SEMANTTCS OF RESQURCE CONTROL MECHANTSMS

Krithivasan Ramamritham
Department of Computer and Information Science
University of Massachusetts
Amherst MA 01003

COINS Technical Report 81- 39
December 1981

ABSTRACT

We have introduced a model for expressing the behavior of processes that
control shared resource access in concurrent systems. A shared resource
is viewed as an abstract data type consisting of the definition of the
resource and the operations on it with additional synchronization
constraints. The execution of an operation goes through four phases,
namely the request, initiation, active and termination phases. A formal
framework is provided for delimiting these phases for a given operation,
for specifying the execution context of these phases and for stating the
temporal ordering of phases of concurrent operations. Usefulness of the
model is illustrated by considering resource controller tasks in Ada.
Specification and verification of resource controllers 1is examined in
light of this model.

SPECIAL SYMBOLS

The greek symbol v. To be read "for all".
The greek symbol 3. To be read "there exists".

The greek symbol €. To be read "is an element of"

The symbol for '"not".

1. INTRODUCTION

The ever-decreasing cost of hardware has allowed computer users to
possess resources dedicated to their individual needs. It is no longer
necessary for users to share a single expensive resource. Nevertheless,
the nature of certain types of computing such as those found in airline
reservation systems and automated offices makes it necessary for

resources such as files and queues to be shared among multiple users.

Thus there is a need for protection and synchronization mechanisms
to ensure the correct functioning of shared resources. To provide these
mechanisms, an answer to the question, "Who can access ‘the resource,
when and how?" is essential. Protection mechanisms are responsible for
the who and how of shared resource access whereas synchronization
mechanisms are responsible for when resource accesses take place. Here

we confine our attention to synchronization issues.

There are essentially two methods to -ensure proper resource

sharing:

1. All processes are jointly responsible for the consistency
of the shared resources, as in [Reed79]. Typically, a
‘process interacts with the others -and accesses <a -‘shared
resource only when it is safe to do so.

2. For every shared resource, a specific program ‘module is
‘made responsible for managing that resource. Individual
processes interact only through these modules, ‘as in
[BrinchHansen78]. While 1limiting the interactions, this
model contributes to the modularity of the system,

This paper is devoted to synchronization using the latter method.

"A resource can be considered to be an abstract data type consisting
of the resource definition and the access operations on the resource

{Guttag77]. A shared resource has the added restriction that the

Page 2

operations be executed such that the shared resource is always in a
consistent state. To ensure this, use of a shared resource is
controlled by employing mechanisms such as monitors [HoareTi4].
Serializers [Atkinson79], sentinels (Keller78] and the Ada tasking
facility employing the rendezvous mechanism [DoD80] evolved from the
monitor mechanism. In this paper, we refer to the above mechanisms as

resource controllers. The monitor is a passive module in that user

processes themselves execute the access operations. In the 1later
mechanisms, an active process is associated with the shared resource and
it is this process that executes the operations on the caller's behalf.
Many of the differences between the mechanisms arise due to the
restrictions imposed by them on the access operations, over and -above
those mandated by the resource. For example, in monitors all access
operations are executed in mutual exclusion even though this is not
always necessary. Some of these restrictions have been introduced to
simplify the mechanisms while others are necessitated by the underlying
execution model. In 1light of the differences, the relative merits of
the proposed mechanisms is not always obvious due to the absence of an
appropriate model for resdurce sharing. Here we attempt to remedy this
situation by proposing a formal model for shared resources. It
facilitates a comparison of the various resource control mechanisms by
abstracting out details not pertinent to resource control.

In the model that we propose, an access operation goes through a
number of phases. They are the request phase, the initiation phase, the
active phase and the termination phase. Differences between resource
control mechanisms appear in terms of (1) the temporal ordering of'the
phases of operations when users make concurrent requests, and (2) the

execution context of the phases, i.e., whether the process which makes

Page 3

the request, the resource controller, or a third process executes a
phase. We show that for a particular mechanism, resolution of these two
issues leads to its precise definition. We have also explored
specification and verification of resource controllers in light of the
proposed model.

To state the properties of a particular resource control mechanism
and reason about the interactions of concurrent processes through
resource sharing, properties of a resource controller throughout its
execution should be specified. Thus standard axiomatic techniques will
not suffice. Techniques based on temporal 1logic [Pnueli79], on the
other hand, 1lend themselves to specifying individual properties of
interest without specifying the complete behaQior. Due to the ability
of temporal logic to deal with invariant behavior (through the "always"
operator), with eventual behavior (through the "evéntually" operator),
and with ordering relationships (through the "until" operator), we find
temporal logic to be a natural formalism to deal with resource control
mechanisms.

Tﬁe proposed model for shared resource access 1is explicated in
Section two. The model is first informally defined and then formalized
using temporal logic as thg tool. 1In Section three, Ada's rendezvous
mechanism is examined in the context of our model. This consideration
leads us to the formal definition of the behavior of resource controller
tasks in Ada. 1In Sections four and five, specification and verification
of resource controllers is explored. In particular, information that
needs to be specified and a method for the verification of correctness
of extant resource controllers with respect to these specifications are
examined. In the final Section, previous approaches to the issues under
discussion here along with the contributions of this approach are

outlined.

