Symbolic Evaluation Methods —
Implementation and Applications

Lori A. Clarke
Debra J. Richardson

COINS Technical Report 81-42
1981

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

Appeared in
Computer Program Testing
B. Chandrasekaran and S. Radicchi, editors,
North-Holland Publishing Company, 1981

This work was supported by the National Science Foundation under grant NSFMCS 77-02101 and the Air Force Office
of Scientific Research under grant AFOSR 77-3287, and the International Business Machines Corporation under the
graduate fellowship program.

Symbolic Evaluatiorn Methods --
Implementations and Applicatiors

Lori A. Clarke
Debra J. Richardsorn

Department of Computer and Information Scierce
University of Massachusetts
Amherst, Massachusetts 01003

This paper describes symbolic evaluatior, a program aralysis
method that corcisely represents a program's computatiors and
input domair by symbolic expressiors. The general concepts

are explainred ard three related methods of symbolic
evaluatior are described.

The first method, symbolic executior, is a path analysis
techrique wused mairly for program® validation. There are
several symbolic execution systems that have been developed
ard some of the major distirctiors between these systems are
described. The second method, dyramic symbolic evaluatior,
is a data dependent method that provides a representation of
the executed program path. This method is used primarily as
a debugging aid. The third method, global symbolic
evaluatior, attempts to provide a symbolic representation of
the ertire program. Although there are still many urresolved
problems with this method, it has some direct applications to
program verification and optimization.

Examples of all three methods are given. Each method's
implementation approach, applicatiors and 1limitatiors are

described, as well as the status of current research ir the
area. :

1. INTRODUCTION

The ever increasirg demand for larger and more complex programs has created a
reed for automatic assistance in the software development process., Software
ergireering is concerned with establishing a more supportive ervirorment to aid
this process. Such an ervirormert will probably ercompass a wide variety of .
tools rangirg from knowledgable text editors to formal program verifiers. Mary
of the tools that are being developed are directed toward the validation of
software. Through program analysis, these tools detect errors, determire program
consistercy, and gererally ircrease corfidence in the program. Several of these
validation tools employ a techrique, called symbolic evaluatior, that creates a
symbolic representatior of the program. Symbolic evaluation is a program
aralysis method that monitors the maripulations performed or the input data.
Computatiors are represerted as algebraic expressiors over the input data, thus
maintairirg the relatiorship betweer the irput data and the resulting values.
Normal executior computes numeric values but loses irformatior about the way ir

‘This work was supported by the Natioral Scierce Fourdation under grart NSFMCS
77-02101, the Air Force Office of Sciertific Research under grant AFOSR 77-3287,

and the Interratioral Busiress Machines Corporatior under the graduate fellowship
program.

which the rumeric values were derived, whereas “symbolic evaluation- preserves this
information. Symbolic evaluation has a wide range of validation applicatiors,
ireludirg testing, debugging, and formal program verificatiorn, as well as
applications in program optimization and documentation.

There are three basic methods of symbolic evaluation: symbolic executior,
dynamic symbolic evaluatior, and global symbolic evaluation. Symbolic executior
i3 a path-oriented evaluation method that describes data dependencies for a path.
Dynamic symbolic evaluation produces a trace of the data dependencies for
particular input data. Global symbolic evaluation represents the data
dependercies for all paths irn a program.

This paper introduces the basic corcepts of symbolic evaluatior and preserts
rotations for uniformly representing and comparing the three methods. More work
has been dore in the area of symbolic execution, so a detailed descriptior of
Symbolic executior 1is given first. The other symbolic evaluatior methods are
then described. Examples of the three methods are giver to demonrstrate their
correspording strergths and wealnesses, and several applications of each method
are discussed.

procedure TRANSACT (DAYS:ir irteger:

AMOUNT:ir real;

BALANCE:in out real;

INTEREST:out real;

BELOWMIN:out boolear;

OVERDRAFT:out boolear) is
NEWBAL:real; -- rew balance
RATE:constant real := 0.06; -— interest rate
MINBAL:constant real := 100.00; -~ minimum balance
BMCHARGE :corstart real := 0.10; —= below mirnimum charge
ODCHARGE :cornstant real := 4,00; -- overdraft charge

s begir
1 OVERDRAFT := false;

2 BELOWMIN := false; -

3 NEWBAL := BALANCE * (1+RATE/365) *#* DAYS:

4 INTEREST := NEWBAL - BALANCE;

5 if AMOUNT > 0.0 then -- process deposit

6 NEWBAL := NEWBAL + AMOUNT;

endif;

7 if AMOUNT < 0.0 ther -~ process check

8 if -AMOUNT > NEWBAL then

9 OVERDRAFT := true;

10 NEWBAL := NEWBAL - ODCHARGE;
else

1 NEWBAL := NEWBAL + AMOUNT;
endif;

12 if MEWBAL < MINBAL ther

13 BELOWMIN :z true; -

14 NEWBAL := NEWBAL - BMCHARGE;
endif;

endif;
15 BALANCE := NEWBAL;

f erd TRANSACT;

Figure 1. Routire Trarsact

2. BASIC CONCEPTS

This sectior presents some concepts furdamental to symbolic evaluatior, Some
terminology 1s introduced ard the general evaluation technique that is used by
the three methods is deseribed. Iritially, the descriptior is restricted to
single routines and to routines whose input and output are dore orly via
parameters. These restrictions are made merely to simplify the presertatior of
symbolic evaluatior ard are not necessary for the actual analysis performed by
the three methods. The modifications necessary to handle routine invocations and
irput ard output statemerts will be addressed later. The corcepts presented ir
this section will be illustrated for the routine TRANSACT, shown ir Figure 1,
which handles a transaction for an interest-bearing checkinrg account.

Program analysis methods typically represent a routire R by a directed graph,
called a cortrol flow graph, that describes the possible flow of control through
the routine. The nodes ir the graph, {rn,y, Poseeey I }, represent executable
statements. Note that in Figure 1, the statements in TﬂANSACT are annotated with
rode rumbers. Each edge is specified by an ordered pair .of nodes, (“1' ngd,
which indicates that a trarsfer of cortrol exists from r, to n,. Associated with
each transfer of cortrol are corditions urder which such a trafisfer occurs. The
branch predicate that governs traversal of the edge ("i- ny) is deroted by
bp(r, , "J)~ For a sequertial transfer of cortrol, the brarnch predicate has the
constant” value true and thus need rot be corsidered. For a birary cordition at
rode Ny that precedes nodes n, and Py, the branch predicate for one edge ("i' n;)
is the complement of the bJanch predicate for the other edge ("i' "k) —-— thug.
bp(rn,, nj) .= rot(bp(ry, m)). Note that each IF statement, nested or ~otherwise,
form3 a-pair of complementary branch predicates, Ir TRANSACT, for example, node
8 precedes rodes 9 and 11 ard bp(8,9) = (NEWBAL + AMOUNT < 0.0) while
bp(8,11) = (NEWBAL + AMOUNT >z 0.0). Some conditioral statements, such as the
FORTRAN computed GO TO or the Ada CASE statements, may have more than two
successor nodes and each branch predicate must be represented appropriately. In
‘this paper, the control flow graph has a single entry point, the start node n_,
and a single exit point, the final node n., If recessary a null rode can ge
added to a graph for the start node, and likewise for the final rode, to
accomplish "this single-entry, sirgle-exit form without 1loss of gererality.
Figure 2 shows the corntrol flow graph for TRANSACT.

