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ABSTRACT

In this paper we outline an approach to describing and
analyzing designs for distributed software systems. A
descriptive notation is introduced and analysis techniques
applicable to designs expressed in that notation are
presented. The usefulness of the approach is illustrated by
applying it to a realistic distributed software system
design problem involving mutual exclusion in a computer
network.
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1. Introduction

As part of a project aimed at creating a sophisticated,
integrated software development environment, we have been
seeking tools and techniques to aid in the
pre-implementation stages of distributed software system
development. In particular, we have sought to produce a
notation appropriate for describing the design of a
distributed system along with a collection of analysis
techniques applicable to designs expressed in that notation.
Our goal is a notation and corresponding set of analysis
techniques that can be understood and used by developers of
disttibuted software systems and also can be automated so
that they may provide a Dbasis for distributed software
design tools in an integrated software development
environment.

To date our efforts have resulted in a framework for a
notation and an approach to analyzing descriptions expressed
in that notation. The notation describes systems as
collections of sequential processes communicating entirely
via message transmission, and hence is well-suited for |use
in developing a distributed system's design. The analysis
techniques employ methods derived from basic algebra. Qur
experience has shown that these techniques provide valuable
assistance in uncovering even very subtle flaws 1in designs
expressed in the notation. Moreover, they can also be used
to rigorously demonstrate that certain aspects of a design

are correct.
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In this paper we briefly describe both our notational
framework and our approach to analysis, ijllustrating their
use and their usefulness with a realistic example. The next
section gives an outline of the notation and the analysis
techniques, and compares our approach with some related work
by other researchers. Following that, we discuss the
distributed mutual exclusion problem that serves as the
basis of our example. We then present the example,
illustrating the use of our notation in developing a design
for a Vdistributed system and showing how our analysis
techniques can be used both to uncover design errors and to
demonstrate correctness of aspects of a design. We conclude
the paper with an assessment of the applicability of our

work and prospects for future progress.

2. Framework for Notation and Analysis

.Our work on techniques for describing and analyzing
distributed systems has been guided by our interest in
contributing to the production of practical, automated tools
applicable to the pre-implementation stages of distributed
software system development. We believe that this goal
imposes two Dbasic constraints. First, it requires that we
base our techniques on a descriptive formalism (with
accompanying notation) that not only is precise enough to be
unambiguous, but also is appropriate for use by distributed
software developers who may have no special mathematical or
theoretical training. Second, it requires that we provide

practical analysis methods that can be applied to
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descriptions phrased in that formalism and that can answer
the types of questions arising most crucially during the
design of distributed software systems.

Our choice of a descriptive formalism reflects our view
of the distributed éoftware development process. We believe
that the designer of distributed software needs tools that
will support descriptions of a modularization for the
system, identifying the component processes of the system
and specifying the ways in which those components will
interact. Such a description must be sufficiently abstract
to allow the designer to focus on just the properties of
interest, namely modularity and interaction, without being
distracted by details concerning other properties that are
irrelevant at this stage. At the same time, the description
must be sufficiently rigorous that it can be analyzed. In
addition to providing abstraction and rigor, we feel that a
pre-implementation descriptive formalism must be relatively
easy to wunderstand and |use. Specifically, it must be
amenable to use by software designers who may have little or
no training in advanced mathematics or theoretical computer
science. Therefore, an appropriate formalism should bear a
reasonable relationship to standard software specification
and design techniques. Ideally, it should be possible to
provide an automated version of the formalism to permit its
use in an distributed software development environment
[CLAR81]. Finally, a formalism can only be appropriate for
general wuse during distributed software design if it is

applicable to a wide range of distributed system
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organizations.

