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ABSTRACT

Frogs and toads provide interesting parallels to the way in which humans can
see the world about them, and use what they see in determining their actions. What
they lack in subtlety of visually-guided behavior, they make up for in the
amenability of their behavior and the underlying neural circuitry to experimental
analysis, We provide an overview of problems involved in modelling neural
mechanisms of frog and toad visuomotor coordination; and then present a number of
background models "in search of the style of the brain." We then review three
specific models of neural circuitry underlying visually-guided behavior in frog and
toad. They form an 'evolutionary sequence' in that each model incorporates its
predecessor as a subsystem in such a way as to explain a wider range of behavioral
data in a manner consistent with current neurophysiology and anatomy. The models

thus form stages in the evolution of Rana computatrix, an increasingly sophisticated

model of neural circuitry underlying the behavior of the frog.+ Finally, we provide

a quick tour of a number of studies which have developed from these basic models.

1. NEURAL SUBSTRATES FOR VISUALLY-GUIDED BEHAVIOR

Lettvin, Maturana, McCulloch and Pitts {1959] initiated the
behaviorally-oriented study of the frog visual system with their classification of
retinal ganglion cells into four classes each projecting to a retinotopic map at a
different depth in the optic tectum, the four maps in register. 1In this spirit, we

viéw the analysis of interactions between layers of neurons as a major approach to

¥ The research reported in this paper was supported in part by the National
Institutes of Health under grant RO1 NS14971-03. My special thanks to Rolando Lara
of Universidad Nacional Autonoma de Mexico with whom the recent modelling was
conducted during his stay at tre University of Massachusetts, 1978-1980. Portions
of Sections 1 and U4 appeared in the earlier paper, Arbib (1982).

+ When both models and experiments are further advanced, the time will be ripe for
the differential analysis of (different species of) frog and toad. 1In the present
article, however, we conflate data gathered from both frog and toad studies to lay
the experimental basis for the models that we discuss.
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modelling "the style of the brain". In Section 3, we offer a general view of
cooperative computation between neurons within a layer, and between 1layers within
the brain. (The relation of "maps as control surfaces" to the general study of
perceptual structures and distributed motor control is given in Arbib [1981].) 1In
following sections, we shall then exemplify these general principles in three
specific models of cooperative computation in neural circuitry underlying visuomotor
coordination in frog and toad} The final section will then chart directions for
further modelling.

Lettvin et al. found that group 2 retinal cells responded best to the movement
of a small object within the receptive field; while group 3 cells responded best to
the passage of a large object across the receptive field. It became common to speak
of these cells as "tug detectors" (following Barlow [19531) and "enemy detectors",
respectively, though :tubsequent studies make it clear that the likelihood of a given
frog behavior will depend on far more than activity of a single class of retinal
ganglion cells (Ewert [1976], and Section 4 below). Given the mapping of retinal
"feature detectors" to the tectum and the fact that tectal stimulation could elicit
a snapping response, it became commonplace to view the tectum as, inter alia,
directing the snapping of the animal at small moving objects —- it being known that
the frog would ignore stationary objects, and would jump away from large moving
objects. However, this notion of a simple stimulus-response chain via the tectum
was vitiated by Ewert's observation that after a lesion to PT (pretectum-thalamus) a
toad would snap at moving objects of all sizes, even those large enough to elicit
escape responscs in the normal animal. More detailed neurophysiological studies
support the inference that the tectum alone will elicit a response to all
(sufficiently) moving objects, and that it is PT-inhibition that blocks this
response when “he object is large, since tectal cells respond to visual presentation
of large moving, objects in the PT-lesioned animal [Ingle, 1973].

In Section UYa we present a model of local circuitry in the tectum (a ‘'tectal
column') to explain certain facilitation effects in prey-catching behavior; then in
Section Ub we study a linear array of such columns to model certain data on
size-dependence of prey-catching activity in toads; and then, in Section le, we add
PT-inhibition to such an array to model the behavior of an animal confronted with
more than one prey-stimulus. These models form three stages in an evolutionary

sequence for Rana Computatrix, our developing model of the neural circuitry

underlying visuomotor coosrdination in frog and toad. Tectum and PT are but two of
the many brain regions to be incorporated into the model during its further
evolution. Section 5 provides a brief perspective of models discussed at greater

length in later papers.



2. AN OVERVIEW OF MODELLTING PROBLEMS

We may determine wunits in the brain physiologically -- for example, by
electrical recording -- and anatomically -- e.g. by staining. In many regions of
the brain, we have an excellent correlation between physiological and anatomical
units -~ we know which anatomical entity yields which physiological response.
Unfortunately, this is not yet the case in many studies of visuomotor coordination
in frog and toad. We have data on the electrophysiological correlstes of animal
behavior, and we have anatomical data. Often, though, we do not know which specific
cell, defined anatomically, yields an observed electrophysiological response. For
example, we have the Golgi anatomy of the frog tectum, shown in Figure 1a, and the
physiological responses recorded from tectum during facilitation of prey-catching
behavior shown in Figure 06d. llowever, our identification of the physiological
responses with specific anatomicnlly defined cells 1is still hypothetical.
Nonetheless, such choices have to be made in formulating and testing our models.

Another problem that we confront in modelling is that we have both too much and
too little anatomical detail: too much in that there are many connections that we
cannot put into our model without overloading our capabilities for either
mathematical analysis or computer simulation; and too little in that we often do
not know which details of synaptology may determine the most important modes of
behavior of a particular region of the brain. For example, in starting from the
Golgi anatomy of frog tectum shown in Figure 1a, we can either follow Szekely and
Lazar into the elaborate synaptology shown in Figure 1b, or we can rather accept
their schematic view of a tectal column as the basic unit of structure, as shown in
Figure 1c. In the modelling to be described in this paper, we have chosen the
latter course, viewing the tectum as an array of interconnected columns each of
which has the formal structure shown in Figure 1d, the behavior of the various
neurons being described by coupled differential equations. In comparing the Golgi
anatomy of Figure 1a with the model of Figure 1d, we see that a number of choices
have been made. In Figure 1a we see that there are two types of output cells for
the tectum, the pyramidal cell and the large tectal ganglionic neuron. Our model
assumes that it is only the output of the former that is relevant to the phenomena
that we are considerini. Clearly, our models must be of such a kind that they are
adaptable when we come t> phenomena that in fact can be shown to depend upon the
ganglionic output. Note, too, that we have ignored the bipolar neurons and amacrine
cells, and that we have nade certain assumptions about the connectivity between the
neurons that are included in the model. However, an important point of our

modelling methodology will be that we set up our simulation in such a way that we

can use different  connectivily on different simulations. 1In this fashion, we can
generate hypotheses which can then be subjected to further experimental test.
Even if we have made a satisfactory choice of how to correlate physiological

units with anatomical units, and of the appropriate connectivity, we still have the
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Figure .1. (a) Diagramatic representation of the lamination and the representative
types of neurons of the optic tectum. Numbers on the left indicate the different
tectal layers. Numbered cell-types are as follows: (1) large pear-shaped neuron
with dendritic appendages and ascending axon; (2) large pear-shaped neuron with
dendritic collaterals; (3) large pyramidal neuron with efferent axon; (4) 1large
tectal ganglionic neuron with efferent axon; (5-6) small pear-shaped neurons with
descending and ascending axons respectively; (7) bipolar neuron; (8) stellate
neuron; (9) amacrine cell; (10) optic terminals; (11) assumed evidence of
diencephalic fibres [from Szekely & Lazar (1976)].