Page 1

2. A MODEL FOR RESOURCE SHARING IN CONCURRENT SYSTEMS

Informal definition of the model

A shared resource can be considered to be an abstract data type

[GuttagT78] compriséd of the following:

- the resource being shared,

- the operations used to access the resource, and

- the associated resource controller.
We refer to each distinct type of access operation as an operation
class. Each instance of a class is referred to as an operation in that
class. Thus, for example, two different Read accesses to a shared
database will correspond to two distinct read operations. All accesses
to a shared resource are through the execution of one of the operations
defined on the resource. Operations on a resource can be executed only
if the controller for that resource permits their execution. Execution
of an operation goes through four distinct phases. They are:

1. Request phase,

2. Initiation phase,

3. Active phase, and

4, Termination phase.
‘They occur according to the above sequence. An informal definition of
the phases 1is presented now. A precise definition follows in ﬁhe next

section.

Concurrent processes access a shared resource by requesting the
execution of one of the access operations. When the controller for that
resource will permit execution depends on the state of the shared

resource, priority associated with the request, and other criteria.

Page 5

These determine the necessary conditions for executing an operation.

The request phase for an operation begins when a resource
controller recognizes that a user needs to execute that operation. The
request phase ends when the controller's internal data structures

reflect the fact that a request is waiting for service.

The initiation phase begins when and if necessary conditions hold
and the resource controller decides to permit the execution of the
operation. At the end of the initiation phase, the resource
controller's internal data structures reflect the fact that permission
has been granted for the execution of the operation. Thus the term

"initiation" is equivalent to "granting of permission".

The active phase begins when the initiation phase ends. Tt is in
this phase that the resource access defined by the operation takes

place. The active phase ends when access is complete.

The termination phase begins when the active phase ends. At the
end of the termination phase the resource controller's internal data

structures reflect the fact that the operation has completed execution,

In order to exemplify this model and for use in further discussion,
we wuse a standard resource control problem, viz., Readers and Writers
[Courtois71]. We use the following veréion of the problem: "Read" and
"Write" are the two classes of access operations defined on a shared
data structure. Read operations do not modify the state of the data
‘while write operations normally do. Write requests have priority over

read requests.

Page 6

Now we present the skeletal code for a controller of the data. The
variable #active reads (#active writes) is initially 0 and keeps count
of active read (write) operations. Read queue (write_queue) is a queue
for waiting read (write) requests and is initially empty.

Definition of operation READ:

—-- the controller recognizes a user's need to read
RRP: ENQUEUE "req" INTO read_queue;

WHEN (EMPT Y(write queue) AND #active writes=0) DO
RIP: BEGIN
DEQUEUE "req" FROM read_queue;
#active reads := #active reads + 13
END;
RAP: -- perform read access

RTP: #active reads := #active _reads - 13

Definition of operation WRITE:

—-— the controller recognizes a user's need to write
WRP: ENQUEUE "req" INTO write_ queue;

WHEN (#active reads=0 AND #activq_writes:O) DO

WIP: BEGIN
DEQUEUE "req" FROM write_queue;
factive writes := factive writes + 13

END;
WAP: -- perform write access
WIP: #active writes := #active writes - 13

Phases of an access operation can be associated with statements in
the code for the controller of the operation. For example, in the code
above, RRP (WRP) stands for Read (Write) Request Phase, RIP (WIP) stands
for the Read (Write) Initiation Phase, RAP (WAP) stands for the Read
(Write) Active Phase, and RTP (WTP) stands for the Read (Write)
Termination Phase. The conditions following the WHEN clause in the code

for read and write are the necessary conditions for read and write

i1}

Page 7

operations respectively.

For the moment let us not be concerned with necessary details such
as
- which process executes each of the phases,
~ control of access to the variables used for resource control,
- which of the waiting reads and writes are initiated, etc.
We will subsequently attend to these details. Here it suffices to note
that a typical access operation goes through the four phases mentioned

earlier.

Formal definition of the model

In order to formally define the model, we introduce some notation.
piop
will be used to refer to phase p of operation op. Thus,
active phaseja
refers to the active phase of operation a. Earlier we noted that the
phases that occur during the execution of an operation in some class can
be associated with statements in the resource controller code for that

class. To reason about the execution of these statements, the following

predicates will be utilized.

Predicates associated with executable statements:

Given a statement S that is executed by some process,
at(s) IFF control of that process is at the beginning of S.
in(s) IFF control is within S.

after(S) IFF control is immediately following S. Given a
statement sequence S;T, after(S) <=> at(T)

These three predicates are mutually exclusive and they become true in

Page 8

the above order. We do not make any assumptions about statement 5. For
instance, S could be a composite of statements such as a BEGIN..END
construct. The formal definition of the language construct
corresponding to S would specify how the component statements are
affected by the execution of S, However, the following can be said
regarding the flow of control through any executable statement S.
Assuming that the underlying scheduler of processes is fair, if control
is at the beginning of a statement then control will eventually be
within the statement, and if the statement is known to terminate, then

control will eventualiy reach the end of the statement.

