Symbolic Evaluation Methods
for Program Analysis

Lori A. Clarke
Debra J. Richardson

COINS Technical Report 8141
1981

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

Appeared in
Program Flow Analysis:
Theory and Application
S. Muchnick and N. Jones, editors,
Prentice Hall 1981

This research reported here was partially supported by the National Science Foundation under grants MCS77-02101
and the United States Air Force Office of Scientific Research under grant AFOSR 77-3287.

Chapter 9

Symbolic Evaluation Methods
for Program Analysisf

Lori A. Clarke
Debra J. Richardson

9-1. INTRODUCTION

Symbolic evaluation is a data flow analysis method that analyzes
program behavior by monitoring the manipulations performed on the input
data. Symbolic evaluation methods represent computations as algebraic
expressions over the input data and thus maintain the relationship between
the input data and the resulting values. Normal execution computes numerical
values but often loses information about the way in which the numerical
values were derived. An incorrect numerical result usually does not uniquely
determine the location of a miscalculation. A large part of the debugging
process is concerned with isolating an erroneous calculation that resulted
in a wrong numerical value. Symbolic evaluation methods can be used to aid
in debugging as well as in several other types of program analysis.

There are three basic methods of symbolic evaluation: symbolic execu-
tion, global symbolic evaluation, and dynamic symbolic evaluation. Symbolic
execution is a path-oriented evaluation method that analyzes input data

1The research reported here was partially supported by the National Science Founda-
tion under grant MCS77-02101 and the United States Air Force Office of Scientific Research
under grant AFOSR 77-3287.

264

SEC. 9-2 | FUNCTIONAL NOTATION 265

dependencies for a path. Global symbolic evaluation represents all possible
data dependencies at any point in a program. Dynamic symbolic evaluation
produces a trace of the data dependencies for particular input data.

In this chapter we first introduce a formal notation to concisely represent
cach of the three methods of symbolic evaluation. Each method is then
explained, and examples of the three methods are given to demonstrate their
corresponding strengths and weaknesses. Also, several applications of each
method are discussed. Symbolic execution is the best known of the three
techniques, so it is described first and in more detail than the other two
methods. Several different implementation techniques of symbolic execution
systems are compared. The other symbolic evaluation methods are then
described and compared to symbolic execution.

9-2. FUNCTIONAL NOTATION

In this section we introduce some basic notation that will be used in
formalizing the results of each of the three methods of symbolic evaluation.

Data flow analysis methods typically represent a program by a directed
graph describing the possible flow of control through the program. The nodes
in the graph, {n,, n,, ..., n}, represent statements. Each edge is specified
by an ordered pair of nodes (n,, n,) that indicates that a possible transfer of
control exists from n, to n,. Associated with each transfer of control are con-
ditions under which such a transfer occurs. The branch predicate that governs
traversal of the edge (n,, n)) is denoted by bp(n,, n,). For a sequential transfer
of control, the branch predicate has the constant value true. For a binary
condition following the node », and preceding nodes n, and n,, the branch
predicate for one edge (n,,) is the complement of the branch predicate
for the other edge (n,, n,); thus, bp(n,, n,) = ~bp(n,, n,). Some conditional
statements, such as computed go to or case statements, may have more than
two successor nodes, and each branch predicate must be represented appro-
priately. For the purposes of this paper, the control flow graph of a program
is a directed graph with a single entry point, the start node n,, and a single
exit point, the final node n,. Both the start node and the final node are null
nodes added to the graph when necessary to accomplish this single-entry,
single-exit form without loss of generality.

The procedure in Fig. 9-1 calculates the time and distance at which a
starship’s velocity reduces to zero on its approach to dock on the star base
station. The statements in DOCKING are annotated with their associated
node numbers, and Fig. 9-2 shows the control flow graph for this procedure.
This procedure is used throughout the paper to demonstrate the three methods
of symbolic evaluation.

A path in a control flow graph is a sequence of statements (o, n,,,

n,; procedure DOCKING(STATION,STARSHIP.TH RUST.VELOCITY,DELTAT,TIME,
DISTANCE,ERROR)

starship docking calculation (approximation) determines the time and
the distance at which the starship’s velocity reduces to zero on its
approach to the star base station ’

}

}

}

}

}

input variables : H
station — mass of the star base station (kg) }
starship — mass of the starship (kg) }
thrust — thrust force of the starship’s engine (nt) }
velocity — initial velocity of the starship (m/s) }
deltat — change requested between iterations (a smaller value will }
make the calculation more exact) (s) }

time — initial time (s) }
distance — initial distance between the base and the starship (m) }
}

}

}

}

}

}

1

1

]

}

}

}

}

}

output variables :
time — final time (s)
distance — final distance between the base and the starship (m)
error — nonzero if any input is invalid

intermediate variables:
gconst — universal gravitational constant (6.67E-11 nt-m2/kg2)
gravity — gravitational force of base station (m/s2)
constacc — constant acceleration of starship (m/s2)
currvel — current velocity of the starship (m/s)
nextvel — velocity of the starship in next time interval (m/s)

Py

real STATION,STARSHIP

real THRUST,VELOCITY

real DELTAT,TIME,DISTANCE

real GCONST,GRAVITY,CONSTACC

real CURRVEL,NEXTVEL

integer ERROR

{ all input values must be positive }
{ set error flag if any are << 0 }

if (STATION < 0.0 or STARSHIP << 0.0 or
THRUST << 0.0 or VELOCITY < 0.0 or
DELTAT << 0.0 or TIME << 0.0 or DISTANCE << 0.0)
then
m ERROR «— 1
alse
input vaiues are valid, continue computation
initialize the universal gravitational constant
GCONST «— 6.67¢10¢¢(-11)
compute the gravitational force
first check for a zero divisor
it (DISTANCEee2 = 0.0)
then
Ny ERROR «— 1
eise

na

- ~———
haad e

Figure 9-1

N GRAVITY «— GCONST « STATION » STARSHIP /
(DISTANCEee2)

gravity and thrust are assumed constant
throughout the computations to follow
the acceleration due to the starship’s
engine is thrust/starship

(acceleration = force/mass)

compute the constant acceleration of
the starship which is the difference

of these two opposing accelerations

ot S ot St s et S gt ot

ns CONSTACC «— GRAVITY - THRUST / STARSHIP
{ current velocity is the initial velacity }
ng CURRVEL «— VELOCITY

compute the velocity in the second time

interval (this initializes the loop)

nextvel «— vel + acceleration + deltat

nq NEXTVEL «— CURRVEL + CONSTACC DELTAT

N St et

determine when the velocity reduces
to zero by iteratively computing the
next velocity as a function of the
current velocity, the acceleration
(force/mass), and the change in time

N e S g s

repeat
ng DISTANCE +— DISTANCE - CURRVEL » DELTAT
ny CURRVEL «— NEXTVEL
no TIME «— TIME + DELTAT
nyy NEXTVEL «— CURRVEL + CONSTACC DELTAT
until (NEXTVEL < 0.0)
ERROR «— 0 -

endif
endif
end {DOCKING}

Figure 9-1 (cont.)