(b) Details of synaptic interaction of dendritic appendages, which exceed current
models in intricacy [from Szekely & Lazar (1976)1].
(19$g§]Szekely and Lazar's schematic for a tectal column [from Szekely & Lazar

(d) Neurons and synaptology of the model of the tectal column. The numbers at
the left indicate the different tectal layers. The glomerulus is constituted by the
LP and SP dendrites and recurrent axons as well as by optic and diencephalic
terminals. The LP excites the PY, the SN, and the GL, and is inhibited by the SN.
The SP excites the LP and PY cells, and it sends recurrent axons to the glomerulus;
it is inhibited by the SN. The SN is excited by LP neurons and diencephalic fibres
and it inhibits the LP and SP cells. The PY is activated by the LP, SP, and optie
fibres, and is the efferent neuron of the tectum.

problem of correlating cellular structure and function with the animal's overall
behavior. In the modelling to be described in this paper, for example, we have
assumed that the activity of the pyramidal cells correlates with the orienting
response of the animal. We have also assumed that when a population of pyramidal
cells is active, the resultant orientation is to the mean position corresponding to
that populatioh. though there is not yet evidence to discountenance further
hypotheses, such as that the orientation will be to the spatial locus corresponding
to the peak of the pyramidal cell activity.

We have already spoken of the need to have a family of models which allows one
to experiment with a number of different connectivities and parameter settings for
the cells of the model. There still remains the question of what is the
appropriately detailed model. Is it the fact that the overall behavior of a large
collection of cells depends critically on the fine details of the response
performance of each individual neuron, or can we hope to use relatively simple,
computationally efficient, neuron models and still derive significant information
about the behavior of the population? In the models to be described below, we have
described the behavior of the neuron by a simple differential equation 1linear in
terms of the synaptically weighted input values, and have assumed that the input
from one cell to another is given by a simple non-linear transformation of the
membrane potential of the source cell. We believe that with such models we can
probe whether the neural networks of different kinds can yield overall classes of
behavior. Future research will be both less detailed -- trying to provide
quantitative analyses correlating classes of neural networks with classes of
behaviors—--and more detailed, as we try to establish detailed parametric
specifications which can be subjected to experimental test in the 1laboratory.

Section 3 will provide a survey of some of the conceptual models that enter into our

-5 -



-0 -

search for "the style of the brain,"” while Section 4 will present the first three
stages of our attempts to model in some detail the experimental studies of
visuomotor coordination in frog and toad.

Our modelling methodology must be based not on a single "take it or leave it"
model, but rather on the exploration of a variety of different connectivities within
some overall paradigm of brain function. Thus, the models to be described below are
dominated by two main considerations: the visual system of the animal must be
considered in the context of the ongoing behavior of the animal -- thus the stress
on visuomotor coordination, rather than on vision per se; and the analysis will be
in terms of the interaction between concurrently active regions of the brain, rather
than in terms of any simple one-way flow of information in a hierarcﬁically

organized system. We use the term cooperative computation to refer to this style of

concurrent. neural processing.

In addition to our concern for embedding the brain within the ongoing cycle of
the animal's action and perception, and studying the brain itself in terms of the
cooperative computation of interacting subsystems, the three models to be exhibited
in Section 4 exhibit a style of "evolutionary" modelling. As a first approximation,
we continually try to localize the neural processes underlying some overt behavior
of the animal within some relatively small portion of the brain. As we come to
analyze more functions, though, we find that each function may require activity in
many portions of the brain, and that each portion of the brain will be involved in
many different activities. Thus, having successfully modelled several phenomena,
one should try as far as possible, when modelling a new phenomenon, to do it by
minor adaptations of the previous model, preserving the earlier successes, rather
than introducing an ad hoc model of a new brain region specifically designed to
achieve the new specified task. Thus, in Section 4 we shall start with the model of
the single tectal column shown in Figure 1d, and show that it is able to account for
certain behavioral and neurophysiological data on facilitation:; we shall then show
how a 1linear array of such columns (Fig. 10a) can account for data on worm pattern
recognition, without 1losing the ability of the individual column to exhibit
facilitation to a 1localized stimulus. Finally, as shown in Figure 11a, we shall
introduce pretectal cells and newness interneurons in interaction with the 1linear
array of columns of Figure 10a, and see how, again without losing earlier properties
of the model, we can account for the certain aspect of prey facilitation. In
Section 5, we shall briefly outline further developments which continue to increase

the behavioral repertoire of our evolving ~cdel, Rﬁﬂ" ggmngggpnix.

3. BACKGROUND MODELS: IN SEARCH OF THE STYLE OF THE BRAIN

Before turning, in Section 4, to the first three stages in the evolution of

Rana computatrix, we devote the present section to a number of background models
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which establish the "style of the brain" with which we approach our modelling of
visuomotor coordination in frog and toad.

Since we are concerned with motor control, we of course make use of such
concepts as feedback and feedforward. In many treatments of these concepts in the
literature on biological control systems, we see the use of 1lumped models. For
example, the direction in which the animal should turn is encoded by a single angle
variable. However, since we shall be concerned with the way in which patterns on
the retina inpinge upon ongoing activity within the brain, we shall not consider it
permissible to regard this angle as explicitly available in the brain as the value
of, for example, firing of some neuron. Rather, we must consider it as encoded by
the locus of the'peak of activity within a neural array. Perhaps the first model of

distributed motor control oi this kind is that of Pitts and McCulloch (1947).