The descriptive formalism that we have chosen to use as
a basis for our work is the Dynamic Process Modelling Scheme
(DPMS) and its Dynamic Modelling Language (DYMOL) . This
formalism, described in detail in [WILES8O], wasioriginally
developed for studying distributed systems with dynamic
structure [WILE78]. It evolved from the PPML formalism
[RIDD79] that served as the foundation for the DREAM
software development system [RIDD78]. In DPMS a distributed
system is viewed as a collection of sequential processes,
which interact and coordinate their behavior via message
transmission. The formalism provides a means for describing
a system's configuration. in terms of the processes that
compose it and the interprocess communication linkages among
those processes. An abstract description of the behavior of
each process in a modelled system can be given by a DYMOL
"program" for that process. DYMOL is an Algol-like language
consisting of control constructs, message transmission
instructions (SEND and RECEIVE), instructions for modifying
interprocess communication pathways (ESTABLISH and CLOSE),
and instructions for modifying the composition of the system
by adding or deleting processes (CREATE and DESTROY). Since
DYMOL provides almost no constructs for describing the
algorithmic details of a process' internal computations,
DPMS descriptions necessarily focus on a distributed
system's modularization and the interaction among its
components. A formal, automata-theoretic semantics, defined

in [WILE78], underlies DPMS descriptions of distributed
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systems. We have also defined a closed form, non-procedural
representation for distributed system behavior, called

constrained expressions, and demonstrated the equivalence of

DYMOL descriptions and constrained ekpression descriptions
for a large subclass of distributed systems with dynamic
structure [WILET78].

The DPMS descriptive formalism on which we are basing
our work is similar to several other approaches to
describing distributed systems. In particular, viewing a
system as a collection of communicating sequential processes
is common to most description schemes. Hoare's
Communicating Sequential Processes [HOAR78], Brinch Hansen's
Distributed Processes [BRIN78], and the tasking facility in
the Ada programming language [DOD80] are three of the better
known examples of descriptive approaches that take this
view. It is interesting to note, however, that all three of
these approaches employ an interprocess communication
protocol in which information is transferred only when both
the sender and the receiver are simultaneously prepared to
communicate. In DPMS we take the more general view that a
message sender need not wait for a process to receive the
message that it sends, or even know what process, if any,
will receive the message. Thus, compared to DPMS, the
Hoare, Brinch Hansen, and Ada approaches 1limit the possible
concurrent activity and restrict the distributed system
organizations that can be represented in a natural way. On
the other hand, when it is desired ¢to impose such

restrictions this c¢an be easily done using DPMS (ec.f.,



Page 6

[LISK79]). Thus, although we plan eventually to investigate
the application of our analysis techniques to ‘these
well-known descriptive approaches, at present we pfefer to
base our work primarily on the more general DPMS formalism.
The Hoare, Brinch Hansen, and Ada descriptive
formalisms are all programming languages, and thus were not
explicitly intended for pre-implementation use. Lauer's
COSY formalism [LAUET9] and the distributed system
specification technique of Ramamritham and Keller [RAMA81]
. represent approaches that are intended for
pre-implementation description of distributed systems. Both
are based on formal semantic models, the former on the
theory of nets and path expressions [LAUE75] and the 1latter
on temporal logic [PNUE79]. Both also describe distributed
systems as collections of communicating sequential
processes. The two approaches both, however, distinguish
two types of processes, sometimes called customers and
resources, and limit process interaction to the use of
resources by customers. Hence the specifications of process
synchronization in the two approaches are restricted to
statements regarding the acceptable usage of resources by
customers, which 1limits the range of process interactions
that can be described. While both of these approaches
resemble ours, since they emphasize abstract
pre-implementation descriptions and provide a formal basis
for analysis, they differ from our work both in their
limitations on the range of systems that can be described

and in the style of the analysis that they support.
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We conclude this discussion by outlining our approach
to analysis, which is described in more detail in [AVRU81].
Our analysis techniques are based on applying algebraic
methods to a DPMS description of a distributed system in
order to determine whether a particular pattern of behaviors
can occur in the described system. We view the behaviors of
a distributed system as a set of sequences of event
occurrences, implicitly defined by the DYMOL programs
describing the system's processes, the configuration of
communication paths interconnecting the processes, and the
semantics of the DPMS formalism. An explicit, closed-form
representation of the set of sequences of event occurrences
is provided by the constrained expression corresponding to
the DYMOL description [WILE78], in much the same way that a
regular expression provides an explicit, closed-form
representation for the set of behaviors implicitly defined
by the corresponding finite automaton. Thus, to analyze a
distributed system description we attempt to determine
whether a particular event or (sub)sequence of events
appears in the set of sequences of event occurrences
constituting the system's behaviors. The event pattern in
question may correspond to some desirable property of the
system, whose absence would reflect an error in system
design. Alternatively, the pattern may represent a
pathological system behavior, such as a deadlock or process
starvation, whose presence would represent an error in the
distributed system as presently described. In any case, our

