the components of the system. And it must be able to

present them to the designer in a wniform, easy to manipulate way.

3. The design of a design system

A driving force behind the design of vds is the commitment to provide the
user with a consistent high-level model of the design proceSs. In order to

achieve this effect, several tools are brought to bear:

1. Device-independent graphical display
2. Simple efficient interaction with the design system
3. User extension and reconfiguration of the user interface

4, Hierarchical organization of both display and design process
3.1 Interactive design and device-independent graphics

An important means of attaining a consistent model of user interaction in
Vds is the use of device-independent input/output functions.! All input and
output operations in Vds are performed using primitives provided by the Gus
device-independent graphics package (5, 14]. For example, Gus provides the
capability needed for multiple viewports in which different graphical views of
the object can be presented (e.g. a "floorplan" view and a more detailed
view); additional viewports contain text, error messages, and menus describing
the current status of the systén and various keyboard bindings. These
viewports can of course be dynamically created, reconfigured, and destroyed as

is appropriate.

1. It is presently in vogue to consider dedicated VLSI Design Workstations
to be the state of the art in VLSI design systems. Nonetheless, it is the
feeling of the current authors that much or most of the VLSI design performed
in the next five years will continue to occur on timesharing systems using
shared-access graphics devices, because they are already in widespread use and
have a substantial software base; in such environments, device independence of
graphical display is indispensible.

In addition, Gus features like zoom and pan allow the user to "fly"
across the silicon surface, installing and relocating named subcircuits or
creating new ones, Such tasks as clipping, coordinate transformations,
antialiasing, and polygon fill are all handled by Gus in a uniform,
predictable fashion for all graphics devices.

Most important about the use of Gus, however, is its complete device-
independence: because all input and output occur through a single device-
independent subroutine library, the user méy switch from one type of display
device to another without any change in style of interaction. For example, if
a high-resolution color monitor is currently unavailable, VLSI design can be
performed at a standard low-resolution terminal. Checkplots no longer require
Special handling by a separate program; they are obtained by simply requesting
redisplay of the desired chip region, with a plotter or printer as the output
device. All graphics and text requests are handled on a "best try" basis,
using with .maximal efficiency whatever capabilities the display and input
hardware support. This has the effect of presenting the user with an
extremely uniform model of device interaction without concern for device

availability, reliability, or capability.
3.2 Style of user interaction

The interface between the user and the system is through a graphical VLSI
editor. This approach is taken for two reasons. First, most of the user's
time is spent editing graphic or text objects. Second, we want the user to
have a single mode of interacting with the system. There is no edit-mode
versus run-mode dichotomy; even in the editor there is only one mode. Since
the editor accepts command strings from the user, all functionality inherent

in the vds standard design function library is available to the user at all

- 10 -

times.
To facilitate easy and efficient communication with the system we have

incorporated the 'following principles into the design of the editor:

1. Single-keystroke commands: There is no "enter text" or "enter command"
mode, All keys either are commands or are inserted as text or graphics;
keys have labile definitions which can be changed by system or user
(described below).

2. Work spaces: Editing of objects is done in a workspace. There are many
workspaces current at any given time. Work spaces can be named and then
composed together into new workspaces. This can be done as a merging
process or as a hierarchical process (see next item).

3. "Feltboard" approach to composition of primitive objects: Creating
primitive objects is done by creating a "felt" object which can be
applied to the "feltboard" workspace currently in use, Another
workspace or feltboard can be treated as a felt object itself;
feltboard "circuits" can thus be composed hierarchically into more

complex objects.!

4, User-defined commands: In addition to the design functions provided in
the base system, new functions may be defined by the user. Such
functions can act on any level of the database; for example, the user

can add new design rules, new graphics functions, or new circuit-
defining routines.

5. User control over the user interface: The assigmment of various

Vdsf‘unctions to keyboard keys can be customized according to the user's

tastes, both to allow redefinition of the default key bindings and to
incorporate functions newly defined by the user.

3.3 Hierarchical organization of design and display

The vds VLSI design process is hierarchically organized, largely by

virtue of the semantic network database and the functionality it provides.
The virtual "feltboard" workspace seen by the user corresponds to a named

Space in Grasper. In each such space lives an arbitrary number of named nodes

1. Composition is simply a matter of installing indirect references into a
currently active workspace (feltboard), so that the workspaces remain
unchanged when they are used as components of other workspaces.