3a. Distributed Motor Control. Apter (1945, 1946) had shown that each half of the
visual field of the cat maps topographically upon the contralateral superior

colliculus., In addition to investigating this sensory map, she studied the motor
map by strychninizing a single point on the collicular surface, flashing a diffuse
1igh!. on the retina, and then observing which point in the visual field was affixed
by the resultant change in gaze. She found that these sensory and motor maps were
almost identical, and this basic finding has been replicated and extended in many
recent studies. Starting from these data, Pitts and McCulloch developed the model
shown in Figure 2. This outlined the reflex arc that extended from the eyes through
the superior colliculus to the ocular-motor nuclei, thereby controlling the muscles
that direct the gaze so as to bring the fixation point to the center of gravity of
distribution of the visual input's brightness. (Our current knowledge of retinal
preprocessing enables us to substitute for the term brightness such a term as
contour information or an expression that describes some other feature of the
input.) Pitts and McCulloch noted that excitation at a point on the left colliculus
corresponds to exeitation from the right half of the visual field and so should

induce movement of the eye to the right; gaze is centered when excitation from the
lefl 1is exactly balanced by excitation from the right. Their model is so arranged
that each motor neuron controlling muscle fibers in the muscles that contract to
move the eyeballs to the right, for example, should receive excitation summing the
level of activity in a thin transverse strip of the left colliculus. This process
provides all the excitation for muscles turning the eye to the right. Reciprocal
inhibition by axons from nuclei of the antagonist eye muscles, which are excited
similarly by the other colliculus, perfbrms subtraction. The quasi-center of
gravity's vertical coordinate is computed similarly. Eye movement ceases when and
only when the fixation point is the center of gravity. Such a model leads to the
jdea that a plausible subsystem for vertebrate nervous systems may be one in whiech
position of the input on the control surface encodes the target to which the

muscular control will be sent. Of course, much remains to be done in turning such a
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general scheme for distributed motor control into a specific model of a specifie
system. For example, the Pitts-McCulloch model does not give an account of
ballistic movements. Again, it does not show us how, for increasing angles of
deviation of the target, visual tracking might first evoke movement of eyes alone,
then of eyes and head, and then of eyes, head, and trunk. Tt remains an important
task in brain theory to explain how the output of a motor computer would control not
a single pair of antagonist muscles, but rather a whole hierarchy of subcontrollers,
in a distributed way.

3b. A Model of Frog's Snapping. Another problem is that in much visually guided

behavior, the animal does not simply respond to "the center of gravity" of visual
stimulation, but rather is responding to s~me property of the overall configuration.
Consider, for example, the snapping behavior of frogs confronted with one or more
fly~-like stimuli.

Ingle (19685, found that in a certain region around the head of a frog, the
presence of a fly-like stimulus elicits a snap; that is, the frog turns so that its
midline is pointed at the stimulus and zaps it with its tongue. When confronted

with two "flies," either of which is vigorous enough that alone it could elicit a
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snapping response, the frog exhibits one of three reactions: it snaps at one of the
flies, it does not snap at all, or it snaps in between at_the "average fly." Didday
(1970, 1976) offered the simple model of this choice behavior shown in Figure 3a.
It is presented not as the state of the art -- in fact, we shall see a more recent
model built upon it in Section 4c —- but rather as a clear example of the processing
of structured stimuli to provide the input to a distributed motor controller akin to
that shown in Figure 2. Didday used the term foodness to refer to the parameter
representing the extent to which a stimulus could, when presented alone, elicit a
snapping response. The task was to design a network that could take a
position-tagged "foodness array" and ensure that usually only one region of activity
would influence the motor control system. The model maintains the spatial
distribution of information, with new circuitry introduced whereby different regions
of the tectum compete in such a way that in normal circumstances only the most
active region provides an above-threshold input to the motor circuitry. To achieve
this effect we first introduce a new 1layer of cells that is in retinotopic
correspondence to the "foodness 1layer," and that ylelds the input to the motor
circuitry. In some sense, then, it 1is to be "relative foodness" rather than
foodness that describes the receptive field activity appropriate to a cell of this
1ayer,

Didday's transformation scheme from foodness to relative-foodness employs a
population of "S-cells" that are in topographic correspondence with the other
layers. Each S-cell inhibits the activity that cells in its region of the
relative~f06dncss layer receive from the corresponding cells in the foodness layer

by an amount that augments with increasing activity outside its particular region.
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Figure 3. (a) Schematic view of Didday's model of interacting 1layers of neurons
subserving prey-selection. (b) Primitive cooperation model in which the layer of
S—cells of (a) is replaced by a single inhibitory neuron [from Amari & Arbib

(1977 1.
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This ensures that high activity in a region of the foodness layer penetrates only if
the surrounding areas do not contain sufficiently high activity to block it.

When we examine the behavior of such a network, we find that plausible
interconnection schemes yield the following properties:

1. If the activity in one region far exceeds the activity in any other region,
then this region eventually overwhelms all other regions, and the animal snaps at
the corresponding space.

2. If two regions have sufficiently close activity then a) they may both
(providing they are very active) overwhelm the other regions and simultaneously take
comménd, with the result that the frog snaps between the regions; or b) the two
active regions may simply turn down each other's activity, as well as activity in
other regions, to the point that neither are sufficient to take command. In this
case the frog remains immobile, ignoring the two "flies."

One trouble with the circuitry as so far described is that the buildup of
inhibition on the S-cells precludes the system's quick response to new stimuli. If
in case 2b above, for example, one of those two very active regions were to suddenly
become more active, then the deadlock should be broken quickly. In the network so
far described, however, the new activity cannot easily break through the inhibition
built up on the S-cell in its region. In other words there is hysteresis. Didday
thus introduced an "N-cell" for each S-cell. The job of an N-cell is to monitor
temporal changes in the activity of its region. Should it detect sufficientl&
dramatic increase in the region's activity, it then overrides the inhibition on the
S-cell and permits this new level of activity to enter the relative foodness layer;
With this scheme the inertia of the old model is overcome, and the system can
respond rapidly to significant new stimuli. Didday hypothesized that the S-cells
and N-cells modelled the "sameness" and "newness" cells, respectively, that had been
observed in the frog tectum. Regrettably, no experiments have been done to test

this hypothesis.

3c. Competition and Cooperation in Neural Nets. The above model of prey selection

is an example of a broad class of models dealing with competition and cooperation in
neural nets. As one example of a model of such a kind, let us consider the problem
of  stereopsis, or segmentation on depth cues. Julesz (1971) has designed
"random-dot stereograms" in which each eye receives a totally random pattern, but in
which there are correlations between the inputs to the two eyes. Specifically, the
different regions in the two inputs are ideavical save for a shift in position,
yielding a different disparity in the two retina (Fig. 4a). Although such a pattern
for a naive subject can initially appear to be nothing but visual noise, eventually
disparity wmataelhing takes place and the sub ject perceives surfaces at different
depths. Barlow, Blakemore and Pettigrew (1967) and Pettigrew, Nikara, and Bishop
(1968) have found that cells in cat visual cortex are tuned for retinal disparity;

and similar cells are posited in the human. What presumably causes the initial
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Figure 4. (a) Points projecting to the same point of ome retina are projected to
points with different disparities on the other retina. (b) The problem of resolving
ambiguity: We conceptualize "layers" of cells (they are really in "columns"), one
for each gross disparity. Tte aim is to segment the activity into connected
regions. (c) Coupling coefficierts for one approach to the problem: moderate local
cross—excitation within layers; increasing inhibition between layers as difference
in disparity increases. [From Arbib, Boylls & Dev (1974).] (d) The full model of
competition and cooperation which allows the idea shown in (c) to be subject to

mathematical analysis [from Amari & Arbib (1977)].
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perception of visual noise is that in addition to the correct correlation of points
in the two retinas, there are many spurious correlations, and computation is
required to reduce them (Fig. Ub).