-» M) such that there exists a possible transfer of control from n, to
M, 4oy forallm,, 0 < j < t. A partial program path T, is a path which begins
with the start node; that is, Tyo=(n,ynyy,my,, . .. » M) Hence, for any
partial program path T,,withu>1,T,, = T,y (n), where Tio =(n,)
and ~ indicates concatenation of paths. A program path P, is a path that
begins with the start node and ends with the final node; that is, Py = (n,,
Py1s Mgy - - o Ny, ng). There is no guarantee that a sequence of statements
representing a path is executable; some paths may be infeasible as a result of
contradictory conditions governing the transfers of control along the path.
The control flow graph is a representation of all possible paths through the’
corresponding program.

267

(STATIONS <0.0 v STARSHIP <0.0v THRUST<0.0 v
VELOCITY <0.0 v DELTAT <0.0 v TIME < 0.0 v DISTANCE < 0.0)

" (STATION < 0.0 v STARSHIP < 0.0 v THRUST <0.0 v
VELOCITY <0.0 v DELTAT <0.0 v TIME < 0.0 v DISTANCE < 0.0}

{DISTANCE **2 = 0.0)

V(NEXTVEL < 0.0
(NEXTVEL <0.0)

Figure 9-2

268

SEC. 9-2 | FUNCTIONAL NOTATION 269

The program P specifies a set of program paths {Py, P, . ..},t which
are executed for disjoint subsets of the program domain. P accepts input
values (X,, X,, ..., Xs) and computes output values (zy, z;, - . . , Zy). The
domain X of the program P is a cross product, X =X, X X; X ... X Xy,
where each X, is the domain for input value x,. An element of X is a vector x
with specific input values, x = (x;, X,, . . ., X»), and corresponds to a single
point in the M-dimensional input space X. Likewise, the codomain Z of a
program is a cross product, Z=Z, X Z, X ... X Zy, where each Z, is
the codomain for output value z,. Thus, P(x) € Z is a vector z with specific
output values, z = (z,, 2, . - . , 2x), and corresponds to a single point in the
N-dimensional output space Z. We also refer to a vector y = (¥1, Y2, - - - » Yw)
of program variables, which store the values (both intermediate and output)
computed by the program, as well as the input values (x,, X, ..., Xa)-
For the purposes of this chapter, we assume that the program variables
P1s Var - - - » Y N < W, store the output values (z,, z3, . . . , zx)- In addition,
the simplifying assumption that each path has M input values and N output
values is made without loss of generality; any program that does not satisfy
this assumption can be transformed into an equivalent program that does,
using A to represent an undefined value.

The paths of a program divide the program domain X into disjoint
subdomains. Each program path Py is executed for a path domain Df; and
specifies a vector of path functions (Puys Puz, - - - » Pun), Where the Jth compo-
nent computes z,. Hence, for any x € D, P(x) = Py(x) = (Psy(X), Pr2(x),

.., Pan(X)) € Z and py(x) € Z,. i

Symbolic evaluation can be used to generate representations for the
path domains and path functions of a program. All three symbolic evaluation
methods use the control flow graph to maintain a description of the program

" state at every point in the evaluation of the program. The state of the program
includes some description of the path followed to reach the present point in
the evaluation, as well as the values obtained for all program variables fol-
lowing the evaluation of that partial program path. The data descriptions
generated in symbolic evaluation are symbolic representations of the program
state. Given a partial program path, T,, = (n,, 1,3, M2, « - + » Mia)s My, iS the
present point in the evaluation. VAL[T,,] represents the values of all program
variables (y,, 1, . - . , yw) after evaluation of the partial program path T,,.
VAL[T,.] is a vector containing an element for each program variable. Hence,
VAL[T},] = (s(yl[Tkl])’ S(y![Tkl])r sy SOW[Tkn]))v Where s(yl.[Tku]) deﬂOteS
the symbolic value of program variable y,, after evaluating T,,, in terms of
the symbolic names representing the input values. The path condition,
PCI[T,.], is the conjunct of the branch predicates evaluated along this par-
ticular partial program path. PC[T,,] = s(bp(n,, n,)M Txo]) A s(bp(niy, mi2)
(TuaD A o A sbp(ry -1y MM Tiu-1)), where s(bp(ne, ;- 1o 1)T, s-1))

{There may be an infinite number of paths because of program loops.

270 SYMBOLIC EVALUATION METHODS FOR PROGRAM ANALYSIS | CHAP.9

denotes the symbolic value of the branch predicate when evaluated over the
values of the program variables preceding traversal of the corresponding
edge, that is, over VAL[T, ,.,). The path condition can be rewritten as
PC[T,) = PC[Ty...\] A s(bp(ny, u-1s T o-,])- Finally, STATE[T,,)=
(Tiu, VAL[T,.), PC[T,,]) represents the program state following symbolic
evaluation of the partial program path T,,. The partial program path will
not be included in the notation when the path is obvious from the context.

The symbolic evaluation of any element of the control flow graph—a
statement or a transfer of control—changes the program state. Initially,
the program state is defined as

Tio=(n,)
VAL[T,ol = (A, ..., A)
PC[Ty,) = true
STATE([T,,] = (Tios VAL[T,,}, PC[T,,))

All variables are initialized at the start node to the undefined value A, with
the following exceptions: variables that are initialized before execution are
assigned the corresponding constant value; variables that are parameters of
the initial procedure of evaluation are assigned symbolic names. Symbolic
names are assigned to input variables whenever input occurs on the program
path. Throughout the symbolic evaluation, all symbolic representations of
variable and branch predicate values are in terms of these symbolic names
that represent the input values. This is accomplished by substituting the
current symbolic value of a variable into an expression wherever that variable
is referenced.

When evaluating a statement, say node n,,, the corresponding compo-
nent of the VAL vector is updated for any variable that is assigned a new
value. For instance, if the assignment statement Yy «— y: * yx occurs, then
the y, component of the VAL vector will change from its former value s(y;)
to the algebraic expression s(y;) * s(y,). In addition, the partial path is
updated, T, = T, ,_,~(n,,). In the evaluation of a transfer of control, say
edge (m4, n, ;.,), the path condition will be augmented by the symbolic
value of the branch predicate governing traversal of this edge, that is,
PC[T,, ,;4\] = PC[T,,] A s(bp(ney, me 5o) T))).

Following the evaluation of a complete-program path, the symbolic
representation of the program state defines the path functions and path
domains of a progfam. Given a complete path P,, the program state after
evaluation of the final node may be represented as

Py = (n, nyy, ny,, . . ., ny,, ny)
VAL[Py) = (s(,[Px)), s(y2[PH)), - . ., S(yW[PH]))
PC[Py) = s(bp(rn, ny JITD A ... A s(bp(ny,, n)[Th,))
STATE[P,) = (Py, VAL[Py), PC[Py)).

SEC. 9-2 |/ FUNCTIONAL NOTATION 271

The path functions (pus, Pas, - - - , Pyw), Which compute the output
values (zy, z,, . .., zy), are provided by p,, = s(y,[Ps]). Since all symbolic
representations are in terms of the symbolic input values, py, is a symbolic
computational expression of the output value z, in terms of the input values
(x4, X3, . . ., Xa). The path condition PC[P,] provides a system of constraints
on the program’s input values and defines the path domain Df. The subset of
elements of the program domain that will cause execution of this program
path is defined by D} = {x € X such that PC[P,] is true}. These path func-
tions and path domains can be generated for any program path that can be
symbolically evaluated.