A subpath ir a cortrol flow graph is a Sequence of statements,
(nﬂi' THistps-es Nye), where for all 1 < j< t, 5 is a rode in the cortrol flow
graph stch 'that there exists a transfer of eontrof fromr,. ton 4 A partial
path is a subpath that beginrs with the start node and §§ deno@ga by Pﬂu' where
PHu = ("s' PH1r PH2eeees “Hu)' Herce, for any partial path P uw wWith v > 1,
P u = u-1+ Tyl where PH = (ns). A path is a partial patg that ends with
the rinal¥7dde gy.PH. thus Py =z (rg, Pyye Ppgoseees Bpye Be). A

and is deroted
routine R is composed of a set of paths {91, P5, ...}; there may be ar irfirite
runber of paths due to program loops. The rout?ne TRANSACT does rot cortain ary
loops, thus the paths can all be listed and are provided ir Figure 3.

There is ro guarantee that a sequerce of statemerts representirg a path is
executable; a path may be nonexecutable due to contradictory corditiors
-goverring the transfers of control along the path. The control flow graph is a
representation of all possible paths, bath executable ard rorexecutable, through
the correspordirg routine. The paths in TRANSACT that are ronexecutable are P1,
¢P3, Pg, and P7.

A routire R can be viewed as a functior that maps elemerts ir a domair X irto
elemerts ir a rarge Z. An element irn X is a vector x with specific irput values,
X = (x1. X2,...4 Xy), and corresponds to a single poirt in the M-dimersioral
irput space X. Likewise, R(x) in Z i3 a vector z with specific output values,
z = (21, 2p...4s 2y), and correspords to a single poirt 1ir the N-dimersioral
output ' space 2Z. A routine's variables, which store irput, irtermediate ard

Cortrol Flow Graph for TRANSACT

Figure 2.

~

o
~ o~
G W G
o ™ -
N o0
- ozt —~
N+~ » %%
E R 2N -
- .M G LN G
eIt ™ & e mT -
Me e =0
— e T ey~
N+~ o s+ =
Ne= e~ -
- e O T O~
e(N ™ & a(™ o~
—r 2 QOr = 0O W
- e T v s o
e o o e & olN G
W OO~ OONe™ -
« e o o o o o o 2N

nnnNnunnnunaan
Nt Nt Nt Nt N Nt ot "t Nt

W uwnonowon
(=4

— QO INO-0 0™

[3 - DR Dy - PR By - DY Dy - DY P -

Paths of TRANSACT

Figure 3.

output values, are represented by a vector y = (y,, yz',,,; Yy): - note that a
distinction is made between a variable and its value. N
The path domair correspondirg to a path is the set of all x in X for which that
path could be executed. The path domair of a rorexecutable path, therefore, is
empty. Execution of a path performs a path computatior that provides R(x) = z in
Z. For each executable path, the path domain and the path computatior define the
function of the path. Since the executable paths of a routine divide the domair
X into disjoint subdomains, the function of a routine R is composed of the set of
all functions of the executable paths ir R.

Symbolic evaluation provides representations for the path domairs and path
computationrs of a routine. These symbolic representatiorns describe the data
dependercies for the paths that are aralyzed. Symbolic evaluatior methods use
symbolic names to represenrt the input values. The statements on a path are
interpreted ard the symbolic values of all variables and branch predicates are
maintained as expressions in terms of these symbolic rames.

Before evaluatirg a path, the symbolic values of the variables are iritialized at
the start node. Input parameters are assigred symbolic rames, variables that are
initialized before executior are assigred the corresponding constant value, ard
all other variables are assigned the undefined value "7?". Figure 4 shows the
iritial symbolic values assigned to the variables in TRANSACT. Note that the-
conventior used ir this paper is to refer to variable names in upper case ard
symbolic names in lower case, where an irput parameter's name in lower ocase 1is
assigred for the correspordirg input value.

Throughout symbolic evaluation, each statement or a path is irterpreted by
substituting the current symbolic value of a variable wherever that variable is
referenced. Thus, wherever the variable ¥y is referenced, its current symbolic
value, which is denoted by s(y;), is used. When an assigrment statement, such as
Yy = ¥g * vy, 18 irterpreted, ghe algebraic expression s(yK) * s(yL) i3 gererated
afd provides the new symbolic value for y, For the assigrment statement at rode
3 in TRANSACT, for example, the currert symbolic values of BALANCE, RATE, and
DAYS are substituted into the expressior, resultirg ir the symbolic value
balance*(1+0.06/365) **days,

which is assigred for the variable NEWBAL. When interpreting a branch predicate,
such as bp(ni, n:) = (yK > ¥;), the conditioral expression (s(y,) > s(yp)) is
gererated and provfdes a symbo&ic value for the brarch predicate, which is
deroted by s(bp(r,, "j))' To irnterpret bp(8,11) or path P, in TRANSACT, the
current symbolic vaiues of AMOUNT and NEWBAL are substituted “into the branch
predicate, resultirg in the corditioral expressior

—amount <= balance®(1+0.06/365)%*days
The irterpretatiors of all the statements or path P, in TRANSACT are shown ir
Figure 4,

Followirg the symbolic evaluatior of a path P, , the symbolic wvalues for the
output parameters defire the path camputagion, which is denoted CI[P,}. 1Ir
TRANSACT, the output parameters are BALANCE, INTEREST, BELOWMIN, and OVERDRAFT,
ard thus for each path. P,, C[P,] = (S(BALANCE), s(INTEREST), s(BELOWMIN),
S(OVERDRAFT)). The corjurction of tne symbolic values of the brarch predicates
defines the path domain ard is referred to as the path corditior, denoted by
PC[PH]. Orly the input values that satisfy the path cordition could cause
execution of the path. For path P, ir TRANSACT, PC[P,] = s(bp(5,7)) ard
s(bp(7,8)) and s(bp(8,11)) and s(bp(12,13)). Figure 5 shows tﬁe path computatior
anrd path cordition that result from symbolic evaluation of path Pz.

The three methods of symbolic evaluatior each use ar irterpretive techrique
similar to that described above to develop representations of the path
computatiors arnd path conditiorns. Symbolic execution is a path-deperdert method
of symbolic evaluatior that provides the path computatior ard path corditior for

statement irterpreted interpreted
or edge Dbranch predicate - assigrments
s true DAYS=days, AMOUNT=amount,
BALANCE=balance, INTEREST=?,
BELOWMIN=?, OVERDRAFT=7,
NEWBAL=?, RATE=0.06,
MINBAL=100.0, BMCHARGE=0.1,
ODCHARGE=4.0
1 OVERDRAFT=fal se
2 ’ BELOWMIN=false
3 NEWBAL=balance®(1+0.06/365)#*days
4 INTEREST=balanrce*(1+0.06/365) **days-balance
(5,7) emount <= 0.0
(7.8) =amount < 0.0 :
(8,11) -amount <=
balance®*(14+0.06/365)%*days
1 NEWBAL=balance®(1+0.06/365) **days+amount
(12,13) balance*(1+0.06/365)**#days+
amount < 100.0)
13 BELOWMIN=true
14 . NEWBAL=balarce®(1+0.06/365) #*days+anount-0. 1
15 BALANCE=balance*(1+0.06/365) **days+amount~0. 1
f

Figure 4. Symbolic Evaluation of Path P2 in TRANSACT

Path Computation C[P,]
BALANCE = alancg'(1+0.06/365)"days + amount - 0.1
INTEREST = balarce#(140.06/365)%*days - balanrce
BELOWMIN = true
OVERDRAFT = false

Path Cordition PC[P2]
(amount <= 0.0)“and (amount < 0.0) and
(-amount <= balance®(1+0.06/365)**days) and
(balance®(1+0.06/365)#*days + amount < 100.0)