analysis techniques proceed by deriving a collection of
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inequalities representing the number of occurrences of
various events in the behaviors or partial behaviors of the
system. This can be viewed as a generalization of the
techniques employed by Habermann [HABE72] in analyzing a
semaphore solution to a producer-consumer problem. The
inequalities are based upon the system's description in the
DPMS formalism (we have found that the constrained
expression description facilitates this derivation
procedure), the semantics of DPMS, and the event or event
sequence whose existence as a system behavior 1is in
question. An inconsistency among the derived inequalities
implies that the behavior in question cannot occur in the
system and indicates why that behavior is impossible. If
the derived inequalities are consistent, they can be used in
an attempt to produce a particular system behavior
containing the specified event occurrence pattern. Examples
jllustrating both ways of using the analysis techniques

appéar in Section 4,
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3. An Example Design Problem

To investigate the usefulness of our descriptive
notation and associated analysis techniques, we have applied
them to several distributed software design problems. In
this paper we present the results of one such experiment in
order to illustrate both the notation and the analysis
techniques.

The distributed software design problem that we address
in this example is mutual exclusion in a distributed system.
The basic problem is to create a mechanism that will allow
nodes in a distributed system to achieve mutual exclusion
when they have no common shared memory, but can communicate
only by message passing. This is a realistic problem that
is of barticular significance to designers of computer
networks, since nodes in a network normally do not have
access to a common shared memory, but can communicate only
through messages.

Mutual exclusion in a distributed system has been
studied by Lamport [LAMP78] and by Ricart and Agrawala
[RICA81a,81b]l, who have presented algorithms for solving the
problem. Our interest here 1is not in developing a new
approach to solving the problem of mutual exclusion in a
distributed system. Rather, our goal is to demonstrate the
usefulness of our descriptive notation and analysis
techniques for developing solutions ¢to this and other
distributed software design problems. We have, therefore,
relied upon the approach developed by Ricart and Agrawala as

a basis for our example solution to the problem of mutual
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exclusion in a distributed system. Hence, our example
should not be construed as offering a novel solution to the
distributed mutual exclusion problem, but as presenting an
illustration of how a satisfactory solution to that problem
might be developed.

Familiarity with the Ricart and Agrawala solution to
the distributed mutual exclusion problem is not required for
understanding and appreciating the example. A brief outline
of their approach may, however, make the example easier to
follow. In essence, their distributed mutual exclusion
algorithm reduires that a node wishing to obtain exclusive
use of a shared resource send a request for such use to each
of the other nodes in the distributed system and then wait
until all of the other nodes have replied before proceeding
to use the resource. Whenever a node receives a request
message from another node, it decides whéther to reply
immediately, thereby granting its permission to use the
resource, or to defer its reply until after it has used the
resource itself. This decision is bésed upon the relative
priority of the requesting node and the recipient of the
request. Priorities are determined.in part by a sequence
number sént as one portion of the request message and in
part by a fixed priority ordering on the nodes tﬂat is used
in case two sequence numbers are equal. The sequence
numbers are generated by the individual nodes and are
similar to the numbers used in Lamport's "bakery algorithm"

[LAMPTH].
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4. Example Design Development Process

Suppose that, at an early stage 1in designing a
distributed software system, a designer recognizes that
mutually exclusive use of some system resource by the nodes
in the system would be necessary. Suppose further that the
designer then chooses to focus temporarily on working out
this aspect of the system's design, employing the notation
and techniques outlined above. The remainder of this
section describes a hypothetical design development process
that this designer might then follow. As mentioned
previously, the actual solution to the distributed mutual
exclusion problem that results from this hypothetical design
development process is based on an algorithm due to Ricart
and Agrawala.