Each of the three methods of symbolic evaluation maintains a slightly
different representation for the program state at any point in the evaluation.
Furthermore, each method generates a slight variation of the path domains
and path functions as final evaluation of the program.

Symbolic execution supports a program state that most resembles the
STATE vector defined above. This method generates output for each path
that is symbolically executed. For the most part, following symbolic execution
of a particular path, Py, the output produced consists of three things: the
sequence of statements forming the path, a system of constraints on the
program’s input variables, and a vector containing a computational expression
for each output variable. The constraints are analogous to the path condition
PC[Py] and define the path domain. The vector corresponds to the output
variable components of the symbolic value vector VAL[P,] given by the path
functions (puy, Paa, - - ., pun) computed along this path. After symbolic
execution of a program path, therefore, output similar to that shown in Fig.
9-3 might be produced. -

STATEMENTS ON THIS PATH
Nge N BH2 oo oo Ny, ny

SYMBOLIC REPRESENTATION OF PATH CONDITION
$(bp(ns. ni1)[THol) A (0p(nyy, nu2)[Tid) A ... A s(bp(ngro. np) [Tol)

SYMBOLIC REPRESENTATION OF OUTPUT VARIABLES
z2y = pyy = s(y1[Pul)
22 = pyz = s(y2[Px))

zZy = pun = s(yn[Pn])

Figure 9-3

Rather than evaluate a program on a path-by-path basis, the method
of global symbolic evaluation maintains a representation of the program state
ata point in the evaluation as a conditional symbolic expression. This caselike
construct encompasses the symbolic values of all program variables regard-
less of the partial program path followed to reach this point. The output

272 SYMBOLIC EVALUATION METHODS FOR PROGRAM ANALYSIS | CHAP.9

generated following global symbolic evaluation of a program reflects this
representation of the program state. Suppose the program has the paths
{Py, P1, . .., Pg}, then the final evaluation might have a form such as Fig.
9-4, although only the symbolic values of the output variables are shown.

case
PCIP\): 21 = P11 = s(v1[P1])
22 = py2 = s(y2[P1])

zy = pin = S(ynlP1])

PC[Pa): 21 = prt = s(y1{Pr])
z3 = pp2 = s(y2(Pr])

zn = pan = S(yn{Prl)
endcase

Figure 9-4

On the other end of the spectrum is the method of dynamic symbolic
evaluation, which performs analysis on an input-by-input basis. A particular
program path is evaluated while the program is actually executed for specific
input data. Given an input vector x, a path, say Py, is executed. This method
traces the statements that are executed. In addition to supplying the output
values that result from the execution, dynamic symbolic evaluation provides
algebraic expressions for the output values. Following dynamic symbolic
evaluation, output similar to Fig. 9-5 might result, where a(y,[Py)) denotes
the actual value z, computed by the execution of the program on the data
vector x.

STATEMENTS EXECUTED
Ny Npgye oo o0 Do Nf

SYMBOLIC AND ACTUAL VALUES OF QUTPUT VARIABLES
2y = piq = sy1[Py)) = aly1(Px])

22 = pya = s(y2[Pu)) = a(y2[Px))

zn = pun = s(yn(Pr)) = alyn[Pu))

Figure 9-5

These methods of symbolic evaluation will be explained in more detail
in the sections which follow.

9-3. SYMBOLIC EXECUTION

Symbolic execution analyzes distinct program paths. In general, sym-
bolic execution is attempted on only a subset of the paths in a program since
a program containing a loop may contain an infinite number of paths. Several
methods for selecting a subset of program paths are discussed in Section
9-3.3. The general description of symbolic execution that follows is inde-
pendent of the method of path selection; hence we assume the path is
provided. Symbolic execution represents both the computations and the con-
ditional statements on the selected path as algebraic expressions in terms of
symbolic input values. This section describes symbolic execution as well as
several implementation techniques and applications.

9-3.1. General Method

Symbolic execution initiates its analysis by building the control flow
graph of the program. As a path through the program is evaluated or “exe-
cuted,” the statements on the path are evaluated as if they were straight-line
code. The branch predicates encountered along the path are also evaluated;
the combination of those predicates dictates the input values for which this
path can be executed. When an input statement is analyzed, the input values
are represented by symbolic names. Throughout the analysis, the representa-
tions of all program variables are maintained as algebraic expressions in
terms of these symbolic names. These algebraic expressions are formed by the
evaluation of any assignment along the path; such an assignment causes an
update to the VAL component of the program state. -

During symbolic execution of a path each branch predicate is evaluated
over the symbolic values of the variables at that point on the path. The sym-
bolic evaluation of a branch predicate results in a constraint, an equality
or inequality condition, on the input data. Each constraint is then conjoined
with all previously evaluated constraints for this path to form the path
condition or PC. Not all paths in the program graph are executable. The path
condition of a program path may be inconsistent, in which case no input
data exists that could cause execution of the path. Symbolic execution systems
create the path function and the path condition, and may determine path
condition consistency.

9.3.2. Implementation Methods
Several symbolic execution systems have been developed [Boye75,
ClaL76a, Howd77b, Huan7S, King76, Mill75, Rama76] using either of two

implementation techniques, forward expansion and backward substitution.
In addition, some of these systems try to determine path condition consistency

273

274 SYMBOLIC EVALUATION METHODS FOR PROGRAM ANALYSIS | CHAP. 9

[Boye75, ClaL76a, King76, Rama76], and again two different approaches
have successfully been tried. These approaches are referred to as the algebraic
and axiomatic approaches. In this section, both methods of symbolic execu-
tion and path condition consistency determination are described.

Forward expansion is the most intuitive approach to creating the
algebraic expressions. Beginning with the start node, symbolic expressions
are built as each statement in the path is encountered. The DOCKING
procedure of Fig. 9-1 has undergone symbolic execution by forward expan-
sion of two distinct program paths. Figure 9-6 shows how the VAL and PC
evolve for an executable path, and Fig. 9-7 shows the evolution for a non-
executable path.

Before either symbolic execution technique is initiated, the source code
is first translated into an intermediate form of binary expressions, each
containing an operator and two operands. During forward expansion, the
binary expressions in each executed statement are then used to form an acyclic
directed graph of the program’s symbolic computations. Each variable that
is assigned a value during execution of the path is actually assigned a pointer
into this computational graph. The node of the graph that is pointed to by a
variable can be treated as the root of a binary expression tree for this variable.
Traversing the tree in inorder determines the symbolic expression for this
variable. Figure 9-8 shows the graph at various stages during symbolic execu-
tion of the program path of the procedure DOCKING that was shown in
Fig. 9-6.

Conditional statements can also be represented symbolically by an
acyclic graph using the same form of binary expressions. The false branch of
the first branch predicate is followed in the transfer from n, to n,, and this
constraint is the PC for the partial program path (n,, n,). Figure 9-9 shows
the computational graph representation for this evaluated branch predicate.