Dev (1975) [see also Sperling (1970), Arbib, Boylls and Dev (1974), Nelson
(1975), and Marr and Poggio (1977)] has proposed that the cells of a given disparity
be imagined as forming a population arrayed in a spatial map corresponding to the
map of visual direction. Connections between cells could then be arranged so that
nearby cells of a given disparity would be mutually excitatory, whereas cells nearby
in visual direction but different in disparity would have inhibitory interaction

(Fig. Y4c). In this way, the activity of the array would organize into a pattern

‘where in each region of visual direction, cells of only one disparity type would be

highly active. As a result the visual input would eventually be segmented into a
number of distinct surfaces.

Tn the stereopsis model, then, we have comp-tition in the disparity dimension
and cooperation in the other dimensions. The Didday model (Fig. 3a) can be regarded
as the limiting case where there is only a competition dimension, namely that of
prey location. Such informal observations have 1laid the basis for rigorous
mathematical analysis of competition and cooperation in neural nets. For example,
Amari and Arbib (1977) both offer the "primitive cooperation model" of Figure 3b
which allows us to gain a mathematical handle on Didday's results, as well as a more
sophisticated model, shown in Figure Ud, which allows us to provide a stability
analysis of a model of the kind studied by Dev for stereopsis. Amari (1982) gives

an up-to-date perspeclive on such models.

3d. Motor Schemas. We owe to the Russian school founded by Bernstein the geheral

strategy which views the control of movement in terms of selecting one of a
relatively short list of modes of activity, and then within each mode specifying the
few parameters required to tune the movement.. Where the Russians used the term
synergy, we will use the term motor schema. The problem of motor control 1is thus
one of sequencing and coordinating such motor schemas, rather than directly
controlling the vast number of degrees of freedom offered by the independent
activity of all the motor units. We have, to use the language of Greene, to get the
system "into the right ballpark," and then to tune activity within that ballpark --
the dual problems of activation and tuning.

In the familiar realm of feedback control theory, a controller (which we will
now think of as a motor schema) compares feedback signals from the controlled system
with a statement of the Ade..red performance of the system to determine control
signals which will move the controlled system into ever greater conformity with the
given plan. However, the appropriate choice of control signal must depend upon
having a reasonably accurate model of the controlled system ~-~ for example, the
appropriate thrust to apply must depend upon an estimate of the mass of the object

that is to be moved. Morcover, there are many cases in which the controlled system
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will change over time in such a way that no a priori estimate of the system's

parameters can be reliably made. To that end, it is a useful practice to interpose
an identification algorithm which can update the parametric description of the

controlled system in such a way that the observed response of the system to its
control signals comes into greater and greater conformity with that projected on the
basis of the parametric description. We see that when a motor schema is equipped
with an identification algorithm (Fig. 5a) and when the controlled system is of the
class whose parameters the algorithm is designed to identify, and when, finally, the
changes in parameters of the controlled system are not too rapid, then in fact the
combination of controller and identification algorithm within the motor schema
provides an adaptive control system, which is able to function effectively despite

continual changes in the environment.

3e. A Model of the Cerebellum. We have suggested that the problem of motor control

is one of sequencing and coordinating motor schemas, rather than directly
controlling the vast number of degrees of freedom offered by the independent
activity of all the muscles. We have suggested that an "identification algorithm"
can adapt a motor schema to changing conditions within some overall motor task. To
see how this analysis can make contact with an interacting layers approach to neural
circuitry, we now examine a model of the cerebellum (Arbib, Boylls, and Dev, 1974;
Boylls, 1975, 19706). The model brings together the notion of a motor schema with
the notion of maps as control surfaces, and is important in that it exhibits neural
layers acting as control surfaces representing levels of activation for the
coordination of muscles, complementing our study of retinotopic representations of
visual input.
' To jrovide neurophysiological data for the model, we consider cerebellar
function in 1locomotion of the high decerebrate cat (Shik et al., 1966). Where
Sherringt.on had noticed that stimulation of Deiter's nucleus in the standing animal
would le¢ad to extension of all the 1limbs, Orlovskii found that in the high
decerebr:te cat, stimulation of Deiter's nucleus during locomotion would not affect
extensior during the swing phase, but would increase extension during the support -
phase. Since the locomotory "motor schema" has been shown to be available even in
the spiral cat (both in classical work by Sherrington (1910) and in modern studies
(compare Herman et.al. 1976)), it seems reasonable to view the system in which the
cerebellum and Deiter's nucleus are involved as providing an identification
algorithm for the parametric adjustment of the spinal schema (Fig. 5b). We now turn
to. Boylls' model which shows how the adjustment of these parameters might be
computed within the cerebellar environs.

As is well known (Eccles et al., 1967), the only output of the cerebellar
cortex is provided by the Purkinje cells, which provide inhibitory input to the
cerebellar nuclei. FEach Purkinje cell has two input systems. One input 1is via a

single climbing fiber which ramifies and synapses all over the Purkinje cell's
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Figure 5. (a) An identification algorithm updates the parameters used to matzh the
controller to the current properties of the system being controlled. (b) It is
posited that the brainstem (cerebellum in interaction with various nuclei) serves as
an identification algorithm for spinal movement controllers. (c) Schematic of the
interacting control surfaces in the Boylls model of the tuning of motor schemas by
cerebellum and related nuclei [from Arbib, Boylls & Dev (1974)].

dendritic tree., The other input system is via <the mossy fibers, which activate

granule cells whose axons rise up into tne layer of Purkinje cell dendrites (which
are flat, with the planes ~f all their dendritic trees parallel to one another) to
form T's, whose crossbars run parallel to one another at right angles to the planes

of the Purkinje dondritic trees. (There are a number of interneurons in the

cerebellar cortex, but we shall not model these here, but shall instead concentrate
on the basic cerebellar circuit of mossy and climbing fibers, and of granule and

Purkinje cells.)
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The climbing fiber input tc a Purkinje cell 1s so strong that, when its
climbing fiber i: fired, a Purkinjc cell responds with a sharp burst of four or five
spikes, known as the climbing fiber response (CFR). Many authors have thought that
the ‘'secret' of the c¢limbing fiber 1is this sharp series of bursts, but Boylls
suggested below that the true role of the climbing fiber input is to provide the
suppression of Purkinje cell activity for as much as 100 milliseconds which has been
found to follow the CFR (Murphy and Sabah, 1970).