Figure 5, Path Computatior and Path Conditior

for Path Pz in TRANSACT

a giver path. The final results produced for a path are similar to those shown
for path P, of TRANSACT ir Figure 5. Dyramic symbolic evaluatior is a
data-dependerit method that analyzes a path while the routine is actually beirg
executed for specific irnput data. This method interpets the statemerts that are
executed or the path. In addition to supplying the actual output values that
result from the execution, dynamic symbolic evaluation provides symbolic
representations of the path computation and path condition. If input data
(DAYS=20, AMOUNT=-10.00, BALANCE=100.00) is supplied for TRANSACT, path P, is
executed. Dyramic symbolic evaluatior would then provide the actual output
values (BALANCE=90.23, INTEREST=0.33, BELOWMIN:z=true, OVERDRAFT=false), as well as
the path computatior and path conditior shown in Figure 5. Both symbolice
executior and dynamic symbolic evaluation aralyze a routire or a path-by-path
basis. Dyramic symbolic evaluation chooses the paths based on the supplied test

data, while symbolic execution requires some other method for selecting the
paths,

Rather thar evaluate a routine oq a path-by-path basis, global symbolic
evaluation creates a case expressior' that encompasses all paths. For a routine
that contains no 1loops, such as TRANSACT, the results of global symbolie
evaluation are equivalent to the results produced by symbolic executior when all
paths are selected., For such a routire the case expression corsists of "a case
for each path, where each case is represented by the path conditior and the path
computatior. Figure 6 shows this expressior for the executable paths in
TRANSACT. For a routire that cortains a loop, global symbolic evaluation uses a
loop aralysis technique to develop a closed form representation of the effects of
the loop. This allows paths that differ orly by the rumber of loop iteratiorns to
be grouped as a class of paths. Thus, in gereral, a case may be represented by

the path condition for a class of paths and the path computatior associated with
that class.

All three methods of symbolic evaluation create symbolic represertations of the
path condition and path computation. The information that is gathered to achieve
these representatiorns differs significantly, thus affecting the types of program
aralysis that can be performed. Dynamic symbolic evaluation maintairs only the,
information required to develop the final symbolic represertions arnd its
applications are wusually restricted to program debuggirg. Symbolic executior
mairtains more general irformation about a path and thus has a more extersive
range of applicatiorns, inrcluding test data gereratior, error detection, and
program validation. Global symbolic evaluation analyzes all paths and mairtairs
a global representatior of a routire and, ir addition to the applications of
symbolic execution, thereby has applications to program optimization anrd
verification. It 1is not surprisinrg that the more powerful the method, the more
costly its implementatior. All three methods of symbolie evaluation, basic
approaches for their implemertatior and their primary applications, will be
explaired and compared ir the sectiors that follow.

3. SYMBOLIC EXECUTION

Symbolic executior aralyzes distinet paths. In gereral, symbolic execution is
attempted or orly a subset of the paths ir a routire sirce a routire cortairirg a
loop may have an effectively irfirite nrumber of paths. The descriptiorn of
symbolic executior that follows is ‘irdependert of the method of path selection;
it is assumed that path selectior irformation is provided exterrally. This
section first describes and compares several techriques used ir implemertirg
symbolic executior. Ther a discussior of the applicatiors of symbolic execution
is preserted and several methods for selectirg the paths to be analyzed are
described.

case
(amount <= 0.0) and (amount < 0.0) and
(-amount <z balance®(1+0.06/365)**days) and
(balance®(1+0.06/365)**days + amount < 100.0):
BALANCE = balarce®(1+0.06/365)%*days + amourt - 0.1
INTEREST = balance*(1+0.06/365)%%days - balarce
BELOWMIN = true
OVERDRAFT = false

(amount <= 0.0) and (amount < 0.0) and
(-amount > balance®(1+0.06/365)%%*days) and
(balance®(140,06/365)%*days - 4.0 < 100.0):
BALANCE = balance®*(1+0.06/365)%#*days -~ 4.0 - 0.1
INTEREST = balance®(1+0.06/365)%%days: - balance
BELOWMIN = true
OVERDRAFT = true

(amount <= 0.0) and (amount < 0.0) and

(-amount <= balance¥(1+0.06/365)**days) and

(balance®(14+0.06/365)*days + amount >= 100.0):
BALANCE = balance*(1+0.06/365) **days + amount
INTEREST = balance®*(1+0.06/365)%*%*days - balance
BELOWMIN = false
OVERDRAFT = false

(amount <= 0.0) and (amount < 0.0) and

(-amount > balance®(1+0.06/365)**days) and

(balance®(1+0.06/365)%%days - 4.0 >= 100.0):
BALANCE = balance®(1+0.06/365)%*%days ~ 4.0
INTEREST = balance®(1+0.06/365)%%*days - balance
BELOWMIN false
OVERDRAFT = true

(amount > 0.0) and (amount >z 0.0):
BALANCE = balance®(1+0.06/365)%%*days + amount
INTEREST = balance®(1+0.06/365)**days - balance
BELOWMIN = false - —
OVERDRAFT = false

(amount <= 0.0) and (amount >= 0.0): -
BALANCE = balance®(1+0.06/365)*%days
INTEREST = balance®*(1+0,06/365)%%days ~ balarce

BELOWMIN false
OVERDRAFT = false
endcase

Figure 6. Global Symbolic Evaluation of TRANSACT

3.1 Implementatior Approaches

Several symbolic executior systems have been described [BOYE75, CLAR76b, HOWD77,
HUAN75 ,KING76 ,MILL75, RAMAT6,VOGESO]. These systems employ either of two
evaluatior techrniques, forward expansior or backward substitution. In additior,
some of these systems try to determine path conditior corsisterncy
{BOYE75,CLART6b,KINGT76, RAMA7T6], and again two different techrigues, algebraic or
axiomatie, have successfully beer applied. . This section describes the
implemertation approach taken by ATTEST [CLAR78], which uses forward exparsior to
develop the symboliec representatiors and employs an algebraic techrique to

determine the consistércy of the path conditidh . The backward éubstitution and:

axiomatic techniques are also discussed and compared to their respective
_alterratives.

. e gt . - I

Forward expansion is the most intuitive approach to creatinrg the symbolic
representatiors and is the irterpretive techrique outlined ir the previous
sectior. Forward expansion begins with the start node ard builds symbolic’
expressions as each statement in the path is irterpreted. To facilitate this
irterpretation, the ATTEST system first translates the source code into an
intermediate form of binary expressions, each cortainirg ar operator and two
operands. During forward expansion, the binary expressions of the interpreted
statements are used to form zn acyelic directed graph, called the computatior
graph, which mairtains the symbolic values of the variables. Wher a variable is
assigred a value, it is actually assigred a poirter irto this graph. The rode of
the computatior graph that is pointed to by a variable car be treated as the
root of a birary expression tree. Traversing this tree irn in-order (i.e., left
subtree, root, right subtree) provides the symbolic value for this variable, The
symboliec value of a branch predicate is similarly mairtaired ir the computatior
graph as a binary expressior tree. Figure 7 shows the computatior graph at two
stages durirg symbolic executior of path P, in TRANSACT. There is a close
similarity betweer the forward _exparsion techinique described here ard the
technique of commor subexpression elimiratior used by optimizing compilers
[cock70).

-

AMOUNT >

INTEREST —>®)

BELOWMIN
. (T

———
OVERDRAFT 4

NEWBAL

BALANCE

DAYS - .