Though the computational graph appears rather complicated to follow
with the eye, it is easy to build and maintain. The graph can easily be main-
tained in a table with three fields: one for the operator and two for the
operands. The tabular representation of the computational graph in Fig.
9-8(c) is shown in Fig. 9-10 where CGi represents a pointer to the ith entry
in the tabular computational graph.

A more detailed description of the forward expansion approach to
symbolic execution can be found in [ClaL76a]. There is a close similarity
between the described forward expansion technique and the technique of
value numbering used by many optimizing compilers, which is described in
[Cock70b).

* Fhe backward substitution technique [Howd?5, Huan75) starts at the
end of the path and develops each variable’s symbolic expression by substi-
tuting the right-hand side of an assignment statement for all occurrences of
the left-hand side variable. The backward substitution approach was proposed

SLT

statement

n,

n

Nne

ns

ns

ny

VAL

TIME: time
DISTANCE: distance
ERROR: A
STATION: station
STARSHIP: starship
THRUST: thrust
VELOCITY: velocity
DELTAT: deltat
GCONST: A
GRAVITY: A
CONSTACC: A
CURRVEL: A
NEXTVEL: A

VAL[n,] updated by
GCONST: 6.67+10ee(-11)

VAL[n,.n3] updated by
GRAVITY: 6.67¢10e¢s(—11) ¢ station » starship
/ distancees2

VAL[n,.n2,n4) updated by
CONSTACC: 6.67¢10¢¢(-11) ¢ station s starship
] distancese2 - thrust / starship

VAL{n,.n2.n4.ns) updated by
CURRVEL: velocity

VAL[n,.n2.n4.ns.n¢) updated by

NEXTVEL: velocity + (6.67¢10e¢(—-11)
» station » starship / distances+2
- thrust / starship) » deltat

Figure 9-6

PC

true

PCln,] A

~ (station << 0.0 V starship < 0.0 V

thrust << 0.0 V velocity << 0.0 V

deltat << 0.0 V time << 0.0 V distance < 0.0)

PC(nsn] A
~ (distancess2 = 0.0)

PCln;n2.ngd A
true

PCn;.n3.ne.ns] A
true

PC[n,.n2.nens.n6) A
true

9LT

ng VAL[n,.n3.n4.n3.n6,n7] updated by
DISTANCE: distance — velocity = deltat

ng VAL(n,.n2.n4.n3.ng.n4,ng) updated by
CURRVEL: velocity + (6.67+10se(—11)
» station » starship / distancese2
- thrust / starship) s deltat

nig VAL([n,.n3.n4.ns.n6.n7.n3,n9) updated by
TIME: time + deltat

ny VAL[n,.n2.ns.ns.ng.n9.15.09.n1 o) updated by
NEXTVEL: velocity + (6 67+10¢2(-11)
¢ station » starship / distancess2
= thrust / starship) » deltat
+ (6.67+10e¢¢(-11) o station
« starship / distancess2
= thrust / starship) » deltat

n2 VAL[n,.na1.n4.ns.n6.n9,n8.n9.ny0.n11)
updated by
ERROR: 0

STATEMENTS ON THIS PATH
Ny N2, N4, N3, N, N9, Ng, Ny, Nyp, N1, Ny2. Ny

SYMBOLIC REPRESENTATION OF PATH CONDITION
~ (station << 0.0 V starship << 0.0 V thrust << 0.0 Vv
velocity << 0.0 V deltat << 0.0 V time << 0.0 V distance << 0.0)
A ~ (distancese2 = 0.0) A ((velocity + (6.67¢10e2(-11)
¢ station » starship / distancees2 - thrust / starship)
» deltat + (6.67+10e+(—11) station » starship / distanceess2
- thrust / starship) » deltat) << 0.0)

Figure 9-6 (cont.)

PC[”:4”Z:”‘:”"n6'n7] A
true

PC(n,na.ne.ns.ng.nq.ng] A
true

PC[n.;n.ne.ns.ng.nqngngl A
true

PC(n,.n3.ne.ns.n6.n9.n8.09,.n10] A
true

PC(n,.n3.n4.ns.ng.n9.03.n9.n10.011] A

(velocity + (6.67¢10¢¢(~11) » station e starship /
distancess2 ~ thrust / starship) e deltat

+ (6.67+10s¢(—11) station » starship /
distances¢2 - thrust / starship) ¢ deltat) << 0.0

LLT

SIMPLIFIED SYMBOLIC REPRESENTATION OFf PATH CONDITION
station > 0.0 /£, starship > 0.0 A thrust > 0.0 7,
velocity < 0.0 A deltat > 0.0 A time » 0.0 A distance > 0.0
*. (velocity » distancess2 « starship » deltat +
13.34¢10e2(~11) « station = starships+2 « deltat -
2 » thrust » distancess2 « deltat) / distance+¢2 » starship << 0.0

SYMBOLIC REPRESENTATION OF OUTPUT VARIABLES
TIME = time + deltat

DISTANCE = distance + velocity » deltat
ERROR = 0

Figure 9-6 (cont.)

8LT

statement VAL
ny TIME: time
DISTANCE: distance
ERROR: A

STATION: station
STARSHIP: starship
THRUST: thrust
VELOCITY: velocity
DELTAT: deltat
GCONST: A
GRAVITY: A
CONSTACC: A
CURRVEL: A
NEXTVEL: A

n VAL(n,] updated by
GCONST: 6.67¢10s¢(~-11)

ny VAL[n,.n2] updated
ERROR: 1

STATEMENTS ON THIS PATH
N N2, Ny, ny !

SYMBOLIC REPRESENTATION OF PATH CONDITION
~ (station << 0.0 V starship << 0.0 V thrust << 0.0 V
velocity << 0.0 V deltat << 0.0 V time << 0.0 V distance << 0.0)
A distances*2 = 0.0

SIMPLIFIED SYMBOLIC REPRESENTATION OF PATH CONDITION
station > 0.0 A starship > 0.0 A thrust > 0.0 A
velocity > 0.0 A deltat > 0.0 A time > 0.0 A distance > 0.0
/\ distance = 0.0

eoe NONEXECUTABLE PATH wse

Figure 9-7

PC

true

PCln,) A

~ (station << 0.0 V starship << 0.0 Vv

thrust << 0.0 V velocity << 0.0 V

deltat << 0.0 V time << 0.0 V distance << 0.0)

PC[n.na) A
distancess2 = 0.0

TIME time

GCONST
DISTANCE

Ui

distance

VELOCITY velocity

.

THRUST thrust

<L

STATION station

S

STARSHIP starship

<L

DELTAT deltat

.