Now we can state
at(active_phaseia)
to assert that control is at the beginning of a's active phase. To
specify the relationship between phases, we need a formalism through
which it is possible to state the behavior of a resource controller
throughout its execution. We find temporal logic to be appropriate for

this purpose.

Temporal logic:

Temporal logic was introduced by Pnueli to reason about the
invariant and time-dependent properties of concurrent programs
[(Pnueli79]. Concurrency is modeled by a nondeterministic interleaving
of computations of individual processes. Each computation changes the
system state consisting of values assigned to program variables and the
instruction pointer of each of the processes. Using temporal logic
operators, we can specify and reason about the properties of the
sequence of States that results from the execution of the concurrent

processes. The truth value of P at some point j in the execution

Page 9

sequence is denoted by Pj. We employ three primitive temporal
operators. Of them [] and <> are unary operators whereas UNTIL is a
binary operator. Since temporal logic is an extension of propositional
calculus, a temporal logic statement can involve the usual logical
operators V (or), & (and), ~ (not) and => (implication) besides the

temporal operators.

The operator [] is pronounced "always". []P states that P is true
now and will remain true throughout the future.
(CIP)i IFF ¥3>i, Pj.
where current state is the ith element in the state sequence.
The operator <> is pronounced "eventually" and is the dual of P in
that
(<>PYiOIFF 35>1, Pj.
Thus, <3P if P is true now or will be true sometime in the future.
The operator UNTIL has the following interpretation:
(P UNTIL Q)i IFF ¥j>i, ([¥k i<k<j, “Qk] => Pj).
Thus, as long as Q is false, P will be true. In other words, P remains

true until Q becomes true.

An invariant property I can now be specified as []T. A requirement
such as "every request will be serviced" can be specified as
[J{"request for service exists" => <>'"request serviced"}.
The UNTIL operator is typically used for expressing temporal orderings.
For example, the fact that a service can not be done until there is a
request for that service can be stated as

“("request serviced") UNTIL ("request for service exists")

Page 10

In addition to these three primitive operators, we have a derived
operator to state that a predicate P can become true only after
predicate Q does.

(P ONLYAFTER Q) IFF ("P UNTIL Q).

Temporal ordering of phases in an operation:

The four phases associated with an operation "a" are totally

ordered in time as follows:

at(init phasela) ONLYAFTER after(req_phaseia)

at(active phase}a) ONLYAFTER after(init_phaseia)

at(term phase}a) ONLYAFTER after(active phaseia)
The first statement reflects the possibility of a request having to wait
before initiation. In the last two statements, we have used ONLYAFTER
instead of IFF since the active and termination phases could be executed
by a process other than the controller. The above statements, in
addition to the fact that

after(pia) ONLYAFTER at(pia)
for all phases p of operation a, definé the sequential ordering of the

phases of a.

Predicates associated with the phases of an operation:

When a request is present for operation a, the predicate req(a) is
true. The behavior of this predicate is expressed through the following
axioms.
req(a) ONLYAFTER at(req_phase}a)
after(req_phasela) => {req(a) UNTIL [at(init_phasela) & req(a)l}
after(init_phasela) => [17req(a)

Through these axioms we have stated the following:

A request for an operation can be said to be present only after

Page 11

the request phase for that operation begins.

req(a) is true at the end of the request phase and remains true
until after the initiation phase has begun.

A request ceases to exist at the end of the initiation phase.

Thus it is not possible to determine the truth of req(a) when control is
within the request phase or the initiation phase. This is intentional
and is necessitated by the manner in which resource controllers handle
requests.
The predicate init(a) is true if and only if control is at the
beginning of the initiation phase for a.
init(a) <=> at(init_phase}a)
Also, an initiation phase should not begin unless the appropriate
request is present. Therefore the following should hold at all times.
init(a) => req(a)
The predicate active(a) is true when the access actually takes
place.
active(a) ONLYAFTER at(active phase}a)
at(active phase{a) => [active(a) UNTIL after(active phaseia)]
after(active_phaseia) =>v[]"active(a)
The predicate term(a) is true if and only if control is at the end
of the termination phase.
term(a) <=> after(term_phase}a)
To summarize,
req(a) is true when operation a is’waiting to be initiated.
init(a) is true when permission is granted for executing a.
active(a) is true»when the access defined by a takes place.
term(a) is true when termination phase is completed. -

The reader would have noticed that the model does not specify the

Page 12

process which executes each phase. If the controller is an active
process, as in Ada, then not all phases need be executed by the resource
controller itself. By itself not executing a phase, the resource
controller becomes available for the execution of phases of other
operations. In particular, by itself not executing the active phase of
operations, the controller makes concurrent accesses possible. In the
dontext of resource sharing, the process that executes a phase could be
the process requesting access to the resource, the resource controller,
or a third process activated by the controller., In addition, the model
does not specify the overall ordering of the phases of operations when
users make requests concurrently. These two factors are functions of
the nature of the shared resource, the access operations defined on the
resource and the necessary conditions for their execution. In practice,
however, the mechanism chosen for implementing resource control imposes
further restrictions on the execution of the phases. For instance, in

monitors [Hoare74], all accesses take place in mutual exclusion.