- 11 -

connected by labelled edges; each node represents an instance of either a
primitive silicon object, such as rectangles occurring at a certain mask
level, or else an instance of some camposed circuit (that is, a pointer to
another space). "Application" of a new "felt object" by the user corresponds
to creation of a new node in the current space. The spaces can be named and
then composed in turn to form larger named circuit objects. Instances of
these circuits can be parameterized for geometric operations such as rotation,
translation, and mirroring.

Grasper spaces are also used to provide multiple simul taneous orthogonal
partitions of the database. For example, the silicon mask layers form one
partition of the data, the circuit class (e.g. gate type, PLA style, etc.) of
the circuit objects forms another, and the geographic location of objects
forms a third. An important effect of this partitioning ‘scheme is that
relational information about currently available subcircuits is easily
obtained or changed by using subset operations provided by Grasper; for
example, the user can ask for (list or display) all objects in a specified
region, all objects in a certain mask layer, and so forth, or any boolean
cambination of these requests.

The graphical world of Vds is similarly hierarchically structured to
reflect the hierarchical structure of the design. Primitive silicon polygons
correspond to primitive polygonal graphical objects, and larger composed
circuits can be represented graphically either as unitary graphical objects
(e.g. a labelled box) or through detailed display of all their myriad
component parts. Associated with each graphical object may be several names
corresponding to different 1levels of abstraction: choice among these at
display time is based upon the level of abstraction currently requested for

the entire feltboard in a viewport. For example, an array of NAND gates might

- 12 -

be labeled "NAND" when viewed at from an intermediate level of (logical and
graphical) abstraction, but when the user zooms in for a closer look at the
circuit, the names may expand to "3-input NAND with limited driving
capability"; zooming up to a higher level, the user might find them part of a

single box named "Timing FSA".
4, Implementation of the design

Vds is implemented in CoinsLisp [3, 4], a highly structured and regular
dialect of LISP, There are several reasons for this choice of implementation

language:

1. Graphics support: CoinsLisp supports the Gus device-independent
graphics package primitives as CoinsLisp functions. This allows the
software writer to capitalize on the efficient and logically coherent
high-level graphics capability such a system provides and thus avoid
the overhead of designing, implementing, and maintaining a complete
graphics programming language or low-level graphics model of the VLSI
design process.

2. Extendability: Because CoinsLisp is an interpreted 1language with
dynamic binding, graphics and design functions can be changed or added
by either the V, system designer or the user at any time. This allows

composition of new graphics or VLSI design functions "on the fly" at
the time that the user determines their need.

3. Performance: Attention was paid to issues of efficiency and speed in
the design of the Vax/VMS implementation of CoinsLisp, so that
reasonable performance could be guaranteed. In fact, preliminary
informal benchmarking of the V, system indicates that its performance

using interpreted code is competitive with compiled C code performing
the same function at other installations (in the specific case

considered, parsing VLSI layouts in Caltech Intermediate Form! and
installing the resultant information into the database). Of course,
the Vds system itself can be compiled for an additional improvement in

execution speed.

1. CalTech Intermediate Form (CIF) is the standard portable low-level
representation language for VLSI devices.

L4

-13 -

4. Database support: Most languages require database structures and access
functions to be built up starting essentially from scratch; CoinsLisp,
however already contains embedded within it the Grasper
graph-processing language [9]. This provides the software writer with
coherent, optimized database support at a very high level (that of the
semantic network), freeing the software designer to consider issues
more germane to VLSI design.

5. Conclusions and future directions

The approach we have taken is to implement a simple consistent "toolbox"
of VLSI design functions in a single coherent, extendable environment.
Because the user is presented with a uniform customizable interaction protocol
without regard to features or limitations of specific hardware devices, Vis
can comfortably serve experts and novices alike: beginners need not spend most
of their time adjusting to inconsistencies among various piecemeal routines
and devices, while more experienced users can alter the design enviromment to
suit their taste.

Furthermore, an attempt has been made to support (perhaps enforce)
structured design techniques, by hierarchically organizing the design database
and then providing functions for graphical display, VLSI device composition,
and information gathering which make efficient use of this organization.