RATE

MINBAL

BMCHARGE

ODCHARGE

Figure Ta. Computatior Graph after Interpretation
of Statemerts s,1,2,3 ir TRANSACT

bp(5,7) > (<=)

AMOUNT > CGmourt > 0.9
BELOWMIN—
) X false>

OVERDRAFT

INTEREST

NEWBAL

BALANCE

DAYS —

RATE

MINBAL

BMCHARGE

ODCHARGE

) 4
=
o

Figure 7b. Computation Graph éfter Interpretation
of Statemenrts s,1,2,3,4,5,7 of TRANSACT

After evaluatior of a path, the path computatior is obtaired by traversing the
birary expressior trees for the output parameters. The path corditior is created
by traversing the binary expression trees for the interpreted branch predicates
and corjoinirg the resulting symbolie values. In the purest sense, the path
computation and path cordition are all that need be provided by symbolic
execution. To do further aralysis, however, it is desirable to simplify the
symbolic represertatiors and to determire the corsistercy of the path condition.

Simplification can be dore by corvertirg the path computatior and path cordition
irto carorical forms. There are several available algebraic maripulatior systems
[BOGE75,BROW73, RICH78] that can be used to- accomplish this simplificatior. A
carornical form for the symbolic values for the output parameters, ard thus for
the path computatior, might be orne in which like terms are grouped together ard
terms are ordered lexically. For example, the simplified symbolic value for
BALANCE for path P2 is
amount + 1.00016%%days®*balarce - 0.10.

The path conditior might be put irto corjunctive rormal form and each relatioral
expressior put inrto a caronical form., This canorical form might be ore ir which
the corstart term is or the righthard side of the relatioral operator ard, orn the
lelfthard side, like terms are grouped together and terms are ordered lexically.

Ir most cases, orly a subset of the paths ir a program are executable ard,
therefore, it 1is desirable to determire whether or rot the path corditior is
consistent. Ore approach to this problem employs a theorem proving system. We
refer to this as the axiomatic technique sirce it 1s based upor the axioms of
predicate calculus. Another approach, referred to as the algebraic technique,
treats the path condition as a system of corstraints and uses ore of several
algebraic methods -- such as a gradiert hill-climbing algorithm or 1lirear
programming -- to solve this system of constraints. The ATTEST system uses a
linear programmirg system [LAND73] and thus employs the algebraic technique. The
advantage of choosing this techrique is that a solution is provided wher the path
condition is determined to be consistent., This solution provides test data to
execute the path. Both the axiomatic ard algebraic techniques work well on the
simple corstraints that are gererally created during symbolic execution
[CLART76a]. No method, however, car solve all arbitrary systems of corstraints
(DAVI73]. In some instances, path cordition corsistency can rot be determined;
the symbolic representations for such a path can be provided, but whether or rot
the path can be executed is unkrown.

During symbolic execution it is desirable not orly to recogrize nrorexecutable
paths but to recogrize the inconsistercy as soon as possible. Early detection of
a nonexecutable path prevents worthless, yet costly, symbolic executior. The
ATTEST system attempts to detect a norexecutable path as soon as possibe by
examining the evolvirg path cornditior as each branch predicate is interpreted.
ATTEST develops the path conditior as the statements or a path are interpreted.
Thus at ary point in the interpretation, there is a representatior of the path
conditiorn for the partial path that has been evaluated so far. For partial path
Puy = (ng, Mqeeees M), the path conditior is deroted PCIP wl. Wher a node
Husy, 18 considered 'as an extersior to the partial path g , the interpreted
branch predicate s(bp(ry , ny .)) is first simplified ard ¥er examired for
consistency with the exisg¥ng path corditior PC[PH J. Urless incorsistency is
determined, the interpreted branch predicate is conjo?ned to the path corditior,
creating
pPCiP 1 = PC[Py,.] and s(bp(r,. , n M.
Corsistency or 1nconsis§gﬁéy may beﬂgetermiredpbyHBerf§¥$lng simple reductions or
the path condition ([DEUT73,DILL81]. On the ore hand, it may be possible to
determire that s(bp(r, ., 7T) is domirated by relatioral expressiors in
PC[P u]. in which case pB[PHu+1 must be cornsistert, since PC[PHu] is cornsistent.
In tHe evaluation of path P9, for example, s(bp(7,15)) = (amourt >= 0.0) is
domirated by s(bp(5,6)) 2 (amount > 0.0) and thus PC[s,1,2.3,4,5,6,7,15] is
cornsistert. On the other hand, s(bp(nau, nHu+1)) may be contradicted by a
relatioral expressior ir PC[P,], ir which case PC[Py. ,] is ircorsistert. Ir
the evaluatior of path P,, §or exzmple, s(bp(7.8§? = (amourt < 0.0) is
cortradicted by s(bp(5,6)) = (amourt > 0.0), ard thus PC[s,1,2,3,4,5,6,7,8] is
ircornsistert. While such reductiors are sometimes applicable, it 1is ofter
recessary to rely or more sophisticated techriques, such as those described
above.
Ir additior to detectirg rorexecutable paths early ir the symbolic execution
process, the ircremertal developmert of the path conditior as implemerted by
ATTEST allows an alternative edge to be selected or a partial path when an
inconsistent branch predicate is iritially encountered. Thus, the evaluatior of
the partial path up to an ircorsistent branch predicate car usually be salvaged.
For example, the norexecutable partial path (s,1,2,3,4,5,6,7,8) in TRANSACT,
showr in Figure 8, was termirated as soor as the ircorsistent path conditior was
discovered. The symbolic value of the branch predicate for the edge (7,8), where
the inconsistercy occurred, is replaced by the symbolic value of the branch
" predicate for the edge (7,15), ard aralysis continues.

In general, when there is more than ore successor rode to the last node or the
partial path, each may be considered as an alterrative extensior of the existirg
partial path. Note that the alterrative brarch predicates either all_evaluate to

statemert simplified, evolving simplified, interpreted

or edge path condition assigrments

s true DAYS=days, AMOUNT=amount,
BALANCE=balance, INTEREST=?,
BELOWMIN=?, OVERDRAFT=?,
NEWBAL=?, RATE=0.06,
MINBAL=100.0, BMCHARGE=0.1,
ODCHARGE=H.0

1 OVERDRAFT=fal se

2 BELOWMIN=false

3 NEWBAL=bal ance®(1+0.06/365) **days

=1.00016%%days®*bal ance

4 INTEREST=1.00016%**days*bal ance-bal arce
: =(1.00016%*days-1.0) ®*bal ance

(5,6) true and amount>0.0
=amount>0.0

6 NEWBAL=1.00016**days*bal arce+amount
=amount+1.00016**days*balance

(7.,8) =amourt > 0.0 and
amount < 0.0
#%%inconsistent#

delete amount > 0.0

alterrnative edge

(7,15) amourt > 0,0 ard
amount >= 0.0
= amount > 0.0

15 - BALANCE=amourt+1,00016%*days®balance

Figure 8. Detection of Inconsistent Path Condition

ard Corntiruation with Executable Path P9

corstart boolear values or all evaluate to symbolic expressiors over the irput
values, If the branch predicate for a selected edge evaluates to a boolean
constant ther corsistercy determination is trivial. ,Otherwise, the techniques
described above may be employed to determine the corsistency of the irterpreted
.brarch predicate with the existing path corditior. When determining consistercy,
there are three possible outcomes: 1) rone of the alterratives is corsistent;
2) orly ore of the alterratives is consistert; anrd 3) more than onre of the -
alternatives are consistent. The graph shown ir Figure 9 demonstrates all three
cases. Note that the first case implies a program error and can orly occur for
multi-conditioral statements without ar otherwise clause, like the Pascal CASE
statemert. Wher all of the branch predicates evaluate to symbolic expressions,
any of the three cases car occur. When they all evaluate to boolear corstanrts,
at most ore of the alternatives can evaluate to true, ard thus orly case 1 or 2
car occur.