Our purpose behind modeling shared resource access is twofold:
1. Provide an abstract view of shared resource control.

2. Utilize the model to specify and verify the behavior of
resource control mechanisms,

In order to achieve (2) for a particular mechanism, one has to delimit
the phases of access operations performed by the resource control
mechanism as well as define the relationship between the phases of
different operations. Delimiting the bhases basically involves
identifying when at(pia) and after(pia) hold for every phase p of every
access operation a. That in turn will define when the predicates req,
init, active and term will be true. Now we introduce some terminology

which will aid in defining the relationship between phases, and between

Page 13
phases and processes that execute the phases.

Execution context of the phases: 1In order to specify the processes

that exexute the phases of an operation, we make use of the following

function:

execution context: SOC x SPH -> SPR

where
SOC = Set of Operation Classes,
SPH = {request_phase, initiation_phase,
active phase, termination_phase}
SPR = {calling_process, controller_process, temporarx_process}.

execution context(OPC,p) = pr
if and only if
phase p of operations in class OPC are executed by process pr.
Thus if the active phase of write operations is executed by the

controller of reads and writes then

execution context(write,active phase)=controller_process

Ordering relationships between phases:

We say that a phase p executed by a controller cannot be
interrupted if from the beginning to the end of execution of phase p,
control cannot reach the beginning of any other phase executed by the
same controller,

at(p) => ¥pi1#p, at(p1) ONLYAFTER after(p)
Extending this to a sequence of phases, we say that a sequence of phases
(p1,p2,..,pn) cannot be interrupted if from the beginning of execution
of phase p1 to the end of execution of pn, control cannot reach the
beginning of any phase (executed by the same controller) not in the
sequence. Formally,

(p1,p2,..,pn) cannot be interrupted

IFF

Page 14

¥Jj 1<j<n, ¥p # pj,
at(p1) => [at(p) ONLYAFTER after(pn)]

It should be obvious to the reader that any phase executed by the
resource controller process should not be interrupted. Recall that our
definition of interruption relates only to phases executed by a resource
controller. Thus the fact that a phase p cannot be interrupted does not
preclude the interruption of p to make the processor available for
another process, in which case, execution of the resource controller
process will subsequently continue from the point where such an
interruption took place.

The main function of a resource contrdller is to permit accesses
when the necessary conditions are true. In other words, the resource
controller is responsible for the initiation of access operations and
hence initiation phases of operations are executed by the resource
controller process itself. Thus we have,

¥OPC, execution context(OPC,initiation_phase)=controller_ process.

Initiation_phase cannot be interrupted.

Our model presents a framework utilizing which the behavior of
resource control mechanisms can be defined. 1In particular, it provides
means for delimiting the phases that constitute the operations, for
specifying the execution context of the phases and stating the ordering
relationships between phases. As an example of its aﬁplicatiou we will

now look at resource controller tasks in Ada.

Page 15

3. RESOURCE CONTROLLER TASKS IN ADA

In Ada, tasks are the program units for concurrent programming. An
entry definition within a task can be thought of as an operation on the
resource controlled by the task., A call on an entry within a task can
be executed only when there is a ready ACCEPT statement corresponding to
that entry. The call is ACCEPTed when a rendezvous occurs. A
rendezvous consists of executing statements between a DO and an END
fpllowing the ACCEPT statement. Thus it is during a rendezvous for an
entry that the corresponding access operation is executed. (For details

of Ada's tasking facility see [DoD801].)

As in monitors, Ada has a built in mutual exclusion mechanism for
performing a rendezvous, Thus concurrent executions of access
operations, such as read in the readers and writers problem, have to be
engineered by programming the operations as procedures with appropriate
entry calls before and after the code for 'the operation. Unlike
monitors, resource controllers in Ada are active entities in that the
resource controller process itself performs the accesses. Skeletal code

for the read-write controller appears on the following page.

The resource being accessed, the oberations on it and the
controller are defined within a package. A call on the procedure Write
translates into a call on the entry corresponding to Write whereas a
call on the procedure Read translates into two entry calls with the
actual access occurring between the calls, (This is necessitated by the
restrictions placed on the specifications of entries in Ada.) Henceforth
we will say that "a write operation is executed through an entry call"

and that "a read operation is executed through a procedure call".

PACKAGE rw IS
[specification of resourcel
PROCEDURE read [arguments];
PROCEDURE write [arguments];
END rw;

PACKAGE BODY rw IS

TASK rw_controller IS
ENTRY start-read;
ENTRY end-read;
ENTRY write [arguments];
END rw_controller;

TASK BODY rw_controller IS
#active reads, ffactive writes : INTEGER := O3

BEGIN
LOOP
SELECT
WHEN write'count=0 =>
ACCEPT start-read;
DO
#active reads := ffactive reads + 1
END
OR
ACCEPT end-read;
DO
factive reads := f#factive_reads - 1;
END
OR
WHEN #active reads=0 =>
ACCEPT write DO
—- perform write operation
END;
END SELECT;
END LOOP;
END rw_controller;

PROCEDURE read [arguments] IS

BEGIN
rw_controller.start-read;
-- perform read operation
rw_controller.end-read;

END;

PROCEDURE write [arguments] IS
BEGIN

rw_controller.write [arguments];
END;

END rw;

Page 16

Page 17

Recall our use of #active writes to keep count of the number of
active write operations. From the above code we note that due to the
mutual exclusion of the rendezvous mechanism,
[1 (0<tactive writes<1)

and that except when a rendezvous for a write operation is taking place,
#factive writes = 0.