The overall architecture of Boylls' model as played over an array of
interacting control surfaces is shown in Figure 5c, which is an anatomical template
of circuitry ubiquitous in ceretellar transactions. That is, specific labels could
be given to, say, the 'brainstem output nucleus' as red or Deiters nucleus, the
'reticular nucleus' could be reticularis tegmenti pontis or paramedian, etc. From
this architecture we gather that the output from the cerebellar nuclei via the
brainstem 'output' nucleus results from the interaction between cerebellar cortical
inhibition as supplied by the Purkinje cells and between drives from the reticular
nucleus. Tsukahara (1972) has demonstrated the possibility of intense reverberation
between the reticular and cerebellar nuclei following removal of Purkinje
inhibition, and Brodal and Szikla (1972) and others have demonstrated the anatomical
substrate for such loops, with a somatotopic mapping in both directions. We thus
postulate that there will be explosively excitatory driving of the cerebellar
nucleus by reticulo-cerebellar reverberation unless blocked by Purkinje inhibition.

The output of cerebellar tuning is expressed as a spatio~temporal neuronal
activity pattern in a cerebellar nucleus, which can then be played out via the
brainstem nuclei to spinal levels. A careful analysis of the anatomy enabled Boylls
to predict that the agonists of a motor schema would be 'represented' along a
saggital strip of the cerebellar cortex, while its antagonists will 1lie orthogonal
to that strip (in the medio-lateral plane). Applications of this formula to
cortical topography of the anterior 1lobe, as developed by Voogdt (1969) and
Oscarsson (1973), allowed Boylls to identify particular cortical regions as
associated with equally particular types of hindlimb-forelimb, flexor-extensor
synergic groupings. This led to conclusions which are experimentally testable.

The Boylls model suggests that activity within the cerebellar nucleus is
jnitiated through topically precise climbing fiber activity: the mechanism involves
their direct cerebellar nuclear activation coupled with the suppression of the
target Purkinje cell activity in the cortex via the above-mentioned 'inactivation
response'. Once activity is installed in cortico-nuclear interactions via climbing
fiber intervention, the underlying reverberatory excitation helps to retain or
'store'! it. At the same time, this activity is transmitted to the cerebellar cortex
on mossy fibers, eventually altering the inhibitory pattern in the nuclear region
surrounding the active locus. The spread of parallel fibers yields a form of
1ateral inhibition which provides spatial tsculpting' in a way depending on the
elaborate geometry of‘cerebellar cortex and cortico-nuclear projections. Mossy
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inputs of various types tune the resultant patterns to the demand of the periphery;
and the program is spinally 'read out' as appropriate. Testing of the various
hypotheses has required computer simulation of this neuronal apparatus. Simulation
results corroborated the conjecture that cerebellar related circuitry could support
the short-term storage of motor schema parameters initiated (and periodically

refreshed) by climbing fiber activity.

4. THE FIRST THREE STAGES OF RANA COMPUTATRIX

ba, Facilitatioq of Prey-Catching Rehavior. Frogs and toads take a surprisingly

long time to respond to a worm. Presenting a worm to a frog for 0.3 sec may yield
no responsc, whereas orientation is highly likely to result from a 0.6 sec
presentation. Ingle [1975]1 observed a facilitation effect: if a worm were
presented initially for 0.3 sec, then removed, and then restored for only 0.3 sec,
the second presentation would suffice to elicit a response, so long as the
intervening delay was at most a few seconds. Ingle observed tectal cells whose time
course of firing accorded well with this facilitation effect (Fig. 6d). This leads
us to a model [Lara, Arbib and Cromarty, in press] in which the "short-term memory"
is in terms of reverberatory neural activity rather than in terms of the short-term
plastic changes in synaptic efficacy demonstratei, for example, by Kandel [1978] in
Aplysia, Our model is by no means the simplest model of facilitation —- rather, it
provides a reverberatory mechanism for facilitation «consistent with Ingle's
neurophysiology and the known local neuroanatomy of the tectum. Unfortunately, the
current knowledge of tectal circuitry is scanty, and much of the structure of the
tectal column to be postulated below 1is hypothetical, and is in great need of
confrontation with new and detailed anatomy and neurophysiology.

The model described in this section addresses facilitation at a single locus of
tectum. Further developments address the interaction of a number of columns, and we
Shall discuss these in Sections 4b and lc.

The anatomical study of frog optic tectum by Szekely and Lazar (19761 provides
the basis for our model of the tectal column (Fig. 1a). 1In the superficial
sublayers of tectum we see the thalamic input (which may also ramify in deeper
layers), below which are the retinal type 1 and 2 inputs, with the retinal type 3
and 4 inputs deeper in turn. Deeper still, in layer 7, are the tectal efferents,
which come from two cell types, the pyramidal cells and the So-called tectal
ganglion cells. Our model of prey-catching will use only the pyramidal cells as
efferents; we shall ignore the tectal ganglion cells which may (this is
Speculative) provide the output path for avoidance bohavior, We incorporate the
stellate cells as inhibitory interneurons, and ignore the amacrine interneurons.
The other major components to be incorporated in our model are the large and small

pear-shaped cells. Little of the anatomical connectivity of these cells is known,
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Figure 6. (a) Computer simulation of tectal cells response when a brief stimulus is
presented. The onset of the s:imulus produces a long lasting depolarizatin in the
glomerulus which then fires the large pear-shaped cell (SP). This neuron in turn
sends recurrent axons to the glomerulus and the stellate cell (SN) which acts as the
inhibitory neuron in the column. When the inhibitory effect of SN releases the LP
cell, a rebounding excitation occurs. The small pear-shaped cell is integrating the
activity of GL, LP, and SN neurons to give a delayed short response. (b) If in the
above situation we present a stimulus of longer duration then we show that now the
pyramidal neuron fires. In (c) we show that when a second stimulus of the
'subthreshold duration' used in (a) is presented, the pyramidal cell (PY) responds.
(The frequency of the spikes are a graphical convention. The spikes are drawn
simply to highlight when the memtrane potential of a cell is zbove threshold.) [From
Lara, Arbib & Cromary (in press).]

(d) Physiological behavior of cells related to prey catching facilitation. A
shows a brief eclass 2 burst followed by a delayed response of a tectal cell. In B
the behavior of a tectal cell is shown, responding to the presentation of the
stimulus and again with a delay. C shows a tectal neuron that produces a delayed
response to the presentation of the stimulus. Finally, D shows the postimulus
histogram of a tectal cell showing a delayed peak at 3 to 4 seconds. [From Ingle
(1975573
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let alone the physiological parameters of their connections.