case 3 (u5) (u>s5)

—>

case 3 (w<0) (w>0)

NP **‘]
case 2 (u*w>0) (u*w<0) .
\/

(u=1) /\ (u=3)
~ ‘

P IO a—

PRy I —

case 1

* % & commnn

(u=2)

- Figure 9. Examples of the 3 Cases that Can Occur
During Cornsistercy Determination

-~

The forward expansion technique begins with the start node and works toward the
firal rode, while the backward substitution techrique [HOWDTS,HUAN75] begins with
the firal rode and works toward the start nrode. Backward substitutior was
proposed for systems concerred with creating only the path conditior and rot the
path computatior. While traversing backwards alorg a path, each encountered
branch predicate is recorded. When an assigrment to a variable referenced in any
of the recorded branch predicates is ercountered, the assigrment expressior is -
substituted for all occurences of that variable in the recorded branch
predicates. For example, if the branch predicate (y. > 5) were traversed, ard
thus recorded, and then the assigrment Yy= Vg + 1 were encountered, the recorded
branch predicate would be modified to (y, + ¥ >5). Note that with backward
substitution, symbolic names are rot assigred until the start node is encountered.
After the start rode is reached, the path conditior is formed by cornjoinirg all
of the recorded, and duly modified, branch predicates for the path. Ar example
of backward substitution for path P, irn TRANSACT is shown in Figure 10. In this
figure, the evolvirg symbolic valueS of the recorded branch predicates are listed
at each modificatior poirt. Note that many of the assigrment statements,
specifically those that do not modify variables referenced ir the brarch
predicates, can be igrored usirg backward substitutior wher only the path
conditior is desired. In the example of Figure 10, assigrment statements 15, 14,
13, 4, 2, and 1 are igrored. Ir a general symbolic execution system where both
the path condition arnd path computatior are desired, the two approaches irterpret

each statement and produce equivalert expressions for the path corditior arnd path
computatior.

Forward exparsior is a more efficiert techrique of symbolic executior thar
backward substitutior wher early detection of rorexecutable paths is supported.
In forward exparsior, a brarch predicate is irterpreted, simplified, ard checked
for corsistercy with the existirg path corditior wher it is ercourtered. 1Ir

statement recorded

or edge branch predicates
f,15,14,13 ro effect
(12,13) NEWBAL < MINBAL
1 NEWBAL + AMOUNT < MINBAL -
(8,11) NEWBAL + AMOUNT < MINBAL
' -AMOUNT <= NEWBAL
(7,8) NEWBAL + AMOUNT < MINBAL
-AMOUNT <= NEWBAL
AMOUNT < 0.0
5,7 NEWBAL + AMOUNT < MINBAL
-AMOUNT <= NEWBAL .
AMOUNT < 0.0
AMOUNT <= 0.0
4 ro effect
3 BALANCE®*(1+RATE/365) **DAYS + AMOUNT < MINBAL
~AMOUNT <= BALANCE®(1+RATE/365)*#DAYS
AMOUNT <€ 0.0
AMOUNT <= 0.0
* 2,1 no effect
s balarce*(1+0.06/365) *#days + amourt < 100.0

-amount <z balance®(1+rate/365)%*days
amount < 0.0
amount <= 0.0

Figure 10. Backward Substitutior for Path P2 in TRANSACT

backward substitutior, the idertical process would oeccur wher a brarch predicate
is ercourtered, but additional processirg of the path cordition must be dore
wherever an assigrmert is made to ary variable refererced ir the path corditiorn.
Wher this occurs, each modified brarch predicate must be resimplified and path
corditior consistercy redetermired. This additioral processirg durirg backward
substitutior is costly.

3.2 Applicatiors

Symbolic executior systems have several irterestirg applications. This sectior
considers three applicatiors: validatior ard documertation, error detectior, ard
test data gereratior. Ir additior, the last part of this sectior corsiders
methods of path selection,

The symbolic represertatiors that are gererated for a path car quite raturally be
used for validatior and documertation. The path computatior ofter provides a
corcise furctioral representatior of the output for the entire path domair.
Normal executiorn, or the other hard, orly provides particular output values
(21..... 2,) for particular irput values (x,...., xy). It is possible for the
output _vayuesv to be correct while the path computatior is ireorrectz This is

referred to as coincidental correctress. As an example, suppose the exporent
operator ir statemert 3 of TRANSACT 1is erroreously replaced by a multiply
operator. This causes the path computation for BALANCE alorg path P, ir TRANSACT
to be .
balarce®(1+0.06/365)*days + amourt - 0.10

rather than the internded computation, which is shown in Figure 5. If the path is
always executed for days = 1., ther the actual resultirg value and the irtended
value agree. While this is a contrived example, coircidental correctress is a
common phenomenor of testirg. Examiratior of the path computation, as well as
the path corditior is ofter useful ir uncoverirg program errors [HOWD763. This
is a particularly beneficial feature for scierntific applicatiors, where it is
ofter extremely difficult to marually compute the irterded result accurately due
to the complexity of the computation as well as the rumber of sigrificant digits
required for the irput values. This method of examirirg the path computatior ard
the path corditior is referred to as symbolic testing.

Symbolic executior car also be actively applied to the detectior of program
errors. At appropriate points ir a routire, expressiors describirg error
conditiorns car be interpreted and checked for cornsistency with the path corditior
Just as brarch predicates are irterpreted. Consistercy implies the existence of
irput values ir the path domain that would cause the described error.
Incorsistency implies that the error cordition could rot occur for any element in
the path domain. This demornstrates arother advantage of symbolic execution over
normal execution. Normal execution of a path may rnot uncover a run time error,
while symbolic executior of a path car detect the presence or guarantee the
absence of some errors. .

The ATTEST system automatically gererates expressions for predefined error
corditions wherever it ercounters the correspondirg program constructs. For
example, wherever a ronconstant divisor is ercourtered, a relatioral expression
comparirg the symbolic value of the divisor to zero is created. This expression
is then temporarily corjoired to the path cordition. If the resultirng path
conrditior is consistert, ther input values exist that would cause a division by
zero error; an error report is issued. If the resultirg path corditior is
irconsistent, ther this potertial run-time error could rot occur or this path.
After determiring corsistercy, the expredsior for the error conditior is removed
from the path cordition before symbolic executior contirues.

Path verificatior of assertions is another method of error detectior. Instead of
predefiring the error corditions, user-created assertiors defire corditiors that
must be true at desigrated points in the routire. An error exists 1if an
assertior is rot true for all elements of the path domair. Wher ar assertior is
ercountered during symbolic executior, the complement of the assertior is
irterpreted ard conjoinred to the path corditior. Incorsistency of the resultirg
path corditior implies that the assertiorn is valid for the path, while
‘corsistercy implies that the assertion is invalid for the routire.

Test data gereration is another ratural applicatior of symbolic executior. The
path corditiorn is examined to determire a solutior -- that is, test data-to
execute the path. Symbolic executior, like most other methods of program
.validatior, does nrot actually execute a routire in its ratural envirormert.
Evaluation of the path computatior for particular irput values returrs nrumeric
results, but because the envirormert has beer charged, these results may not
- always agree with those from rormal executior. Errors ir the hardware, operatinrg
system, compiler, or symbolic executior system may cause ar erroreous result. In
additior, testirg a routire demonstrates its actual performance characteristics.
SELECT(BOYE75] ard ATTEST are two symbolic executiorn systems that attempt to
gererate test data. Sirce an actual solutior to the path conditior is desired
and rot Jjust path conditior corsistercy, these two systems employ ar algebraic
techrique to solve the path corditionr.