Hence the necessary conditions for read and write have been simplified

as shown. Also, changes to #active writes have been eliminated.

For each entry within a task, a distinct queue is used for entry
calls that are waiting to be accepted. Thus the elements in the queues
correspond to the processes that are waiting for rendezvous to take
place. When an entry call (in other words, a user's expression of need
for access) is recognized, it is placed in the appropriate queue. Thus
the request phase is kept hidden from the user, i.e., in the code for a
controller task there are no statements ‘corresponding to the request
phase. The attribute "count" of an entry can be used to determine the
number of waiting entry calls. Thus

write'COUNT

keeps count of the number of waiting write requests.

Semantics of Resource Controller Tasks in Ada

Providing precise semantics for resource controller tasks involves
delimiting the phases of the operations performed by a task as well as
defining the relationships among the phases of different operations.

Towards this end we distinguish between the following:

1. An access operation executed through an entry call; this

Page 18

permits the mutual exclusion of the operation with the rest

of the operations.
2. An access operation executed through a procedure call; this
permits concurrent execution of -operations.
To be concrete, let us assume a class of operations C. Cq is the queue
for waiting calls on C. If operations in class C can execute
concurrently, then the code for C would be implemented as a procedure
and will have the following form.
PROCEDURE C
BEGIN
start-C;
SA: <perform operation C>
stop-C;
END;

Within the task body, the code for entries start-C and stop-C will be
defined as follows:

WHEN <necessary conditions for C> DO
ACCEPT start-C
DO
SI: <modify internal variables to reflect initiation>
END;
ACCEPT stop-C
DO
ST: <modify internal variables to reflect termination>
END;
When control in an Ada task reaches the statement "ACCEPT start-C", it
remains there until an entry call on start-C occurs. (Whether control
will eventually be within the ACCEPT statment, once the c¢call occurs,
depends on whether the statement is within a SELECT clause or not. This
issue is considered later.) Once control is within the ACCEPT statement,
the first element in the corresponding queue is removed and the
statements following the ACCEPT statement are executed. Based on this,

the behavior of the resource controller task can be given as follows

(statement labels in the code above are utilized here).

Page 19

Let S stand for the statement
ACCEPT start-C
and Cqli] indicate the i-th element in the internal queue for entry
start-C. Then,
at(s) => [at(S) UNTIL C'count>0]
{at(S) & Cql1]=c}
{t:q(c) &
<>in(8) => <Oinit(e) &
after(S) ONLYAFTER init(c) &
[1{after(S) => “req(ec)}}
after(SI) <=> after(init_phaseic)
at(SA) <=> at(active_phaseic)
after(SA) <=> after(active_phaseic)
at(ST) <=> at(term_phaseic)

after(ST) <=> after(term_phaseic)

These define the phases of an operation implemented as a procedure. The
execution context of these phases is specified byA the following
statements.
execution context(C,request_phase)=controller_process
execution_ | context(C,init phase) controller_ process
execution . | context(C,active _phase)=calling_process
execut1on_context(c term_phase) controller process
The following statements define the constraints on the executions of
these phases.
Request phase cannot be interrupted.
Initiation phase cannot be interrupted.
Termination phase cannot be interrupted.
The first statement is necessary since it is the resource controller
task that enqueues the requests. The 1last two statements become

necessary given that the initiation and termination phases are executed

by the resource controller process. The orderings of phases imposed by

Page 20
an Ada resource controller task conforms with the above constraints.

Now we consider the case when an operation is executed "through an

entry call, In this case, the code for the operation takes the
following form:

WHEN <necessary conditions for C> DO
ACCEPT C
DO
SI: <modify internal variables to reflect initiation>
SA: <perform operation>;
END;
ST: <modify internal variables to reflect termination>
END;

Here again, let S stand for the statement
ACCEPT start-C

and Cqli] indicate the i-th element in the internal queue for C. Then,
at(3) => [at(S) UNTIL C'count>0]

{at(S) & Cql1]=c}
=>
{req(c) &
after(S) ONLYAFTER init(e) &
<>in(8) => <Oinit(e) &
[1{after(S) => “req(e)}}
after(SI) <=> after(init_phaseic)
<=> at(SA) <=> at(active phaseic)

after(SA) <
<

> after(active_phaseic)
> at(ST) <=> at(term_phaseic)

after(ST) <=> after(term_phaseic)

These define the phases of an operation executed as an entry. The
execution context of these phases is specified by the following

statements.

execution_context(C,request_phase)=controller_process
execution context(C,init phase)=controller_process
execution_context(C,active phase)=controller_process
execution_context(C,term phase)=controller_process

The following statements define the constraints on the executions of

Page 21

these phases.
Request phase cannot be interrupted.
The sequence {initiation phase,active phase}

cannot be interrupted.
Termination phase cannot be interrupted.