As a first step in the design development process, the
designer chooses to decompose the distributed mutual
exclusion aspect of a node's computation into three
cooperating subparts. These subparts can be represented as
processes, and might even be implemented on separate
processors if the nodes of the overall distributed system
were themselves networks of processors. One process in this
decomposition would primarily be responsible for generating
requests for use of the shared resource and then performing
the critical section processing involving that resource once
exclusive use of it had been granted. This process will be
referred to as the invoker. A second process, designated

the reply handler, would receive the replies from other

nodes in the distributed system indicating that they had
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received the invoker's request for mutually exclusive use of
the shared resource and were prepared to grant that request.
Upon receiving such replies from all other nodes in the
distributed system, the reply handler process would inform
the invoker process that it had been granted exclusive use
of the shared resource and could proceed with its critical
section processing. Finally, a set of processes would be
responsible for receiving and responding to the requests for
mutually exclusive use of the shared resource that will be
generated by other nodes in the distributed system. Each

such process, referred to as a request handler, would

receive and respond to the requests of one of the
distributed system's other nodes. Under certain
circumstances a request_handler process might decide to
defer a reply, in which case it would inform the invoker
process of this decision so that the invoker could later
send a reply. This modularization of the node's activity
closely parallels the decomposition used in the Ricart and
Agrawala distributed mutual exclusion algorithm ([RICA81al).

Figures 1, 2, and 3 are DYMOL programs that the
designer might use to describe the behavior of the invoker,
reply _handler, and request_handler processes, respectively.
Taken together, these three DYMOL programs describe one node
in a distributed system consisting of three nodes. The
designer must also specify how the Aprocesses are
interconnected by communication linkages and indicate the
communication 1linkages Jjoining them with the other

nodes 1in the distributed
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WHILE INTERNAL TEST DO
BEGIN
RECEIVE cr_in;
SET BUFFER := true;
SEND cr_out;
SEND listen;
SET BUFFER := sequence_number;
SEND reqil_2;
SEND reqi_3;
RECEIVE ok;
SET BUFFER := critical;
RECEIVE cr in;
SET BUFFER := false;
SEND cr_out;
RECEIVE rh2_in;
IF BUFFER = def THEN
BEGIN
SEND replyl_2;
SET BUFFER := no_def
END
SEND rh2 out;
RECEIVE rh3 in;
IF BUFFER = def THEN
BEGIN
SEND replyl_3;
SET BUFFER := no_def
END
SEND rh3 out;
END

Invoker DYMOL program

Figure 1



DO FOREVER
BEGIN
RECEIVE listen;
RECEIVE reply2 1;
RECEIVE reply 3 1;
SEND ok -
END

Reply handler DYMOL program

Figure 2
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DO FOREVER
BEGIN
RECEIVE req2_1;
RECEIVE cr_in;
SEND cr out;
IF BUFFER = true AND INTERNAL TEST THEN
BEGIN
RECEIVE inv_in;
SET BUFFER := def
END
ELSE
BEGIN
SEND replyil_2;
RECEIVE inv_in;
SET BUFFER := no_def
END '
SEND inv_out;
END

Request _handler DYMOL program

Figure 3
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system. These linkages are shown in Figure 4. This figure
also shows the messages that are assumed to be initially
available through the communication linkages.

It must be emphasized that these DYMOL programs are not
intended to be a complete description of all aspects of the
node's activity. That is, although they have the form of
programs they by no means represent an implementation of the
processes that they describe. Instead, they should be
viewed as a model offering only an incomplete and abstract
description of the process' behavior. Here, in keeping with
the designer's decision to concentrate on the distributed
mutual exclusion aspect of the system, the DYMOL programs
focus on just that aspect of the process' activity. Other
aspects are represented in only the most abstract fashion or
are omitted altogether. We feel that such selective
description is both appropriate and necessary during early
stages in the design of a complex, distributed software
system.