Moreover, the path computatior and path cornditior car be used to guide ir
astutely selectirg test data. Error sersitive testirg strategies have been
described [FOST80,MEYE79,WEYUSO] that examire the statements or intent of a
routire and select test dats to detect likely errors. Error sernsitive testing
strategies have also been applied to the path computation and path condition
created by symbolic execution. Functioral testirg ([HOWD80)] modifies this
approach by first decomposing a routire irnto small sections before applyirg
symbolic executior and error sersitive testing. Although error sensitive
testirg, for the most part has been intuitive, there have beer some theoretical
results showing that more rigorous applications of these strategies car guarantee
the absence of certain types of errors. For example, if the symbolic value for
ar output parameter is a polynomial, its degree car be used to determire the
rumber of test data poirts reeded to guarantee the correctness of this polyromial
[HOWD78bl. Further, it has been argued that the selectior of boundary points of
the path domair can guarantee the correctress of the irterpreted brarch
predicates withir a quantifiable error bourd [HASS80,WHIT80]. This approach is
referred to as domair testing. A recent extensior to this approach requires that
the symbolic values of a branch predicate over the paths already tested be
examired to determire wher yet another path is needed to sufficiertly test the
predicate [ZEIL81]. 1In general, the symbolic represertatiors created by symbolic
executior provide valuable guidance ir selectirg test data, but further work ir
this area is reeded.

This section assumed that the paths to be analyzed by symbolic executior are
provided. These paths car either be chosen by the user or be selected
automatically by a comporent of the symbolic execution system. Most symbolie
executior systems support an irteractive path selection facility that allows the
user to "walk through" a program, statement by statement. This feature is useful
for debugging sirce the evolutior of the path computatior and path condition can
be observed. More externsive program coverage requires an automated path
selection facility for choosirg a set of paths based on some eriteriorn, which is
deperdert or the irtended applicatior of symboliec execution. '

Three criteria that are often used for program testing are statemert, brarch, ard
path coverage. Statement coverage requires that each statement ir the program
occurs at least once or ore of the selected paths. Testirng the program on a set
of paths satisfying this criteriorn is called statement testirg. Likewise, brarch
coverage requires that each brarch predicate occurs at least orce on ore of the
selected paths and testing such a set of paths is called branch testirg. Path
coverage requires that all paths be selected; this 1is referred to as path
testirg. Brarch coverage implies statemert coverage, while path coverage implies
.branch coverage. Path coverage, irn fact, implies the selectior of 3511 feasible
combiratiors of branch predicates, which may require an irfirite numger of paths.
Because of the impracticality of path coverage, alterrative criteria have been
proposed that 1limit loop iterations. For example, the EFFIGY system [KING76]
puts an arbitrary bourd or the number of loop iteratiors. Howden has proposed an
approximate path coverage eriterior that requires 0, 1, and 2 iteratiors of all
loops. The ATTEST system tries to select paths that traverse each loop a mirimum
and maximum rumber of times.

Automatically selecting a set of paths to satisfy ary ore of these criteria is
rortrivial since rorexecutable paths must be excluded [GABOT6]. The ATTEST
system, for example, uses a dyramic, goal-oriernted method of path selection. Ir
this system, a path is selected, statement by statemert, as symbolic execution
proceeds. A statemert is selected based or its potential for satisfyirg the path
selectior criterior, which ecan be statement, brarch, or path coverage. As
described above, wher ar irfeasible path is ercountered, ATTEST chooses ore of
the alterrative statemerts. When there is more thar ore corsistert alterrative,
this choice is based or the selectior criterion. A more complete deseriptior of
Path selectior methods for symbolic executior systems can be found in [woopso].

4. DYNAMIC SYMBOLIC EVALUATION

Dyramic symbolic evaluatior is ore of the features provided by dyramic testirg
systems [BALZ69,FAIR75]). Usinrg test data to determine the path, dynamic symbolic
evaluatior systems provide symbolic represertations of the path computatior.
This section gives a brief overview of dyramic testirg systems and then describes
dyramic symbolic evaluation, its implemertation techriques and its applicatiors.

4.1 Implementation Approach

Dyramic testing systems monitor a routire's behavior durirg executior to create a
profile of that executior. Some of the types of informatior ir a profile irclude
the number of times each statemert was executed, the rumber of times each edge
was traversed, the mirimum and maximum number of times each loop was traversed,
the minimum ard maximum values assigred to variables, and the path that was
executed. In addition, some of these systems create ar accumulated profile of
all executior runs.

To collect the information irn a profile, dynamic testing systems usually insert
calls to analysis procedures at appropriate places in the code. This process,
which is referred to as instrumentatior, is genrerally done by a preprocessor
[HUANT78]. Dynamic testing systems also provide a driver program, or test
harness, to initialize the parameters and global variables of the irstrumented
routire to values supplied by the user.

The dyramic symbolic evaluatior comporernt of dyramic testirg systems provides a
symbolic representatior of the computatior of each executed path. In additior to
the user-supplied values, symbolic names are associated with the input values.,
Throughout the execution, dynamic symbolic evaluation mairtairs the symbolic
values of all variables as well as their actual computed values. As with
symbolic execution, the symbolic values are represented as algebraic expressiors
ir terms of the symbolic rames. Sirce dynamic testirg systems monitor the normal
executior process, the forward exparsior techrnique deseribed for symbolic:
executior is a ratural approach for creatirg these symbolic values, These
expressions can be mairtaired irterrally as a computation graph similar to that
shown for symbolic execution. The computation graph is augmented, however, to
irelude the actual value computed for each rode.

After executing path PH' the symbolic value for each output parameter {s shown,
providirg C[P,]. Gererally, dyramic symbolic evaluatiorn systems display these
expressiors as trees irnstead of as algebraic expressiors, although both or either
form could be displayed. The computatior trees that would be created for the
specified irput values to TRANSACT are shown ir Figure 11. Note that these irput
valyes cause path P2 to be executed. Figure 12 shows the firal results that
might be produced. :
Existirg dyramic symbolic evaluatior systems are orly concerred with the path
computation. Sirce the input values are krowr, each branch predicate evaluates
to the corstart value true (or a run-time error 1is encountered). The path
cordition 1is, therefore, equal to true and thus it is rot recessary to check for
path corditior consistercy. It would be easy to extend dynamic symbolic
evaluatior to provide a symbolic representatior of the path cornditior. MNote that
the actual value is known for each output parameter, but the symbolic
represertatior of the path computatior is still provided. Examiratior of the
path corditior, like examinatior of the path computatior, may urcover errors ir
the routire. Ar erroreous path corditior would imply ar erroreous brarch
predicate or erroreous calculatior affectirg a branch predicate.

Symbolic and Actual Input Values
DAYS = days = 20
AMOUNT = amount = -10.00
BALANCE = balance = 100.00

Qutput Variable Computation Tree
BALANCE
INTEREST

(100.0)
BELOWMIN > true

OVERDRAFT —>falze D

Figure 11. Computatior Trees Produced by Dynamic
Symbolic Evaluatior of Path P2 of TRANSACT

Symbolic and Actual Input Values
DAYS = days = 20
AMOUNT = amount = -10.00
BALANCE = balarce = 100.0

Statements Executed
(s, 1, 2, 3, 4,5, 7, 8, 11, 12, 13, 14, 15, f)

Symbolic and Actual Output Values

BALANCE = balarce¥(1+0.06/365)**days + amount — 0.1 = 90.229
INTEREST = balance®(1+0.06/365)%*days - balance = 0.329
BELOWMIN = true .