Thus, this essentially differs from the first case in the
uninterruptibility of the active phase which in turn leads to the mutual

exclusion of execution of operations.

In the case of Ada, a process accessing a resource through an entry
call waits until the rendezvous is complete, after which it proceeds
with its execution. Hence the calling task can execute concurrently
with the termination phase of the called operation. Thus, if R is the
satement calling operation a,

after(R) ONLYAFTER after(active phase)

[J{after(active phaseja) => after(R)}
On the other hand, the following is true when the access is through a
procedure call.

after(R) ONLYAFTER after(term phase}a)

[l{after(term_phaseia) => after(R)}
Here the calling task can continue execution only after the termination

phase is completed.

Due to the sequential nature of the resource controller, the
initiation phases of all operations is totally ordered. -An important
aspect of resource controller behavior concerns the choice made in
initiating one request from among those that have satisfied their
necessary conditions. In Ada, this manifests itself in terms of the
choice made among open SELECT alternatives which have a waiting access

request. According to [DoD80] this choice is arbitrary, which in effect

Page 22

implies that nothing can be said regarding the response of a reéource
controller task to access requests. We believe that this 1lack of
precise definition of the SELECT statement makes it impossible to verify
properties such as termination of access operations, and hence, the
progress of tasks. However, in [Ichbiah791, two possible
implementations of the SELECT statement are described. Of them, the
"order of arrival method" is amenable to a semantic definition.
According to this method,. |

Among the waiting entry calls, that one whose guard is true
and which was the earliest to arrive, is selected.

This satisfies the following property.
¥e, [1<necessary-condition(e) => <init(e)

i.e., if an operation's necessary conditions (for initiation) become
true repeatedly, then it will be eventually initiated. This is formally
proved in [Ramamritham81b]. Intuitively,. since the oldest waiting
request is initiated when its necessary conditions are true, if not
already initiated, a waiting operation will eventually become the oldest
waiting request. Due to 1its necessary conditions becoming true
infinitely often, i.e., repeatedly, the oldest waiting request will
eventually have its necessary conditions satisfied when it will be
initiated. (The assumption underlying this reasoning is that the truth
value of necessary conditions does not change except due to some
activity within the resource controller task. This may not always be
true 1if necessary conditions involve global variables, in which case,
even such a fairness is not satisfiable.) Thus, if Cg is the guard for
an ACCEPT statement S involving entry C, then by the order of arrival
method,

[1<Cg => ©in(S)

Page 23

Note that if S is not within a SELECT statement, no such
restrictions apply. In that case if the scheduler of tasks is fair,
then

{at(S) & C'count>0} => <in(S)

To summarize our discussion of resource control tasks in Ada,
accesses to a resource encapsulated in a package is through procedure
calls or entry calls, the former being appropriate for concurrent
accesses and the latter for mutually exclusive accesses. In both cases,
we specified when each phase begins and ends, which process executes a
phase and the constraints on the execution of phases. The last piece of
information in turn determines the allowable orderings of executions of
the phases. It was pointed out that the definition (or more correctly,
the lack of it) of Ada's SELECT statement made the analysis of

"liveness" properties impossible.

Page 24

4, SPECIFICATION OF RESOURCE CONTROLLER PROBELEMS

We mentioned earlier that most resource controller mechanisms
restrict the execution of differeﬁt phases over and above that required
by the problem. How does one determine what the restrictions imposed by
a problem are? To answer this question, we need to be able to deal with
the specifications for a resource control problem. Our model of
resource control gives us a handle on the issue of specifications. Note
that out of the four phases, only the initiation phase is constrained to
begin only after requisite conditions are met. After initiation, active
and termination phases follow unhindered. In order to derive the
constraints, specifications for a resource control problem should
provide answérs to the following questiqns.

1) How do the request, initiation, active,iand termination
phases of an operation modify the state of the system?

2) What are the invariant constraints on the resource?

3) What are the necessary conditions for initiating operations?

4) In what order are requests to be initiated?

Answer to (1) can take thg form: If phase p of operation a is

executed in exclusion, then for a variable v,

{at(pia) & v=initial¥alue}

F;{after(pla) => v=final¥alue}
Based on the answer to (1), those phases that change the state of a
variable should be executed in exclusion. Sometimes it may be necessary
to explicitly state which phases are to exclude one another, as in the
case of active phases of write operations.

As regards (2), if a predicate p is an invariant of a resource,
then it can be specified as [lp.

Answer to (3) can be expressed as

[1{init(op) => condition}

Page 25

Thus when the operation "op" is initiated, "condition" is required to be
true. Some of the conditions on initiating operations arise from
considerations such as invariant constraints on the resource, mutual
exclusion, priority, ete. As we show in the next section, such implied
conditions are derivable from the specifications. Thus the answer to
(3) need only involve explicit conditions that need hold when an
operation is initiated.