(a)

GRAVITY
TIME ——vO time

VELOCITY ———PO velocity

DISTANCE

THRUST ————*O thrust

STARSHIP
DELTAT ———»O deltat

STATION

GCONST

(b)

station

Figure 9-8

279

NEXTVEL
CURRVEL

DISTANCE

TIME

DELTAT
CONSTACC

VELOCITY o]

GRAVITY
THRUST

ERROR

thrust

®

STARSHIP
STATION

GCONST =t ‘

(c)

—~

station starship

Figure 9-8 (cont.)

for systems concerned only with creating the path condition and not con-
cerned with the symbolic expressions for intermediate or output variables.
With this restriction, the backward substitution technique saves space by not
maintaining extraneous expressions for the intermediate and output variables.
An example of backward substitution is shown in Fig. 9-11, using the
DOCKING procedure of Fig. 9-1 and again symbolically executing the
program path of Fig. 9-6. An implementation technique that is just the reverse

280

E distance

° time

O ©

6 deltat

G velocity

© (<)
O 0O @

station starship

O

Figure 9-9

281

Tabular Representation

entry operator operand 1 operand 2
1 .. 10 -1
2 . 6.67 CG1
3 . CG2 station
4 . CG3 starship
5 . distance 2
6 / CG4 CG5
7 / thrust starship
8 - CG?7 CG8
9 . CG8 deltat
10 + velocity CG9
1 . velocity deltat
12 - distance CG11
13 + time deltat
14 . CcG8 deltat
15 + CG10 CG14

Program Variables

TIME : CG13 GCONST :CG2
DISTANCE : CG12 GRAVITY : CG6
ERROR :0 CONSTACC : CG8
STATION : station CURRVEL : CG10
STARSHIP : starship NEXTVEL : CG15

THRUST : thrust
VELOCITY : velocity
DELTAT : deltat

Figure 9-10

of the described forward expansion technique can be used to create the sym-
bolic expressions for backward substitution. Note that many of the state-
ments, specifically those that do not modify variables for which values are
input, can be ignored using backward substitution when only the path con-
dition is desired. In the example of Fig. 9-11, statements 8, 10, and 12 are
ignored. In a more general symbolic execution system where both the path
condition and symbolic values are desired, the two approaches examine each
statement and produce equivalent expressions for the PC and VAL. In
systems which support early detection of nonexecutable paths, however, the
forward expansion approach is more efficient. The rest of this section first
describes several techniques for determining path condition consistency
and then returns to the comparison between forward expansion and backward
substitution.

In most cases, only a subset of the paths in a program are executable,
and therefore it is desirable to determine path condition consistency. During
symbolic execution it is desirable not only to recognize nonexecutable paths
but to recognize the inconsistency as soon as possible. Early detection of a
nonexecutable path prevents worthless, yet costly, symbolic execution of a

282

node or
predicate

ny
bp(nyy. ny2)

nyy

Ny

nq

ng

ns

ne

bp(nz. ng)

ny

bp(n,, n3)

ns

PC
true
(nextvel) << 0.0

(currvel + constacc delfat) ‘<< 0.0
(nextvel + constacc ¢ deltat) < 0.0
(currvel + constacc e deltat + constacc ¢ deltat) < 0.0
(velocity + constacc ¢ deltat + constacc ¢ deltat) < 0.0

(velocity + (gravity — thrust / starship) * deltat + (gravity — thrust
/ starship) e deltat) < 0.0

(velocity + ({gconst « station ¢ starship / distancese2) - thrust / starship)
« deltat + ((gconst » starship / distancess2) - thrust / starship) » deltat)
<00

((velocity + ({gconst » station e starship / distancese2) — thrust / starship)
« deltat + ((gconst e station ¢ starship / distancees2) — thrust / starship)
o deltat) << 0.0) A ~ (distancees2 = 0.0}

({velocity + ((6.67+10ss(-11) station # starship / distancese2) — thrust
/ starship) ¢ deltat + ((6.67¢10s¢(-11) station ¢ starship / distances+2)
— thrust / starship) # deltat) << 0.0) A ~ (distancees2 = 0.0}

((velocity + ((6.67¢10¢¢(—11) » station ¢ starship / distances+2) — thrust
/ starship) ¢ deltat + ((6.67+10es(-11) » station # starship / distances+2)
- thrust / starship) « deltat) << 0.0) A ~ (distancess2 = 0.0) A ~ (station
< 0.0 V starship << 0.0 V thrust << 0.0 V velocity << 0.0 Vv deltat << 0.0
V time << 0.0 V distance << 0.0)

((velocity + ((6.67¢10s#(-11) ¢ station e starship / distancees2)

~ thrust / starship) * deltat + ((6.67+10¢+(-11) » station * starship

/ distancees2) — thrust / starship) » deltat) < 0.0) A ~ (distances+2 = 0.0)
A ~ (station << 0.0 V starship << 0.0 V thrust < 0.0 V velocity << 0.0

V deltat << 0.0 V time << 0.0 V distance < 0.0)

NOTE: The final simplified PC would be the same as the final simplified PC
shown in Fig. 9-6.

Figure 9-11

nonexecutable path. Moreover, it allows an alternative edge to be selected on
a partial path whenever an inconsistent branch predicate is initially encoun-
tered. Thus, the partial path that has already been symbolically executed can
usually be salvaged.

Using the notation introduced in Section 9-1, whenever a partial path
T,. is augmented with a new node n,,,,, the branch predicate s(bp(nyus Ny, ues)
[T..)) is first simplified and then may be examined for consistency with the
existing path condition PC[T,,). Any of several algebraic manipulation sys-
tems [Boge75, Brow73, RicD78b] can be used to simplify the PC to a

283

284 SYMBOLIC EVALUATION METHODS FOR PROGRAM ANALYSIS | CHAP.9

canonical form, so this aspect of the implementation will not be described
further. The branch predicate s(bp(fsa; Mk, us N Tra]) May either evaluatetoa
boolean constant (where the null branch predicate is considered to be the
constant true), or it may be a symbolic expression in terms of the input vari-
ables. If the branch predicate is constant, consistency determination is
immediate: PC A true = PC and PC A false = false. When the branch
predicate is a symbolic expression over the input values (and the PC is not
the constant true), it is necessary to use a more sophisticated technique for
determining path condition consistency. One approach to this problem is to
use standard theorem-proving techniques. We refer to this as the axiomatic
approach since it is based upon the axioms of predicate calculus. Another
approach is to treat each conjunct in the PC as a constraint and to use one
of several algebraic methods—such as a gradient hill-climbing algorithm
[Elsp??), linear programming [Land73], or a more brute force approach
[Rama76]—to solve the system of constraints. Both the axiomatic and alge-
braic approaches work well on the simple constraints that are generally
created during symbolic execution [ClaL76b). No method, however, can solve
all arbitrary systems of constraints [Davi73]. In some instances, path consis-
tency cannot be determined. The symbolic execution of such a path can
continue, but whether or not the path can be executed is unknown.

Whenever the last node n,, in the partial path T, has only one successor
node, the branch predicate is null and is represented by the constant true,
which is always consistent with the existing PC. When there is more than one
successor node, each successor node and its respective branch predicate are
considered as an alternative extension of the current path. There are three
cases to be considered: (1) none of the alternative branch predicates is consis-
tent with the PC; (2) only one of the alternative branch predicates is con-
sistent with the PC; and (3) more than one of the alternatives are consistent
with the PC. The graph shown in Fig. 9-12 demonstrates all three cases.

The first case only occurs when evaluating multiconditional predicates
like those that occur for computed go fo statements or case statements
without an otherwise clause. This case implies a program error.

The alternative branch predicates for a set of successor nodes either all
evaluate to constant boolean values, or all evaluate to symbolic expressions
involving the input variables. Cases 1 and 2 can occur in either of these situa-
tions. When all the branch predicates evaluate to boolean constants, at most
one of the alternatives can evaluate to true. Hence, case 3 can occur only
when the branch predicates are symbolic expressions. Some symbolic execu-
tion systems will select the successor node in the first two cases and will give
the user an option in selecting the path when the third case occurs.