OVERDRAFT = false

Figure 12. Firal Results of Dyramic Symbolic
Evaluatior of Path P2 of TRANSACT

4,2 Applications

The primary applicatior of dynamic symbolic evaluatior is program debuggirg.
When an error 1is uncovered in a routire, dyramic symbolic evaluatior systems
provide a plcture of the path computation, which can be examired to help 1isolate
the cause of the error. To assist ir debuggirg, these systems provide a
capability for examiring the computatior trees while they are being corstructed
statemernt-by-statement. These systems also allow the user to stop execution at
any statement and "urexecute”. In other words, the user can direct the system to
urdo part of the preceeding execution. This "unexecutior" would show the reverse
evolution of the computation trees. Observirg both the evolutior ard reverse
evolutior of the trees can help the user isolate ar error. Experiments with the
dyramic testirg system ISMS [FAIR75] have shown that both of these features are’
beneficial for debuggirg.

Another feature sometimes provided by dynamic testirg systems is the ability to
check user-created assertions at rur time [FAIR75,STUC73]. Unlike the assertion
checkirg dore by sumbolic executior systems, dynamic assertior checking is dore
Just for the supplied irput values and rot for the entire path domair. Either
the assertior is true and thus valid for the irput values, or the assertior is
false ard thus invalid for the routire, ir which case an error message is issued.

Dyramic symbolic evaluatior can assist in statement, branrch, ard path testirg.
The executior profile provided by dyramic symbolic evaluation systems usually
cortairs statemert executior counts, edge traversal courts, and descriptiors of
the paths executed. This irnformatior is helpful ir determirirg wher a program
has beer tested sufficiertly, based or ary one of these testirg strategies. The
resporsibility of achievirg this coverage, however, falls or the user.

The symbolic representatiors provided by dyramic symbolic evaluatior provide
valuable guidance ir selecting test data. As with symbolic executior, these
represertations car be used ir applyirg error sersitive testirg strategies.
Further, the simplificatior of the relational expressiors ard determiratior of
path corditior corsistercy, which we argued is a desirable although expersive
enharcement to symbolic execution, is not reeded to determire whether or rot a
path is executable. To provide further aralysis, such as automated error
detectior, however, dyramic symbolic evaluation must also irclude these
capabilities and ircur the associated experse.

5. GLOBAL SYMBOLIC EVALUATION

The goal of global symbolic evaluatior [CHEA79a,PLOE79) is the derivatior of a
global representation of a routire —- a represertation of all variables for all
paths, rather than along a specific path. In other words, global symbolic
evaluation results ir a global representation of an entire routine. This
representation is acheived by classifying paths so that the paths in a class
differ only by their nrumber of 1locop iterations. This sectior describes the
interpretive techrique employed by global symbolic evaluation and explains the
loop analysis technique used to classify loops. Several applicatiors of global
symbolic evaluation are also discussed.

5.1 Implementation Approach

Global symbolic evaluation, like symbolic executior, uses the cortrol flow graph
of a routine to guide evaluatior. Loops are evaluated first by a loop aralysis
technique. For each loop, this techrique attempts to create a loop expression,
which is a closed form representatior encompassing the effects of the loop.
Irner loops must be analyzed before outer 1loops. Ar analyzed 1loop can be
replaced by the resulting loop expression, which can thereafter be evaluated as a
sirgle nrode. After all loops have beer analyzed, the control flow graph has been
reduced to a directed acyclic graph. Global symbolic evaluatior then selects the
order in which the nodes are to be interpreted so that all predecessors of a rode
are interpreted before that nrode is irterpreted. In this section, the
interpretive technique of global symbolic evaluatior is first described for
routires without 1loops. Then the loop analysis technique is introduced alonrg
with the techrique for incorporating its results, thereby describing the
applicatior of global symbolic evaluation to routires with loops.

In global symbolic evaluation, as irn symbolic executiorn, the input values are
represernted by symbolic rames, and throughout the analysis the symbolic values of
all variables are represented as algebraic expressions in terms of these symbolic
rames., Furthermore, these symbolic values can be maintained as a computation
graph similar to that described for symbolic executior. The technique used to
interpret a statement is the same as that employed by symbolic execution. In
irterpreting a particular rode, however, symbolic executior orly considers the
evaluatior of ore partial path reachirg that rode, whereas global symbolic
evaluatior corsiders the evaluatior of all such partial paths. For a rode in the
cortrol flow graph, global symbolic evaluatior mairtains a case expressior, where
each case represents one partial path reachirg the node. Each case is composed
of the path condition for a partial path, as well as the symbolic values of all
the variables computed .alorg that partial path.

To see how a node is interpreted, consider a particular rode r,, with predecessor
rodes r,,..., n,, which have béen previously irterpreted. Control may reach n
via any of the ed es (n,, n Koseer (Pyym k) » @nd the transfer from a predecessor
rode occurs under the corditiors o} the correspordinrg brarch predicate. Thus,
when "y is interpreted, the case expressions of all predecessor nodes must be
corsidered. For rode r,, the brarch predicate bp(r,, r,) is evaluated ir the
cortext of each case ir the case expression. For a par%ieu’far case, bp(r,, rk)
is irterpreted ir terms of the symbolic values of the variables for this case.
This interpreted branch predicate is then corjoired to the path corditior for the
associated partial path. As with symbolic executior, it is desirable to check
the corsistercy of the path conditior. For routires without 1loops, the
techriques described for symbolic executior could be applied. If the path
corditior is fourd to be ircornsistert, this case is discarded. Otherwise, the
statemert at rode n, must be irterpreted ir the cortext of this case. After all
the cases for node r, have been cornsidered, the same procedure is followed for
all other predecessor rodes. The updated case _expressions associated with the
predecessor rodes are combired ard the resultirg case expression represents all
executable partial paths reachirg rode Py

Figure 13 shows the global symbolic evaluatior for TRANSACT: only the start
rode, the 'final rode, ard the rodes correspordirg to conditional statements are
shown. For these rodes, each case is anrotated with the correspordirg partial
path. Note that the initial values of all variables are shown at the start rode,
but thereafter the symbolic values are shown only for the variables that car be
modified. Observe that node 7 has two cases in its case expression. Sirce rode
7 is a predecessor to rode 8, both of these cases are corsidered in evaluating
rode 8. Thus, the corditional statement -AMOUNT > NEWBAL is interpreted ir terms
of the symbolic values of the first case for rode 7, providing ore case for nrode
8. This conditioral statement is also inrterpreted ir the context of the secord
case for node 7, providing the second case for rode 8. However, s(bp(7,8)) is
inconsistent with the path condition associated with the first case. The
resulting ircorsistert path conditior is shown ir the case expression for rode 8,
but is rot carried further in the aralysis.,

The routire TRANSACT does not contain a loop, So the global symbolic evaluation
is as deseribed. For routines with loops, however, the described case expressior
representing all partial paths into a node is only possible because of the 1loop
aralysis technique employed by global symbolic evaluatior. This loop aralysis
techrique attempts to represert each loop by a loop expression, a closed form
representation describing the effects of that loop. For each analyzed loop, a
corditioral expressiorn is created representing the firal iteratior count for any
arbitrary executior of the loop. The firal iteratior count is expressed ir terms
of the symbolic values of the variables at ertry to the loop. Ir additior, for
each variable modified withirn the loop, its symbolic value at exit from the loop
is created. Each such expressior is ir terms of the firal iteratior court as
well as the symbolic values of the variables at entry to the loop. The routire