As Figures 1, 2, and 3 suggest, DYMOL programs
typically consist primarily of SEND and RECEIVE
instructions. Each SEND has an'outbound port (represented
by an outbound arc in Figure 4) as its operand. Execution
of a SEND by a process causes the contents of a
distinguished memory 1location in that process, called the
buffer, to be sent through the designated port to a link
(represented by a box in Figure U4) associated with that
port. The 1link is essentially an unbounded, unordered

repository that is used to mediate the asynchronous message
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transmission activity of DPMS. Each RECEIVE has an inbound
port as 1its operand. The specified inbound port may be
connected to zero or more links by communication pathways
called channels (represented by inbound arcs in Figure 4).
Execution of a RECEIVE causes a message chosen
(nondeterministically) from among the messages contained in
the links to which the port is connected to be removed from
the link and placed into the buffer of the process executing
the RECEIVE. If no messages are currently available in any
of the 1links to which its port is connected, the process
executing the RECEIVE instruction is 'suspended until a
message becomes available. The DYMOL SET instruction
provides a means for placing a particular value, represented
as the SET instruction's operand, into a buffer. Further
details regarding the semantics of these and other DYMOL
constructs may be found in [WILES8O].

The DYMOL program representing the 1invoker process
(Figure 1) consists of a nondeterministic (WHILE INTERNAL
TEST) loop. This corresponds to the designer’'s view of this
process' activity as it relates to mutual exclusion, namely
that it will repeatedly attempt to enter its critical
section, but may eventually decide to stop doing so. Each
pass through the loop begins with the invoker's announcing
its intention to enter the critical section. The invoker
makes this announcement by replacing the currently available
message in the links connected to cf_in inbound ports with
the message "true", then sending a "true" message to the

reply handler via the 1listen port. (Since SEND does not
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destroy the contents of the buffer, no SET is needed after
the SEND cr_out instruction.) After announcing its
intention, the invoker process requests permission to use
the shared resource by sending messages to each of the other
nodes in the distributed system. The SET BUFFER 1=
sequence number instruction abstractly models the detailed
internal processing that the invoker process uses in
selecting the sequence number portion of its message. Such
details are irrelevant at the current stage of the design
development process, although they clearly must be addressed
in later stages.

Having announced its intention to enter the critical
section and having sent requests for use of the shared
resource to the other nodes in the distributed system, the
invoker awaits (at the RECEIVE ok instruction) a message
from the reply handler indicating that it can proceed. Upon
receiving that message, the invoker performs its critical
section processing, abstractly modelled in Figure 1 by the
SET BUFFER := critical instruction. It then announces
completion of its critical section processing by replacing
the message currently available in the links connected to
the er_in inbound ports with a "false" message. Finally, it
checks to see if any replies were deferred while it was
performing critical section processing. If so, it
dispatches the deferred replies and updates the appropriate
link contents to indicate that no replies remain deferred.
The invoker is then ready to repeat the instructions in its

WHILE loop if it (nondeterministically) chooses to do so.
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The DYMOL program representing the reply handler
process (Figure 2) consists of a non-terminating (DO
FOREVER) loop. Upon being informed (via its 1listen port)
that the invoker has requested use of the shared resource,
the reply_handler awaits messages from the other nodes in
the distributed system granting their permission for such
use. When both other nodes have given their permission, the
reply_handler so informs the invoker by sending a message
through its ok port. Here, as in several other places in
this design, the content of the message sent to the invoker
is irrelevant, so a SET instruction replacing the present
contents of the reply handler's buffer is not used.

.Figure 3 1is the DYMOL program for one of the
request_handler processes. The other request_handler's
program is identical except for the replacement of port
names req2_1 and replyl 2 by req3_1 and reply 1_3?
respectively. The request_handler, upon receiving a request
for use of the shared resource, checks the current status of
the invoker process by obtaining the message currently
available through its cr_in port. After returning this
message so that it can be inspected by the other
request_handler or updated by the invoker, the
request_handler decides whether to send an immediate reply
or to defer its reply. The decision depends in part upon
the current status of the invoker (recall that SEND does not
alter buffer contents) and in part upon a priority
comparison, abstractly represented at this stage in the

design as an INTERNAL TEST. If the invoker is attempting to
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enter its critical section and it has priority over the
other requesting node, then the reply will be deferred.
Otherwise, the reply is sent through the request_handler's
replyl 2 port. In either case, an appropriate message is
made available to the invoker indicating whether or not the
reply was deferred.

The design description contained in Figures 1 through 4
represents a reasonable and realistic first step toward
designing a distributed software system in which mutual
exclusion plays an important role. In fact, this
description is an accurate abstract version of the Ricart
and Agrawala solution to the distributed mutual exclusion
problem ([RICA81al). Further iterative refinement steps
would elaborate the design by detailing the priority
determination wused 1in the distributed mutual exclusion
mechanism and gradually introducing other aspects of the
overall function of the distributed software system.