As we discussed in Section 2, the tectal column model (Fig. 1d) 1is abstracted
somewhat crudely from the anatomy of Szekely and Lazar. It comprises one pyramidal
cell (PY) as sole output cell, one large pear-shaped cell (LP), one small
pear-shaped cell (SP), and one stellate interneuron (SM). (The simulation results
of Figs. 6 and 7 were actually based on a larger column with 1 PY, 3 LP, 2 SP and 2
SN, bu£ the results for the column of Fig. 1d are essentially the same.) All cells
are modelled as excitatory, save for the stellates. The retinal input to the model
is a lumped "foodness" measure, and activates the column through glomeruli with the
dendrites of the LP cell. LP axons return to the glomerulus, providing a positive
feedback 1loop. A branch of LP axons also goes to the SN cell. There is thus
competition between "runaway positive feedback" .ind the stellate inhibition. (For a
full present.ition of the differential equations used in the simulation, see Appendix
1 of Lara, Arbib and Cromarty [in press].)

The role of SN in our tectum model is reminiscent of Purkinje inhibition of the
positive feedback between cerebellar nuclei and reticular nuclei, a basic component
of Boylls' model of cerebellar modulation of motor synergies outlined in Section 3.
As mentioned above, Tsukahara [1972] found that reverberétory activity was indeed
established in the subcerebellar loop when piecrotoxin abolished the Purkinje

inhibition from the cerebellar cortex. It would be interesting to conduct an

_analogous experiment by blocking inhibitory transmitters in the tectum.

Returning to the tectal model: glomerular activity also excites the SP cell
which also sends its axon back to the glomerulus. The SP cell also excites the LP
cell to recruit the activity of the column. The PY cell is excited by both SP cell
and LP cell. Clearly, the overall dynamics will depend upon the actual choice of
excitatory and inhibitory weights and of membrane time const.ants. It required
considerable computer experimentation to find the weights th:t yielded the neural
patterns discussed below. Further study was devoted to a sensitivity analysis of
how weighting patterns affect overall behavior. It is our hope that our hypotheses
on the ranges of the parameters involved in the model will stimulate more detailed
anatomical and physiological studies of tectal activity.

Excitation of the input does not lead to runaway reverberation between the LP
and its glomerulus; rather, this activity is "chopped" by stellate inhibition and
we see a period of alternating LP and SN activity. The SP cell has a longer time
constant, and is recruited only if this alternating activity continues long enough.

In one simulation experiment, we graphed the activity of the pyramidal cell as
a function of the time for which a single stimulus is applied (Fig. 7a). There is,
as in the experimental data, a critical presentation length below which there is no
pyramidal response. Input activity activates the LP, which re-excites the
glomerulus but also excites the SN, which reduces LP activity, But if input
continues, it builds on a larger base of glomerular activity, and so over time there

is a build-up of LP-SN alternating firing. If the input is removed too soon, the
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Eigure 7. (a) Computer simulation of the PY behavior when stimuli are presented for
different intervals. (b) Computer simulation of the temporal pattern of the
facilitation process after the presentation of a brief stimulus.

reverberation will die out without activating the SP cells enough for their activity
to combine with the LP activity and trigger the pyramidal output. However, if input
is maintained 1long enough, the reverberation may continue, though not at a level
sufficiently high to trigger output. However, a second simulation experiment
(Fig. Tb) shows that re-introduction of input within a short time after cessation of
this "subthreshold" length of input presentation can indeed "ride upon" the residual
reverberatory activity to build up to pyramidal input after a presentation time too

short to yield output activity on an initial presentation.

hy, A Simple Model of Pattern Recognition in the Toad. The facilitation model was
'local' in that it analyzed activity in a small patch of tectum rather than activity

distributed across entire brain regions. We now outline Fwert's (1976, for a
review] study of pattern recognition in the toad, analyzing what features of a
single moving pattern will increase the animal's snapping responses. We then show
how a one-dimensional array of tectal columns, of the type studied in the previous
section, can model certain of these data. In Section 5, we briefly discuss our usé
of a two-dimensional array of such columns to model the wholé range of Ewert's data
on pattern recognition.

The toad is placed in a transparent 'cylinder. An object moves around a
circular track concentric with, and on the floor outside, the cylinder. Some
objects elicit no response. Other objects do elicit an orienting response {though
the cylinder wall prevents the toad from actually snapping). Since the object keeps
moving along its track, it can elicit a second response, and a third, and so on.
Ewert's suggestion, then, is that the more 'attractive' is the object, the more
frequently will the toad orient to it, so that the response rate is a measure of

foodness. (Note a paradox here. The less attractive the object, the preater the
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Figure 8. (a) Prey orienting behavior to different configuration of the stimulus.
A) Turning reaction to the stimulus presentation. B) Orienting activity to three
configu -ations (a,b,ec): facilitation to stimulus a, inhibition to stimulus b, and
an ini:ial facilitation and then an inhibition to stimulus c. When pretectum
ablatio oceurs this discrimination disappears.

(b) “‘ectal and pretectal cell activity to different configurations of the
stimulu.: (a,b,e). A) Response of a pretectal neuron which is mostly sensitive to
Stimulus b and e. B and C show the response of two tectal cells to the three types
of stimuli. Neuron C response is mostly sensitive to stimuli type a and ¢, and its
response is greatly reduced for stimulus type b. This response is similar to the
observed behavioral response. D shows the response of both tectal cells (B and C)

without pretectum and how the diseriminative abilities of these cells are lost.
[From Evert (1976).]

integra.ion time to a response, and thus the sreater the distance the animal has to
move fo orient towards the object if it orients at all.)

Ewert presented thre “ypes of rectangular . stimuli: a "worm" subtending 2
degrees in the direction normal to the motion, and some d degrees in the direction
of motion; an "antiworm" subtending some d degrees in the direction orthogonal to
motion, and 2 degrees in the direction of motion; and a "square" subtending d
degrees in both directions. The prey dummy was moved at 20 degrees per second at a

distance of about 7 em from the toad. Ewert studied the toad's response rate for
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each stimulus for a range of different choices of d degrees (fixed for each trial)
from 2 degrees to 32 degrees (Fig. 8). For d = 2, Lhe three stimuli were, of
course, the same. They elicited an orienting activity of 2 to 3 turning reactions
perr minute. For the "worm", the orienting activity increased to an asymptote of 35
tu'ns per minute at d = 16; for the "antiworm", the orienting activity decreased
raridly to extinction at d = 8; while for the square the orienting activity reached
a peak of about 20 turns per minute at d = 8, and then decreased to zero by d = 32.
(The square gives the impression of a competition between "worm" excitation and
"antiworm" inhibition.)