Now to return to the comparison between forward expansion and
backward substitution. Forward expansion is a more efficient technique of
symbolic execution than backward substitution when PC consistency is

Case 3

Case 3
‘w>
Case 2 W w>0
}
' = =
Czel | =1 {v=3)
w=2) i
1
!
Figure 9-12

determined at each branch point. Using forward expansion, the branch predi-
cates maintain their original form once they are created and conjoined to the
PC. The PCis, therefore, only modified by the conjunction of a new, simplified
constraint. In backward substitution the PC is likewise modified by a new,
simplified constraint but, in addition, the PC may be modified by any
assignmenit statement on the path that changes the value of any variable
referenced in the PC. In other words, the PC that is created using forward
expansion only contains expressions in terms of the input values, while that
created using backward substitution may reference intermediate variables
that are later modified. The additional PC modification during backward
substitution is costly since it also requires resimplification of the modified
constraints and consistency must be checked after each simplification.

9-3.3. Applications

Symbolic execution systems have several interesting applications.
This section considers three applications: validation and documentation,
error detection, and test data generation. The last part of this section considers
methods of path selection.

286 SYMBOLIC EVALUATION METHODS FOR PROGRAM ANALYSIS |/ CHAP. 9

The symbolic expressions that are generated for a program path can
quite naturally be used for validation and documentation. The expressions
often provide a concise representation of the output produced along a path.
These expressions can be used to document the program or can be examined
for errors. The symbolic expressions describe the path functions (puy, Puas

... pyn) for the entire path domain D§. Normal execution, on the other
hand, only provides particular output values (z,, . . . , zy) for particular input
values (x,, ..., x,). It is possible for the output data to be correct while the
path functions are incorrect. To use a trivial example, assume the intended
function of a program path with one input value and one output value is
2 * v + 3 but the computed function of the path is 3 * » + 3. If the program
path is executed with » = 0, then the actual resulting value and intended value
agree. Examination of the path function would quickly uncover the error.
While not all errors would be this glaring or all symbolic expressions this
short, examining the symbolic path functions is often useful in uncovering
program errors [Howd76). This is a particularly beneficial feature for exam-
ining programs for scientific applications, where it is often extremely difficult
to manually compute the intended result accurately due to the complexity of
the computations and domain of the input data. This method of program
validation is referred to as symbolic testing.

The path functions created during symbolic execution could be evaluated
for particular data values. The result would be the same as if the path had
been executed. (In cases where roundoff errors, overflow, or underflow could
occur, there may be discrepancies. We do not address these types of problems
here.) The benefit of evaluation at this point is that the symbolic expressions
for the path functions (py,, Puz, - - - » Pun) and path domain D} can be used
to guide in the selection of input values. For example, boundary points of
the path domain may be selected to check the correctness of the branch predi-
cates [Whit78]. Also, if a path function is a polynomial, examination of its
degree can be used in selecting the number of test data points needed to
determine the correctness of this function.

Symbolic execution can also be actively applied to the detection of
program errors. At appropriate points in the program, boolean conditions
can be generated for certain predefined error conditions. These conditions
can be evaluated and checked for consistency with the PC just as branch
predicates are evaluated. Consistency implies the existence of input data in
"the path domain D% that would cause the described error. Inconsistency
implies that the error condition could not occur for any element in the input
domain. This demonstrates another advantage of symbolic execution over
normal program execution. Normal execution of a path may not uncover a
run-time error, while symbolic execution of a path can detect the presence or
guarantee the absence of some errors.

The ATTEST system [ClaL78] automatically generates constraints for

SEC. 9-3 | SYMBOLIC EXECUTION 287

certain error conditions whenever it encounters certain program constructs.
For example, whenever a nonconstant divisor is encountered, a constraint is
created comparing the symbolic value of the divisor to zero. This constraint
is then temporarily conjoined to the PC. If the augmented PC is consistent,
then input data exists that would cause a division-by-zero error; an error
report is issued. If the augmented PC is inconsistent, then this potential run-
time error could not occur for this division on this path. The division con-
straint is removed before symbolic execution continues.

Path verification of program assertions is another method of error
detection. Instead of predefining the error conditions, user-created assertions
define conditions that must be true at designated points in the program.
An error exists if a condition is not true for all elements of the path domain.
When an assertion is encountered during symbolic execution, the complement
of the condition is evaluated and conjoined to the PC. The rest of the analysis
is then identical to the implicit error detection described above.

Test data generation is another natural application of symbolic execu-
tion. The path condition is examined to determine a solution, that is, test
data to execute the program path. Symbolic execution, like other methods of
program validation, does not test the program in its natural environment.
Evaluation of the path functions for particular input values return numeric
results, but because the environment has been changed, these results may not
always agree with those from normal execution. Errors in the hardware,
operating system, compiler, or symbolic execution system may cause an
erroneous result. In addition, testing a program demonstrates its actual
performance characteristics. Select [Boye75] and ATTEST [ClaL78] are two
symbolic execution systems that attempt to generate test data. Since an actual
solution to the PC is desired and not just PC consistency, an algebraic method
is used to solve the system of constraints in the PC. Additional work [Whit78)
is being done to further refine methods of selecting data within a path domain
to increase the probability of detecting errors and to insure the absence of
certain error conditions.

The preceding sections assume that the paths to be analyzed by symbolic
execution are provided. These paths are either chosen by the user or are
selected automatically by a component of the symbolic execution system.
Most symbolic execution systems support an interactive path selection facility
that allows the user to “walk through™ a program, statement by statement.
This feature is useful for debugging since the evolution of the program’s
computations and path conditions can be observed. More extensive program
coverage requires an automated path selection facility for choosing a set of
paths based on some criterion, which is dependent on the intended application
of the symbolic execution.

Three criteria that are often used for program testing are stateinent,
branch, and path coverage. Statement coverage requires that each statement

288 SYMBOLIC EVALUATION METHODS FOR PROGRAM ANALYSIS / CHAP. 9

in the program occurs at least once on one of the selected paths. Testing the
program on a set of paths satisfying this criterion is called statement testing.
Likewise, branch coverage requires that each branch predicate occurs at least
once on one of the selected paths, and testing such a set of paths is called
branch testing. Path coverage requires that all paths be selected, and executing
all paths is referred to as path testing. Branch coverage implies statement
coverage, while path coverage implies branch coverage. Path coverage, in
fact, implies the selection of all feasible combinations of branch predicates,
which may require an infinite number of paths.

Automatically selecting a set of paths to satisfy any one of these criteria
is nontrivial since nonexecutable paths must be excluded [Gabo76). The
ATTEST system [ClaL78), for example, uses a dynamic, goal-oriented method
of path selection. In this system, a path is selected, statement by statement, as
symbolic execution proceeds. A statement is selected based on its potential
for satisfying the path selection criterion, which can be statement, branch,
or path coverage. If an infeasible path is encountered, the system “backs up”
(i.e., returns to the state preceding the last selected statement) and, whenever
possible, selects another statement which may satisfy the selection criterion.
A more complete description of path selection methods for symbolicexecution
systems can be found in [Wood79).