Before proceeding with further elaboration steps,
however, our hypothetical designer decides to firstvanalyze
the design as it currently stands. One objective of such an
analysis is to uncover any errors made to this point so that
they can be corrected now rather than being incorporated
into later, more detailed versions of the design.
Alternatively, this analysis effort may serve to increase
the designer's confidence in various portions of the current
design by demonstrating that they will produce appropriate

patterns of system behavior.



Page 22

Our designer chooses to analyze this design wusing the
analysis techniques that we briefly described in section 2.
As we mentioned there, these techniques focus on the
patterns of behavior that are possible in a system whose
design is described in DYMOL. For the purpose of analysis,
we regard each behavior of the system as a string of symbols
representing occurrences of events in the system, and we
formulate questions about the system in terms of the
appearance of particular patterns of symbols in these
strings. For example, our designer would like to know that
the messages in the links connected to port rh2_in are used
by the invoker and request_handler2 processes in a mutually
exclusive fashion. In terms of the appearance of patterns
of symbols in behaviors, this mutual exclusion can be
interpreted as the requirement that, between the symbols
representing a RECEIVE from one of these links and the next
SEND to one of these links from the same process, no symbol
representing a use of these links can occur.

When the properties of the computational model
underlying DPMS are interpreted in terms of the appearance
of event symbols in behaviors, they yield conditions on the
numbers and types of symbols preceding and following the
appearance of a given symbol in a behavior of the system.
We use systems of inequalities derived from these conditions
to determine whether a particular pattern of symbols occurs
in the behaviors of the system under study. We now briefly
discuss the sorts of conditions that arise. A more detailed

discussion of such conditions and their use in analysis
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appears in [AVRU81].

There are three types of conditions arising from the
fundamental properties of DPMS that are relevant to the
analysis of the distributed system design described above.
The first type consists of conditions reflecting the
requirement that each sequential process in the system
proceed through 1its program in the correct order, halting
only when it completes the program or suffers starvation.

The second type consists of conditions related to
interprocess communication. These conditions reflect the
requirements that messages can be exchanged only over
previously established channels, that no messages can be
received from an empty link, and that no process can wait
indefinitely if there is a message it éan receive;

The third type of condition relevant to the analysis of
our example design consists of conditions related to
branching, and insures that branching depends correctly on
the contents of the buffer. It is important to note that
conditions of the 1last two types provide the only
constraints on the ordering of events from different
processes.

To illustrate our analysis techniques, we will outline
below part of the analysis which the designer might perform
on the design specified by Figures 1 through 4. In ‘the
interest of clarity and brevity, we omit many details and
numerous inequalities, relying primarily on prose instead.
It should be borne in mind, however, that all of the

analysis outlined below can be expressed in terms of solving
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systems of inequalities.

As a first step, the designer decides to check that the
messages in the links connected to port rh2 in are used by
the invoker and request_handler2 processes in the proper
mutually exclusive fashion. As mentioned above, this is
equivalent to checking that, in every behavior of the
system, no symbol representing a use of these links can
occur between the symbol representing a RECEIVE from one of
these links and the next SEND to one of these links from the
same process. Examining the DYMOL programs and using
conditions of the first type, the designer can see that
events RECEIVE rh2 in and SEND rh2 out strictly alternate
(with other events interleaved, of course), always beginning
with a RECEIVE rh2_in. Similarly, it is evident that the
events RECEIVE inv_in and SEND inv_out strictly alternate,
always beginning with a RECEIVE inv_in.

Let r(inv_rh2) be the symbol representing either of the
events RECEIVE rh2 in or RECEIVE inv_in. Similarly, let
s(inv_rh2) be the symbol representing either of the events
SEND rh2 out or SEND inv_out. The condition that no message
can be received from an empty 1link implies that, in any
initial segment of a behavior, ir(inv_rh2)} < is(inv_rh2)i +
1, where we use |symbol] to denote the number of occurrences
of the symbol in the (sub)string under consideration and the
1 accounts for the message initially in the 1link connected
to inv_out (see Figure 4). The strict alternation of
r(inv_rh2) and s(inv_rh2) from each process implies,

however, that i{r(inv_rh2)] > is(inv_rh2)i. Hence, the

e
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designer concludes that the symbols r(inv_rh2) and
s(inv_rh2) alternate strictly in the entire behavior.