Ewert repeated this series of behavioral experiments in toads with PT-lesions,
and found that for none of the stimuli was there decreased response with inereased
values of d. This more detailed evidence for PT inhibition of tectally-mediated
orienting was further elaborated by neurophysiological recording of PT and tectal
neurons in the behaving toads. 7n the intact toad, PT-neurons had a response rate
insensitive to 'increasing d for "worms", but the response increased with d for
"antiworms", and even more rapidly for squares. Tectum type 1 neurons were
insensitive to ‘changing d for "antiworms", but had a peak of response at d = 8 for
both "worms" and squares; while the firing rate of tectum type 2 neurons was
similar to the orienting activity of the intact toad -- monotonically declining with
d for "antiworms", peaking at d = 8 for squares, and declining slightly after d = 8
for "worms". (Note the slight discrepancy here —- one would expect the response to
"worms" to be non-decreasing if, as Ewert does, one takes tectal type 2 activity as
the neural correlate of orienting behavior.)

On this basis, Ewert postulated a simple model: A filter in PT responds best

to an antiworm stimulus; a tectum type 1 cell responds as a filter tuned to a worm

_ Stimulus

Figure 9. Schematic representation of
the Ewert-von Seelen model of worm-
'antiworm' discrimination. The tectum
type II cell is excited by a tectal
tworm filter' and a thalamic-pretectal
tantiworm filter'.
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stimulus; and a if.ectum type 2 cell is excited by the tectal ¢type 1 cell and
inhibited by a PT-cell (Fig. 9). Thus the type 2 cell responds with increased
activity to increasing d for a worm stimulus; with decreased activity to increasing
d for an antiworm stimulus; and with some tradeoff (dependent upon the actual
param?ters of the filters and the connectivity) for a square. Ewert and von Seelen
[(1974] fitted parameters to a linear formulation of this model to fit (part of) the
response curves observed by Ewert., Note, however, that the domain of 1linearity is
strictly 1limited; and that the model yields the average firing rate of the neuron:
the model is thus lumped over time, and says nothing about the temporal pattern of
neuronal interactions. Arbib and Lara [in press] have studied a one-dimensional
array of tectal columns as in Figure 10a (without PT interaction) to provide a model
of spatiotemporal neural interactions possibly underlying Ewert's "worm" phenomena.
For example, in the Ewert study of the toad's response to an object moving along a
track, we may regard the object's movement at one position as facilitating the
animal's orientation to the object in a later position. The key question here is
"How does the facilitation build up in the right place?" Part of the answer lies in
noting the large receptive fields of the tectal columns; and analyzing how activity
in a population of tectal columns can yield orientation in a particular direction.
Thus, rather than analyzing activity in a single column, Arbib and Lara [in press]
study the evolution of a waveform of activity in a one-dimensional array of columns
(Fig. 10a). We show in Figs. 10b, ¢, d the response to a moving stimulus of various
lengths. These reproduce Ewert's observations on the increasing attraction of a
'worm' with increasing length; Arbib and Lara also report a number of other
computational experiments. The elaboration of this model to a two-dimensional array
of columns (Lara, Cervantes and Arbib, 1982) is integrated with our model (Section

.3¢) of tectal-pretectal interactions in prey-selection to yield a model rich enough

to extend an explanation of Ewert's data on pattern recognition into the temporal
domain in a way which addresses the antiworm and Square data, as well as the worm
data.

je, A Model of Prey-Selection. We saw in Section 3b that Ingle [1968] had studied
the response of frogs to pairs of fly-like stimuli, each of which was such that when
presented alone it would elicit a snapping response, and found that, under differing

conditions, the animal would snap at one of the stimuli, snap between them, or not
snap at all. We now turn to a model of such prey-selection which refines the Didday
model discussed above (Fig. 3a) but diffars in that —- in view of Ewert's study of
PT-lesions -- it uses PT-tectal interactions, rather than positing that all the
necessary circuitrv is embedded in the tectum. Moreover, the new model extends the
'array of tectal columns' model of Section #b to provide yet a third stage in the
evolution of Rana Computatrix.

To make that transition from the Didday model, we now identify the "foodness
layer" of Figure 3 with the retinal outflow to tectum and pretectum, and identify
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Figure 10. (a) Architecture of the model of the tectum. Each column is constituted
by one GL (glomerulus), one LP (large pear-shaped) cell, one SP (small pear-shaped)
neuron, one SN (stellate neuron), and one PY (pyramidal cell). The afferents-: are
the optic fibres that arrive at the GL, LP, SP, and PY cells, and the efferents are
the PY axons. LP cells are activated by the GL and the optic input, and they send
recurrent axons to their own as well as neighboring glomeruli. The SN are activated
by the LP cells, and they inhibit LP and SP neurons of their own as well as
neighboring columns. The SP receive excitation from GL and are inhibited by SN;
finally, PY receives afferents from the retina, the LP and SP neurons.

(b), (c) and (d) present a computer simulation of tectal response to a moving
stimulus of different sizes. The graphs show the behavior of the 8 PY neurons of
the tectal model of (a) to a moving stimulus. (b) Notice that in this case an
alternate response is given in columns 3, 5, and 7 when the stimulu: size only
covers one glomerulus. (c) Here the stimulus covers 2 glomeruli simultaneously.
The results show that the strength of activation increases when the size of the
object is elongated. The latency of response is also shorter (column 2). (d) In
this figure the stimulus covers 3 GL simultaneously. Tt can be seen that the
lstency of response is shorter and the total activity is greater than in (b) and
(e). Notice that all columns fire with this stimulus. [From Arbib & Lara (in

press).]
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the "relative foodness layer" with the pyramidal cells of tectum. We now see that
Figure 3a 1is too simple because it does not include other cells of the tectal
column. The new model [Lara and Arbib, in press] interconnects a one-dimensional
array. of tectal columns with a 1layer of cells called S-cells, in retinotopic
correspondence with the columns, which represent cells of the pretectum-thalamus
(Fig.l11a). (In the 1970 model, the S-cells were identified with the sameness cells
reported in the tectum by Maturana, Lettvin et al.) Each S-cell is excited by
activity in the relative foodness layer, save for a blind spot centered at the locus
corresponding to that of the S-cell. In the Didday model, the S-cell then provides
an inhibitory input to cells within its blind spot on the relative foodness layer.
Lara and Arbib [to appear], however, do not make the corresponding assumption that
an S-cell must inhibit the PY cell in the corresponding tectal column. Rather they
conduct a number of cxperiments on the dynamic consequences of choosing different
sites for pretectal inhibition of columnar activity. The reader is referred to
their paper for details.

The system described so far exhibits hysteresis. Should a new peak be
introduced in the input array, it may not affect the output activity even if it is
rather large, for it may not be able to overcome the considerable inhibition that
has built up on the S-cells. The model thus follows Didday in postulating a further
array of NE-cells (representing the newness cells of Lettvin et al.) which register
sudden changes in input, and uses these to interrupt the ongoing computation to
enable new input to affect the outcome.