Answer to (U4) can take the following forms:

- specification of permitted sequences of operations, for instance

through path expressions [Habermann75].
- specification of priority for access operations.

- specification of fairness requirements [Pnueli801].

These can be utilized to order initiations.

In [Ramamritham81al, a high-level language is presented in which
answers to the above questions can be expressed. Using that language,
the specification for the Readers and Writers problem can be given as
follows. Formal meanings of these statements appear in the next
section.

EXCLUSION
Write EXCLUDES Read
Write EXCLUDES Write

PRIORITY
Write > Read

FAIRNESS
[]1 {necessary-condition(w) => <init(w)}
[Inecessary-condition(r) => <init(r)
where r is a read operation and w is a write operation. The fairness
required is that a write request that has satisfied its necessary
conditions should be eventually initiated. On the other hand, a read

request need be initiated only if its necessary condition always remains

true. This is due to the priority given to write requests.

Page 26

5. VERIFICATION OF RESOURCE CONTROLLER TASKS

We saw earlier that a resource controller decides when an access
operation should be initiated and that once an operation has been
initiated, the active and termination phases follow. Thus any control
over resource access should be exercised at the time of initiation. 1In
other words, prior to initiation it should be ascertained that the
execution of an access operation will conform to the specifications.
Verificatipn involves performing the following steps:

1) Once the necessary conditions for each access operation have
been determined from relevant specifications, and the
conditions imposed by the resource controller are determined
from the code, the following statement should be verified.

(necessary conditions imposed by the resource controller)
?;ecessary conditions determined from the specifications)

2) Verifj that the fairness specified is adhered to.

Here we shall only informally show how steps (1) and (2) can be carried
out. First we indicate how the high-level specifications for the

Readers and Writers problem can be transformed into the necessary

conditions for the read and write operations.

The semantics of the statement
Read EXCLUDE Write
is
[1 ~ {active(r) & active(w)}
for all read operations r and write operations w. To translate this
into necessary conditions for read and write operations, we now
introduce a theorem (proved in [Ramamritham81bl).

Yop140PC1, [1{init(op1) => “Jop240PC2, active(op2)} &
¥op24é0PCc2, [1{init(op2) => ~“Jop140PC1, active(op1)}

=>

Page 27

Yop140PC1, Yop24(0OPC2,
[1 ™ {active(op1) & active(op2)}

Typically, counters are employed to keep count of the number of active
operations. When an operation is active, the counter of the
corresponding class of operations is positive. Thus,
Ir{Read, active(r) => #active reads>0
Note that the converse need not be true. From the above statement,
#factive reads=0 => “Ir £ Read, active(r)
and hence, when a counter is zero, we infer that there are no active
operations in the corresponding class. Thus, based on this theorem, the
mutual exclusion of reads and writes translates to the following
necessary condition.
¥r4Read, [1{init(r) => #active writes=0}
YwiWrite,[1{init(w) => #active reads=0}
The semantics of the priority specification transforms writer's
priority over readers into
¥r{Read, VwéWrite,
[l{req(r) & req(w)
Tr1t(r) ONLYAFTER init(w)
The following theorem (also proved in [Ramamritham81bl]) aids in the
translation of priority specifications into necessary conditions.
Vop140PC1, ¥op240PC2, [1{init(op1) => “req(op2)}
=>
¥op140PC1, ¥op240PC2, [1{req(op1) & req(op2)
=§nit(op1) ONLYAFTER init(op2)}
Typically, resource controllers employ queues for waiting requests.
Hence,

Jop€OPC, req(op) => OPC'count>0

Thus the priority specification results in the following necessary

Page 28

condition for a read operation r.

¥riRead, [1{init(r) => write'count=0}

The overall necessary conditions for the readers writers problem is
obtained by conjuncting the constraints derived from the specifications.
It is given by

¥r4Read, [1{init(r) => (#active writes=0 & Write'count=0)1}
VulWrite, [1{init(w) => (#active writes=0 & #active reads=0)}
The fact that these necessary conditions are satisfed by the resource
controller task "rw controller" can be observed by examination of the
code. It can be formally proved by deriving the conditions that hold

when control is within an ACCEPT statement.

We now briefly look at the verification of fairness. The
specification requires that once a write operation has satisfied its
necessary conditions, it should be eventually initiated. From the code
for the task "rw" we note that once control is inside the loop, if a
write request is present and the guard for "ACCEPT write" is true, then
the guard for read cannot be true. Thus the ACCEPT statement for write
will be executed. The fairnesé specification for read requires that if
the necessary conditions for a read operation are always true then it
should be initiated. This is found to be the case since the guard -for
read and the guard for write cannot be true simultaneously whereby if a
read request's necessary conditions are always true, the read request

has to be eventually executed.

In this section, we have indicated how our model of resource
control aids in the proof of correctness of extant resource control

code. In a future paper we will examine verification in greater detail.

¢

Page 29

6. CONCLUSION AND RELATED WORK

We have introduced a model for expressing the behavior of shared

resource controllers., It recognizes the following:

Every access operation is executed as a result of a request from
a user process,

After determining that the conditions are appropriate for the
access to proceed, a controller initiates an access operation.
The code for an access operation is executed only after the
controller has initiated the operation.