The process of VLSI design is an excellent example of an expert knowledge
demain; it is still the case that a small number of highly capable (and
well-paid!) wizards perform the poorly-understood design and verification
tasks. It is to be expected that techniques of artificial intelligence will
be brought to bear on this problem in the near future. The extendability of

vds is intended to allow rapid and reliable incorporation of this -expert

knowledge into the design system itself as that knowledge becomes available.

In the mean time, vds allows the results of the device design process to be

verified using the conventional (if somewhat brute-force) methods of low-level

- -

circuit simulation.

Finally, the trend towards implementing VLSI design systems on personal
workstation hardware merits some discussion. Problems of graphics device
availability and compatibility will not simply disappear once workstations are
put into use; since a variety of graphics devices can be expected to be found
on workstation networks of the future, device-independent graphics will still
be an asset to the VLSI designer. Similarly, local processing power and
bitmapped display devices are not a substitute for well-structured, extendable
design systems. Systems such as vds will thus be prime candidates for
incorporation into personal VLSI design workstations, and implementation of a

Vds-based VLSI design station is currently under study.

-15 =

References

1. Batali, J., Hartheimer, A. The Design Procedure Language
Manual. Massachusetts Institute of Technology AI Lab Memo 598 /
VLSI Memo 80-31, 1980.

2. Clarke, L., Graham, R., and Wileden, J. Thoughts on the design
phase of an integrated software development enviroment.
Proceedings of the Fourteenth Hawaii Intl. Conf. on Systems
Science, Honolulu, Hawaii. January 1981.

3. Cromarty, A.‘ The CoinsLisp Reference Manual. Department of
Computer & Information Science, University of Massachusetts at
Amherst, 1981.

§. Cromarty, A. CoinsLisp: A highly regular functional
programming language. (In preparation for submission for
publication.)

5. Cromarty, A., and Sutton, R. Gus: A portable device-
independent graphics kernel. (In preparation for submission for
publication.)

6. Fairbairn, D., and Rowson, J. ICARUS: An interactive
integrated circuit layout program. Proceedings of the Fifteenth
ACM/IEEE Design Automation Conference, Las Vegas, NV, June 1978.
pp. 188-192, 1978.

7. Hon, R. W. and Sequin, C. H., A Guide to LSI Implementation
(second edition), SSL-79-7 January 1980. Xerox Palo Alto
Research, Palo Alto, CA, 1980.

8. Leiserson, C. E., and Pinter, R, Y. Optimal Placement for
River Routing. In: VLSI Systems and Computations, Proceedings of
the Carnegie-Mellon Universtiy Conference on VLSI Systems and
Computations, October 19-21, 1981, pp. 126-142. Computer -Science
Press, Inc., Rockville, MD, 1981.

9. Lowrance, J. Grasper 1.0 Reference Manual. Technical Report
78-20, Department of Computer & Information Science, University of
Massachusetts at Amherst, 1978.

10. Mead, C., and Conway, L. Introduction to VLSI Systems.
Addison-Wesley Publishing Co., Reading, MA, 1980.

11. Qusterhout, J. K. Caesar: An Interactive Editor for VLSI
Layouts. VLSI Design, 2:34-38, 1981.

12. Pinter, R. Y. Optimal Routing in Rectilinear (hannels. 1In:
VLSI Systems and Computations, Proceedings of the Carnegie-Mellon
Universtiy Conference on VLSI Systems and Computations, October
19-21, 1981, pp. 160-177. Computer Science Press, Inc., Rockville,
MD.

- 16 -

13. Rivest, R. L., Baratz, A. E., and Miller, G. Provably good
channel routing algorithms. In: VLSI Systems and Computations,
Proceedings of the Carnegie-Mellon Universtiy Conference on VLSI
Systems and Computations, October 19-21, 1981, pp. 153-159.
Computer Science Press, Inc., Rockville, MD.

14, Sutton, R., and Cromarty, A. The Gus Reference Manual.
Technical Report, Department of Computer & Information Science,
University of Massachusetts at Amherst, 1981.

15. Weste, N. MULGA — An interactive symbolic layout system for
the design of integrated circuits. Bell System Tech. J.
60:823-857, 1981.