K] case
true:
DAYS = days
AMOUNT = amount
BALANCE = balance

INTEREST = ?
BELOWMIN = ? -
OVERDRAFT = ?
NEWBAL = 2
RATE = 0.06
MINBAL = 100.0
BMCHARGE = 0.1
ODCHARGE = 4.0
erdcase
S case

- (3'1'203ouo5)

true:
BALANCE = balarce
INTEREST = 1.00016%*days*balarce - balarce

= (1.00016%%days~1.0)*balarce

BELOWMIN = false :

OVERDRAFT = false
NEWBAL = balance®*(1+0.06/365)#%*days
1.00016%*days*balance

endcase

Figure 13. Global Symbolic Evaluation of TRANSACT

7 case
- (sv1v213vu'
(amount > 0.0)
BALANCE = balance
INTEREST = (1.00016*%*days-1.0)*balance
BELOWMIN = false-
OVERDRAFT = false
NEWBAL = 1.00016%*days®*balance + amount
= amount + 1.00016**days®*balarce

5.,6,7)

- (8,1,2,3,“,5'7)

(amount <= 0.0):
BALANCE = balance
INTEREST = (1.00016%*days-1.0)*balance
BELOWMIN = false .
OVERDRAFT = false
NEWBAL= 1.00016%**days*balance

endcase

8 case
- (sl1'2'3'u05'6'7'8)
(amount > 0.0) and (amount < 0.0)
= false:

b (3'102030u'5|7i8)
(amount <= 0.0) and (amount < 0.0)
= (amount < 0.0):
BALANCE = balance
INTEREST = (1.00016%*days-1.0)*balance
BELOWMIN = false
OVERDRAFT = false
NEWBAL= 1.00016%*days¥*balance
endcase

12 case
- (s,1,2,3,4,5,7,8,11,12)
(amount < 0.0) and (-amourt <= 1.00016**days¥*balance)
= (amount. < 0.0) and (amourt + 1.00016#%*days¥*balance >= 0.0):
BALANCE = balance
INTEREST = (1.0016%*days~1.0)%*balance
BELOWMIN = false
OVERDRAFT = false
NEWBAL = 1.00016**days®*balance + amount
amount + 1.00016%*days*balance

- (s,1,2,3,4,5,7.8,9,10,12)
(amount < 0.0) ard (-amount > 1.00016**days*balance)
= (amount < 0,0) and (amount + 1.00016%*days*balance < 0.0):
BALANCE = balance
INTEREST = (1.00016%*days-1.0)#%*balance
BELOWMIN = false
OVERDRAFT = true
NEWBAL = 1.00016%*days¥*balance - 4.0
endcase

Figure 13. (continued)

case
- (3.1,2.3.&.5.7.8.11.12,13.1“.15.f)
(amount < 0.0) and (amount + 1.00016%*days*balarce >= 0.0) and
(amourt + 1.0016%**days®*balance < 100.0):
BALANCE = amount «+ .1.00016%*days*balance - 0.1
INTEREST = (1.0016®%*days-1.0)*balance
BELOWMIN = true
OVERDRAFT = false
NEWBAL = amourt + 1.00016%%days¥*balarce - 0.1

[EI 1]

- (3n112-31u|5'7t8'9o10.12.13.1“.15.f)
(amount < 0.0) and (amount + 1.00016%*days*balarce < 0.0) ard
(1.00016%*days*balarce - 4,0 < 100.0)
= (amount < 0.0) and (amount + 1.00016%*days*balance < 0.0) and
(1.00016%*days*balance < 104.0):
BALANCE = 1.00016%%*days*balance - 4.1
INTEREST (1.00016%%days-1,0)*balance
BELOWMIN true
OVERDRAFT = true
NEWBAL = 1.00016%%*days®balance - 4.0 = 0.1
1.00016%%days*balance - 4.1

-— (3-1.2.3.“;5.7.8.11'12'15'f)
(amount < 0.0) and (amount + 1.00016%*days®*balance >= 0.0) and
(amount + 1.0016*%days®*balance >= 100.0):

BALANCE = zmourt + 1.00016%%*days®*balance

INTEREST = (1.00016%*days-1.0)*balance

BELOWMIN = false

OVERDRAFT = false

NEWBAL = amount + 1.00016®%*days*balance

- (311-2v3|u|5v718|9010'12'15'f)
(amount < 0.0) and (amount + 1.00016%*days*balarce < 0.0) and
(1.00016#%days*balance - 4.0 >= 100.0)
= (amount < 0.0) and (amount + 1.00016%*days*balance < 0.0) ard
(1.00016%**days*balarce >= 104.0):
BALANCE = 1.00016%*days*balarce - 4.0
INTEREST = (1.00016%%days-1,0)*balance
BELOWMIN = false
OVERDRAFT = true
NEWBAL = 1.00016%%*days*balance - 4.0

- (3v1'2'30u-5'607015'f)

(amourt > 0.0) and (amount >= 0.0)

(amount > 0.0):
BALANCE = amount + 1,00016%%*days*balance
INTEREST = (1.00016%*days-1.0)¥*balance
BELOWMIN = false
OVERDRAFT = false
NEWBAL = amount + 1,00016%*days*balance

- (3.1'2.3vu.5.7.15.f)
(amount <= 0.0) and (amount >= 0.0)
(amount = 0.0):
BALANCE = 1.00016**days®*balarce
INTEREST = (1.00016*%*days-1.0)%*balance
BELOWMIN false
OVERDRAFT = false
NEWBAL = 1.00016%*days*balarce,

* erdcase

Figure 13. (cortirued)

procedure TRAP(A, B: in real; N: in irteger;
AREA: out real; ERROR: out boolean) is
TRAP is an implementatior of the trapezoidal rule.
TRAP approximates the area betweer the curve
F(x) and the x-axis from x = A to x = B.
The approximation uses N intervals of size (B-A)/N.
An error is returned if N is less than 1,
H: real; — approximatior interval
X: real; —— value along x-axis
YOLD: real; —- value of F(X-H)
YNEW: real; — value of F(X)

s begin
1 if N < 1 then
2 ERROR := true:
else
3 ERROR := false;
y AREA :=z 0.0
5 if A /= B then
6 H := (B-A)/N;
7 X 1=z A;
8 YOLD := F(X);
9 while X < B loop
10 X :=X + H;
1 YNEW := F(X);
12 AREA := AREA + (YOLD + YNEW) / 2.0:;
13 YOLD := YNEW;
endloop;
14 AREA :z AREA"H:
15 if A > B ther
16 AREA :z -AREA;
endif;
endif;
endif;

f erd TRAP;

Figure 14, Routire TRAP

TRAP, shown in Figure 14, contairs a loop, and Figure 15 shows the results from
loop aralysis. This example will be explaired throughout the remainder of this
sectiorn,

Loop analysis proceeds from the inrer-most loops outward. A loop is not analyzed
until all its nrested loops have beer replaced by tseir associated 1loop
expressior. At the time of analysis, therefore, each 1loop“ contairs orly ore
backward branch ard the statements withirn the 1loop car be irterpreted by a
techrique similar to that previously described for loop-free routines.

To iritiate loop analysis, an iteration courter, say k, is associated with the
loop. For a variable V whose value may change within the loop, a special
symbolic name V, is used to represent the value of the variable V on exit fro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>