Suppose a use of one of these links does occur between
a particular r(inv_rh2) and the next s(inv_rh2) from the
same process. By the alternation noted above, the next
reference to one of these 1links following the given
r(inv_rh2) must be an s(inv_rh2) from some other process.
Consider now the behavior segment preceding the given
r(inv_rh2). For each process P, the designer knows that
ts(inv_rh2)ip, < ir(inv_rh2)ip, where we denote by isymbolip
the number of occurrences of the symbol which represent
events 1in process P. For the process in which the next
s(inv_rh2) occurs it must be true that is(inv_rh2)ip <
ir(inv_rh2)ip,, so it follows that is(inv_rh2){ <
ir(inv_rh2){ - 1. Immediately following the given
r(inv_rh2), it would have to be the case that |s(inv_rh2)j <
ir(inv_rh2)} - 1, which contradicts the first inequality
noted above. Thus, no reference to one of these links can
occur between an r(inv_rh2) and the next s(inv_rh2) from the
same process, and the messages in the inv_rh2 links are used
in a mutually exclusive fashion. Having shown this, the
designer could apply essentially the same analysis to the
links connected to the cr_in ports and also to the 1links
connected to the rh3_in port.

The designer also wants to check that, under the
assumption that each request from the given node eventually
receives a reply, no request from another node is

permanently deferred. He supposes to the contrary that a
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request from node 2 is permanently deferred. Examining the
DYMOL programs and using conditions of the first type, he
sees that this can occur only when the last message sent to
a link connected to rh2_in 1is a "def" sent by
request_handler2.

The conditions related to branching then imply that
request handler2's last RECEIVE cr_in must have received the
message “true", so this RECEIVE cr_in must have occured
between the events SET BUFFER := true, SEND cr_out and
RECEIVE cr_in, SET BUFFER := false, SEND cr_out in the
invoker. Thus, the conditions which insure that each
sequential process proceeds through its program in the
correct order imply that request_handler2's last RECEIVE
er_in 1is followed by at 1least one transmission of the

message "no_def" into a link connected to the invoker's port

rh2_in. Showing that this SEND event must occur after

request_handler2's 1last SEND inv_out would contradict the
designer's hypothesis and show that no request from node 2
can be permanently deferred.

In this situation, the designer examines the 1list of
conditions of types 2 and 3, searching for a condition or
chain of conditions constraining the ordering of these two
SEND events. However, the only relevant conditioﬁs are
those that imply the mutually exclusive wuse of the 1links
connected to rh2_in, and these do not appear to prevent the

invoker from receiving a message from one of these links and

returning it between the time request_handler2 receives the'

"grue" through port cr_in and receives the message through

ty
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port 1inv_in. Unable to find constraints that would prevent
this sequence of events, the designer looks for a behavior
containing this sequence. 1In this case, it is not hard to
find one.

In particular, it is easy to write down a behavior in
which the request_handler executes its RECEIVE cr_in and
SEND er_out instructions between the execution of the SET
BUFFER := critical instruction and the RECEIVE ecr_in
instruction by the invoker. If this behavior continues with
the invoker executing its SET BUFFER := false, SEND cr_out,
RECEIVE rh2 _in, and (after skipping past the conditional
because it received a "no_def" message though rh2_in) SEND
rh2 out instructions before request_handler executes a
RECEIVE inv_in instruction, the possibility of a permanently
deferred reply will have arisen. Because the
request _handler got a "true" message through port cr_in it
can (assuming that the nondeterministic INTERNAL TEST
evaluates to true) eventually execute its SET BUFFER := def
and SEND inv_out instructions. If the invoker now decides
to exit from its WHILE loop, that "def" message will never
be received by the invoker and thus a reply will be
permanently deferred.