94, GLOBAL SYMBOLIC EVALUATION

The goal of global symbolic evaluation [Chea79] is the derivation of a
global representation of the program—a representation of all program
variables for all the paths rather than along a specific path through the
program. In other words, global symbolic evaluation results in a closed form
representation of an entire program, independent of any particular path
execution. In this section, we describe the general method of global symbolic
evaluation and explain the technique used in evaluating loops within a
program.

9-4.1. General Method

Global symbolic evaluation, like symbolic execution, analyzes the
control flow graph of the ;frogram. The nodes in the graph are numbered
such that if node n, is a predecessor of node #,, then i < j. To maintain this
node ordering and since loops are handled separately by loop analysis, all
backward branches are disregarded. The control flow graph in Fig. 9-2 has
an appropriate node numbering for global symbolic evaluation of the pro-
cedure DOCKING. The numbering of the nodes in the control flow graph
provides the order in which the statements are symbolically evaluated.

As in symbolic execution, the input values are represented by symbolic
names, and all program variables are represented as expressions in terms of

SEC. 94 | GLOBAL SYMBOLIC EVALUATION 289

those symbolic names throughout the analysis. The actual evaluation of a
statement is performed by the same technique as that used in symbolic
execution. Furthermore, the computations themselves are maintained in a
form analogous to the computational graph created in symbolic execution.
The two methods differ in the way in which conditional branching is analyzed.
In evaluating a particular node, symbolic execution only considers the
program state of the one partial program path preceding the current node,
whereas global symbolic evaluation considers the program state of all imme-
diate predecessor nodes in the control flow graph. At any node in the graph,
global symbolic evaluation maintains a representation of the state that
describes the conditions and computations of all partial program paths
reaching that node. This results in a conditional representation, or case-like
expression, where each component of the case expression represents such a
path. Furthermore, a partial program path may represent a class of paths
which differ by the number of iterations of any loop on the path. Loop
analysis develops these classes and is explained in the next section. We
therefore refer to the program state of node n, as STATE[n,], where the state
may have several PCs associated with it and each PC has a corresponding
VAL. The representation of the program state for global symbolic evaluation
is shown in Fig. 9-4.

To see how a node is evaluated, consider a particular node n,, with
predecessor nodes n, and n, (which have been previously evaluated). Control
may reach n, via either of the edges (n,, n,) or (n 4, 1), and the transfer from
either predecessor node occurs under the conditions of the corresponding
branch predicate bp(n,, n,) or bp(n,, n,). Thus, when n, is evaluated, there are
two possible symbolic STATEs that arc effective. The program state at node
n, is then a conditional symbolic expression provided by updating the STATE
in the context of either possible transfer to the node. In the context of the
transfer from predecessor node n, to n,, STATE[n,] is obtained by updating
the STATE of node n, in much the same way as the update is performed in
symbolic execution. The branch predicate bp(n,, n,) is conjoined to all the
PCs associated with n,, and the conjunctions are checked for consistency.
If any of the augmented PCs are inconsistent, the corresponding cases are
discarded from the updated STATE. Each remaining PC’s VAL is updated
in all components whose variables are modified by node n,. The same proce-
dure is followed for the transfer from n, to n,, and these two STATE vectors
form the conditional representation of the program state at node n,.

9-4.2. Loop Analysis

The described representation of the state of a node in terms of all
partial program paths into the node is only possible because of the form in
which global symbolic evaluation represents loops. Loop analysis attempts
to represent a program loop with a closed-form expression describing the

290 SYMBOLIC EVALUATION METHODS FOR PROGRAM ANALYSIS [CHAP. 9

effects of that loop. By doing this, paths which differ only by the number of
iterations of a loop are represented by one path.

Given a loop, global symbolic evaluation develops expressions for the
values of all variables modified within the body of the loop in terms of the
symbolic input values and a symbolic iteration count for the loop. In addition,
a conditional expression is obtained representing the actual number of itera-
tions of the loop that will be performed for any arbitrary execution of the
program, i.e., for any arbitrary assignment of input values.

Loop analysis begins by associating an iteration counter k with the
loop. For each variable v whose value may change within the loop, a special
symbolic value v, is used to represent the value of the variable » at the begin-
ning of the kth iteration of the loop. Symbolic evaluation of the loop body is
then performed in much the same manner as the forward expansion technique
of symbolic execution. This “execution” provides the symbolic value of the
variable » at the end of the kth iteration, under the assumption of another
iteration of the loop. This symbolic value is, alternatively, the variable’s
value at the beginning of the (k + 1)st iteration of the loop, v,,,. The global
symbolic evaluation outside the loop determines the initial value v, of the
variable just prior to the first iteration of the loop. The symbolic expressions
v, and v,,, provide a recurrence relation with the boundary value v,. The
solution to the recurrence relation, which is represented by »(k), is the value
of the variable v upon exit from the kth iteration of the loop.

In addition to determining this representation for the variables modified
within the loop, the closed-form representation of a loop contains a condi-
tional expression for the number of times the loop is performed. Each
condition under which the loop will be exited is singled out; these are the
branch predicates that control any transfer to a point outside of the loop
body. Each condition is, in general, some constraint on variables modified
within the loop (otherwise it would not control exit from the loop). These
branch predicates can, therefore, be evaluated over the values of the modified
variables at the beginning of the kth iteration, that is, over the solutions to
the recurrence relations v(k). This produces a symbolic representation for
each exit condition as a function of the general iteration number k. The
number of the iteration before which exit occurs, call it k,, is the minimum
k, k > 0, such that one of the exit conditions is true.

The loop may then be represented in its closed form by k,, the condi-
tional expression for the number of times the loop will be executed, and
v(k.), the symbolic value of variable » after k, iterations of the loop for each
variable » modified within the loop. Figure 9-13 shows the analysis performed
for the loop in the procedure DOCKING of Fig. 9-1.

Obtaining the recurrence relation v(k) is not always straightforward.
Complications arise in several situations. When there are simultaneous recur-
rence relations, several variables, which may be dependent, are modified