On completion of an access operation, certain clean-up actions
are required.

The model intuitively conforms with the notion of resource access. To
be able to wutilize the model for the purpose of specification and
verification, we formalized it by introducing predicates, one for each
phase, and related their truth values to the execution of the phases.
The relationships between phases was specified through temporal 1logic

statements.

We have found the model to be general enough to be applicable to
monitors [HoareT74], Ada Tasks [DoD80], serializers [Atkinson79] and
sentinels [Keller78]. 1In this paper, we dwelt on Ada tasks. These
mechanisms differ from one another not in their adherence to the model
but in the restrictions that they impose on the execution of the phases.
Using our formalism it 1is possible to explicitly state these

restrictions completely.

The model adopted in [Laventhal78] associates three events, namely,
request, enter and exit, with each access to a resource. The set of
events associated with accesses to a particular shared object are
assumed to be totally ordered. A description of a controller using this
model will not be complete since it does not specify the nature of state

transitions that accompany these events. We find it more natural to

Page 30

view each access to be made up of four phases, as discussed in this
paper. The beginning of the request phase, the beginning of the
initiation phase, and the end of the termination phase correspond to
Laventhal's request, enter and exit events. In our model, no
assumptions are made concerning the ordering of the phases associated
with concurrent accesses on a data object; however, using the formalism
described herein it is possible to specify the orderings imposed by a

resource control mechanism,

Of the four phases that occur during the execution of an operation,
a resource controller has explicit control over only the initiation
phase. The specification for a resource control problem should state
how such control should be exercised. In this context, we viewed the
problem of specification of resource control and categorized the
high-level properties that are consequential for resource control. We

briefly looked at the issue of verification, also in light of our model.

This work will be extended in the following directions:

- Here we have focussed only on the primary features in Ada for
tasking. Others such as task priorities, delay statements, etec,
need be brought under consideration.

- On the surface it appears as though the model is applicable only
to modular synchronization mechanisms. However, we believe that
any resource access conceptually involves the four phases
introduced here. Thus resource sharing through the use of
low-level primitives such as semaphores will also be examined.

- Definition of a model for resource sharing is only the first
step to handle various issues connected with resource sharing.
Two of these, specification and verification were briefly
discussed here. These and other issues will be pursued further.

Page 31

REFERENCES

[Atkinson79] Atkinson, R.R. and Hewitt, C.E., "Specification and Proof
Techniques for Serializers", IEEE Transactions on Software Engineering
SE-5, Jan 1979, 10-23.

[BrinchHansen78] Brinch Hansen, P., "Distributed Processes: A

Concurrent Programming Concept", Communications of the ACM 11, Nov 1978,
934-941, ‘

[Courtois71] Courtois, P.J. Heymans, F. and Parnas, D.L., "Concurrent
Control with 'Readers' and 'Writers'", Communications of the ACM 14, Oct
1971, 667-668.

[DoD80] "Reference Manual for the Ada Programming Language", U.S.
Department of Defense, July 1980.

[Guttag78] Guttag, V., Horowitz, E., and Musser, D., "Abstract Data
Types and Software Validation", Communications of the ACM 21, 1048-1064,
Dec 1978.

[(Habermann75] Habermann, A.N., "Path Expressions', June 1975,
Carnegie-Mellon University.

[Hoare74] Hoare, C.A.R. "Monitors: An Operating System Structuring
Concept", Comm. of the ACM, 17, 540-557, Oct 1974.

[Ichbiah79] Ichbiah, J.D., et al., "Rationale for the Design of the Ada
Programming Language", Sigplan Notices 14, 6, June 1979.

[Keller78] Keller, R.M., "Sentinels: A Concept for Multiprocess
Coordination", June 1978, UUCS-78-104, University of Utah.

[Lamport80] Lamport, L., "'Sometime' is Sometimes 'Not Never'", Proc.
Seventh Annual Symposium on POPL, Jan 1980, 174-185.

[Laventhal78] Laventhal, M.S., "Synthesis of synchronization code for
data abstractions", S.M. Thesis, M.I.T., June 1978.

[Pnueli79] Pnueli, A., "The Temporal Semantics of Concurrent Programs",
in "Semantics of Concurrent Computation", Springer Lecture Notes in
Computer Science 70, June 1979, Springer-Verlag, 1-20.

(Pnueli80] Pnueli, A., "On the Temporal Analysis of Fairness", Proc.
Seventh Annual Symposium on POPL, Jan 1980, 163-173.

{Ramamritham81a] Ramamritham, K. and Keller, R.M., "On Synchronization
and 1its Specification", Springer Lecture Notes in Computer Science 111,
June 1981.

[Ramamritham81b] Ramamritham. K., "Specification and Synthesis of
Synchronizers ", Ph.D. Thesis, The University of Utah, Aug 1981.

[Reed79] Reed, D.P. and Kanodia, K. "Synchronization with Eventcounts
and Sequencers", Communications of the ACM 22, 2, Feb 1978, 115-123,