Clearly, the detailed dynamics of the model will depend on the s8ize of the
blind spot, and the relative parameters of excitation and inhibition. We were able
to adjust the coefficients in such a way that with several peaks in the foodness
input array, the activity passed through to the tectal column would excite the
S-cells in such a way that they would lower the corresponding peaks in tectal
activity. However, if one peak were stronger than the others, it would be less
inhibited, and would begin to recover; in doing so, it would suppress the other
peak more, and thus be inhibited less; the process continuing until the stronger
peak recovered sufficiently to control a "snap" in‘ the corresponding direction
(Fig. 11e). However, there were cases in which the mutual suppression between two
peaks sufficed to hold each below a level suffic:ent to release behavior (Fig. 11b).
We also showed that if the tectum became habituated to one of the stimuli, a
standoff would be resolved in favor of the novel stimulus (Fig. 11d).

5. A PERSPECTIVE FOR FURTHER MODELLING

In Section 4, we exhibited an evolutionary :equence of models -- tectal column,
one-dimensional array of columns; array with prctectal inhibition —- which explains

an increasingly broad range of behavioral data orn visuomotor coordination in frog



- 25 -

THTCRLLL LN IMTERACTI0n

e

(NI

g mm JLLLL1
[ i '

e | ]
T TS T TR Y
L

roLunn®

THTCF GUHIKRE LHVIPACTION

THTE vCOLUMN INTEFRCTIOR

‘e =1 coLusne -
oLurno P .
,A - . o/ L
e .
coLunNy - )_L‘ coLmNg !" m\
e e e —_— — R e
[ _ L ———— . e ] (“— R N
T Neorumnz " coLunnz
/—/\‘ . Pt -~ P
pu -
COLUMNS coLunNg
//\"——-“ —_ - - Pt

79

coLunne ‘ B J_LLU.LM CoLimme ’ | r—}w”mmumummumlmmuu‘
- f— .
_1 coLurns /.k coLunns ] /
f

= .
coLunNe ] coLunNe ] ’
coLunn? .l | coLunn? ]
== -
° z

Figure 11. (a) Architecture of the model for the interactions between tectum and
pretectum in prey selection. Each column receives the afferents from one sameness
neuron; each PY (pyramidal) neuron excites all pretectal cells except the one whose
blind spot is in its receptive field. The NE (newness) neurons arrive at the same
site as the corresponding optic fibres. (b) Computer simulation of the behavior of
PY neurons to two equally intense stimuli. The stimuli are presented in columns 2
and 5. Notice that an alternation of excitation and inhibition is present without
convergence to any of the stimuli. (¢) Computer simulation of the behavior of PY
neurons to two equally intense stimuli to columns 2 and 5 biased by a third one.
When the third stimulus is applied in column 7, then the response converges to the
stimulus presented in column 5. (d) Computer simulation of habituation effects on
PY activity. We first present a stimulus in column 1. After a period of rest, we
present two equally intense stimuli in columns 1 and U4, the response converging to
column 4, because the pathway of column 1 is habituated.
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and toad. We note three important features of the style of modelling developed
here.

1. New phenomena are addressed not by the creation of ad hoc models but by the
orderly refinement and expansion of models already created. Of course, we expect
that future development along this line will lead to redefinition and refinement of
earlier models, rather than simple addition of new circuifry in each case. On the
other hand, we would expect that the model, once sufficiently developed, will
explain many data beyond those which specifically entered into its design.

2. Each '"model' in the sequence is in fact a 'model-family'. We design a
family of overall models, and then conduct simulation experiments to see which
choices -~ of cornectivity, synaptic weights, time constants -- yield neural
dynamics, and inpit-output relations, compatible with available data.

3. The choices mentioned above are only loosely constrained by the
experimental data presently available. To carry out simulations, we make choices
which often must, perforce, go beyond these data. 1In making such choices, we form
explicit hypotheses (whose details are spelt out in our papers cited in Section U)
which may serve to stimulate new experiments. These experiments in turn will
stimulate more refined modelling. The continuing cycle will lead to an increasingly

sophisticated understanding of the neural mechanisms of visuomotor coordination.

We close with a brief discussion of future directions for this modelling
effort. We have already menticned the transition from a one-dimensional to a
two-dimensional ar-ay of tectal columns (and corresponding pretectal elements) as a

further development of Rana Computatrix in Lara, Cervantes and Arbib (1982).

The models of Section 4 have nothing to say about the control of avoidance
behavior, nor docs the basic version described here address more than a few of the
prey-predator discrimination phenomena discussed in Section Uib. A two-dimensional
array of columns will allow us to study the full }ange of these phenomena.

Other developments in the modelling of frog brain visuomotor coordination will
come as we ¢try to take more and more reéions of the brain into account -- for
example, the cerebellum, the retina, and the forebrain. We will also waﬁt to 1look
at more complex behaviors of the animal, not only prey-selection and predator
avoidance, but also behaviors which require the integration of a number of motor
schemas. For example, we are currently considering the way in which an animal will
approach a worm when a vertical paling barrier is interposed. In this case, the
animal's behavior can be analyzed in te- .. of the coordinated activation of three
motor schemas: one for side-stepping, one for orienting, and one for snapping. The
understanding of this behavior, then, reinforces our need to model the animal's
behavior in tern: of the cooperative computation of a number of brain regions. We
have now adapted the Dev conceptual model of stereopsis, described above in Section
3¢, to a model of depth perception in the frog, in which we take account not only of
the disparity cues available ir. the binocular field of the animal, but also of
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accommodation cues available in the monocular field (the animal can still strike
with an accurate depth estimation if it has only one eye, and the worm is presented
in the monocular field corresponding to that eye).

Clearly, then, developments in modelling will reoni: ¢ both the generation of
general concepts for vision and motor control, as well as specific studies which try
to provide a variety of detailed moucis adapted to experimentation on different
kinds of animals and different kinds of situations. We shall also need to get a
better understanding of how regions of the brain are coordinated in complex
behaviors. Finally, it will not be enough to understand how the adult brain behaves
in any given situation; we must also understand the development of the brain (for
example, by modelling the development of retinal-tectal connections), and by
studying learning mechanisms.

There are further refinements not incorporated into the basic model. Increased
motivation (due, e.p., to food odor or to hunger) will cause the animal to snap at
larger moving objects than it would otherwise approach. Such an effect might be
modelled by direct excitation of tectal columns, or by diffuse inhibition of the
S-cells, probably under the control of telencephalic regions. Forebrain mechanisms
allow the animal to 1learn simple discriminations. And there are habituation
phenomena which we have begun to model (Fig. 11d). Habituation disappears when
there i PT ablation. Moreover, the habituation is stimulus specific, and it
appears that pattern recognition 1is necessary both for habituation and
dishabituation to occur. For example, Ewert has studied habjituation of a toad's
snapping response Lo nimple moving piatterns and has discovered a hierarchy -- an
ordering A < B of patterns,such that if the toad habituates to A it will
automatically be habituated to B, but not vice versa. Such data provide a

continuing challenge to the theory-experiment interaction that will drive the future

evolution of Rana Computatrix.
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