The design error that has just been revealed by the
designer's analysis 1is rather subtle. Indeed, essentially
this same error appeared in the first published version of
the Ricart and Agrawala algorithm ([RICA81al), necessitating
the publication of a revised version a few months later

([RICA81b]). The problem is that, although each message is
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used in a proper, mutually exclusive fashion (as the
designer's previous analysis had demonstrated), it is
possible for the request handler to inspect one message and
use that information in deciding what information to send in
a subsequent message, but not manage to send that second
message until the invoker has already invalidated the
information used in making the decision and inspected an
outdated, erroneous version of the message that the
request_handler is about to replace. Our experience
indicates that subtle errors of this kind, which are very
difficult to discover by simply studying the programs for a
distributed system, are generally uncovered with surprising
ease using these analysis techniques.

After discovering this error, the designer modifies the
system to eliminate it, and uses the same sort of analysis
to check that the modification does indeed eliminate the
error. A simple modification that appears to eliminate the
problem is to change the request_handler's DYMOL program so
that the request_handler removes the message available
through its inv_in port as soon as it receives a request.
The new DYMOL program for request _handler2 is given in

Figure 5.

[

o



DO FOREVER
RECEIVE req2_1;
RECEIVE inv_in;
RECEIVE cr_in;
SEND cr_out;
IF BUFFER = true AND INTERNAL TEST THEN
SET BUFFER := def
ELSE
BEGIN
SEND reply 1_2;
SET BUFFER := no_def
END
SEND inv_out
END -

Revised request _handler DYMOL program

Figure 5.
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To check that this design modification eliminates the
problem, the designer supposes again that a request from
node 2 is permanently deferred. As before, it 1is easy to
see that the last message sent to a link connected to rh2 in
is a "def" sent by request_handler2. Therefore, the 1last
s(inv_rh2) from the invoker must precede this last
s(inv_rh2) from request_handler2. The analysis that showed
mutually exclusive use of the two links connected to rh2 in
still applies, so the last r(inv_rh2) - s(inv_rh2) pair must
precede request handler2's last r(inv_rh2) - s(inv_rh2)
pair. But, as before, the branching conditions and the fact
that request handler2 sent the message "def" imply that
request_handler2's 1last RECEIVE c¢r_in must precede the
invoker's last SEND cr_out, and conditions of the first type
imply that this SEND must precede the invoker's 1last
r(inv_rh2). Finally, the same sort of conditions imply that
request_handler2's last r(inv_rh2) precedes its last RECEIVE
cr_in and therefore precedes the invoker's last r(inv_rh2).
This is a contradiction, so the request from node 2 cannot

be permanently deferred.

5. Conclusion

In this paper we have outlined an approach to
describing and analyzing designs for distributed software
systems. A descriptive notation has been introduced and
analysis techniques applicable to designs expressed in that
notation have been presented. We have given an example of

the application of this approach to a realistic distributed
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software design problem. 1In the example, application of the
analysis techniques to a design description makes it
possible to uncover a subtle design error at a very early
stage in ‘the design development process. This permits the
designer to repair the error, and subsequently to
demonstrate that the repaired design is sound, before
proceeding with refinement of the design.

We have given a prose description of the analysis
performed on our example distributed software design. The
analysis that we were describing, however, can all be
expressed in terms of the consistency or inconsistency of
systems of inequalities. We therefore believe that many
aspects of this analysis can be automated. Although our
preliminary efforts in this direction have encountered
problems due to combinatorial explosion, we are currently
investigating several approaches for turning our analysis
techniques into tools suitable for inclusion in a software
development environment. We note also that the DYMOL design
notation presented in this paper is only a research vehicle
at present. Improved syntax and additional constructs would
be desirable in any design notation intended for practical
use.

We believe that the approach outlined in this paper
provides a basis for tools that will be extremely useful to
distributed software system developers. In particular, this
approach is well-suited for use in a systematic, iterative
refinement style of distributed software system development.

Our approach facilitates production of the incomplete and
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abstract descriptions that are appropriate during early
stages of the development process. Moreover, it provides a
means for rigorously analyzing these incomplete and abstract
descriptions. Thus, it offers the prospect of a development
process guided, from its earliest stages, by continual
assessment of the evolving design. Such a carefully guided
development process could dramatically increase the

productivity of distributed software system developers.

“~
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