Variables modified within the loop
DISTANCE., = DISTANCE, - CURRVEL, + deltat
CURRVEL,; = NEXTVEL,
TIMEgx,; = TIME; + deltat
NEXTVEL,; = CURRVELy, + (6.67+10se(—11) ¢ station ¢ starship / distancess2
- thrust / starship) deltat
Initial values
DISTANCE; = distance
CURRVEL,; = velocity
TIME, = time
NEXTVEL; = velocity + (6.67¢10¢e(~11) « station = starship / distancees2
~ thrust / starship) = deltat
Solutions to recurrence relations
TIME(k) = time + XX, deltat
NEXTVEL(k) = velocity + Zf_ 1[(6.67+10+¢(-11) « station ¢ starship / distances+2
~ thrust / starship) deltat}
CURRVEL(k) = velocity + 3% ,[(6.67¢10«¢(~11) » station ¢ starship / distances+2
= thrust / starship) ¢ deltat)
DISTANCE(k) = distance — 3 X_, [(velocity + 3/, ,[(6.67¢10¢¢(-11) » station
« starship / distances+2 - thrust / starship) ¢ deltat]) « deltat}
Simplified solutions
TIME(k) = time + (k = 1) ¢ deltat
NEXTVEL(k) = velocity + (k) « (6.67¢+10s¢(~11) ¢ station ¢ starshipss2 = deltat
= thrust » distances+2 » deltat) / distancee»2 » starship
CURRVEL(k) = velocity + (k = 1) » (6.67#10+«(-11) « station ¢ starshipse2 « deltat
— thrust ¢ distancess2 « deltat) / distancee+2 ¢ starship
DISTANCE(k) = distance - zf_z[veloci!y sdeltat + (j~ 1) ¢ (6.67¢10es(-11) »
station « starshipes2 » deltates2 - thrust ¢ distancess2 ¢ deltates2)
/ distancess2 s starship]
Exit condition
NEXTVEL(k) < 0.0
Evaluated exit condition
(velocity + (k) s (6.67¢10s¢(—11) « station » starshipss2 « deltat
— thrust e distances+2 « deltat) / distancess2 s starship) << 0.0
Number of iterations of loop, k.
k;, = minimum &, such that k => 0 and (velocity + (k) « (6.67+10¢e(-11)
* station » starshipes2 ¢ deltat — thrust + distances+2 + deltat) / distancess2
+ starship) << 0.0

Figure 9-13

within the loop. In particular, the dependence may be cyclic; » may depend on
w, which depends on v. Problems are also caused when the recurrence rela-
tions are conditional, in which case the closed-form solution becomes quite
complicated, provided it can be solved at all. :
When a closed-form representation of a loop can be found by this
analysis technique, it provides a more general evaluation of a loop than the
technique employed by symbolic execution systems—evaluating the loop for
a specific number of iterations. There is no reason, however, that this loop
analysis technique could not also be incorporated into symbolic execution.
After the loop has been analyzed, the closed-form representation
becomes part of the program state at the point where the loop is exited, and

291

292 SYMBOLIC EVALUATION METHODS FOR PROGRAM ANALYSIS [CHAP.9

evaluation continues. Figure 9-14 shows the program state following global
symbolic evaluation of the procedure DOCKING, where the conditions and
functions have been simplified.

case

station << 0.0 V starship <5 0.0 V thrust < 0.0 V

velocity << 0.0 V deltat << 0.0 V time << 0.0 V

distance <5 0.0:
TIME = time
DISTANCE = distance
ERROR = 1
STATION = station
STARSHIP = starship
THRUST = thrust
VELOCITY = velocity
DELTAT = deitat
GCONST = A
GRAVITY = A
CONSTACC = A
CURRVEL = A
NEXTVEL = A

station > 0.0 A starship > 0.0 A thrust > 0.0 A

velocity > 0.0 A deltat > 0.0 A time > 0.0 A

distance > 0.0 :
TIME = time + (k; — 1) » deltat :
DISTANCE = distance - Z‘J"_-z[(velocity s deltat + (j = 1) ¢ (6.67¢100s(~11)

+ station ¢ starshipes2 » deltates2 — thrust » distancoee2 ¢ deltates2)
/ distancese2 « starship]
ERROR =0
STATION = station
STARSHIP = starship
THRUST = thrust
VELOCITY = velaocity
DELTAT = deltat
GCONST = 6.67¢100¢(-11)
GRAVITY = 6.67¢10s¢(—11) » station » starship / distancess2
CONSTACC = (6.67¢10¢s(—11) © station e starshipes2 — thrust « distancess2)
/ distancees2 e starship
CURRVEL = velocity + (kg — 1) * (6.67¢10#s(—11) » station ¢ starshipee2 o deltat
— thrust « distancess2 ¢ deltat) / distancese2 s starship
NEXTVEL = velocity + (k) » (6.67¢10se(~11) & station starshipse2 ¢ deltat
— thrust » distancess2 s deltat) / distancess2 e starship
endcase

Figure 9-14 |
9-4.3. Applications

Global symbolic evaluation has several possible applications, many
of which are similar to those of symbolic execution. Test data generation
could conceivably be performed by solving for the PCs in the case expression.
New methods for solving a PC must be explored since the PC may contain
recurrence relations as well as constraints. The closed form representation of
a program could be compared with some types of program specifications to

SEC. 9-5 |/ DYNAMIC SYMBOLIC EVALUATION 293

determine consistency. User-provided assertions can be checked for validity;
with global symbolic evaluation, the truth of these assertions can be checked
for all paths rather than a specific path. In addition, since the program state
is maintained at all points in the program, assertions could be provided by
the user after completion of global symbolic evaluation without requiring
reevaluation of the program. Similarly, global symbolic evaluation can be
used to automatically generate and check error conditions as it analyzes a
program.

Global symbolic evaluation also has applications in program optimi-
zation [Town76]. As in optimizing compilers, the existence of the computa-
tional graph [Cock70b] makes common subexpression elimination and
constant folding relatively straightforward. In addition, several types of loop
optimizations may often be performed when the closed-form representations
of loops are obtainable. Loop-invariant computations may be easily detected
since they are independent of the iteration count of the loop; these may thus
be moved outside of the loop. Loop fusion can sometimes be performed when
the number of iterations performed by two loops can be determined to be
the same, and variables manipulated in the second loop are not computed in
a later iteration of the first loop. When variables modified within the loop have
values that form arithmetic progressions, that is, they are incremented by the
same amount each time through the loop, these computations can sometimes
be moved out of the loop and replaced by expressions in terms of the iteration
count. Optimizations that perform in-line substitution of a procedure may
also be benefited by global symbolic evaluation, since the closed-form repre-
sentation of the procedure may enable better determination of when such
substitution is useful.

9-5. DYNAMIC SYMBOLIC EVALUATION

Dynamic symbolic evaluation is just one of the features provided in
dynamic testing systems [Balz69, Fair75). Using test data to determine the
path, dynamic symbolic evaluation systems provide symbolic representations
of the executed path’s computations. This section gives a brief overview of
dynamic testing systems and then describes dynamic symbolic evaluation,
its implementation techniques, and its applications.

9-5.1. General Method

Dynamic testing systems monitor program behavior during execution.
This is implemented by instrumenting the program, that is, by inserting
calls to analysis procedures in appropriate places in the code. This is generally
done by a preprocessor and may double the number of statements in the
source program. The user then supplies input data to execute theinstrumented
program.

294 SYMBOLIC EVALUATION METHODS FOR PROGRAM ANALYSIS [CHAP.9

Dynamic testing systems may provide a profile of each execution run
as well as an accumulated profile of all execution runs. Some of the types
of information in a profile include the number of times each statement was
executed, the number of times each edge was traversed, the minimum and
maximum number of times each loop was traversed, the minimum and maxi-
mum values assigned to variables, and the paths that were executed. In
addition, the system may check the validity of user assertions at run time
[Fair75, Stuc73). Unlike the assertion checking done by symbolic executton,
dynamic assertion checking is done just for the supplied input data and not
for the entire path domain. Either the assertion is true and thus valid for the
input data, or the assertion is false and thus invalid for the program.

The dynamic symbolic evaluation component of dynamic testing systems
provides a symbolic representation of the computations of each executed
path. For input data that executes path Py, VAL[P,] is provided. VAL[P,]
can be represented internally as a computa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>